Manuel Atencia 
  
Jérôme David 
  
Jérôme Euzenat 
  
Amedeo Napoli 
  
Jérémy Vizzini 
  
A guided walk into link key candidate extraction with relational concept analysis

Data interlinking is an important task for linked data interoperability. One of the possible techniques for finding links is the use of link keys which generalise relational keys to pairs of RDF models. We show how link key candidates may be directly extracted from RDF data sets by encoding the extraction problem in relational concept analysis. This method deals with non functional properties and circular dependent link key expressions. As such, it generalises those presented for non dependent link keys and link keys over the relational model. The proposed method is able to return link key candidates involving several classes at once.

In this extended abstract, we describe the content of [START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF] by avoiding technical descriptions related to the domain. Interested readers are referred to the original paper for more details. To facilitate the compared reading, we explicitly refer to the original definitions and properties.

Interlinking RDF data sets

Interlinking RDF data sets is an important operation for linked (open) data on which research is currently very active.

RDF data sets and linked data

Linked data aims at publishing data expressed in RDF (Resource Description Framework) at the scale of the worldwide web [START_REF] Bizer | Linked data -the story so far[END_REF][START_REF] Heath | Linked Data: Evolving the Web into a Global Data Space[END_REF]. In this paper we consider RDF data sets as sets of triples. We simply identify properties as the IRIs in predicate position in one of these triples and classes as the IRIs found in the codomain of the rdf:type predicates. This is the only schema information that is used. These data sets are not required to share vocabulary elements beside the RDF (for rdf:type) and OWL (for owl:sameAs) vocabularies.

Heterogeneous data sets interoperate through links which identify individuals across them. An important added value of linked data arises from the links that identify the same entity in different data sets. They allow one to develop innovative applications exploiting data cross-references and making inferences between data sets.

Data interlinking

Data interlinking is the problem of finding IRIs described in RDF over different data sets that refer to the same resource. It is thus a critical task for widening and enhancing linked data. This is a knowledge discovery task as it infers knowledge -the condition for identity of resources-from large volumes of data.

Different approaches and methods have been proposed to address the problem of automatic data interlinking [START_REF] Ferrara | Data linking for the semantic web[END_REF][START_REF] Nentwig | A survey of current link discovery frameworks[END_REF]. Two main trends are used to tackle this problem: numerical methods and logical methods. Numerical methods usually compute a similarity between resources based on their property values to establish links between those that are very similar [START_REF] Bizer | Linked data -the story so far[END_REF][START_REF] Ngonga Ngomo | LIMES: A time-efficient approach for large-scale link discovery on the web of data[END_REF][START_REF] Suchanek | PARIS: Probabilistic Alignment of Relations, Instances, and Schema[END_REF]. Logical methods use an axiomatic characterisation of what makes two resources the same so as to find the owl:sameAs links between IRIs of different data sets [START_REF] Saïs | L2R: A logical method for reference reconciliation[END_REF][START_REF] Atencia | Keys and pseudo-keys detection for web datasets cleansing and interlinking[END_REF][START_REF] Hogan | Scalable and distributed methods for entity matching, consolidation and disambiguation over linked data corpora[END_REF].

Link key extraction

Our work belongs to the logic-based approach and is more precisely based on link keys. Thus we first introduce them before considering approaches to extract them from data.

Link keys

We introduced the notion of link keys as a way to find pairs of IRI identifying the same resource [START_REF] Euzenat | Ontology matching[END_REF][START_REF] Atencia | Data interlinking through robust linkkey extraction[END_REF]. Link keys generalise keys in relational algebra in three ways adapted to RDF: (a) they apply across two data sets instead of a single one, (b) they take into account multiple values for the same property, and (c) property values may be other objects. The latter makes link keys eventually dependent on each others.

