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Ontology Matching
OM-2019

Proceedings of the ISWC Workshop

Introduction
Ontology matching1 is a key interoperability enabler for the semantic web, as well
as a useful tactic in some classical data integration tasks dealing with the semantic
heterogeneity problem. It takes ontologies as input and determines as output an align-
ment, that is, a set of correspondences between the semantically related entities of
those ontologies. These correspondences can be used for various tasks, such as ontol-
ogy merging, data translation, query answering or navigation over knowledge graphs.
Thus, matching ontologies enables the knowledge and data expressed with the matched
ontologies to interoperate.

The workshop had three goals:

• To bring together leaders from academia, industry and user institutions to assess
how academic advances are addressing real-world requirements. The workshop
strives to improve academic awareness of industrial and final user needs, and
therefore, direct research towards those needs. Simultaneously, the workshop
serves to inform industry and user representatives about existing research efforts
that may meet their requirements. The workshop also investigated how the on-
tology matching technology is going to evolve.

• To conduct an extensive and rigorous evaluation of ontology matching and in-
stance matching (link discovery) approaches through the OAEI (Ontology Align-
ment Evaluation Initiative) 2019 campaign2.

• To examine similarities and differences from other, old, new and emerging, tech-
niques and usages, such as process matching, web table matching or knowledge
embeddings.

The program committee selected 3 long and 2 short submissions for oral presenta-
tion and 7 submissions for poster presentation. 20 matching systems participated in this
year’s OAEI campaign. Further information about the Ontology Matching workshop
can be found at: http://om2019.ontologymatching.org/.

1http://www.ontologymatching.org/
2http://oaei.ontologymatching.org/2019
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Abstract. Air traffic management (ATM) relies on the timely exchange
of information between stakeholders to ensure safety and efficiency of
air traffic operations. In an effort to achieve semantic interoperability
within ATM, the Single European Sky ATM Research (SESAR) program
has developed the ATM Information Reference Model (AIRM), which
individual information exchange models should comply with. An OWL
representation of the AIRM – the AIRM Ontology (AIRM-O) – facili-
tates applications. Independently from the European efforts, the NASA
Air Traffic Management Ontology (ATMONTO) has been developed as
an RDF/OWL ontology representing ATM concepts to facilitate data
integration and analysis in support of NASA aeronautics research. Concep-
tualization mismatches between the AIRM-O and ATMONTO ontologies
– mostly due to different design decisions, but also as a consequence of the
different regulatory systems and philosophies underlying ATM in Europe
and the United States – pose a challenge to automatic ontology matching
algorithms. In this paper, we describe mismatches between AIRM-O and
ATMONTO, evaluate performance of automatic matching systems over
these ontologies, and provide a manual reference alignment.

1 Introduction

Modern air traffic management (ATM) employs standardized models for the
exchange of information required for seamless air traffic operations. Each ex-
change model has a different focus. The Aeronautical Information Exchange
Model (AIXM) [1], for example, facilitates the representation of messages for
pilots and air traffic controllers notifying of important events such as temporary
runway closures and malfunctions of navigation aids. The exchange models are

Copyright c© 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).1



2 A. Vennesland et al.

subject to constant evolution in various standards working groups. In this regard,
maintaining consistent co-evolution of the different exchange models is a necessity
not only to guarantee efficiency of operations – by ensuring interoperability of
systems – but also for safety reasons.

Recognizing the necessity of a common reference for the constantly evolving
exchange models, the Single European Sky ATM Research (SESAR) program
established the ATM Information Reference Model (AIRM) [25], developed under
supervision of EUROCONTROL in an effort with industry and academia but
meanwhile also adopted by the International Civil Aviation Organization (ICAO).
The individual exchange models must ensure compliance with AIRM.

The AIRM Ontology (AIRM-O) [21] is an OWL ontology derived from the
UML representation of AIRM in an effort to facilitate operationalization of AIRM.
In this regard, previous work has investigated automatic compliance validation
between exchange models and AIRM [22] as well as the annotation of ATM data
sources with a semantic description of the contents [15].

The NASA Air Traffic Management Ontology (ATMONTO) [12, 13] supports
NASA’s aeronautics research activities by facilitating integration of data from
various sources for analysis purposes. Developed independently from AIRM with
a different purpose and under a different regulatory system – the United States
instead of Europe – the question arises to what extent ATMONTO is actually
compatible with AIRM-O.

In order to link AIRM-O and ATMONTO, we manually produced a reference
alignment between these ontologies. In the course of the alignment process,
we identified different types of mismatches between AIRM-O and ATMONTO,
which we relate to existing mismatch classifications from literature. During the
manual mapping process, we also experimented with state-of-the-art ontology
matching systems. Some of the encountered mismatches pose a serious challenge
for automatic ontology matching systems. According to the results from some
of the benchmarks organised by the Ontology Alignment Evaluation Initiative
(OAEI), the performance of ontology matching systems has improved significantly
over recent years [7]. In some tracks, several of the competing systems achieve
close to perfect F-measure [5], i.e., they are able to identify almost all relations in
the track’s ground truth alignment without producing false positives. Matching
the two ATM ontologies, however, proved somewhat difficult for these systems.
Some of the tested systems identified very few but correct relations whereas
others identified a couple of more correct relations, but included too many
incorrect relations. The reference alignment between ATMONTO and AIRM-O
may serve the ontology matching community as a gold standard for improving
and evaluating matching algorithms.

The remainder of this paper is organized as follows. In Sect. 2 we present
relevant background information about the investigated ATM ontologies. In
Sect. 3 we introduce a reference alignment between ATMONTO and AIRM-O.
In Sect. 4 we identify mismatches between the ontologies. In Sect. 5 we evaluate
performance of automatic matching systems. In Sect. 6 we review related work.
We conclude with a summary and an outlook on future work.

2



Matching Ontologies for Air Traffic Management 3

2 Ontologies for Air Traffic Management

The AIRM addresses the issue of semantic interoperability between ATM sys-
tems through harmonized and agreed upon definitions of the information being
exchanged in ATM [25]. The exchanged ATM information must comply with the
AIRM definitions, the individual exchange models are aligned with the AIRM.
AIRM is defined in UML, the various diagrams falling into the following subject
fields: AirTrafficOperations, Aircraft, AirspaceInfrastructure, BaseInfrastructure,
Common, Environment, Flight, Meteorology, Stakeholders, and Surveillance. The
subject fields represent specific concerns of ATM.

In order to facilitate application of AIRM in practice, the SESAR exploratory
research project BEST6 developed the AIRM Ontology (AIRM-O) [21]. AIRM-O
has been semi-automatically derived from the XML Metadata Interchange (XMI)
representation of the AIRM UML diagrams using manual preprocessing and XSL
Transformation (XSLT) scripts to obtain an OWL ontology. The transformation of
the AIRM UML diagrams into an OWL ontology follows the Object Management
Group’s guidelines from the Ontology Definition Metamodel [17].

Independently from AIRM, ATMONTO was developed in the context of
NASA’s aeronautics research activities as a facilitator for data integration and
analysis. ATMONTO supports semantic integration of ATM data being collected
and analyzed at NASA for research and development purposes. The ontology
functions as an integrative superstructure upon which to overlay data from
multiple stove-piped aviation data sources, thus enabling cross-source queries
that would be otherwise time-consuming and costly. ATMONTO includes a
wide range of classes, properties, and relationships covering aspects of flight and
navigation, aircraft equipment and systems, airspace infrastructure, meteorology,
air traffic management initiatives, and other areas.

Development of ATMONTO followed a classic knowledge modeling approach.
First, domain experts identified a core set of aviation data sources to be integrated.
After an analysis of these sources, a proposed set of ATM concepts, properties,
and relations was developed and presented to the experts for critique. The
corresponding revisions led to an initial version of ATMONTO. Since this version
was built in a bottom-up fashion driven by a need to accommodate the core data
sources, the initial ontology did not represent the full complexity of the ATM
domain. Gradually, additional data sources were incorporated, thereby revising
and extending ATMONTO’s set of concepts, properties, and relations. By the end
of the development process, more than ten different data sources were covered
by the ontology, and ATMONTO’s structure had been generalized well beyond
those sources. Although a general model of the ATM domain, ATMONTO’s
development was heavily driven by application requirements. In turn, AIRM-
O’s scope is overall broader than ATMONTO’s since AIRM has been subject
to a more coordinated standardization and governance process inside SESAR,
harmonizing the various ATM information exchange models.

