
HAL Id: hal-02984964
https://hal.science/hal-02984964

Submitted on 1 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Candidate link key extraction with formal concept
analysis

Manuel Atencia, Jérôme David, Jérôme Euzenat, Amedeo Napoli, Jérémy
Vizzini

To cite this version:
Manuel Atencia, Jérôme David, Jérôme Euzenat, Amedeo Napoli, Jérémy Vizzini. Candidate link key
extraction with formal concept analysis. [Contract] 1.1, ELKER. 2019, pp.1-29. �hal-02984964�

https://hal.science/hal-02984964
https://hal.archives-ouvertes.fr

ANR-17-CE23-0007

ELKER

Enhancing link keys: extraction and reasoning
Étendre les clés de liage: extraction et raisonnement

D1.1 Candidate link key extraction
with formal concept analysis

Coordinator: Jérôme Euzenat
With contributions from: Manuel Atencia, Jérôme David, Jérôme Euzenat, Amedeo

Napoli, Jérémy Vizzini

Quality reviewer: Nacira Abbas (INRIA)
Reference: ELKER/D1.1/v1.0
Project: ELKER ANR-17-CE23-0007
Date: October 8, 2019
Version: 1.0
State: final
Destination: public

EXECUTIVE SUMMARY

Linked data aims at publishing data expressed in RDF (Resource Description Framework) at the scale of
the worldwide web. These datasets can only interoperate when links which identify individuals across
heterogeneous datasets have been published. Finding these links is thus very important.

Such links may be found by using a generalisation of keys in databases, called link keys, which apply
across datasets (§3). They specify the pairs of properties to compare for linking individuals belonging
to different classes of the datasets. However, there may be many link key expression for two datasets. It
is thus necessary to provide algorithms to extract them.

We already provided such an algorithm to extract and select link keys from two classes which deals
with multiple values but not object values. This algorithms works by (1) extracting a relatively small
number of link key candidates and (2) selecting the best candidate according to specific measures.

Here, we show how to recast the proposed extraction technique for link key candidates in the frame-
work of Formal Concept Analysis (FCA, §4). We define a formal context, where objects are pairs of
resources and attributes are pairs of properties, and show that formal concepts correspond to link key
candidates (§5).

We extend this characterisation to the full RDF model including non functional properties and in-
terdependent link keys when the data set is cycle free (§6). This requires the extension of the formal
context by taking into account the link key used to find equal values in the range or object properties.
Moreover, in order to avoid selecting several link keys for the same pair of classes we introduce the
notion of “coherent family of link key candidates”.

Finally, we discuss an implementation of this framework (§7). We implemented these methods in
our LINKEX prototype and evaluated them by reproducing the experiments made in previous studies.
This shows that the method extracts the expected results as well as (also expected) scalability issues.

Most of the content of this report has been published as [Atencia et al. 2019].

2

DOCUMENT INFORMATION

Project number ANR-17-CE23-0007 Acronym ELKER
Full Title Enhancing link keys: extraction and reasoning

Étendre les clés de liage: extraction et raisonnement
Project URL https://project.inria.fr/elker/

Document URL

Deliverable Number 1.1 Title Candidate link key extraction with formal concept analy-
sis

Work Package Number 1 Title Link key extraction

Date of Delivery Contractual M18 Actual 1/10/2019
Status final final ⊠
Nature prototype ◻ report ⊠ dissemination ◻
Dissemination level public ⊠ consortium ◻

Authors (Partner) Manuel Atencia, Jérôme David, Jérôme Euzenat, Amedeo Napoli, Jérémy Vizzini

Resp. Author Name Jérôme Euzenat E-mail Manuel.Atencia@inria.fr
Partner INRIA

Abstract
(for dissemination)

A link key extraction procedure using formal concept analysis is described. It is shown
to extract all link key candidates.

Keywords Formal Concept Analysis, Linked data, Link key, Data interlinking, Resource De-
scription Framework

Version Log
Issue Date Rev No. Author Change
03/05/2019 1 J. Euzenat Initial version from DAM paper
03/05/2019 2 J. Euzenat Cleaned up headers
09/05/2019 3 J. Euzenat Separated from the material in D1.3
24/08/2019 4 J. Euzenat Completed executive summary
01/10/2019 5 J. Euzenat Taken into account quality controller comments

3

TABLE OF CONTENTS

1 MOTIVATIONS 5

2 RELATED WORK 7

3 RDF DATASETS AND LINK KEYS 10
3.1 RDF datasets . 10
3.2 Link keys . 11

4 A VERY SHORT INTRODUCTION TO FCA 16

5 FORMAL CONTEXTS FOR INDEPENDENT LINK KEY CANDIDATES 17

6 HIERARCHICALLY DEPENDENT LINK KEY CANDIDATES 21

7 IMPLEMENTATION AND COMPLEXITY CONSIDERATIONS 25

8 CONCLUSIONS 26

9 BIBLIOGRAPHY 27

4

1. Motivations

The linked data initiative aims at exposing, sharing and connecting structured data on the web [Bizer
et al. 2009; Heath and Bizer 2011]. Linked data includes a large amount of data in the form of RDF
(Resource Description Framework [Cyganiak et al. 2014]) triples, described using terms of RDF Schema
and OWL ontologies [Motik et al. 2012]. It has published more than 149 billions of triples distributed
over datasets from many different domains1 (media, life sciences, geography). This has attracted many
organisations that today publish and consume linked data, ranging from private companies like the BBC
or the New York Times, to public institutions like Ordnance Survey or the British Library in the UK or
Insee and BNF (Bibliothèque Nationale de France) in France.

An important added value of linked data arises from the “same-as” links, which identify the same
entity in different datasets. Innovative applications exploit such cross-references and make inferences
across datasets. Therefore, the task of deciding whether two resources described in RDF over possibly
different datasets refer to the same real-world entity is critical for widening and enhancing linked data.
This task, that we refer to as data interlinking, is a knowledge discovery task as it infers knowledge
—the condition for identity of objects— from data.

Different approaches and methods have been proposed to address the problem of automatic data
interlinking [Ferrara et al. 2011; Nentwig et al. 2017]. Most of them are based on numerical methods
that measure a similarity between entities and consider that the closest the entities, the more likely they
are the same. These methods typically output weighted links, with the links assigned the higher weights
expected to be correct [Volz et al. 2009; Ngonga Ngomo and Auer 2011]. A few other works take a
logical approach to data interlinking and can leverage reasoning methods [Saı̈s et al. 2007; Al-Bakri et
al. 2015; Al-Bakri et al. 2016; Hogan et al. 2012]. One of these approaches relies on link keys [Atencia
et al. 2014].

Link keys generalise keys from relational databases to different RDF datasets. An example of a link
key is:

{⟨auteur,creator⟩}{⟨titre,title⟩} linkkey ⟨Livre,Book⟩

stating that whenever an instance of the class Livre has the same values for the property auteur as an
instance of the class Book has for the property creator and they share at least one value for their properties
titre and title, then they denote the same entity. The notion of link key used in this paper generalises the
definition introduced in [Atencia et al. 2014] because the body of the rule includes two sets: the set of
property pairs for which instances have to share all the values and the set of property pairs for which
instances have to share at least one value. This link key could be useful to discover links between the
BNF catalog and the BNB (British National Bibliography), for instance. The discovered links, in turn,
could be exploited by a powerful semantic search service using both libraries.

Such a link key may depend on other ones. For instance, properties auteur and creator may have
values in the Écrivain and Writer classes respectively. Identifying their values will then resort to another
link key:

{⟨prénom,firstname⟩}{⟨nom, lastname⟩} linkkey ⟨Écrivain,Writer⟩

The problem considered here is the extraction of such link keys from RDF data. We have already
proposed an algorithm for extracting some types of link keys [Atencia et al. 2014]. This method may
be decomposed in two distinct steps: (1) identifying link key candidates, i.e. sets of property pairs
that would generate at least one link if used as a link key and that would be maximal for at least one
generated link, followed by (2) selecting the best link key candidates according to quality measures. A
method for discovering functional link keys in relational databases based on Formal Concept Analysis
(FCA [Ganter and Wille 1999]) is detailed in [Atencia et al. 2014b].

1As reported for the CKAN data hub by http://stats.lod2.eu/ (2017-02-20) which can now be consulted through internet
archive https://web.archive.org/web/20170220115805/http://stats.lod2.eu/

5

http://stats.lod2.eu/
https://web.archive.org/web/20170220115805/http://stats.lod2.eu/

Globally extracting a set of link keys across several RDF data sources raises several issues, as link
keys differ from database keys in various aspects: (a) they relax two constraints of the relational model,
namely, that attributes are functional (RDF properties may have several values) and that attribute values
are data types (RDF property values may be objects too) [Cyganiak et al. 2014], (b) they apply to two
data sources instead of one single relation, and (c) they are used in data sources that may depend on
ontologies and, if so, can be logically interpreted.

Thus, the formal context encoding the key extraction problem [Atencia et al. 2014b] has to be ex-
tended to deal with non functional properties in the appropriate way. Dependencies between classes
through properties may entail dependencies between link keys, as checking the equality of two relations
will rely on other link keys to be extracted.

In this report, we first show how our link key candidate extraction algorithm [Atencia et al. 2014] can
be redefined as a formal concept analysis problem. We then show how this formulation can be extended
to dependent link key candidate extraction.

These are useful results for developers of link key extraction systems: they provide a way to extract
coherent families of link key candidates directly from datasets. No such algorithm was available before.
Moreover, this is expressed through the principled extension of the well-studied formal concept analysis
framework, and not through ad hoc algorithms.

The outline of the paper is as follows. First, we discuss related work on the topics of data interlinking,
key extraction and especially those developed with FCA (§2). Then, we introduce the problem and
notations used in the paper (§3) as well as the basics of formal and relational concept analysis (§4). The
encoding of the simple link key candidate extraction for RDF considered in [Atencia et al. 2014] within
the FCA framework is extended to non functional properties (§5). We show that the extracted formal
concepts correspond to the expected link key candidates. This is extended to encompass dependent link
keys and the notion of a coherent family of link key candidates is introduced to express the constraints
spanning across link key candidates (§6). Finally, we report on a proof-of-concept implementation of
the approach that has been used throughout the paper to automatically provide the results of examples
(§7).