A link key expression [START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF]Def. 4] specifies the pairs of properties to compare for linking individuals belonging to different classes of the data sets. An example of a link key expression is: { auteur, creator }{ titre, title } linkkey Livre, Book stating that whenever an instance of the class Livre has the same values for the property auteur as an instance of class Book has for the property creator and they share at least one value for their property titre and title, then they denote the same entity.

A link key expression thus applies to a pair of classes ( Livre, Book ). In the above expression, there are two sets of conditions (each reduces to a singleton): the eq-link key condition ({ auteur, creator }) and the in-link key condition ({ titre, title }). The abbreviations eq-and in-stand for equality and intersection.

It is easy to understand what link set is generated by such a link key expression given two RDF data sets [START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF]Def. 6].

Such a link key may depend on another one as, for instance, properties auteur and creator have values in the Écrivain and Writer classes respectively. Identifying their values will then depend on another link key:

{ nom, lastname }{ prénom, firstname } linkkey Écrivain, Writer
This situation may be rendered even more intricate if Écrivain and Writer were instead identified from the values of their properties ouvrage and hasWritten refering to instances of Livre and Book. We would then face circularly dependent link keys.

Link key extraction

The goal of link key extraction is, given two data sets, to find which link keys hold.

Key-based data interlinking requires to have pairs of keys related by alignment (or schema mapping). Keys are either given or extracted from the data. Key extraction (and more generally functional dependencies discovery) has been addressed both in databases [START_REF] Sismanis | GORDIAN: efficient and scalable discovery of composite keys[END_REF][START_REF] Huhtala | TANE: An efficient algorithm for discovering functional and approximate dependencies[END_REF] and in the semantic web [START_REF] Atencia | Keys and pseudo-keys detection for web datasets cleansing and interlinking[END_REF][START_REF] Pernelle | An automatic key discovery approach for data linking[END_REF]. Systems for data interlinking from keys [START_REF] Pernelle | An automatic key discovery approach for data linking[END_REF] can only extract a specific (strong) kind of in-link keys, which may not be the best candidates.

In [START_REF] Atencia | Data interlinking through robust linkkey extraction[END_REF], we have proposed to discover directly in-link keys between two classes from two data sets. The proposed algorithm does not require an initial alignment between properties of both data sets and also avoids the generation of keys that are specific to only one data set. It may be decomposed in two distinct steps: (i ) identifying link key candidates, i.e. maximal link key expressions that would generate at least one link if used as a link key, followed by (ii ) selecting the best link key candidate according to quality measures. To select the best link key candidate, we have introduced two sets of measures.

The purpose of this work is to reformulate Step (i) within the framework of formal concept analysis and to extend it towards dependent link key expressions.

Link key candidate extraction and formal concept analysis

The presented paper [START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF] aims at performing link key extraction through using Formal Concept Analysis (FCA). We thus first briefly introduce it. Then we summarize our previous work relating link key extraction algorithms and FCA. We finally present the full reformulation of link key extraction within FCA.

Formal Concept Analysis

Formal Concept Analysis (FCA) is a set of techniques, allowing data analysis and classification, based on solid mathematical foundations and efficient algorithms [START_REF] Ganter | Formal concept analysis: mathematical foundations[END_REF]. It starts with a binary table, called formal context, relating objects to attributes (or properties) and outputs a set of concepts which are pairs composed of a maximal set of objects sharing a corresponding maximal set of attributes.

In addition, concepts are partially ordered within a concept lattice. Using lattices is common place for extracting functional dependencies [START_REF] Levene | A lattice view of functional dependencies in incomplete relations[END_REF][START_REF] Demetrovics | Functional dependencies in relational databases: A lattice point of view[END_REF][START_REF] Lopes | Functional and approximate dependency mining: database and FCA points of view[END_REF]. The problem was considered in FCA in a functional setting [START_REF] Ganter | Formal concept analysis: mathematical foundations[END_REF] and further refined in pattern structures, the extension of FCA to complex data [START_REF] Baixeries | Characterizing functional dependencies in formal concept analysis with pattern structures[END_REF][START_REF] Codocedo | Characterization of order-like dependencies with formal concept analysis[END_REF]. However, FCA is defined for functional properties and must be adapted to the other cases, especially with multi-valued and relational attributes.