6 Achieving the Benefits of SWIM by Making Smart Use of Semantic Technologies,
https://project-best.eu/
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4 A. Vennesland et al.

3 Reference Alignment

In order to develop a reference alignment between AIRM-O and ATMONTO,
a panel of six experts, each having experience within the ATM domain and
knowledge of semantic technologies, collaboratively produced a mapping between
concepts of the two ontologies. All the experts were asked to match each of the
157 classes in ATMONTO to corresponding classes in the larger AIRM-O – see
Table 1 for statistics about the size of the ontologies – by making use of the
experts’ own domain knowledge as well as all available input, including descriptive
class and property annotations in the ontologies and informative web resources
such as Skybrary7.

Table 1. Ontology Statistics

Classes Object Properties Data Properties

ATMONTO 157 126 189
AIRM-O 915 1761 494

In addition to identifying equivalence classes, each expert also indicated
subsumption relationships between concepts as well as potential mismatches of
varying degree (see Sect. 4). After the initial matches were compiled, two of the
five experts in the panel reviewed the matches for each ATMONTO class and
produced a consensus mapping holding equivalence relations between classes from
the ontologies. With the consensus mapping as a starting point, the reference
alignment was developed using the following approach:

1. Develop equivalence reference alignment. The consensus mapping described
above is formatted in RDF/XML according to the Alignment Format [3].

2. Develop subsumption reference alignment. Here, the same procedure as in
the OAEI 2011 edition [4] was followed: The two source ontologies were
merged into one single ontology in Protégé. Then OWL equivalentClass
axioms consistent with the mapping described above were manually added
between the corresponding classes in the merged ontology. An automated
reasoner (HermiT) performed subsumption reasoning over the classes in
the merged ontology in order to infer subsumption relations. In addition,
subsumption mappings that were discovered in the manual mapping process
but not identified by the reasoner were included in the reference alignment.

3. Evaluate reference alignments. Once both reference alignments were complete
they were manually inspected for errors and inconsistencies.

The reference alignment between ATMONTO and AIRM-O [20] comes as
two separate alignment files, one holding only equivalence relations and the
other holding only subsumption relations. The equivalence reference alignment

7 https://www.skybrary.aero/
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contains 32 relations in total and the subsumption reference alignment contains
83 subsumption relations. Only direct subsumption relationships were considered
in the subsumption reference alignment, following the convention used during the
development of the reference alignment for the Oriented Matching track arranged
in OAEI 2011 [4].

4 Mismatches between AIRM-O and ATMONTO

In the course of conducting the manual alignment of ATMONTO and AIRM-O
(see Sect. 3), several of the identified candidate equivalence relations were con-
sidered “light matches” at first. In these cases, an equivalence relation between
the classes was often deemed too strong – despite lexically similar class names
hinting at a relation – given that the experts performed poorly on the alignment
task – as judged by the two reviewing experts. Extensive discussions among
the experts involved in the matching exercise revealed that similar class names
were no guarantee of a correct match. In fact, in approximately 25% of the
identified exact-match pairs in the final reference alignment, the class names did
not have any words in common whereas in approximately 40% of the identified
“light-match” candidate equivalence relations the class names did have words in
common. This may explain partly why automated alignment techniques focusing
on class name similarity did not perform particularly well (see Sect. 5).

The initially identified “light matches” between ATMONTO and AIRM-O
actually represent ontology mismatches. Multiple classification systems for mis-
matchs with varying degrees of detail and often considerable overlap exist in
literature. Figure 1 shows a classification of mismatch types synthesized from
Klein [14] and Visser et al. [23, 24] along with mismatch types encountered during
the manual matching between ATMONTO and AIRM-O. Notwithstanding the
differences between classification systems, there seems to be consensus that the
development of an ontology involves two separate processes and, correspondingly,
two broad categories of mismatches can be distinguished [23, 24]. First, conceptu-
alization mismatches are the result of different interpretations of the represented
domain, leading to different classes, individuals, and relations being modeled in
different ontologies for the same domain. Explication mismatches, on the other
hand, are the result of different specifications of domain interpretations in form
of different terms, modeling styles, and encodings being employed.

One category of conceptualization mismatches concerns differences in model
coverage and scope between ontologies from the same domain, which occur when
two ontologies cover different parts of that domain or the same part at dif-
ferent levels of detail. In this regard, a structure mismatch occurs when two
ontologies distinguishing the same set of classes differ in how they are struc-
tured through relations; we could not find a clear case of structure mismatch
between ATMONTO and AIRM-O. A mismatch concerning differing levels of
detail occurs when one class is modeled in more depth and with greater fidelity
than the other. The ASPMeteorologicalCondition class from ATMONTO and
AerodromeCondition from AIRM-O, for example, both represent meteorological

5



6 A. Vennesland et al.

Ontology Mismatches

Concept Scope

Model Coverage 
and Granularity

Homonyms

Synonyms

Terminological Modeling Style

Paradigm

Concept Description

Categorization Mismatch

Structure Mismatch

Aggregation-level Mismatch

Attribute-type Mismatch

Conceptualisation Explication

Terms & Definiens Mismatch

Terms Mismatch

Concept Mismatch

Concept & Definiens Mismatch

Attribute Assignment Mismatch

Encoding

Differing Level of Detail

Differing Intended Use

Differing Level of Abstraction

Differing Scope

Differing Word Senses

Differing Standards

Differing Representation

Definiens Mismatch

Fig. 1. Classification of ontology mismatches, synthesized from Klein [14] (white) and
Visser et al. [23, 24] (light grey), extended with mismatch types encountered when
mapping ATMONTO to AIRM-O (dark grey).

information. ASPMeteorologicalCondition, however, is more detailed, compris-
ing all aspects of sky, wind, visibility, and weather whereas AerodromeConditon
is limited to sky conditions. Different properties and relations of similar classes
may also reflect differences in how the classes are to be used in the context of a
domain application (differing intended uses). For example, ReRouteSegment in
ATMONTO describes an alternative air route option for contingency planning
purposes, whereas RouteSegment describes an actual portion of a route being
flown. Eventually, the differing scope of ontologies may result in a class from the
source ontology lacking a matching class in the target ontology because the class
from the source ontology lies outside the defined scope of the target ontology. An
example of a differing scope is the missing equivalent in AIRM-O for the class
DelayModel in ATMONTO, which specifies a numerical model of airspace delay
under specific traffic conditions. There is no matching class in AIRM-O because
modeling concerns fall outside the scope of this ontology.

A concept scope conceptualization mismatch occurs when two classes seem
to represent the same concept, yet do not cover exactly the same instances,
although the classes intersect. Categorization mismatches and aggregation-level
mismatches fall into the concept scope mismatch category. A categorization
mismatch occurs when two ontologies include the same class, but each ontology
decomposes the class into different subclasses. ATMONTO’s Airport is equivalent
to AIRM-O’s Aerodrome, however due to different geographical and application-
wise scope Airport includes the subclasses USairport and InternationalAirport
whereas Aerodrome has no such subclasses. An aggregation-level mismatch
occurs when two ontologies define the same underlying concept using classes at
different levels of abstraction. A differing level of abstraction is encountered when
the matched classes intersect but some instances are outside the intersection.
Consider, for example, AviationIndustryManufacturer in ATMONTO and

6
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AerospaceManufacturer in AIRM-O. In this case, the term “Aerospace” has a
broader meaning than “Aviation”, hinting at a subsumption relation.