6

2. Related work

Data interlinking refers to the process of finding pairs of IRIs used in different RDF datasets representing
the same entity [Ferrara et al. 2011; Christen 2012; Nentwig et al. 2017]. The result of this process is a
set of links, which may be added to both datasets by relating the corresponding IRIs with the owl:sameAs

property. The task can be defined as: given two sets of individual identifiers ID and ID′ from two datasets
D and D′, find the set L of pairs of identifiers ⟨o,o′⟩ ∈ ID× ID′ such that o = o′.

Data interlinking is usually performed by using a framework, such as SILK [Volz et al. 2009] and
LIMES [Ngonga Ngomo and Auer 2011], for processing link specifications that produce links. Link
specifications indicate what are the conditions for two IRIs to be linked. They may be directly defined
by users or automatically extracted.

This paper is concerned with the problem of automatically extracting a specific type of link specifi-
cation from data. There are different types of link specifications. We distinguish between numerical and
logical specifications.

Most methods roughly compute a numerical specification ⟨σ ,θ⟩ made of a similarity measure σ

between the entities to be linked and a threshold θ . They assume that if two entities are very similar,
they are likely the same. Hence, such specifications may generate links through (adapted from [Sherif
et al. 2017b]):

LD,D′

σ ,θ = {⟨o,o′⟩ ∈ ID× ID′ ;σ(o,o′) ≥ θ}

These numerical specifications are well adapted when approximate matches may refer to the same
entities. Various methods have been designed for extracting numerical specifications based on spatial
techniques [Sherif et al. 2017a], probabilities [Suchanek et al. 2012], or genetic programming and active
learning [Ngonga Ngomo and Lyko 2012]. Such numerical specifications may be extracted by using
machine learning [Isele and Bizer 2013; Sherif et al. 2017b]. A larger selection of methods is available
in [Nentwig et al. 2017].

Logical link specifications are logical axioms from which the links are consequences. Logical spec-
ifications in general, and link keys in particular, are well-adapted when datasets offer enough ground for
object identifying features, i.e. the descriptions of the same entity are likely an exact match on such fea-
tures. Because of their logical interpretation, they are prone to be processed by logical reasoners or rule
interpreters. There are various ways to approach the definition of such specifications [Saı̈s et al. 2007;
Al-Bakri et al. 2015; Al-Bakri et al. 2016; Hogan et al. 2012]. This paper deals with the extraction of
link keys, a specific type of logical link specification. Link keys may be thought of as the generalisation
of database keys to the case of two different datasets and to the specifics of RDF [Euzenat and Shvaiko
2013; Atencia et al. 2014].

Databases generated work on record linkage —or data deduplication— and keys [Elmagarmid et al.
2007]. They may be seen as analogous to the numerical and logical approaches to specify identity within
the same dataset. Recently, data matching has been introduced as the problem of matching entities from
two databases [Christen 2012], but the use of keys was not considered. A key for a relation is a set
of attributes which uniquely identifies one entity. Hence, two tuples with the same values for these
attributes represent the same entity, and they are usually forbidden. Techniques for extracting keys,
and more generally functional dependencies, from databases have been designed [Sismanis et al. 2006;
Huhtala et al. 1999]. Using lattices is common place for extracting functional dependencies [Levene
1995; Demetrovics et al. 1992; Lopes et al. 2002]. The problem was considered in Formal Concept
Analysis (FCA) in a functional setting [Ganter and Wille 1999] and further refined in pattern structures,
the extension of FCA to complex data [Baixeries et al. 2014; Codocedo et al. 2016].

There are two important differences, relevant to the definition of link specifications, between the
data model used in databases, especially relational databases, and RDF:

7

– Multiple property values: In the relational model, attributes are functional, i.e. they bear a single
value. In RDF, this is not the case, unless specified otherwise: an object may have several values for
the same property. Hence, property values may be compared in different ways: either by considering
that objects share at least one value for a property (IN-condition), or that they share all of them
(EQ-conditions) [Atencia et al. 2014a].

– Object references: RDF is made of relations between entities, hence the values of a property may
be objects. In the relational model, properties reach a value. In consequence, the database keys can
establish the identity of property values through data equality, though RDF keys may have to compare
objects, which requires, in turn, a key to be identified. This makes keys eventually dependent on each
others.
Extensions of database keys addressing these issues have been provided for description logic lan-

guages [Calvanese et al. 2000; Lutz et al. 2005]. Several key extraction algorithms have been designed
[Atencia et al. 2012; Pernelle et al. 2013; Symeonidou et al. 2014; Symeonidou et al. 2017] which extract
key candidates from RDF datasets and select the most accurate key candidate according to key quality
measures. Key extraction algorithms discover either IN-keys (only made of IN-conditions) [Symeonidou
et al. 2014; Achichi et al. 2016; Farah et al. 2017] or EQ-keys (only made of EQ-conditions) [Atencia
et al. 2012], however though they can identify entities from the same dataset, they cannot do it across
datasets unless these are using a common ontology or there exists an alignment between their ontologies.

The approaches proposed in [Achichi et al. 2016; Farah et al. 2017] aim at using a key extraction
algorithm [Symeonidou et al. 2014] to extract pairs of keys that can be used as link specifications. They
extract IN-keys that hold in both source and target datasets. It is assumed that both datasets are described
using the same ontology or, more precisely, the system only looks for keys based on the vocabulary
common to the two datasets. In this case, discovered IN-keys, although not equal, mostly correspond
to strong IN-link keys (link keys made up of keys) [Atencia et al. 2014b], and not to weak IN-link keys
(more general), which are the kind of link keys extracted in [Atencia et al. 2014].

There is no necessary correspondence between keys and link keys: there may exist keys which are
part of no link key and link keys which do not rely on keys [Euzenat and Shvaiko 2013, Example 5.38,
p. 116] and [Atencia et al. 2014b]. Hence, looking for keys to be eventually turned into link keys may
fail to solve the problem.

Moreover, the types of keys considered so far can only be used as link specification as long as the
datasets use the same classes and properties, at least for these keys. It is possible to deal with this
problem by using an alignment between the ontologies of the two datasets, but the problem to solve is
different.

In [Atencia et al. 2014], we have proposed to directly discover link keys between two classes from
two datasets. The proposed algorithm does not require an initial alignment between properties of both
datasets and avoids the generation of keys that are specific to only one dataset. It first extracts link key
candidates from the data and then uses measures of the quality of these candidates in order to select the
one to apply. To select the best link key candidates, we have proposed two pairs of quality measures.
The first ones, precision and recall, are supervised, i.e. they require both positive and negative examples
of links. The second pair of measures, discriminability and coverage, are unsupervised, i.e. they do not
require any link as input.

Direct link key candidate extraction with FCA has been described for relational databases [Atencia
et al. 2014b]. However, it is defined for functional properties and must be adapted to the cases of mul-
tivalued and relational attributes. Moreover, it works on pairs of tables and does not extract dependent
link key candidates, e.g. link keys of the class Book, which features the creator relation, will depend on
link keys of the class Person.

There is no intrinsic superiority of one type of link specification, numerical or logical. They rather
have to be used in a complementary way since the effectiveness of different methods may depend on the
particular datasets. In general, key-based specifications are more likely to achieve higher precision, but

8

lower recall than similarity-based specification. Additionally, the approach described here will deal with
dependent link keys and does not need an alignment, though the approach of KeyRanker [Farah et al.
2017] requires an alignment and can treat dependencies through dealing with property paths.

In the following, we define how formal concept analysis can be exploited to extract dependent link
key candidates from heterogeneous datasets.

9

3. RDF datasets and link keys

In this section, we introduce preliminaries on RDF datasets and link keys used throughout the paper.

3.1 RDF datasets

Link keys are used to interlink datasets. In this paper, we focus on RDF datasets1. In RDF, resources
are identified by Internationalized Resources Identifiers (IRIs) [Cyganiak et al. 2014]. An RDF state-
ment is a triple ⟨s, p,o⟩ where s, p and o are called the subject, predicate (or property) and object of the
statement. The subject and predicate are resources; the object may be a resource or a literal, i.e. a value
depending on a datatype. For instance, in Figure 3.1, the triple ⟨o1:z1,o1:firstname,‘‘Thomas’’⟩ has
a literal as object and, ⟨o1:z1,rdf:type,o1:Person⟩ has a resource as object. In addition, RDF allows to
declare anonymous resources using blank nodes, which act as existential variables, e.g. ⟨o1:z1,o1:hasAge,?x⟩.
An RDF dataset is a set of RDF triples that can be viewed as a directed labelled multigraph. The subject
and the object of each triple are labels of two nodes connected by an edge directed from the subject to
the object, the edge being labelled with the predicate of the triple. Below we provide the definition of an
RDF dataset.

Definition 1 (RDF dataset). Let U be a set of IRIs, B a set of blank nodes and L a set of literals. An
RDF dataset is a set of triples from (U ∪B)×U ×(U ∪B∪L).

Given an RDF dataset D, we denote by UD, BD and LD, respectively, the sets of IRIs, blank nodes
and literals present in D.

A special property, very often used in RDF datasets, is rdf:type, declaring that an individual belongs
to a particular class, e.g. ⟨o1:z1,rdf:type,o1:Person⟩. The following definition makes explicit the
distinction between individuals, properties and classes of an RDF dataset.

Definition 2 (Identifiers of an RDF dataset). Let D be an RDF dataset, the sets ID of individual identi-
fiers, PD of datatype property identifiers, RD of object property identifiers and CD of class identifiers in
D, are defined as follows:
– o ∈ ID if and only if o ∈UD and there exist p and u such that ⟨o, p,u⟩ ∈D or ⟨u, p,o⟩ ∈D.
– p ∈ PD if and only if p ∈UD and there exist o and u such that u ∈ LD and ⟨o, p,u⟩ ∈D.
– r ∈ RD if and only if r ∈UD and there exist o and u such that u ∈UD∪BD and ⟨o,r,u⟩ ∈D.
– c ∈CD if and only if c ∈UD and there exists o such that ⟨o,rdf:type,c⟩ ∈D.