Link key candidates are formal concepts

We have previously shown how to encode the link key extraction problem in relational databases into formal concept analysis so that link key candidates correspond to formal concepts [START_REF] Atencia | What can FCA do for database linkkey extraction?[END_REF]. This was a simplification of the method used for extracting functional dependencies in [START_REF] Ganter | Formal concept analysis: mathematical foundations[END_REF] in which the formal context relates pairs of properties to pairs of objects. The relation holds between a pair of objects and a pair of properties if the objects have the same value for this property.

This works in the functional case of relational data bases in which eq-conditions and in-conditions are equivalent (for non NULL cells).

This preliminary work showed that the approach was promising, but extensions were needed in several directions, among which: 1. Non-functional properties lead to distinguish eq-and in-conditions. This requires integrating them in the proposed formal contexts. 2. Relational properties lead to the possible existence of link keys depending of others link keys, e.g. individuals of the pair of classes Livre, Book will depend on the classes Écrivain, Writer as the value of the auteur, creator property pairs. 3. Moreover, some classes may depend on themselves, directly or indirectly.

For instance, if identifying individuals of the pair of classes Écrivain, Writer may, in turn, depend on the pair of classes Livre, Book through the pair of properties ouvrage, hasWritten .

Reformulation and extensions

A first contribution of [START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF] is the reformulation of the former encoding and the proof that it indeeds finds all and only link key candidates. We first define the notion of meet, join and subsumption between link key expresions [2, Def. 5] and reformulate link key candidates as closed by join [2, Def. 8]. This covers relevant link key expressions missed by the previous definitions. We prove that reformulated link key candidates are either previous link key candidates or join of link key candidates [2, Prop. 2].

We then define formal contexts for dependent link key candidates [2, Def. 9]. They extend the former contexts by qualifying the pairs of properties as acting either as an in-condition or an eq-condition. The former relates two objects sharing at least one value for these properties; the latter relates them if they share all their values. We show that, as redefined, link key candidates are formal concepts [2, Prop. 3].

Dependent link key candidate extraction

So far, we were only concerned with extracting link key candidates between two identified classes independently of other classes. This means that, either this can only take into account literal values, i.e. data properties, or the equality between objects that appear as relation values require owl:sameAs statements.

A first enhancement is thus to express dependent link key expressions, e.g. link keys of the class Book that contains the author property will depend on link keys of the class Writer. For that purpose, we extend formal contexts to cover object properties such that a pair of object properties be qualified by the link key expression used for judging the equality of instances. For example, this can resort to expressing that the object should share a value in the property auteur and creator judging this equality on the equality between their property noinsee and ssnumber. This is integrated in the definition of formal contexts for dependent link key candidates [START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF]Def. 11] by adding for each pair of object properties the keys used for linking them.

This raises a subsequent problem: it is now possible to have the same pair of classes (Livre and Book) using different link keys for judging the equality of the same pair of classes (Personne and Person) depending on the pair of property that is compared, e.g. auteur, author and traducteur, translator . This seems weird. It may be preferable to always compare the instances of the same pair of classes with the same link key expression. This is the reason why we define coherent families of link key candidates [2, Def. 12] which assign at most one single link key candidate to any pair of classes.

Circular dependencies and relational concept analysis

Circular dependencies across link keys raise the problem of self-supported links, i.e. EEUU is the same as USA if Nueva York is the same as New-York which relies on EEUU being the same as USA. Since the goal of link keys is to find links between data, self-supported links should not be discarded upfront.

Circular dependencies are commonplace in ontologies, e.g. the class Person depending on itself through the property parent. The use of a relation and its inverse (author-hasWritten) is already a simple case of circular dependency.