The class of explication mismatches encompasses terminological, modeling
style, and encoding mismatches. In this regard, an encoding mismatch relates to
how the ontologies employ different formatting when describing instances, e.g.,
describing an instance either in miles or kilometres [14]; we omit this mismatch
type in the remainder of this analysis. More relevant for our analysis are the
terminological and modeling-style mismatches identified by Visser et al. [23, 24],
which occur due to different knowledge definitions used in the ontologies and
their associated concepts.

The category of terminological mismatches comprises mismatches related to
synonyms and homonyms. The synonym mismatch as explained by Klein [14]
refers to two lexically different terms in fact meaning the same thing (e.g. ‘Air-
port/Heliport’ versus ‘Aerodrome’), so we do not consider this a real mismatch in
our analysis. Term mismatches as well as terms-and-definiens mismatches defined
by Visser et al. [23, 24] belong to the synonym mismatches. A term mismatch oc-
curs when the definitions share the same concept and the same definiens, but the
terms are different. Correspondingly, a term-and-definiens mismatch occurs when
the definitions refer to the same underlying concept, but the terms and definiens
are different. The relation between Airport in ATMONTO and Aerodrome in
AIRM-O could also be considered a terms-and-definiens mismatch.

Mismatches related to homonyms occur when the meaning of two identical
terms is different (e.g. the term ‘Conductor’ has a different meaning in music than
in electrical engineering). We refer to homonym mismatches proper as differing
word senses. There were a few incidents of homonymy that complicated the
alignment process for ATMONTO and AIRM-O. For example, the term “Flow”
had a slightly different meaning in ATMONTO and AIRM-O. In AIRM-O, a flow
is a traffic pattern, while in ATMONTO flow is a concrete measurement of the
number of aircraft per time unit traversing a volume of airspace.The classes have
an exact or close lexical match, but the two classes correspond to two different
word senses.

Modeling style mismatches are further decomposed into concept description
and paradigm mismatches. A concept description mismatch occurs when two
similar concepts are modelled differently, e.g., that the same intention is modelled
through the use of properties in one ontology and by using distinct sub-classes
for the same target values in the other ontology [6]. A specific type of concept
description mismatch between ATMONTO and AIRM-O is classes with similar
names defining different versions of the same concept based on differing technical
standards adopted by ontology developers, e.g., by FAA and EUROCONTROL.
Finally, paradigm mismatches refer to how different paradigms can be used to
represent concepts such as time, action, plans, causality, propositional attitudes,
etc. For example, one ontology might use temporal representations based on
interval logic, while another might use a representation based on points [6].
Paradigm mismatches relate to what we call “differing representation”, and one
example of such a mismatch is between PlannedF lightRoute in ATMONTO
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and Trajectory in AIRM-O. These two classes are used to represent the planned
aircraft trajectory (or flight plan). In AIRM-O, the planned trajectory is com-
posed of a sequence of trajectory points, elements, segments, and constraints. In
ATMONTO, the flight plan is specified using a hierarchically decomposable route
structure. These are fundamentally different methods of representing a planned
route, based on different conceptual models of what constitutes a route.

5 Performance of Automatic Matching Systems

We challenged three matching systems that normally rank highly on several
tracks of the OAEI campaigns on the equivalence reference alignment:

– AgreementMakerLight (AML) [9]. We ran AML using the GUI version
from 20168 and the “Automatic Match” mode, letting AML handle the
configuration of individual matching algorithms and external background
sources (e.g. WordNet). AML includes terminological, structural and lexical
matchers and uses WordNet as a general-purpose lexical resource as well
as the Doid and Uberon ontologies for matching of biomedical ontologies.
Property relations included in the produced alignment were disregarded when
evaluating the performance of AML.

– LogMap [11]. We used the latest available standalone distribution of LogMap9

with default matching parameters. LogMap combines terminological matching
with capabilities for diagnosing and repairing incoherent alignments. Option-
ally, LogMap can also employ external resources such as WordNet. As with
AML there were some property relations included in the produced alignment,
which we do not consider in the evaluation.

– YAM++ [16]. YAM++ is provided as a web application10. We used the
default matcher parameters, which included both an element-level and a
structure-level matching algorithm.

The evaluation results from running the matching systems on the equivalence
reference alignment are shown in Figure 2. As the figure shows, all three systems
manage to avoid many false positives, especially LogMap which obtains perfect
precision with no false positives. All three systems obtain a recall of 0.31. The
results reveal that all three matching systems are able to correctly detect the true
positive relations where the source and target classes are exact string matches.
All three matchers also capture one relation where the source class (SID) is an
acronym of the target class (StandardInstrumentDeparture) due to the fact that
“Standard Instrument Departure” is expressed in the label of the source class. The
remaining relations in the reference alignment are not detected by these systems.

A closer inspection of the alignments produced by these three matching
systems with respect to the equivalence reference alignment reveals that the
following factors contribute to making this a challenging dataset:

8 There was an issue with the dependency to the Gephi Toolkit that prevented us from
using the most recent version of AML.

9 https://sourceforge.net/projects/logmap-matcher/files/
10 http://yamplusplus.lirmm.fr/index
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– Domain-specific and technical terminology. Most of the classes in both on-
tologies describe aviation-specific concepts and technical terms. Often the
class names and their natural language definitions include acronyms and
abbreviations used only in aviation. Considering that typically used lexical re-
sources (such as the aforementioned WordNet) have low coverage of technical
terminology, this constitutes a challenge for matching systems.

– Compound class names. Several of the classes involved in the relations repre-
sented in the reference alignment contains equal substrings, a feature often
exploited by string-matching techniques. However, in most relations one or
both class names are compound words, such as PhysicalRunway - Runway or
AircraftModel - AircraftMakeModelSeries, resulting in a low similarity scores
for algorithms based on basic substring analysis. Here, a more comprehensive
string-based analysis is required to identify such relations, possibly result-
ing in the unwanted effect that additional false positive relations are being
included in the computed alignment as well.

– Synonymy, homonymy and polysemy. The two ontologies use synonymous
terms for concepts with the same meaning (e.g. Airport vs. Aerodrome).
Synonymy can often be resolved using lexicons or other external sources (e.g.
other ontologies). Homonymy and polysemy are more of a challenge to solve.
Some of the class names in these two ontologies can have a different meaning
outside the ATM domain. Examples of this are Gate, Taxi or Star (which
is short for Standard Terminal Arrival Route in the ATM world) and such
challenges are not addressed through the use of lexicons such as WordNet.
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Fig. 2. Performance of selected state-of-the-art matchers over ATMONTO and AIRM-O
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6 Related Work

Evaluation datasets that include reference alignments declaring the correct set of
mappings between ontologies are important for the continued improvement of
ontology matching techniques. The OAEI provides an annual standardised evalu-
ation process for matching system. However, with only a few exceptions over the
years, the OAEI tracks mainly involve one-to-one equivalence relations, neglecting
other semantic relations and complex correspondences whose identification is
important for more profound integration processes [8, 18]. One of these OAEI
tracks is the Conference Track, a widely used benchmark for ontology matching
systems, that since its inception in 2005 has been subject to many revisions [26].
This track now includes 16 ontologies describing conference organization and
there are two versions of reference alignments, all holding one-to-one equivalence
relations. The first version is referred to as “crisp” alignments where all confidence
values are 1.0. The second version is referred to as an “uncertain” version of the
reference alignment where the confidence values reflect the opinion from a group
of human experts [7].

For the 2018 OAEI campaign, a complex alignment track was launched,
offering reference alignments holding complex relations in four different datasets.
One of the datasets included complex reference alignments for some of the
ontologies in the Conference Track [19]. The other datasets represented real-world
ontologies from the domains of hydrography, plants and species, and geoscience.
Having real-world ontologies in benchmarks is important because such ontologies
may expose issues arising in practice which may be overlooked by the developers
of (semi-)artificial benchmarks [27].