The vocabulary of “class”, “datatype property”, “object property” and “individual” is used according
to their meaning in RDFS [Brickley and Guha 2014] and OWL [Motik et al. 2012], but this does not need
to be further specified for the sake of this paper. These sets may be assumed to be disjoint without loss
of generality by separating different manifestations of the same symbol (as class, as datatype property,
as object property, as individual). From these we define the signature of a dataset.

Definition 3 (Signature of an RDF dataset). The signature of an RDF dataset D is the tuple ⟨RD,PD,CD⟩.

We denote by cD = {t ∈ ID∣⟨t,rdf:type,c⟩ ∈D} the set of instances of c ∈CD in the dataset D. In RDF,
an individual may have several different values for the same property. For a datatype property p ∈ PD,
we denote by pD(o) = {v ∈ LD∣⟨o, p,v⟩ ∈ D} the set of values of property p for object o in the dataset D.
Similarly, for the object property r ∈ RD, we have rD(o) = {u ∈ ID∣⟨o,r,u⟩ ∈D}.

Example 1 illustrates the notion of a dataset.

1We use here the term RDF dataset instead of the standard term RDF graph [Cyganiak et al. 2014] as these RDF graphs are
not precisely graphs.

10

o1:Person

o1:z1

o1:z2

o1:z3

o1:z4

o2:Inhabitant

o2:i1

o2:i2

o2:i3

o2:i4

Dupont

Maxence

Thomas

Dubois

Dupuis

Lisa

Jacques

Paule

Durand

o1:l
astn

ame

o1:lastname

o1:las
tname

o1:lastname

o1:firstname

o1:firstname

o1:firstn
ame

o1:firstname

o1:firstname

o2:giv
en

o2:given

o2:g
iven

o2:gi
ven

o2:name

o2:name

o2:name

o2:name

o2
:n
am
e

Figure 3.1: Example of two datasets representing respectively instances of classes Person and
Inhabitant.

Example 1 (RDF dataset). Figure 3.1 shows an example of two simple datasets (o1 and o2) to be
interlinked. These datasets respectively represent instances of classes Person and Inhabitant. The
first dataset describes persons using properties lastname and firstname. The second dataset makes
use of properties name and given to describe inhabitants. All these properties are datatype properties.
Hence, the signature of o1 is ⟨{} {o1:lastname, o1:firstname} {o1:Person}⟩ and that of o2 is ⟨{}
{o2:name, o2:given} {o2:Inhabitant}⟩.

Each dataset is populated with four instances. In the first dataset, there are instances z1, z2, z3,
and z4. In the second dataset, instances are i1, i2, i3, and i4.

For example, the first dataset states that z1 is an instance of Person who has lastname ”Dupont”
and firstname ”Thomas” and ”Maxence”. This example shows that properties can be multivalued:
z1 has two firstnames and i3 two names. In this example, we assume that the following links have to be
found: z1 = i1, z2 = i2, and z3 = i3. Instances z4 and i4 are obviously different.

3.2 Link keys

Link keys specify the pairs of properties to compare for deciding whether individuals of two classes of
two different datasets have to be linked. We first give the definition of a link key expression.

Definition 4 (Link key expression). A link key expression over two signatures ⟨R,P,C⟩ and ⟨R′,P′,C′⟩
is an element of 2(P×P′)∪(R×R′)×2(P×P′)∪(R×R′)×(C×C′), i.e.

⟨{⟨pi, p′i⟩}i∈EQ,{⟨q j,q′j⟩} j∈IN ,⟨c,c′⟩⟩

such that EQ and IN are (possibly empty) finite sets of indices.

In this section, we do not take into account the object property part of signatures which will be
considered in Section 6.

In order to make the notation more legible, sometimes we will write:

{⟨pi, p′i⟩}i∈EQ {⟨q j,q′j⟩} j∈IN linkkey ⟨c,c′⟩

The two sets of conditions are respectively called ∀-conditions and ∃-conditions to distinguish them
from the former EQ- and IN-conditions [Atencia et al. 2014a]: IN-conditions are the same as ∃-conditions,
but EQ-conditions correspond to both ∀- and ∃-conditions.

Link key expressions may be compared and combined through subsumption, meet or join.

11

Definition 5 (Subsumption, meet and join of link key expressions). Let K = ⟨E,I,⟨c,c′⟩⟩ and H =
⟨F,J,⟨c,c′⟩⟩ be two link key expressions over the same pair of signatures ⟨R,P,C⟩ and ⟨R′,P′,C′⟩. We
say that K is subsumed by H, written K ⊴H, if E ⊆ F and I ⊆ J. Additionally, the meet and join of K and
H, denoted by K△H and K▽H, respectively, are defined as follows:

K△H =⟨E ∩F,I∩J,⟨c,c′⟩⟩
K▽H =⟨E ∪F,I∪J,⟨c,c′⟩⟩

For any finite set of link key expressions over the same pair of signatures, their meet and join are
well-defined and each element of the set subsumes the meet and is subsumed by the join (K△H ⊴ K ⊴
K▽H).

Notation: we write K ⊲H when K ⊴H and not H ⊴K (H ⋬K).
We only consider subsumption, meet and join of link key expressions over the same pair of classes

and the same pair of signatures. When two link key expressions are defined over different pairs of
signatures, the union of the signatures can be used to provide a common pair of signatures.

So far, link key expressions have been defined over signatures independently of actual datasets: they
are only syntactic expressions. Intuitively, a link key expression ⟨{⟨pi, p′i⟩}i∈EQ,{⟨q j,q′j⟩} j∈IN ,⟨c,c′⟩⟩
generates a link, denoted by ⟨o,o′⟩, between two individuals o and o′ of c and c′, respectively, if o has
the same values for pi as o′ has for p′i (for each i ∈ EQ) and o and o′ share at least one value for q j and
q′j (j ∈ IN). More formally:

Definition 6 (Link set generated by a link key expression). Let D and D′ be two datasets of signatures
⟨R,P,C⟩ and ⟨R′,P′,C′⟩, respectively. Let K = ⟨{⟨pi, p′i⟩}i∈EQ,{⟨q j,q′j⟩} j∈IN ,⟨c,c′⟩⟩ be a link key expres-

sion over their signature. The link set generated by K for D and D′ is the subset LD,D′
K ⊆ cD×c′D

′

defined
as:

⟨o,o′⟩ ∈ LD,D′
K iff

⎧⎪⎪⎨⎪⎪⎩

pD
i (o) = p′D

′

i (o′) for all i ∈ EQ, and

qD
j (o)∩q′D

′

j (o′) ≠∅ for all j ∈ IN

If no confusion arises, we may write LK instead of LD,D′
K .

Example 2 illustrates the use of all the definitions introduced so far.

Example 2 (Link key expressions and link sets). Figure 3.1 shows an example of two simple datasets (o1
and o2) to be interlinked. From their signature, it is possible to define the following link key expressions:

K1 = ⟨{}, {⟨o1:firstname,o2:given⟩}, ⟨o1:Person,o2:Inhabitant⟩⟩
K2 = ⟨{}, {⟨o1:lastname,o2:name⟩}, ⟨o1:Person,o2:Inhabitant⟩⟩

K3 =K1▽K2 = ⟨{}, {⟨o1:firstname,o2:given⟩,⟨o1:lastname,o2:name⟩}, ⟨o1:Person,o2:Inhabitant⟩⟩
K4 = ⟨{⟨o1:firstname,o2:given⟩,⟨o1:lastname,o2:name⟩}, {}, ⟨o1:Person,o2:Inhabitant⟩⟩
K5 = ⟨{⟨o1:lastname,o2:given⟩}, {}, ⟨o1:Person,o2:Inhabitant⟩⟩

Such link key expressions would generate the following link sets:

Lo1,o2
K1

= {⟨o1:z1,o2:i1⟩,⟨o1:z2,o2:i2⟩,⟨o1:z3,o2:i3⟩,⟨o1:z1,o2:i2⟩,⟨o1:z2,o2:i1⟩}

Lo1,o2
K2

= {⟨o1:z1,o2:i1⟩,⟨o1:z2,o2:i2⟩,⟨o1:z3,o2:i3⟩,⟨o1:z3,o2:i2⟩,⟨o1:z2,o2:i3⟩}

Lo1,o2
K3

= Lo1,o2
K1

∩Lo1,o2
K2

= {⟨o1:z1,o2:i1⟩,⟨o1:z2,o2:i2⟩,⟨o1:z3,o2:i3⟩}

Lo1,o2
K4

= {⟨o1:z2,o2:i2⟩}

Lo1,o2
K5

= {⟨o1:z4,o2:i4⟩}

12

The difference between ∃-conditions and ∀-conditions is visible in the set of links generated by K3 and
K4. In the latter case, all property values should be in both instances for being linked; in the former, one
common value is sufficient. The link key expression that would generate the expected links for Example 1
is K3.

With respect to link generation, subsumption, meet and join behave like set inclusion, intersection
and union as the ∀- and ∃-conditions are independent. The following lemma makes explicit the relations
between these operations and the generated link sets.

Lemma 1. Let K,H,K1, . . . ,Kn be link key expressions for two datasets D and D′ over the same pair of
classes. The following holds (omitting the mention of the two datasets):

If K ⊴H then LH ⊆ LK(3.1)

L△n
k=1Kk ⊇

n
⋃
k=1

LKk(3.2)

L▽n
k=1Kk

=
n
⋂
k=1

LKk(3.3)

Proof. In order to prove this lemma, we introduce the notion of the satisfaction of a link key condition.
We say that a link ⟨o,o′⟩ satisfies the ∀-conditions {⟨pi, p′i⟩}i∈EQ in datasets D and D′ if ∀i ∈EQ, pD

i (o) =
p′D

′

i (o′) and that it satisfies the ∃-conditions {⟨q j,q′j⟩} j∈IN in datasets D and D′ if ∀ j ∈ IN,qD
j (o)∩

q′D
′

j (o′) ≠∅. This is noted ⟨o,o′⟩∝ {⟨pi, p′i⟩}i∈EQ and ⟨o,o′⟩∝ {⟨q j,q′j⟩} j∈IN (omitting the mention of
the two datasets).
(3.1) If K ⊴ H, with K = ⟨E,I,⟨c,c′⟩⟩, it can be assumed that H = ⟨E ∪F,I ∪ J,⟨c,c′⟩⟩. Hence, ∀l ∈ LH ,
l ∝ E ∪F and l ∝ I∪J, thus l ∝ E and l ∝ I which means that l ∈ LK . Therefore, LH ⊆ LK .
(3.2) l ∈⋃n

k=1 LKk ⇔∃k ∈ 1..n; l ∈LKk ⇔∃k ∈ 1..n; l ∝Ek∧ l ∝ Ik ⇒ l ∝⋂n
k=1 Ek∧ l ∝⋂n

k=1 Ik ⇔ l ∈L△n
k=1Kk .