Such characteristics require extensions of the genuine FCA framework. We have used relational concept analysis for that purpose.

Relational Concept Analysis

Relational Concept Analysis [START_REF] Rouane Hacene | Relational concept analysis: mining concept lattices from multi-relational data[END_REF] has been designed for dealing with relational attributes and circular dependencies in the FCA framework. As for FCA, its main goal is to find concept descriptions, i.e. descriptions of classes expressed in function of other class descriptions through properties, like in description logics. For that purpose, it deals with a relational context family which is made of a set of classical formal contexts, one per class, and a set of relational contexts, one per object property. The relational contexts is a binary table between objects of two contexts. It simply express which objects are in relation with which other objects through a particular object property. In addition, RCA uses scaling operators to introduce new discriminating properties within the formal contexts.

Its concept extraction process starts by (a) applying FCA to each formal context. This provides new concept lattices. Then (b) the scaling operators add new attributes to the formal contexts of classes depending on the extracted concepts for the co-domain of their object properties. The process returns to Step (a) until no change occurs. This has been proved to converge [START_REF] Rouane Hacene | Soundness and completeness of relational concept analysis[END_REF]. As a result, RCA returns one concept lattice for each formal context.

Extension to circular dependencies

Extracting link keys, i.e. conditions for pairs of objects to be the same, is not exactly like extracting class descriptions, i.e. conditions for an object to belong to a class. However, as we defined a suitable encoding for FCA, it is possible to extend it, even for RCA. In fact, the formal contexts are the same as in the previous section and the relational contexts for dependent link key candidates [2, Def. 13] are the same as in RCA except that they relate pairs of objects through pairs of object properties. A relational context family for dependent link key candidates [2, Def. 15] is made of such contexts, eventually restricted by an alignment.

The novelty lies on the introduction of two specific scaling operators, the link key condition scaling operators [2, Def. 14], which generate the corresponding inand eq-conditions when necessary, i.e. when this discriminates between generated concepts. Coherent families of link key candidates can be extracted from the resulting lattices and evaluated.

Complexity and implementation

It may be strange that what the paper offers is a set of formal context definitions. This is the way a problem is expressed in formal concept analysis. If this is rightly done, the FCA/RCA process provides the solution to the problem, i.e. concept lattices.

We have implemented a full proof-of-concept in Python1 which supports all encodings described here and returns the concept lattice from data sets expressed in genuine RDF. It is also provided with many toy examples for torturing the model. This implementation is not particularly efficient.

We are currently reimplementing it in Java in our LinkEx tool2 . This is not yet fully completed.

The paper discusses the exponential data and 'schema' complexity of the proposed algorithm as well as the observation that, in practice, the data sets do not generate that many link keys. LinkEx is able to generate and evaluate 834 link key candidates from 99116 (349 × 284) possible links and 255 (15 × 17) pairs of properties within a few seconds on a laptop.

Conclusion

This paper provides a full account of using relational concept analysis to extract link key candidates from two RDF data sets containing various classes. All the contexts defined in this paper are extension of others, i.e. each considered problem is expressed in the same way in the context corresponding to it as in the more expressive contexts and all provide exactly the same results. The proposed approach works as well for unary link keys, i.e. keys, or n-ary link keys. No alignment is necessary, contrary to [START_REF] Atencia | Data interlinking through robust linkkey extraction[END_REF], though it is always possible to inject an alignment in the definitions to reduce the search space.

Once coherent families of link key candidates are extracted, they need to be evaluated. Available measures can apply in the same way because they are usually defined on the generated links.

Among further development of this approach, we plan to consider two research directions: -Optimising the extraction process through interleaving evaluation and extraction and through using sampling techniques; -Relaxing the data equality constraint by using similarity measures considered as tolerance relations [START_REF] Kaytoue | Mining gene expression data with pattern structures in formal concept analysis[END_REF].

https://moex.inria.fr/software/linkky/

https://gitlab.inria.fr/moex/linkex
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