7 Summary and Future Work

We contrasted AIRM-O with the ATMONTO. Mismatches between these ontolo-
gies coupled with the complex and diverse nature of the ATM domain, which
covers many technical subject fields, renders automatic ontology matching diffi-
cult. The presented manual alignment of AIRM-O and ATMONTO potentially
facilitates integration of datasets in different formats, e.g., NASA aeronautics
research data with ATM information in the operational System Wide Information
Management (SWIM) network. As a byproduct, the ontology matching commu-
nity gains access to a reference alignment for two complex real-world ontologies
from the ATM domain. We refer to a separate publication [10] for a more detailed
comparison of AIRM-O and ATMONTO from an ATM perspective.

Future work will investigate the potential for complex reference alignments
between AIRM-O and ATMONTO beyond simple equivalence and subsumption
relations. using the Expressive and Declarative Ontology Alignment Language
(EDOAL) [2]. During the manual mapping process, we identified a large number
of complex relations, e.g., class-to-property relations and many-to-many relations,
which additional reference alignments can be developed from. In this regard,
complex matching represents an area with a potential for significantly advancing
the state-of-the-art in ontology matching.
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Abstract. The goal of ontology matching (OM) is to identify mappings be-
tween entities from different yet overlapping ontologies so as to facilitate se-
mantic integration, reuse and interoperability. Representation learning methods
have been applied to OM tasks with the development of deep learning. How-
ever, there still exist two limitations. Firstly, these methods are of poor capability
of encoding sparse entities in ontologies. Secondly, most methods focus on the
terminological-based features to learn word vectors for discovering mappings,
but they do not make full use of structural relations in ontologies. It may cause
that these methods heavily rely on the performance of pre-training and are limited
without dictionaries or sufficient textual corpora. To address these issues, we pro-
pose an alternative ontology matching framework called MultiOM, which models
the matching process by embedding techniques from multiple views. We design
different loss functions based on cross-entropy to learn the vector representations
of concepts, and further propose a novel negative sampling skill tailored for the
structural relations asserted in ontologies. The preliminary result on real-world
biomedical ontologies indicates that MultiOM is competitive with several OAEI
top-ranked systems in terms of F1-measure.

Key words: Ontology Matching, Embedding, Cross-Entropy, Negative Sampling

1 Introduction

In the Semantic Web, ontologies aim to model domain conceptualizations so that appli-
cations built upon them can be compatible with each other by sharing the same mean-
ings. Life science is one of the most prominent application areas of ontology technol-
ogy. Many biomedical ontologies have been developed and utilized in real-world sys-
tems including Foundational Model of Anatomy (FMA)5, Adult Mouse Anatomy (MA)
? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0). This work was partially supported by the
National Key Research and Development Program of China under grant (2018YFC0830200)
the Natural Science Foundation of China grants (U1736204), the Fundamental Research Funds
for the Central public welfare research institutes (ZZ11-064), the Fundamental Research Funds
for the Central Universities (3209009601).

5 http://si.washington.edu/projects/fma
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for anatomy6, National Cancer Institute Thesaurus (NCI)7 for disease and Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED-CT)8 for clinical medicine. To
integrate and migrate data among applications, it is crucial to first establish mappings
between the entities of their respective ontologies. As ontologies in the same domain are
often developed for various purposes, there exist several differences in coverage, gran-
ularity, naming, structure and many other aspects. It severely impedes the sharing and
reuse of ontologies. Therefore, ontology matching (OM) techniques devote to identify
mappings across ontologies in order to alleviate above heterogeneities [1].

In the last ten years, many automatic systems are developed so as to discover map-
pings between independently developed ontologies and obtain encouraging results (see
[2, 3] for a comprehensive and up-to-date survey). Up to now, the mainstream meth-
ods (e.g., LogMap [4], AML [5], FCA-Map [6], XMap [7]) still focus on engineering
features from terminological, structural, extensional (individuals of concepts) informa-
tion and external resource [1]. These features are utilized to compute the similarities
of ontological entities (i.e., concepts, properties, individuals) for guiding the ontology
matching. With the development of deep learning [8], there also exist several works
(e.g., ERSOM [9], DeepAlignment [10], SCBOW + DAE(O) [11] OntoEmma [12])
that try to shift from feature engineering to representation learning. The assumption is
that semantically similar or related words appear in similar contexts. Therefore, word
vectors own the potentials that can bring significant value to OM given the fact that a
great deal of ontological information comes in textual form [10]. Nevertheless, there
still exist two challenges that need to be solved:

– Sparsity Problem for Embedding Learning: One of the main difficulties for em-
bedding learning is of poor capability of encoding sparse entities. Even in large-
scale medical ontologies with lots of relations, most knowledge graph embedding
techniques (e.g., TransE [13]) are still not applicable. Zhang et al. [14] observed
that the prediction results of entities were highly related to their frequency, and the
results of sparse entities were much worse than those of frequent ones.

– Limitation Problem for External Resource: Thesaurus is one kind of external re-
source that is usually employed in matching systems such as WordNet [15], UMLS
Metathesaurus9. In addition, textual descriptions can also be employed for ontol-
ogy matching [11, 12]. Nevertheless, these methods based on representation learn-
ing rely heavily on the performance of pre-training. Therefore, it may limit their
scalability if there exist no dictionaries or sufficient textual corpora.

To address above problems, we propose MultiOM, an alternative ontology match-
ing framework based on embedding techniques from multiple views. The underlying
idea is to divide the process of OM into different modules (i.e., lexical-based module,
structural-based module, resource-based module) and employ embedding techniques
to soften these modules. Existing works [16, 17] show that identifying multiple views
can sufficiently represent the data and improve the accuracy and robustness of corre-
sponding tasks. Therefore, we employ this idea to characterize the process of OM and
try to alleviate the sparsity problem for embedding learning indirectly. More precisely,
different loss functions are designed based on cross-entropy to model different views

6 http://informatics.jax.org/vocab/gxd/ma ontology
7 https://ncit.nci.nih.gov/
8 http://www.snomed.org/snomed-ct/
9 https://www.nlm.nih.gov/research/umls/knowledge sources/metathesaurus/index.html
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among ontologies and learn the vector representations of ontological entities. With con-
tinuous vector representation, we can obtain more similar concepts and discover more
potential mappings among ontologies. Furthermore, we design a novel negative sam-
pling tailored for structural relations (e.g., subclassOf relations, disjointWith relations)
asserted in ontologies, which can obtain better vector representations of entities for OM.

The contributions of our study are summarized as follows.
– We propose an alternative ontology matching framework with embedding tech-

niques from multiple views, and design loss functions based on cross-entropy to
model different views for learning vector representations of ontological entities.

– We design a novel negative sampling skill tailored for structural relations asserted
in ontologies, which can obtain better vector representations of concepts.

– We implement our method and evaluate it on real-world biomedical ontologies.
The preliminary result indicates that MultiOM is competitive with several OAEI
top-ranked systems in terms of F1-measure.

2 Related work

2.1 Feature-based methods for biomedical ontology matching
There exist various feature-based strategies applied on the scenarios biomedical ontol-
ogy matching, including terminological-based features, structural-based features and
employing external semantic thesauruses for discovering semantically similar entities.

LogMap [4] relies on lexical and structural indexes to enhance its scalability. To
scale to large ontologies and minimize the number of logical errors in the aligned on-
tologies, LogMap uses a horn propositional logic representation of the extended hierar-
chy of each ontology together with all existing mappings and employs Dowling-Gallier
algorithm to model propositional horn satisfiability.

AML [5] is originally developed to tackle the challenges of matching biomedical
ontologies. It employs various sophisticated features and domain-specific thesauruses to
perform OM. Besides, AML introduces a modularization-based technique to extract the
core fragments of the ontologies that contain solely the necessary classes and relations
caused by disjoint restrictions, which can repair the incoherent alignments effectively.

FCA-Map [6] is an ontology matching system based on formal concept analysis
(FCA), in which five types of formal contexts are constructed in an incremental way,
and their derived concept lattices are used to cluster the commonalities among classes
and properties at various lexical and structural levels, respectively.

XMap [7] is a scalable matching system that implements parallel processing tech-
niques to enable the composition of basic sophisticated features. It also relies on the
employment of external resources such as UMLS Metathesarus to improve the perfor-
mance of ontology matching.