Hence, ⋃n
k=1 LKk ⊆ L△n

k=1Kk .
(3.3) l ∈ ⋂n

k=1 LKk ⇔ ∀k ∈ 1..n, l ∈ LKk ⇔ ∀k ∈ 1..n, l ∝ Ek ∧ l ∝ Ik ⇔ l ∝ ⋃n
k=1 Ek ∧ l ∝ ⋃n

k=1 Ik ⇔ l ∈
L▽n

k=1Kk
. Hence, ⋂n

k=1 LKk = L▽n
k=1Kk

.

Property 1 shows that if several link keys generate the same links, there is a link key that subsumes
them and generates the same set of links.

Property 1. The join of a set of link key expressions generating the same set of links, generates that
same set of links.

Proof. This is a direct consequence of Lemma 1(3.3).

The capability of link key expressions to generate links across datasets, i.e. as link specifications,
should now be clear. What is more difficult is to find the link key expression that generates the correct
links. Of course, in principle, we do not know in advance which links are correct or not. We developed
an algorithm which searches for link key candidates first before selecting the most promising candidate
based on statistical evaluation [Atencia et al. 2014]. Link key candidates are those link key expressions
that, given a pair of datasets, would produce unique sets of links.

The definition of a link key candidate that we will use in this paper extends the one that we introduced
in [Atencia et al. 2014] by closing them by join. The link key candidates considered in [Atencia et al.
2014] are now called “base link key candidates”. Such a base link key candidate is a link key expression
that generates at least one link ⟨o,o′⟩, and that is maximal among, i.e. subsumes, all the other link key
expressions (over the same pair of classes) that also generate ⟨o,o′⟩. The maximal link key expression is
the only normal form identifying a unique set of generated links. It may cover many non maximal link
key expressions generating the same links, several of which may be minimal.

13

Definition 7 (Base link key candidate). Let D and D′ be two datasets and K a link key expression over
their signatures, K is a base link key candidate for D and D′ if
A1. there exists l ∈ LD,D′

K , and
A2. if H is another link key expression over the same pair of classes as K such that l ∈ LD,D′

H and K ⊴ H
then K =H.

A link key candidate is defined as a link key expression that generates at least one link and that is
maximal for all the other link key expressions that generate the same link set. The reasons to extend our
previous definition [Atencia et al. 2014] are that (a) it more directly shows the link with formal concept
analysis, and (b) candidate link keys obtained by join, which were not caught by the previous definition,
are sometimes the best candidates (as illustrated in the forthcoming Example 4).

Definition 8 (Link key candidate). Let D and D′ be two datasets and K a link key expression over their
signatures, K is a link key candidate for D and D′ if
B1. LD,D′

K ≠∅, and
B2. K =▽H∈[K]H such that [K] = {H ∣ LD,D′

K = LD,D′
H }

Intuitively, the set of link key expressions can be quotiented by the link sets they generate. This
forms a partition of the link key expressions. Link key candidates are the maximal elements of the
classes of this partition (Property 1).

Lemma 2. Base link key candidates are link key candidates.

Proof. Given a link key candidate K, since l ∈ LK , then LK ≠ ∅. Moreover, if K is a base link key
candidate, it is maximal for a particular link l ∈ LK , i.e. there does not exist a link key expression H
such that K ⊲ H (and thus not generating other links than those of LK , because L is antimonotonic,
Lemma 1(3.1)) that generates this link. This means that K is maximal for LK . Hence, K is a link key
candidate.

Lemma 3 (The set of link key candidates is closed by meet). The meet of every finite set of link key
candidates is a link key candidate.

Proof. We need to prove that for any finite set {Ki}i∈I of link key candidates, △i∈IKi is a link key
candidate. If for some j ∈ I; K j =△i∈IKi, then this is true. Considering that this is not the case, then
necessarily, ∀ j ∈ I, LK j ≠ L△i∈IKi , otherwise, K j would not be a link key candidate (not maximal). If
△i∈IKi were not a link key candidate, this would mean that there exists H such that L△i∈IKi = L

(△i∈IKi)▽H
and H ⋬△i∈IKi. This entails that ∃ j ∈ I, such that l ∈ LK j and l /∈ LK j▽H , hence l /∈ LH (by Lemma 1(3.3)).
Hence, l ∈ L△i∈IKi (by Lemma 1(3.2)) and l /∈ L

△i∈IKi▽H (by Lemma 1(3.3)), thus L△i∈IKi ≠ L
(△i∈IKi)▽H

which contradicts the hypothesis.

The following proposition proves that being a link key candidate is equivalent to being a base link
key candidate or the meet of base link key candidates.

Proposition 2. The set of link key candidates is the smallest set containing all the base link key candi-
dates that is closed by meet.

Proof. (1) The set of link key candidates contains all base link key candidates (Lemma 2).
(2) The set of link key candidates is closed by meet (Lemma 3).
(3) The set of link key candidates is the smallest such set. If this were not the case, there would exist

a link key candidate K not base and not obtained through the meet of link key candidates. There are two
cases:

14

– either K is directly subsumed by the maximal link key candidate. Then, K generates at least one more
link than the maximal link key candidate (otherwise it would not be a link key candidate because it
would not be maximal for the link set it generates) and so K is a base link key candidate which
contradicts the hypothesis.

– or there exists a set of link key candidates {Ki}i∈I subsuming K. This means that K is also subsumed
by their meet (∀i ∈ I, K ⊲ Ki entails K ⊴△i∈IKi). Since, K ≠△i∈IKi by hypothesis, then K ⊲△i∈IKi

and thus L△i∈IKi ⊂ LK (by Lemma 1(3.1) and because K would not be maximal if it would generate
the same link set). Thus, there exists l ∈ LK ∖L△i∈IKi and K is maximal for l (apparently no link key
candidate that subsumes K generates l), hence K is a base link key candidate and this contradicts the
hypothesis.

Intuitively, this means that link key candidates are either base link key candidates or the meet of base
link key candidates which is not maximal for any particular link (because for any link l ∈ L△i∈IKi , there
exist i such as l ∈ LKi) but nonetheless generates a distinct set of links. Hence from the base link key
candidates we can generate the set of link key candidates. However, we will show how to generate them
directly with formal concept analysis.

15

4. A very short introduction to FCA

We briefly introduce the principles of formal concept analysis and relational concept analysis which will
be used to extract link key candidates.

Formal Concept Analysis (FCA) [Ganter and Wille 1999] starts with a binary context ⟨G,M,I⟩ where
G denotes a set of objects, M a set of attributes, and I ⊆G×M a binary relation between G and M, called
the incidence relation. The statement gIm is interpreted as “object g has attribute m”. Two operators ⋅↑
and ⋅↓ define a Galois connection between the powersets ⟨2G,⊆⟩ and ⟨2M,⊆⟩, with A ⊆G and B ⊆M:

A↑ = {m ∈M ∣ gIm for all g ∈ A}
B↓ = {g ∈G ∣ gIm for all m ∈ B}

The operators ⋅↑ and ⋅↓ are decreasing, i.e. if A1 ⊆ A2 then A↑2 ⊆ A↑1 and if B1 ⊆ B2 then B↓2 ⊆ B↓1.
Intuitively, the less objects there are, the more attributes they share, and dually, the less attributes there
are, the more objects have these attributes. Moreover, it can be checked that A ⊆ A↑↓ and that B ⊆ B↓↑,
that A↑ = A↑↓↑ and that B↓ = B↓↑↓.

For A ⊆ G, B ⊆ M, a pair ⟨A,B⟩, such that A↑ = B and B↓ = A, is called a formal concept, where A is
the extent and B the intent of ⟨A,B⟩. Moreover, for a formal concept ⟨A,B⟩, A and B are closed sets for
the closure operators ⋅↑↓ and ⋅↓↑, respectively, i.e. A↑↓ = A and B↓↑ = B.

Concepts are partially ordered by ⟨A1,B1⟩ ≤ ⟨A2,B2⟩⇔A1 ⊆A2 or equivalently B2 ⊆B1. With respect
to this partial order, the set of all formal concepts forms a complete lattice called the concept lattice of
⟨G,M,I⟩.

Datasets are often complex with attribute values not ranging in Booleans, e.g. numbers, intervals,
strings. Such data can be represented as a many-valued context ⟨G,M,W,I⟩, where G is a set of objects,
M a set of attributes, W a set of values, and I a ternary relation defined on the Cartesian product G×M×
W . The fact ⟨g,m,w⟩ ∈ I or simply m(g) =w means that object g takes the value w for the attribute m. In
addition, when ⟨g,m,w⟩ ∈ I and ⟨g,m,v⟩ ∈ I then w = v [Ganter and Wille 1999]: in FCA, “many-valued”
means that the range of an attribute may include more than two values, but for any object, the attribute
can only have one of these values.

Conceptual scaling can be used for transforming a many-valued context into a one-valued context.
For example, if Wm = {w1,w2, . . .wp} ⊆W denotes the range of the attribute m, then a scale of elements
“m = wi,∀wi ∈Wm” is used for binarising the initial many-valued context. Intuitively, a scale splits the
range Wm of a valued attribute m into a set of p binary attributes “m = wi, i = 1, . . . , p”. There are many
possible scalings and some of them are detailed in [Ganter and Wille 1999]. Another specific example
of scaling is proposed hereafter for building relational attributes.

Conceptual scaling generally produces larger contexts than the original contexts —as the number of
attributes increases. However, it is also possible to avoid scaling and to directly work on complex data,
using the formalism of “pattern structures” [Ganter and Kuznetsov 2001; Kaytoue et al. 2011].

16

5. Formal contexts for independent link key candidates

In [Atencia et al. 2014b], the link key candidate extraction problem for databases was encoded in FCA.
In this case, the set of database link key candidates exactly corresponds to the concepts of a one-valued
context [Ganter and Wille 1999]. A concept ⟨L,K⟩ resulting from this encoding has as intent K a link
key candidate and as extent L the link set it generates.

We generalise our encoding to the case of non functional datasets, such as RDF datasets, by adapting
the link key conditions presented in Definition 4. These conditions deal with value multiplicity. The
encoding of both conditions goes as follows, for each pair of properties ⟨p, p′⟩ ∈ P×P′, two attributes
can be generated: ∃⟨p, p′⟩ and ∀⟨p, p′⟩ referred to, as before, as ∃-condition or ∀-condition.

Definition 9 (Formal context for independent link key candidates). Given two datasets D of signature
⟨R,P,C⟩ and D′ of signature ⟨R′,P′,C′⟩, the formal context for independent link key candidates between
a pair of classes ⟨c,c′⟩ of C×C′ is ⟨cD×c′D

′

,{∃,∀}×P×P′,I⟩ such that:

⟨o,o′⟩ I ∀⟨p, p′⟩ iff pD(o) = p′D
′

(o′)(∀)

⟨o,o′⟩ I ∃⟨p, p′⟩ iff pD(o)∩ p′D
′

(o′) ≠∅(∃)

We introduce the ∀∃ notation corresponding to:

⟨o,o′⟩ I ∀∃⟨p, p′⟩ iff pD(o) = p′D
′

(o′) ≠∅(∀∃)

which exactly corresponds to satisfying both ∀- and ∃-conditions, i.e. the values of the properties must
be the same and there should be at least one such value. So they are only used as a shortcut when both
(∀) and (∃) hold.

The Galois connection associated with such a formal context for link key candidates can be made
explicit, as introduced in Section 4. Given two datasets D of signature ⟨R,P,C⟩ and D′ of signature

⟨R′,P′,C′⟩ and a pair of classes ⟨c,c′⟩ ∈C×C′, a Galois connection between the power sets 2(cD×c′D
′

)

and 2({∃,∀}×P×P′) is defined as follows:

.↑ ∶ 2(cD×c′D
′

)Ð→ 2({∃,∀}×P×P′)

L↑ = {∃⟨p, p′⟩∣ for all ⟨o,o′⟩ ∈ L,⟨o,o′⟩ I ∃⟨p, p′⟩}∪{∀⟨p, p′⟩∣ for all ⟨o,o′⟩ ∈ L,⟨o,o′⟩ I ∀⟨p, p′⟩}

.↓ ∶ 2({∃,∀}×P×P′)Ð→ 2(cD×c′D
′

)

K↓ = {⟨o,o′⟩∣ for all ∃⟨p, p′⟩ ∈K,⟨o,o′⟩ I ∃⟨p, p′⟩ and for all ∀⟨p, p′⟩ ∈K,⟨o,o′⟩ I ∀⟨p, p′⟩}

It should be clear from the definitions that for any pair of datasets D and D′, K↓ = LD,D′
K .

Example 3 minimally illustrates the discovery of relevant link key candidates in FCA, but Example 4
is more elaborate.

Example 3 (Simple independent link key candidate extraction). Let us consider the two simple datasets
given in Figure 5.1. We assume that classes o1:Person and o2:Inhabitant overlap, so we expect to
find some link key candidates between these two classes. Following Definition 9, the formal context
encoding the link key candidate extraction problem is built. This formal context is given in the ta-
ble of Figure 5.2 (left), where instances z2 and i3 share at least one value, e.g. ”Dubois”, for the
pair of properties lastname and name. In this simple example, since all properties are functional, ∀
and ∃ quantifications have identical columns. So, in the resulting lattice all the intent conditions are
prefixed by ∀∃. This leads to the concept lattice given in Figure 5.2 featuring five concepts. The con-
cept ⟨{⟨z1, i1⟩,⟨z2, i2⟩,⟨z3, i3⟩},{∀∃ ⟨lastname,name⟩,∀∃ ⟨firstname,given⟩}⟩ whose intent repre-
sents the link key candidate {∀∃ ⟨lastname,name⟩,∀∃ ⟨firstname,given⟩} would generate the links

17

o1:Person

o1:z1

o1:z2

o1:z3

o2:Inhabitant

o2:i1

o2:i2

o2:i3

Dupont

Thomas

Dubois

Lisa

o1:lastname

o1:lastname

o1:las
tname

o1:firstname

o1:firstn
ame

o1:firstname

o2:giv
en

o2:given

o2:given

o2:name

o2:name

o2:name

Figure 5.1: Example of two datasets representing respectively instances of classes Person and
Inhabitant.

{⟨z1, i1⟩,⟨z2, i2⟩,⟨z3, i3⟩} (its extent) if used as a link key. This candidate is a perfect link key since it
would generate all and only expected links. Other candidates that only use “lastname” or “firstname”
would also generate all links but also wrong links since different persons may share either firstname or
lastname.

∀⟨
la

st
na

m
e,

na
m

e⟩
∀⟨

la
st

na
m

e,
gi

ve
n⟩

∀⟨
fi

rs
tn

am
e,

na
m

e⟩
∀⟨

fi
rs

tn
am

e,
gi

ve
n⟩

∃⟨
la

st
na

m
e,

na
m

e⟩
∃⟨

la
st

na
m

e,
gi

ve
n⟩

∃⟨
fi

rs
tn

am
e,

na
m

e⟩
∃⟨

fi
rs

tn
am

e,
gi

ve
n⟩

⟨z1, i1⟩ × × × ×
⟨z1, i2⟩ × ×
⟨z1, i3⟩
⟨z2, i1⟩ × ×
⟨z2, i2⟩ × × × ×
⟨z2, i3⟩ × ×
⟨z3, i1⟩
⟨z3, i2⟩ × ×
⟨z3, i3⟩ × × × ×

∀∃⟨lastname,name⟩

⟨z3, i2⟩, ⟨z2, i3⟩

∀∃⟨ f irstname,name⟩,
∀∃⟨lastname,given⟩

⟨z3, i1⟩, ⟨z1, i3⟩

⟨z2, i2⟩,
⟨z3, i3⟩, ⟨z1, i1⟩

∀∃⟨ f irstname,given⟩

⟨z1, i2⟩, ⟨z2, i1⟩

Figure 5.2: Formal context (left) and corresponding concept lattice (right) for the classes o1:Person and
o2:Inhabitant of Figure 5.1.

This encoding correctly conveys the notion of link key candidates as shown by the following propo-
sition.

Proposition 3. K is a link key candidate for datasets D and D′ if and only if ⟨K↓,K⟩ is a formal concept
of the formal context for link key candidates in D and D′ and K↓ ≠∅.

In other terms, this means that ⟨{⟨pi, p′i⟩}i∈EQ,{⟨q j,q′j⟩} j∈IN ,⟨c,c′⟩⟩ is a link key candidate for
datasets D and D′ if and only if K = {∀⟨pi, p′i⟩}i∈EQ∪{∃⟨q j,q′j⟩} j∈IN is the intent of a concept generated
by the formal context for link key candidates between c and c′ and K↓ ≠∅.

Proof. The proof of the property is as follows. In both cases, K↓ = LK ≠ ∅ (and we leave the D and D′

implicit).
From Definition 8, K is a link key candidate if LK ≠∅ and K =▽H∈[K]H such that [K] = {H ∣ LD,D′

K =
LD,D′

H }.

18

(⇒) Hence K is maximal for LK =K↓ (Property 1), which means that K↓↑ =K, thus ⟨LK ,K⟩ is a concept.
(⇐) Conversely, if ⟨K↓,K⟩ is a concept, K↓ = LK and K is the maximal link key expression generating
LK , hence it is a link key candidate.

Example 4 (Extraction of independent link key candidates over more complex data, as presented in Ex-
ample 1). The datasets presented in Example 3 were very simple. Let us consider the dataset presented
in Figure 3.1. The interlinking problem is now encoded in the context given in Table 5.1 and the result-
ing lattice is presented in Figure 5.3. The concepts corresponding to link key expressions of Example 2
are labelled by a +. Since some properties are multivalued, the lattice now contains some candidates
with the same sets of properties but with different quantifications. For instance, there are two candidates
whose intents are {∃⟨firstname,given⟩} and {∀∃ ⟨firstname,given⟩}. The former is less restric-
tive and then it would generate all the links generated by the latter plus the link ⟨z1, i2⟩ (because p1 has
the two firstnames ”Maxence” and ”Thomas” and i2 has only ”Thomas”). In this example, the perfect
link key is labelled ⋆ whose intent is {∃⟨firstname,given⟩,∃⟨lastname,name⟩}. This is a link key
candidate, but not a base link key candidate: it does not generate any link which is not generated by its
subsumees.

∃⟨
fi

rs
tn

am
e,

na
m

e⟩
∃⟨

fi
rs

tn
am

e,
gi

ve
n⟩

∃⟨
la

st
na

m
e,

na
m

e⟩
∃⟨

la
st

na
m

e,
gi

ve
n⟩

∀⟨
fi

rs
tn

am
e,

na
m

e⟩
∀⟨

fi
rs

tn
am

e,
gi

ve
n⟩

∀⟨
la

st
na

m
e,

na
m

e⟩
∀⟨

la
st

na
m

e,
gi

ve
n⟩

⟨z1, i1⟩ × × ×
⟨z1, i2⟩ ×
⟨z1, i3⟩
⟨z1, i4⟩
⟨z2, i1⟩ × ×
⟨z2, i2⟩ × × × ×
⟨z2, i3⟩ ×
⟨z2, i4⟩
⟨z3, i1⟩
⟨z3, i2⟩ × ×
⟨z3, i3⟩ × × ×
⟨z3, i4⟩
⟨z4, i1⟩
⟨z4, i2⟩
⟨z4, i3⟩
⟨z4, i4⟩ × ×

Table 5.1: Formal context for the classes o1:Person and o2:Inhabitant of Figure 3.1.