PhenomeNet [18] exploits an axiom-based approach for aligning phenotype ontolo-
gies, which makes use of the PATO ontology and Entity-Quality definition patterns so
as to complement several shortcomings of feature-based methods.

Feature-based methods mainly employ crafting features of the data to achieve spe-
cific tasks. Unfortunately, these hand-crafted features will be limited for a given task
and face the bottleneck of improvement. Cheatham and Hitzler showed that the per-
formance of ontology matching based on such engineered features varies greatly with
the domain described by ontologies [19]. As a complement to feature engineering, con-
tinuous vectors representing ontological entities can capture the potential associations
among features, which is helpful to discover more mappings among ontologies.

15



2.2 Representation learning methods for biomedical ontology matching

Representation learning have so far limited impacts on OM, specifically in biomedical
ontologies. To the best of our knowledge, only five approaches have explored the use of
unsupervised representation learning techniques for ontology matching.

Zhang et al. [20] is one of the first that investigate the use of word vectors for
ontology matching. They align ontologies based on word2vec vectors [21] trained on
Wikipedia. In addition, they use the semantic transformations to complement the lexical
information such as names, labels, comments and describing entities. The strategy of
entity matching is based on maximum similarity.

Xiang et al. [9] propose an entity representation learning algorithm based on Stacked
Auto-Encoders, called ERSOM. To describe an ontological entity (i.e., concept, prop-
erty), They design a combination of its ID, labels, comments, structural relations and
related individuals. The similarity of entities is computed with a fixed point algorithm.
Finally, ERSOM generates an alignment based on the stable marriage strategy.

DeepAlignment [10] is an unsupervised matching system, which refines pre-trained
word vectors aiming at deriving the descriptions of entities for OM. To represent the
ontological entities better, the authors represent words by learning their representations
and using synonymy and antonymy constraints extracted from general lexical resources
and information captured implicitly in ontologies.

SCBOW + DAE(O) [11] is representation learning framework based on termino-
logical embeddings, in which the retrofitted word vectors are introduced and learned
by the domain knowledge encoded in ontologies and semantic lexicons. In addition,
SCBOW + DAE(O) incorporates an outlier detection mechanism based on a denoising
autoencoder that is shown to improve the performance of alignments.

Wang et al. [12] propose a neural architecture tailored for biomedical ontology
matching called OntoEmma, It can encode a variety of information and derive large
amounts of labeled data for training the model. Moreover, they utilize natural language
texts associated with entities to further improve the quality of alignments.

However, there exist two limitations for above methods. One is the sparsity prob-
lem of structural relations. To avoid the poor capability of encoding sparse relations,
above methods prefer terminological-based features to learn word vectors for discover-
ing mappings, but they do not make full use of structural relations in ontologies. The
other is that these methods rely heavily on the performance of pre-training, which may
limit their scalability if there exist no dictionaries or sufficient textual corpora.

3 Muti-view Embedding for Biomedical Ontology Matching

In the scenario of biomedical ontology matching, matching systems mainly focus on
mappings of concepts with equivalent relations (Ci, Cj ,≡, n). Thus, in the remainder
of the paper, we only consider these type of mapping for biomedical ontology matching.

3.1 MultiOM

Existing works [16,17] show that identifying multiple views that can sufficiently repre-
sent the data and improve the accuracy and robustness of corresponding tasks. Inspired
by their works, we characterize the process of OM from multiple views and try to alle-
viate the sparsity problem for embedding learning indirectly.
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Fig. 1: The framework of MultiOM

The framework of MutiOM is shown in Fig. 1. Given two biomedical ontologies
O1 and O2, we first extract the concepts and their information of ontologies. Then, we
divide the process of OM into three embedding modules from different views, which
compose of lexical-view embedding, structural-view embedding and resource-view em-
bedding. Domain ontologies in the resource-based module, are treated as bridges to con-
nect source ontology and target one for discovering more potential mappings. With a
designed combination strategy based on mutual assessment, we obtain a final alignment
among given ontologies.

Different from feature-based methods, we utilize ontological information to learn
the continuous vector representations of concepts by embedding techniques, which can
discover more potential mappings among ontologies. There exist different granularity
of vector representations of modules in MultiOM. In lexical-based module, each con-
cept is divided into several tokens {t1, t2, ..., tn} that are represented as k-dimensional
continuous vectors ti, tj ∈ Rk. The similarity of concepts is measured based on these
word vectors by the designed algorithm. Relatively, for structural-based module and
resource-based module, each concept C is represented as a d-dimensional continuous
vector C ∈ Rd, and their similarities are calculated based on cosine measure.

Lexical-view Embedding The lexical-view embedding module is mainly based on TF-
IDF algorithm, which is one of the most effective string similarity metrics for ontology
matching [19]. According to the assumption of TF-IDF, concepts in one ontology can
be represented as a bag of tokens. Then, every concept Ci is regarded as a document
and the tokens {t1, t2, ..., tl} of each concept are treated as terms. Inspired by the idea
soft TF-IDF [19], we propose an embedding-based TF-IDF strategy to calculate the
similarities of concepts, More precisely, the similarity of each concept pair is calculated
according to the similarities of their tokens, which is obtained based on the cosine
measure of tokens’ vectors representations rather than the string equivalent of them.
The corresponding formula is defined as follows.

Sim(C1, C2) =
∑

i=1

wi · argmax
j

cos(t1i, t2j), (1)

where C1 and C2 are concepts from O1 and O2, t1i and t2j are vector representations
of tokens t1i and t2i that belong to C1 and C2. wi is a weight of token t1i in C1 that is
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calculated as follows.

wi =
TFIDF(t1i)
n∑
l=1

TFIDF(t1l)
, (2)

where n is the number of tokens, TFIDF(·) returns the TF-IDF value of each token.
As cosine measure of t1i and t2j is a continuous value, so this embedding-based

TF-IDF strategy is able to obtain more similar concepts and discover more potential
mappings. Nevertheless, our softened strategy depends on the quality of embedding
of tokens and may generate more wrong mappings. Therefore, we utilize pre-training
vectors to cover the tokens of ontologies as soon as possible (see Section 4.2). On the
other hand, we employ the mappings generated by other embedding modules to assess
the quality of these mappings in lexical-view module (see Section 3.3).

Structural-view Embedding As mentioned before, most proposed methods focus on
the terminological-based features to learn word vectors for ontology matching, but they
do not make full use of structural relations in ontologies. Relatively, we try to generate
mappings from the structural view. To obtain more candidate mappings for training
embedding of concepts, we assume that the mappings generated by equivalent strings
or their synonym labels are correct, and define a loss function based on cross-entropy to
optimize the vector representations of concepts. The loss function is defined as follows.

lSE = −
∑

(C1,C2,≡,1.0)∈M
logfSE(C1, C2)−

∑

(C′
1,C

′
2,≡,1.0)∈M′

log(1− fSE(C ′1, C ′2)),

(3)
whereM is a set of candidate mappings {(C1, C2,≡, 1.0)} generated by our assump-
tion,M′ is a set of negative mappings. We employ the negative sampling skill [13] to
generateM′ for training the loss function. For each mapping (Ci, Cj ,≡, 1.0) ∈M, we
corrupt it and randomly replace Ci or Cj to generate a negative triple (Ci

′, Cj ,≡, 1.0)
or (Ci, Cj ′,≡, 1.0). fSE(C1, C2) is a score function defined in Eq. 4 to calculate the
score of concept pairs, where C1,C2 ∈ Rd are d-dimensional continuous vectors of
concepts C1 and C2 from different ontologies, || · ||2 is the L2-norm. We hope that
fSE(C1, C2) is large if concepts C1 and C2 are similar.

fSE(C1, C2) = 2 · 1

1 + e(||C1−C2||2) . (4)

Furthermore, we design a negative sampling skill tailored for structural relations as-
serted in ontologies (e.g., subclassOf relations, disjointWith ) relations. Unlike the uni-
form negative sampling method that samples its replacer from all the concepts, we
limit the sampling scope to a group of candidates. More precisely, for each mapping
(Ci, Cj ,≡, 1.0) ∈M, if there exist subclassOf relations (e.g., (Ci′, subclassOf , Ci) or
(Cj
′, subclassOf , Cj)) asserted in ontologies, we need to exclude this replace case. Rel-

atively, for disjointWith relations (e.g.,(Ci′, disjointWith , Ci) or (Cj , disjointWith , Cj ′)),
we need to give the highest priority to these relations for replace cases (see Section 4.2).
With these constrains for negative sampling, we can obtain better vector representations
of concepts for ontology matching.