19

∀∃⟨lastname,given⟩

⟨z4, i4⟩

⟨z4, i3⟩, ⟨z2, i4⟩,
⟨z1, i3⟩, ⟨z3, i4⟩,
⟨z1, i4⟩, ⟨z4, i1⟩,
⟨z4, i2⟩, ⟨z3, i1⟩

∀∃⟨ f irstname,name⟩

∀∃⟨ f irstname,given⟩

⟨z2, i1⟩

⟨z2, i2⟩

∀∃⟨lastname,name⟩

⟨z3, i2⟩

∃⟨lastname,name⟩

⟨z2, i3⟩

∃⟨ f irstname,given⟩

⟨z1, i2⟩

⟨z3, i3⟩⟨z1, i1⟩

+

+

+

+

+

⋆

Figure 5.3: Concept lattice built from the context of Table 5.1 for the classes o1:Person and
o2:Inhabitant.

20

6. Hierarchically dependent link key candidates

So far, the proposed approach only dealt with datatype properties, i.e. properties whose value is not an-
other object [Cyganiak et al. 2014]. However, it may happen that the ranges of properties are themselves
objects. These are called object properties or simply relations.

Determining if values of such properties across two datasets are equal or intersect requires to be able
to identify them. This is exactly the role of link keys. Hence, link key candidates for pair of classes
having object properties should rely on the link key candidates attached to the range of such properties.

Precisely, dealing with pairs of object properties ⟨r,r′⟩ whose range is the pair of classes ⟨d,d′⟩
requires to know how to compare the members of d and d′ in order to decide if rD(o) = r′D

′(o′) or if
rD(o)∩ r′D

′(o′) ≠∅. Comparison of sets of values in the definition of link sets generated by a link key
candidate (Definition 6) and in the definition of the incidence relation (Definition 9) is achieved by using
link key expressions on the range classes (Definition 10).

Definition 10 (Comparison of sets of instances). Given two sets S and S′ of instances of classes d and
d′ and K a link key expression for the pair ⟨d,d′⟩, =K and ∩K are defined by:

S =K S′ iff ∀x ∈ S,∃x′ ∈ S′;⟨x,x′⟩ ∈K↓ and ∀x′ ∈ S′,∃x ∈ S;⟨x,x′⟩ ∈K↓

S∩K S′ ≠∅ iff K↓∩(S×S′) ≠∅

The use of these comparisons is only well-defined when there is no cyclic dependency across link
key expressions.

This can be used in order to extend the formal contexts to dependent link key candidates:

Definition 11 (Formal context for dependent link key candidates). Given two datasets D of signature
⟨R,P,C⟩ and D′ of signature ⟨R′,P′,C′⟩, for any pair of object properties ⟨r,r′⟩ ∈ R×R′, let Kr,r′ the
set of dependent link key candidates associated with the range of r and r′. The formal context for
dependent link key candidates between a pair of classes ⟨c,c′⟩ of C×C′ is ⟨cD×c′D

′

,{∀,∃}×((P×P′)∪
{⟨r,r′,K⟩;r ∈ R,r′ ∈ R′,K ∈Kr,r′}),I⟩ such that:

⟨o,o′⟩ I ∀⟨p, p′⟩ iff pD(o) = p′D
′

(o′)

⟨o,o′⟩ I ∃⟨p, p′⟩ iff pD(o)∩ p′D
′

(o′) ≠∅

⟨o,o′⟩ I ∀⟨r,r′⟩K iff rD(o) =K r′D
′

(o′)

⟨o,o′⟩ I ∃⟨r,r′⟩K iff rD(o)∩K r′D
′

(o′) ≠∅

In principle, a link key is the way to identify the instances of a pair of classes. Hence, comparing
the values of two properties should be done with the link key extracted for the classes of these values.
For this reason, link key expressions (Definition 4) do not refer to the link keys to use as Definition 11.
This means that the extracted link keys should only rely on each others. We aim at extracting such sets
of link key candidates. We call them coherent families of link key candidates.

For simplifying the presentation we introduce the notion of alignment. An alignment in general is
made of a set of relations between ontology entities [Euzenat and Shvaiko 2013]. For the purpose of this
paper, it will simply be a set of pairs of classes considered as overlapping. A coherent set of link key
candidates with respect to an alignment is called a coherent family of link key candidates.

Definition 12 (Coherent family of link key candidates). Given two datasets D of signature ⟨R,P,C⟩ and
D′ of signature ⟨R′,P′,C′⟩, and an alignment A ⊆C×C′ between their classes, a coherent family of link
key candidates for D and D′ related by A is a collection of dependent link key candidates:

T = {K⟨c,c′⟩}⟨c,c′⟩∈A

such that each link key in T only depends on other link keys in T (compatibility).

21

Any collection of independent link key candidates with respect to an alignment A is a coherent family
of link key candidates.

The key dependency graph of a coherent family of link key candidates is the directed graph whose
vertices are the link key candidates and there is an edge from one link key candidate to another if the
former depends on the latter. A coherent family of link key candidates is said to be “acyclic” if its key
dependency graph contains no cycle, including unit cycle. Otherwise, it is called “cyclic”.

When classes are hierarchically organised, coherent families of link key candidates are necessarily
acyclic. They can be obtained inductively through the following algorithm:
1. Generate the (independent) link key candidates for pairs of classes having no object properties, using

the formal contexts of Definition 9.
2. For each pair of classes that only depends on pairs of classes having been processed, build formal

contexts according to Definition 11.
3. If there are still pairs of classes in A to process, go to Step 2.
4. Extract the coherent families by picking one link key candidate per pair of classes in A, as long as

they are compatible.
Example 5 illustrates the extraction of such dependent link key candidates.

Example 5 (Acyclic link key candidate extraction). Figure 6.1, shows two datasets that both describe
instances from classes House, resp. Place, that are in relation with instances from classes Person, resp.
Inhabitant. First, the formal context between the two independent classes Person and Inhabitant

is used to build the corresponding lattice, see Figure 6.2. Four link key candidates, named C0, C1, C2,
C3, are extracted.

From these candidates, it can be dealt with classes which only depend on the aligned pairs handled
in the former steps, e.g. the pair of classes Person and Inhabitant. The formal context for these two
classes is given in Figure 6.3. Contrasting datatype properties, the pair ⟨owner,ownedBy⟩ (whose do-
mains are classes House and Place) is taken into account according to the four link key candidates gen-
erated for classes Person and Inhabitant. The resulting lattice is given in Figure 6.3 using a reduced
notation, i.e. when the intent of a concept contains several concepts computed at previous steps, only
the most specific ones are kept. For example, concept D3 could also include ∀∃ ⟨owner,ownedBy⟩C0 in
its intent, but since C1 is more constraining than C0, then only ∀∃ ⟨owner,ownedBy⟩C1 is retained.

In the two lattices, compatible concepts are coloured: purple for C1−D1 and C1−D3, and green
for C2−D0 and C2−D2. The green colour is reserved to the link key candidates that were expected;
dotted pattern is used for candidates that are not part of any coherent family of link key candidates. The
lattice shows that the intent of concept D0, i.e. {∀∃ ⟨owner,ownedBy⟩C2,∀∃ ⟨city,city⟩}, is the best
link key candidate since it generates all and only expected links.

A limitation of this method is that it cannot handle cases in which the data dependencies involve
cycles. This case will be considered in Deliverable 1.2.

22

o1:Person

o1:z1

o1:z2

o1:z3

o1:House

o1:h1

o1:h2

o1:h3

o2:Inhabitant

o2:i1

o2:i2

o2:i3

o2:Place

o2:a1

o2:a2

o2:a3

Dupont

Thomas

Dubois

Lisa

Grenoble

Paris

o1:lastname

o1:lastname

o1:las
tname

o1:firstname

o1:firstn
ame

o1:firstname

o2:giv
en

o2:given

o2:given

o2:name

o2:name

o2:name

o1:owner o2:ownedBy

o1:city

o1:city

o1:ci
ty

o2:city

o2:city

o2:city

Figure 6.1: Two datasets representing instances of class House (resp. Place) that are in relation through
the owner property, (resp. ownedBy) with instances of class Person (resp. Inhabitants).

.

∃⟨
fi

rs
tn

am
e,

gi
ve

n⟩
∃⟨

fi
rs

tn
am

e,
na

m
e⟩

∃⟨
la

st
na

m
e,

gi
ve

n⟩
∃⟨

la
st

na
m

e,
na

m
e⟩

∀⟨
fi

rs
tn

am
e,

gi
ve

n⟩
∀⟨

fi
rs

tn
am

e,
na

m
e⟩

∀⟨
la

st
na

m
e,

gi
ve

n⟩
∀⟨

la
st

na
m

e,
na

m
e⟩

⟨z1, i1⟩ × × × ×
⟨z1, i2⟩ × ×
⟨z1, i3⟩
⟨z2, i1⟩ × ×
⟨z2, i2⟩ × × × ×
⟨z2, i3⟩ × ×
⟨z3, i1⟩
⟨z3, i2⟩ × ×
⟨z3, i3⟩ × × × ×

∀∃⟨lastname,name⟩

⟨z3, i2⟩, ⟨z2, i3⟩

∀∃⟨lastname,given⟩,
∀∃⟨ f irstname,name⟩

∀∃⟨ f irstname,given⟩

⟨z2, i1⟩, ⟨z1, i2⟩

⟨z3, i1⟩, ⟨z1, i3⟩

⟨z2, i2⟩,
⟨z3, i3⟩, ⟨z1, i1⟩

C0

C1

C2

C3

Figure 6.2: Formal context and concept lattice for Person and Inhabitant of Figure 6.1.
.

23

∃⟨
ci

ty
,c

it
y⟩

∀⟨
ci

ty
,c

it
y⟩

∃⟨
ow

ne
r,

ow
ne

dB
y⟩ C

0
∀⟨

ow
ne

r,
ow

ne
dB

y⟩ C
0

∃⟨
ow

ne
r,

ow
ne

dB
y⟩ C

1
∀⟨

ow
ne

r,
ow

ne
dB

y⟩ C
1

∃⟨
ow

ne
r,

ow
ne

dB
y⟩ C

2
∀⟨

ow
ne

r,
ow

ne
dB

y⟩ C
2

∃⟨
ow

ne
r,

ow
ne

dB
y⟩ C

3
∀⟨

ow
ne

r,
ow

ne
dB

y⟩ C
3

⟨h1,a1⟩ × × × × × × × × × ×
⟨h1,a2⟩ × × × × × × × ×
⟨h1,a3⟩ × × × ×
⟨h2,a1⟩ × × × × × × × ×
⟨h2,a2⟩ × × × × × × × × × ×
⟨h2,a3⟩ × × × × × ×
⟨h3,a1⟩ × × × ×
⟨h3,a2⟩ × × × × × ×
⟨h3,a3⟩ × × × × × × × × × ×

∀∃⟨owner,ownedBy⟩C2

⟨h2,a1⟩, ⟨h1,a2⟩

∀∃⟨owner,ownedBy⟩C1

⟨h3,a1⟩, ⟨h1,a3⟩

⟨h1,a1⟩,
⟨h3,a3⟩, ⟨h2,a2⟩

∀∃⟨city,city⟩

⟨h2,a3⟩, ⟨h3,a2⟩

D0

D1 D2

D3

Figure 6.3: Dependent formal context and concept lattice for House and Place of Figure 6.1.
.

24

7. Implementation and complexity considerations

One benefit of reformulating the link key candidate extraction problem as formal concept analysis is to
use directly standard algorithms for such problems. We implemented the proposed approach as a proof-
of-concept in Python 31. The implementation took inspiration from another formal concept analysis
implementation [Romashkin 2011]. It uses the Norris algorithm [Norris 1978] for performing FCA
extended to deal with pairs of objects in the extent and quantified and qualified pairs of properties in
the intent. RDF data can be loaded in the system through the RDF Library and lattices are plotted with
Graphviz. The link key candidate extraction algorithm is more powerful than what is presented here as
it does not rely at all on alignments. In addition, we implemented the unsupervised link key selection
measures [Atencia et al. 2014] and extended them to coherent families of link key candidates.

All examples presented above have been computed by the developed system. The formal contexts
and concept lattices have been directly generated by this implementation (we only changed node colours
and patterns for legibility).

These examples only contain a few instances. We have tested the implemented software on the
larger datasets that were used in [Atencia et al. 2014] but run into scalability issues as no optimisation
was implemented. However, we noticed that when considering samples of the datasets, the system was
able to discover the correct link key candidates, and due to the nature of the unsupervised selection
measure able to correctly identify the correct link key. More experiments must still be performed for
supporting this claim with certainty.

The complexity of the proposed approach may be evaluated with respect to data or schema which
are the two sides of our formal concepts. On the data side, we may count nI as the number of individuals
in one dataset. On the schema side, we may count nC as the number of classes and nP as the number of
properties and relations. For the extraction of link keys for a pair of classes, the size of the input is, in
the worst case, ∣G∣ = n2

I for the number of rows and ∣M∣ = 2×n2
P for the number of columns.

The upper bound to the number of concepts (∣L∣) is either the size of the power set of the set of all
possible links or the number of link key expressions if smaller. The data upper bound of 2n2

I concepts
can actually be achieved. The upper bound to the number of link key expressions in concepts is between
2n2

P and 4n2
P (not all link key expressions can generate a link but at least all IN-link key candidates can).

We retain the highest figure. Thus, the size of the lattice ∣L∣ is bounded by min(2n2
I ,4n2

P).
It is very likely that the worst-case complexity of our algorithms is that of FCA. The complex-

ity of formal concept extraction algorithms are given in [Kuznetsov and Obiedkov 2002] as between
O(∣G∣2∣M∣∣L∣) and O(∣G∣∣M∣2∣L∣). Hence, if one considers that nP ≪ nI , using the complexity of the
Norris algorithm, we end up with O(n4

I 4n2
P): an algorithm polynomial in the number of objects and

exponential in the number of properties. This would not be practicable for an online algorithm, but for
one-shot extraction it can be.

However, as very often, this worst-case complexity is not observed in practice. Previously, we ob-
served that out of 1.9×1019 maximum link key candidates, we only had 17 link key candidates [Atencia
et al. 2014]. This was only for IN-link keys, actually for full link keys, out of 3.4×1038 link key expres-
sions, we have 18 link key candidates. This extraction process, with the non-FCA-based system, takes
less than a minute on a 2.7GHz i7 laptop.

1The implementation is available from https://moex.inria.fr/software/linkky/.

25

https://moex.inria.fr/software/linkky/

8. Conclusions

We have shown how FCA can be applied to the precise task of extracting links across RDF datasets and,
more specifically, extracting link key candidates. For that purpose, specific contexts have been defined
to express link key expressions as intent and adapted to pairs of datasets, dealing with pairs of classes,
pairs of properties and pairs of instances. We showed how this formulation generalises our previous
definitions [Atencia et al. 2014]. This has been extended to simultaneously extract coherent families of
dependent link key candidates.

All results here apply as well to the extraction of (unary) key candidates and generalise straightfor-
wardly to n-ary link key candidates.

So far, no algorithm had been provided for dealing with these problems but the first one. Defining
them in the FCA framework yields a coherent and elegant formulation of all these problems that is
directly processable. This is a useful model for developers of link key extraction systems.

These results are encouraging and a proof-of-concept system was developed. Although this system
goes beyond what is presented here, it also suffers from scalability issues. We plan to improve on these
issues through indexing and pruning techniques. We also plan to develop an approximate approach in
which the presented process is performed several times on smaller samples of large datasets and then a
consensus on the best link key candidates is established (using the measures of [Atencia et al. 2014] on
the full datasets).

On the theoretical side, this work leaves some questions open:
– Is it possible to extract conditional link key candidates, i.e. candidates which depends on some

constraints on the linked objects? This may be the occasion to mix link key extraction and genuine
relational concept analysis.

– It can be noted that in all the given examples, the coherent families of link key candidates form a
sub-lattice of the product of the concept lattices. We conjecture that this is always the case.

– It would be worth investigating the use of tolerance relations to allows values which are close and
not strictly equal.

– The proposed procedure is considering RDF datasets as simple graphs. However, these may be de-
scribed more finely through ontologies allowing to reason about such graphs. It would be interesting
to consider how extraction and reasoning can work together.

26

9. Bibliography

Achichi, Manel, Mohamed Ben Ellefi, Danai Symeonidou, and Konstantin Todorov (2016). “Automatic
Key Selection for Data Linking”. In: Proc. 20th International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW), Bologna (IT). Vol. 10024. Lecture Notes in Computer
Science. Springer, pp. 3–18 (cit. on p. 8).

Al-Bakri, Mustafa, Manuel Atencia, Steffen Lalande, and Marie-Christine Rousset (2015). “Inferring
same-as facts from Linked Data: an iterative import-by-query approach”. In: Proc. 29th AAAI Con-
ference on Artificial Intelligence, Austin (TX US). AAAI Press, pp. 9–15 (cit. on pp. 5, 7).

Al-Bakri, Mustafa, Manuel Atencia, Jérôme David, Steffen Lalande, and Marie-Christine Rousset (2016).
“Uncertainty-sensitive reasoning for inferring sameAs facts in linked data”. In: Proc. 22nd european
conference on artificial intelligence (ECAI), Der Haague (NL), pp. 698–706 (cit. on pp. 5, 7).

Atencia, Manuel, Jérôme David, and François Scharffe (2012). “Keys and pseudo-keys detection for web
datasets cleansing and interlinking”. en. In: Proc. 18th international conference on knowledge engi-
neering and knowledge management (EKAW), Galway (IE). Vol. 7605. Lecture Notes in Computer
Science. Springer, pp. 144–153 (cit. on p. 8).

Atencia, Manuel, Jérôme David, and Jérôme Euzenat (2014). “Data interlinking through robust linkkey
extraction”. In: Proc. 21st European Conference on Artificial Intelligence (ECAI). IOS Press, pp. 15–
20 (cit. on pp. 5–8, 13, 14, 25, 26).

Atencia, Manuel, Michel Chein, Madalina Croitoru, Jérôme David, Michel Leclère, Nathalie Pernelle,
Fatiha Saı̈s, François Scharffe, and Danai Symeonidou (2014a). “Defining key semantics for the
RDF datasets: experiments and evaluations”. en. In: Proc. 21st International Conference on Concep-
tual Structures (ICCS), Iasi (RO). Vol. 8577. Lecture Notes in Computer Science. Springer, pp. 65–
78 (cit. on pp. 8, 11).

Atencia, Manuel, Jérôme David, and Jérôme Euzenat (2014b). “What can FCA do for database linkkey
extraction?” en. In: Proc. 3rd ECAI workshop on What can FCA do for Artificial Intelligence?
(FCA4AI), Praha (CZ). Vol. 1257. CEUR Workshop Proceedings. CEUR-WS.org, pp. 85–92 (cit. on
pp. 5, 6, 8, 17).

Atencia, Manuel, Jérôme David, Jérôme Euzenat, Amedeo Napoli, and Jérémy Vizzini (2019). “Link key
candidate extraction with relational concept analysis”. In: Discrete applied mathematics. to appear
(cit. on p. 2).

Baixeries, Jaume, Mehdi Kaytoue, and Amedeo Napoli (2014). “Characterizing functional dependen-
cies in formal concept analysis with pattern structures”. In: Annals of mathematics and artificial
intelligence 72.2, pp. 129–149 (cit. on p. 7).

Bizer, Chris, Tom Heath, and Tim Berners-Lee (2009). “Linked data — the story so far”. In: Interna-
tional Journal of Semantic Web Information Systems 5.3, pp. 1–22 (cit. on p. 5).

Braud, Agnès, Xavier Dolques, Marianne Huchard, and Florence Le Ber (2018). “Generalization effect
of quantifiers in a classification based on relational concept analysis”. In: Knowledge-based systems
160, pp. 119–135.