Resource-view Embedding Inspired by the work in [22], we consider external on-
tology as a bridge to connect two concepts from source ontology and target one. We
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observe that there exist many different yet overlapping biomedical ontologies such as
MA—NCI—FMA, FMA—NCI—SNOMED-CT. Compared with textual descriptions
or thesaurus, ontologies as external resources can provide some structural assertions,
which is helpful to refine the quality of discovered mappings [22]. Nevertheless, the
original idea is mainly based on string equality, which may not discover more simi-
lar concepts. Therefore, we employ embedding techniques to soft this framework to
discover more potential mappings from this view.

C11

C21

C22

C31
C32

C33
M13 M23

Fig. 2: Left: The original framework for employing external ontology to connect concepts. Right:
The embedding framework for employing external ontology to connect concepts

Fig. 2 shows a change of the framework from string equality to the softened idea,
where every concept C is represented as a d-dimensional continuous vector C ∈ Rd.
We assume that there exist some concept pairs (C1, C2) involving their synonyms from
ontologies O1 and O2 will share the same concept C3 or its synonyms in external on-
tology O3. The tuple is labeled as (C1, C2, C3). Then, we introduce two matrices and
train them based on these tuples in order to obtain more potential mappings. The loss
function is defined as follows.

lRE = −
∑

(C1,C2,C3)∈T
logfRE(C1, C2, C3)−

∑

(C′
1,C

′
2,C3)∈T ′

log(1−fRE(C ′1, C ′2, C3)),

(5)
where T is a set of tuples {(C1, C2, C3)} generated by the shared assumption, T ′ is a set
of negative tuples that randomly replace C1 or C2. fRE(C1, C2, C3) is a score function
defined in Eq. 6 to calculate the score of projected concepts, where C1,C2,C3 ∈ Rd
are d-dimensional continuous vectors of concepts C1, C2, C3 from different ontolo-
gies, M13 and M23 are two matrices that project C1, C2 into the embedding space of
O3, respectively. We hope that the similar concepts will be projected near their shared
concept. Conversely, there existed a semantic distance between dissimilar ones.

fRE(C1, C2, C3) = 2 · 1

1 + e(||C1∗M13−C3||2+||C2∗M23−C3||2) . (6)

In order to train two matrices better, we maintain all the vectors of concepts in O3

unchanged and only update the parameters of matrices and concepts from O1 and O2.
Furthermore, we take advantage of structural relations in O3 to pre-train the vector
representations of concepts, which can adjust semantic distances of concept vectors. As
existing KG embedding models face the sparsity problem, we design a loss function
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based on cross-entropy to achieve this goal that is defined as follows.

lPT = −
∑

(C31,r,C32)∈R
logfr(C31, C32)−

∑

(C′
31,r,C

′
32)∈R′

log(1− fr(C ′31, C ′32)), (7)

fr(C31, C32) = 2 · 1

1 + e(||C31−C32||2−α) , (8)

where R is a set of relation assertions, involving {(C31, subClassOf , C32)} ∪ (C31,
PartOf , C32)},R′ is a set of negative ones that randomly replaceC31 orC32. fr(C31, C32)
is a score function that measures the score of (C31, r, C32), C31 and C32 are vector
representations of concepts C31 and C32. Notice that, subClassOf and PartOf are not
equivalent relations, so we utilize a hyper-parameter α to controls the semantic dis-
tances of concept vectors.

3.2 View-Embedding Combination

After obtained mappings from different modules, we need to combine them together. A
straightforward strategy is collecting all the mappings from these modules and filtering
out them with one threshold or stable marriage algorithm. Although this strategy can
obtain a high recall in the final alignment, it may also introduce lots of wrong mappings
and miss n:m cases about mappings. Therefore, we propose a combination strategy
based on mutual assessment.

For convenience, we use OM-L, OM-S, OM-R to represent the alignments gener-
ated by lexical-based module, structural-based module, resource-based module, respec-
tively. The concrete procedures are achieved as follows.

Step 1 Merge the mappings from OM-S and OM-R. Their merged result is labeled
as OM-SR, in which the similarity of each mapping is selected the large one
between OM-S and OM-R.

Step 2 Select the “reliable” mappings of OM-L and OM-SR based on the correspond-
ing thresholds δ1 and δ2.

Step 3 Assess these “reliable” mappings from OM-L and OM-SRmutually. For exam-
ple, if one “reliable” mapping belongs to OM-L and its similarity in OM-SR is
lower than threshold δ3, then we need to remove it. Relatively, if one “reliable”
mapping belongs to OM-SR and its similarity in OM-L is lower than threshold
δ4, then this mapping will be removed.

Step 4 Merge assessed mappings from OM-L and OM-SR and generate a final align-
ment. For each mapping appearing in OM-L and OM-SR at the same time, its
similarity is selected the large one.

4 Experiments

To verify the effectiveness of MultiOM, we used Python to implement our approach
with the aid of TensorFlow10 and parse ontologies by OWLAPI11. The experiments
were conducted on a personal workstation with an Intel Xeon E5-2630 V4 CPU which
has 64GB memory and TiTAN XP GPU. Our approach12 can be downloaded together
with the datasets and results.
10 https://www.tensorflow.org/
11 http://owlapi.sourceforge.net/
12 https://github.com/chunyedxx/MultiOM
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4.1 Datasets

We collect the biomedical ontologies from Anatomy Track and Large BioMed Track
in OAEI13 (Ontology Alignment Evaluation Initiative), which is an annual campaign
for evaluating ontology matching systems that attracts many participants all over the
world. Furthermore, this campaign provides uniform test cases and standard alignments
for measuring precision, recall and F1-measure for all participating systems.

4.2 Experiment Settings

We select several strategies to construct the baseline systems to verify the effectiveness
of our model. The following is the detail construction of strategies in our experiments.

– StringEquiv: It is a string matcher based on string equality applied on local names
of entities.

– StringEquiv + Normalization (StringEquiv-N): It employs normalization techniques
before execute StringEquiv matcher.

– StringEquiv + Synonym (StringEquiv-S): It extends the synonym of concepts when
executing the StringEquiv matcher.

– StringEquiv + Synonym + Reference Ontology (StringEquiv-SR): It introduces ex-
ternal ontologies as bridges to connect concepts based on StringEquiv-S.

– StringEquiv + Synonym + Normalization (StringEquiv-NS): It extends the syn-
onym of concepts when executing the StringEquiv-N.

– StringEquiv + Normalization+ Synonym + Reference Ontology (StringEquiv-NSR):
employs normalization techniques before execute StringEquiv-SR.

For MultiOM, we use stochastic gradient descent (SGD) as an optimizer and the
configuration of hyper-parameters is listed below: Dimensions of concepts and ma-
trices are set to d={50, 100} and dM={50, 100}. The mini-batch size of SGD is set
to Nbatch={5, 10, 20, 50}. We select the learning rate λ among {0.01, 0.02, 0.001}
and {1, 3, 5, 10} negative triples sampled for each positive triple. The whole training
spent 1000 epochs. In lexical-based module, the vector presentations of tokens mainly
come from the linkage14 of the work [11], whose dimension is set to 200. For some to-
kens without vector presentations, we initialize them randomly and enforce constrains
as ||t1i||2 ≤ 1 and ||t2j||2 ≤ 1. In resource-view embedding module, we employ
TransE [13], ConvE [23] and pre-training function 7 to initialize the vector represen-
tations of concepts in external ontologies. α is set to {0.01, 0.05, 0.10} in function 7
for controlling the semantic distances of concept vectors. For negative sampling strat-
egy, we collect all the related structural assertions of concepts. When one concept is
selected as a replacer, we retrieve the structural assertions of this concept and execute
the replacement based on its relations with the original concept. During this process of
replacement, disjointWith relations own the highest priority and subclassOf relations
should be excluded. Finally, the result of MultiOM is generated by the combination
strategy, and we set the related thresholds δ1 = 0.8, δ2 = 0.95, δ3 = 0.65, δ4 = 0.3.

In order to show the effect of our proposed negative sampling, a symbol “-” added
to the symbol represented module (or merged one) indicates that this module is not
equipped with negative sampling tailored for structural relations.

13 http://oaei.ontologymatching.org/
14 https://doi.org/10.5281/zenodo.1173936.
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4.3 Evaluation Results

Table 1 lists the matching results of MultiOM compared with baseline systems. We ob-
serve that merging more strategies can improve the number of mappings. Although it
slightly decreases the precision of alignments, it can increase the recall and F1-measure
as a whole. Relatively, MultiOM further improves the recall and F1-measure of align-
ments because continue vector representations of concepts can obtain more similar con-
cepts and discover more potential mappings. Moreover, the performance of MultiOM
is better than MultiOM− in term of F1-measure. The main reason is that employing
structural relations are helpful to distinguish the vector representations of concepts.

Table 1: The comparison of MultiOM with baseline systems

Methods MA-NCI FMA-NCI-small
Number Correct P R F1 Number Correct P R F1

StringEquiv 935 932 0.997 0.615 0.761 1501 1389 0.995 0.517 0.681
StringEquiv-N 992 989 0.997 0.625 0.789 1716 1598 0.995 0.595 0.745
StringEquiv-S 1100 1057 0.961 0.697 0.808 2343 2082 0.974 0.775 0.863

StringEquiv-SR 1162 1094 0.941 0.722 0.817 2343 2082 0.974 0.775 0.863
StringEquiv-NS 1153 1109 0.962 0.732 0.831 2464 2200 0.975 0.819 0.890

StringEquiv-NSR 1211 1143 0.943 0.753 0.838 2467 2203 0.975 0.820 0.891
MultiOM− 1484 1296 0.873 0.855 0.864 2500 2173 0.947 0.809 0.872
MultiOM 1445 1287 0.891 0.849 0.869 2538 2195 0.942 0.817 0.875

Table 2: The results about combining with different embedding modules in Anatomy Track

Methods Number Correct P R F1
TFIDF (threshold= 0.8) 985 976 0.991 0.644 0.780
OM-L (threshold= 0.8) 1286 1175 0.914 0.775 0.839

OM-S− (threshold= 0.95) 1836 1109 0.604 0.732 0.662
OM-S (threshold= 0.95) 1189 1097 0.923 0.724 0.811

OM-R (Random initialization, threshold= 0.95) 709 680 0.959 0.449 0.661
OM-R (TransE, threshold= 0.95) 22 4 0.182 0.003 0.005
OM-R (ConvE, threshold= 0.95) 835 790 0.946 0.521 0.672

OM-R (loss function 7, threshold= 0.95) 833 789 0.948 0.520 0.672
OM-RS− (threshold= 0.95) 1271 1147 0.902 0.757 0.823
OM-RS (threshold= 0.95) 1237 1138 0.920 0.751 0.827

MultiOM− 1484 1296 0.873 0.855 0.864
MultiOM 1445 1287 0.891 0.849 0.869

Table 2 shows the results of different combination with embedding-view modules.
Overall, merge more embedding modules, the performances of alignments are better.
For lexical-view module, softened TF-IDF (denoted as OM-L) is better than original
TF-IDF in terms of F1-measure because continuous vectors representing tokens can
provide more semantic information than single strings for calculating the similarity of
concepts. For resource-view embedding module (denoted as OM-R), ConvE and our
pre-training function are better than random initialization because both of them can
utilize structural relations to adopt vector representations of concepts in the semantic
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space. Nevertheless, compared with 20 minutes spent in function 7, ConvE took nearly
24 hours to obtain the vector presentations of concepts. Notice that, it is not suitable for
TransE to pre-train the vector presentations of concepts. We analyze that sparse struc-
tural relations of ontologies and its simplified score function limit its capability. Overall,
we observe that employing new negative sampling strategy in embedding-view modules
(i.e., OM-S, OM-RS, MultiOM) is helpful to improve the quality of alignments further
in terms of precision and F1-measure.

Table 3 lists the comparison of MultiOM with OAEI 2018 top-ranked systems based
on feature engineering and representation learning. Preliminary result shows that Mul-
tiOM can be competitive with several promising matching systems (e,g, FCAMapX,
XMap) in terms of F1-measure. Nevertheless, there still exists a gap compared with the
best systems (e.g., AML, SCBOW + DAE (O)). We analyze that lexical-based module
and simplified combination strategy may become the main bottlenecks of MultiOM.
Benefited from thesauruses (e.g., UMLS) and optimized combination strategy, most
top-ranked systems can obtain better performances of OM tasks. In addition, most sys-
tems (e.g., AML, LogMap) employ alignment debugging techniques, which is helpful
to improve the quality of alignment further. But we do not employ these techniques in
the current version. We leave these issues in our future work.

Table 3: The comparison of MultiOM with OAEI 2018 top-ranked systems

Methods MA-NCI FMA-NCI-small
Number Correct P R F1 Number Correct P R F1

AML 1493 1418 0.95 0.936 0.943 2723 2608 0.958 0.910 0.933
SCBOW + DAE(O) 1399 1356 0.969 0.906 0.938 2282 2227 0.976 0.889 0.930

LogMapBio 1550 1376 0.888 0.908 0.898 2776 2632 0.948 0.902 0.921
POMAP++ 1446 1329 0.919 0.877 0.897 2414 2363 0.979 0.814 0.889

XMap 1413 1312 0.929 0.865 0.896 2315 2262 0.977 0.783 0.869
LogMap 1387 1273 0.918 0.846 0.880 2747 2593 0.944 0.897 0.920
SANOM 1450 1287 0.888 0.844 0.865 – – – – –

FCAMapX 1274 1199 0.941 0.791 0.859 2828 2681 0.948 0.911 0.929
MultiOM 1445 1287 0.891 0.849 0.869 2538 2195 0.942 0.817 0.875

5 Conclusion and future work

In this paper, we presented an alternative OM framework called MultiOM, in which
different loss functions were designed based on cross-entropy to model different views
among ontologies and learn the vector representations of concepts. We further proposed
a novel negative sampling skill tailored for structural relations, which could obtain bet-
ter vector representations of concepts. We implemented our method and evaluated it on
real-world biomedical ontologies. The preliminary result indicated that MultiOM was
competitive with several OAEI top-ranked systems in terms of F1-measure.

In the future work, we will explore following research directions: (1) As candidate
mappings and tuples are not enough, we will extend MultiOM to an iterative framework.
(2) Recently, Zhang et al. [17] presented combination strategies for entity alignment
based on embedding techniques. Incorporating these combination strategies into Mul-
tiOM may facilitate improving the quality of mappings. (3) Senior symbolic reasoning
techniques (e.g., incoherent checking) could be served for training process and align-
ment generation. We will merge them into MultiOM for improving its performances.
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Abstract. Formal Concept Analysis (FCA) is a well-developed math-
ematical model for clustering individuals and structuring concepts. In
one of our previous studies, we proposed to incrementally match classes
and properties across complex biomedical ontologies based on FCA. We
intend to apply the approach to matching knowledge graphs (KGs) and
this paper reports a preliminary result. Compared with ontologies which
model the schema knowledge of classes, KGs are much larger and fo-
cus on instances and their properties. We build three token-based for-
mal contexts for classes, properties, and instances to describe how their
names/labels share lexical tokens, and from the concept lattices com-
puted, lexical mappings can be extracted across KGs. An evaluation on
the 9 matching tasks of OAEI Knowledge Graph Track shows that our
system obtains the highest recall in class, property, instance, and over-
all matching over the seven systems participated in the track in OAEI
2018. Additionally, our system is able to identify cases when one entity
in a KG does not have any correspondence in another KG. Based on the
lexical instance mappings, we further construct a property-based formal
context to identify commonalities among properties in a structural way,
which indicates a promising direction for taking full advantage of the
knowledge within KGs.