Brickley, Dan and R.V. Guha (2014). RDF Schema 1.1. Recommendation. https://www.w3.org/TR/rdf-

schema/. W3C (cit. on p. 10).
Calvanese, Diego, Giuseppe De Giacomo, and Maurizio Lenzerini (2000). “Keys for Free in Description

Logics”. In: Proc. Description logic workshop (DL). Aachen (DE), pp. 79–88 (cit. on p. 8).
Christen, Peter (2012). Data Matching—Concepts and Techniques for Record Linkage, Entity Resolu-

tion, and Duplicate Detection. Springer, Heidelberg (DE) (cit. on p. 7).
Codocedo, Vı́ctor, Jaume Baixeries, Mehdi Kaytoue, and Amedeo Napoli (2016). “Characterization of

Order-like Dependencies with Formal Concept Analysis”. In: Proc. 30th International Conference
on Concept Lattices and Their Applications (CLA), Moscow (RU). Vol. 1624. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 123–134 (cit. on p. 7).

27

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/

Cyganiak, Richard, David Wood, and Markus Lanthaler (2014). RDF 1.1 concepts and abstract syntax.
Recommendation. http://www.w3.org/TR/rdf11-concepts/. W3C (cit. on pp. 5, 6, 10, 21).

Demetrovics, János, Leonid Libkin, and Ilya Muchnik (1992). “Functional Dependencies in Relational
Databases: a Lattice Point of View”. In: Discrete Applied Mathematics 40.2, pp. 155–185 (cit. on
p. 7).

Elmagarmid, Ahmed, Panagiotis Ipeirotis, and Vassilios Verykios (2007). “Duplicate Record Detection:
A Survey”. In: IEEE Transactions on knowledge and data engineering 19.1, pp. 1–16 (cit. on p. 7).

Euzenat, Jérôme and Pavel Shvaiko (2013). Ontology matching. en. 2nd. Heidelberg (DE): Springer.
520 pp. (cit. on pp. 7, 8, 21).

Farah, Houssameddine, Danai Symeonidou, and Konstantin Todorov (2017). “KeyRanker: Automatic
RDF Key Ranking for Data Linking”. In: Proc. Knowledge Capture Conference (K-CAP), Austin
(TX US), 7:1–7:8 (cit. on pp. 8, 9).

Ferrara, Alfio, Andriy Nikolov, and François Scharffe (2011). “Data Linking for the Semantic Web”. In:
International Journal of Semantic Web and Information Systems 7.3, pp. 46–76 (cit. on pp. 5, 7).

Ganter, Bernhard and Sergei O. Kuznetsov (2001). “Pattern Structures and Their Projections”. In: Inter-
national Conference on Conceptual Structures (ICCS). Ed. by Harry S. Delugach and Gerd Stumme.
Vol. 2120. Lecture Notes in Computer Science. Springer, pp. 129–142 (cit. on p. 16).

Ganter, Bernhard and Rudolf Wille (1999). Formal Concept Analysis: mathematical foundations. Berlin:
Springer (cit. on pp. 5, 7, 16, 17).

Heath, Tom and Christian Bizer (2011). Linked Data: Evolving the Web into a Global Data Space.
Morgan & Claypool (cit. on p. 5).

Hogan, Aidan, Antoine Zimmermann, Jürgen Umbrich, Axel Polleres, and Stefan Decker (2012). “Scal-
able and distributed methods for entity matching, consolidation and disambiguation over linked data
corpora”. In: Journal of Web Semantics 10, pp. 76–110 (cit. on pp. 5, 7).

Huhtala, Ykä, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen (1999). “TANE: An Efficient Algo-
rithm for Discovering Functional and Approximate Dependencies”. In: The Computer Journal 42.2,
pp. 100–111 (cit. on p. 7).

Isele, Robert and Christian Bizer (2013). “Active learning of expressive linkage rules using genetic
programming”. In: Journal of web semantics 23, pp. 2–15 (cit. on p. 7).

Kaytoue, Mehdi, Sergei O. Kuznetsov, Amedeo Napoli, and Sébastien Duplessis (2011). “Mining Gene
Expression Data with Pattern Structures in Formal Concept Analysis”. In: Information Science
181.10, pp. 1989–2001 (cit. on p. 16).

Kuznetsov, Sergei and Sergei Obiedkov (2002). “Comparing Performance of Algorithms for Generating
Concept Lattices”. In: Journal of experimental and theoretical artificial intelligence 14, pp. 189–216
(cit. on p. 25).

Levene, Mark (1995). “A Lattice View of Functional Dependencies in Incomplete Relations”. In: Acta
cybernetica 12.2, pp. 181–207 (cit. on p. 7).

Lopes, Stéphane, Jean-Marc Petit, and Lotfi Lakhal (2002). “Functional and approximate dependency
mining: database and FCA points of view”. In: Journal of Experimental & Theoretical Artificial
Intelligence 14.2-3, pp. 93–114 (cit. on p. 7).

Lutz, Carsten, Carlos Areces, Ian Horrocks, and Ulrike Sattler (2005). “Keys, Nominals, and Concrete
Domains”. In: Journal of Artificial Intelligence Research 23, pp. 667–726 (cit. on p. 8).

Motik, Boris, Peter F. Patel-Schneider, and Bijan Parsia (2012). OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax (2nd edition). Recommendation. https://www.w3.

org/TR/owl2-syntax/. W3C (cit. on pp. 5, 10).
Nentwig, Markus, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and Erhard Rahm (2017). “A survey

of current Link Discovery frameworks”. In: Semantic Web 8.3, pp. 419–436. DOI: 10.3233/SW-
150210 (cit. on pp. 5, 7).

28

http://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
https://doi.org/10.3233/SW-150210
https://doi.org/10.3233/SW-150210

Ngonga Ngomo, Axel-Cyrille and Sören Auer (2011). “LIMES: A Time-Efficient Approach for Large-
Scale Link Discovery on the Web of Data”. In: Proc. 22nd International Joint Conference on Artifi-
cial Intelligence (IJCAI), Barcelona (ES). Barcelona (ES), pp. 2312–2317 (cit. on pp. 5, 7).

Ngonga Ngomo, Axel-Cyrille and Klaus Lyko (2012). “EAGLE: Efficient Active Learning of Link Spec-
ifications Using Genetic Programming”. In: Proc. 9th ESWC, Heraklion (GR). Vol. 7295. Lecture
Notes in Computer Science. Springer, pp. 149–163 (cit. on p. 7).

Norris, Eugene (1978). “An algorithm for computing the maximal rectangles in a binary relation”. In:
Revue Roumaine de Mathématiques Pures et Appliquées 23.2, pp. 243–250 (cit. on p. 25).

Pernelle, Nathalie, Fatiha Saı̈s, and Danai Symeounidou (2013). “An Automatic Key Discovery Ap-
proach for Data Linking”. In: Journal of Web Semantics 23, pp. 16–30 (cit. on p. 8).

Romashkin, Nikita (2011). FCA library. https://github.com/ae-hse/fca (cit. on p. 25).
Saı̈s, Fatiha, Nathalie Pernelle, and Marie-Christine Rousset (2007). “L2R: A Logical Method for Ref-

erence Reconciliation”. In: Proc. 22nd National Conference on Artificial Intelligence (AAAI), Van-
couver (CA). AAAI Press, pp. 329–334 (cit. on pp. 5, 7).

Sherif, Mohamed Ahmed, Kevin Dreßler, Panayiotis Smeros, and Axel-Cyrille Ngonga Ngomo (2017a).
“Radon - Rapid Discovery of Topological Relations”. In: Proc. 31st AAAI Conference on Artificial
Intelligence, San Francisco (CA US), pp. 175–181 (cit. on p. 7).

Sherif, Mohamed Ahmed, Axel-Cyrille Ngonga Ngomo, and Jens Lehmann (2017b). “Wombat - A Gen-
eralization Approach for Automatic Link Discovery”. In: Proc. 14th European semantic web confer-
ence (ESWC), Portorož (SL). Vol. 10249. Lecture Notes in Computer Science. Springer, pp. 103–119
(cit. on p. 7).

Sismanis, Yannis, Paul Brown, Peter Haas, and Berthold Reinwald (2006). “GORDIAN: efficient and
scalable discovery of composite keys”. In: Proc. 32nd international conference on very large databases
(VLDB), pp. 691–702 (cit. on p. 7).

Suchanek, Fabian, Serge Abiteboul, and Pierre Senellart (2012). “PARIS: Probabilistic Alignment of
Relations, Instances, and Schema”. In: PVLDB 5.3, pp. 157–168 (cit. on p. 7).

Symeonidou, Danai, Vincent Armant, Nathalie Pernelle, and Fatiha Saı̈s (2014). “SAKey: Scalable Al-
most Key Discovery in RDF Data”. In: Proc. 13th International Semantic Web Conference (ISWC),
Riva del Garda (IT). Vol. 8796. Lecture Notes in Computer Science. Springer, pp. 33–49 (cit. on
p. 8).

Symeonidou, Danai, Luis Galárraga, Nathalie Pernelle, Fatiha Saı̈s, and Fabian M. Suchanek (2017).
“VICKEY: Mining Conditional Keys on Knowledge Bases”. In: Proc. 16th International Semantic
Web Conference (ISWC), Wien (AT). Vol. 10587. Lecture Notes in Computer Science. Springer,
pp. 661–677 (cit. on p. 8).

Volz, Julius, Christian Bizer, Martin Gaedke, and Georgi Kobilarov (2009). “Silk – A Link Discovery
Framework for the Web of Data”. In: Proc. WWW Workshop on Linked Data on the Web, LDOW,
Madrid (SP). Vol. 538. CEUR Workshop Proceedings. CEUR-WS.org (cit. on pp. 5, 7).

29

https://github.com/ae-hse/fca

	Motivations
	Related work
	RDF datasets and link keys
	RDF datasets
	Link keys

	A very short introduction to FCA
	Formal contexts for independent link key candidates
	Hierarchically dependent link key candidates
	Implementation and complexity considerations
	Conclusions
	Bibliography