Keywords: knowledge graph ·formal concept analysis ·ontology match-
ing

1 Introduction

Ontologies serve as the foundation of the Semantic Web by defining basic classes
and their structures that constitute various domain knowledge, thus can be used
to semantically annotate the Web resources. Ontology matching (OM) tech-
niques [1] have been developed to detect the correspondence among diverse yet
overlapping ontologies so that search engines and applications can understand
the equivalence on the Web as well as mismatches. Since Google invented the

Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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notion of Knowledge Graph (KG) and made its own system in 2002, and with the
prevailing of the TransE series algorithms [2,3] for embedding KGs in a numerical
way, the Semantic Web has evolved into the KG time. Soon the OM community
realized the inevitable of identifying semantic connections among KGs. Started
in 2018, the annual OAEI competition 3 presents a KG track where 9 KGs in
the category of Games, Comins, and TV&Books, respectively, yield a total of
9 pairwise matching tasks [5,6]. Seven OM systems were able to participate in
the KG track in 2018, including the well-known AML [7], LogMap family [8],
POMAP++ [9], Holontology [10], and DOME [11].

By design, both ontologies and KGs have classes, properties and instances.
Ontologies primarily model the schema knowledge of classes whereas KGs are
much larger and mostly describe instances and their properties. This means that
techniques for mapping KGs focus more on instance matching [12]. In one of our
previous studies [18,19,20], we proposed the FCA-Map system that incrementally
matches classes and properties across complex biomedical ontologies based on
Formal Concept Analysis (FCA). FCA is a well-developed mathematical model
for clustering individuals and structuring concepts [14]. The purpose of FCA-
Map is to push the envelop of the FCA formalism in exploring as much knowledge
as possible within ontologies, including class names, subclass relations, part-
whole relations, disjointedness, and other logical axioms. In this paper, we intend
to apply the approach to matching knowledge graphs and a preliminary result
is reported.

Concretely, based on the rationale of lexical matching in FCA-Map, we con-
struct three token-based formal contexts for classes, properties, and instances,
respectively, to describe how their names/labels share lexical tokens. The derived
formal concept lattices represent the clustering of classes/properties/instances
by names, and thus lexical mappings can be extracted across KGs. An evalua-
tion on the OAEI KG Track shows that, when compared with the seven OAEI
2018 participants, our system obtains the highest recall and comes second in
F-measure in terms of average performances on 9 tasks. In addition, our system
can identify most of the null mappings provided in the OAEI gold standard
for entities that do not have any correspondence in another KG. Based on the
lexical mappings, we further build a structural formal context to describe how
properties across KGs have common in linking the same instances. The map-
pings identified solely by structural matching indicate a promising direction for
taking full advantage of the knowledge within KGs.

Although FCA has been applied to modeling KGs [13], to the best of our
knowledge, this is a first attempt to identify the correspondence among KGs by
a FCA-based approach. In Section 2 of the paper, we will present the lexical
matching part and its evaluation on the OAEI KG Track. A first step of struc-
tural matching is described in Section 3, and our on-going work is discussed in
Section 4 at last.

3 http://oaei.ontologymatching.org/
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2 Identifying lexical mappings between KGs

FCA is a principled approach of deriving a concept hierarchy from a collection
of objects and their attributes. The fundamental notions are formal context and
formal concept, and the former is defined as a binary table K := (G,M, I),
where G is a set of objects as rows, M a set of attributes as columns, and I
a binary relation between G and M in which (g,m) ∈ I reads object g has
attribute m , generally represented by “×” in the table cell. A formal concept
of context K is a pair (A,B) consisting of a subset of objects A ⊆ G and a
subset of attributes B ⊆ M such that B equals all the attributes common to
objects in A and at the same time, A equals the set of objects that have all
the attributes in B. The subconcept-superconcept relation can be defined as:
(A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2(⇔ B1 ⊇ B2), leading to a lattice structure of
formal concepts.

For the instances in two KGs, we use the following example to illustrate the
construction of token-based formal context, the derivation of concept lattice and
the extraction of instance mappings. The similar process applies to the classes
and properties in two KGs.
Example 1. Given two KGs memory-beta (MB), stexpanded (STEX) from OAEI
2018, the left of Fig. 1 shows some instances and their label strings. Note that
one string can be shared by instances across KGs, as listed on the right of Fig. 1.
We extract names and labels of all instances in the two KGs and separate the
tokens in them through normalization techniques [17]. As shown in Fig. 2 on
the left, the token-based formal context is constructed with each string as an
object, each token as an attribute, and the cell in the context marked when the
string contains the token. The gray area in the table presents a formal concept
indicating the duality between its objects and attributes, i.e., the subset of tokens
are identified to co-exist solely in the two strings.

From the token-based formal context, formal concepts and their lattice struc-
ture can be derived automatically, as shown on the right of Fig. 2, where
each node represents a formal concept and the line denotes the subconcept-
superconcept relation from the lower to the upper node 4. For identifying map-
pings, we pay attention to formal concepts that contain exactly two strings
relevant to instances across KGs. Take for example the gray node on the right
of Fig. 2 which corresponds to the gray area in the context on the left. Four
instance mappings can be extracted from this formal concept:

⟨MB:USS_Fredrickson,STEX:USS_Fredrickson⟩
⟨MB:USS_Fredrickson_(NCC-42111),STEX:USS_Fredrickson_(NCC-42111)⟩
⟨MB:USS_Fredrickson,STEX:USS_Fredrickson_(NCC-42111)⟩
⟨MB:USS_Fredrickson_(NCC-42111),STEX:USS_Fredrickson⟩

The first two are exact matches and the latter partial matches.
4 For the sake of efficiency, we use the Galois Sub-Hierarchy (GSH) [15] which preserves

solely the necessary elements of the lattice and implement the Hermes[16] algorithm
for computing the lattice.
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Fig. 1. Left: An RDF graph representation of part of two KGs in Example 1. Right:
Strings and the instances (can be across KGs) having them as labels.
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fredrickson system

fredrickson, system

Fig. 2. Left: The token-based formal context for instances in Example 1. Right: The
derived formal concept lattice.

There are 9 knowledge graphs in the OAEI KG Track, as listed in Table 1,
and on its corresponding 9 KG matching tasks, we evaluate our FCA-based
lexical matching approach. The results are shown in Fig. 3 according to the gold
standard5 and evaluation tool6 provided by OAEI 2018. One can see that our
approach is able to achieve high performances in recall, and the quality of class
mappings is better than that of property mappings which is then better than
instance mappings while at the same time the number of mappings identified for
class, property and instance increases.

A comparison with the seven OAEI 2018 KG Track participants is listed in
Table 2. Again, our approach favors recall and ranks the first in average over 9
tasks for class, property, instance and overall matching. Moreover, our approach
obtains the second best F-measures in all matching types, indicating that a bal-
5 https://github.com/sven-h/dbkwik/tree/master/e_gold_mapping_interwiki/

gold
6 http://oaei.ontologymatching.org/2018/results/knowledgegraph/kg_track_

eval.zip
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Table 1. An overview of 9 knowledge graphs of the OAEI KG Track

KG Category #Class #Property #Instance
RuneScape Wiki (runescape) Games 106 1,998 200,605

Old School RuneScape Wiki (oldschoolrunescape) Games 53 488 38,563
DarkScape Wiki (darkscape) Games 65 686 19,623

Marvel Database (marvel) Comics 2 99 56,464
Hey Kids Comics Wiki (heykidscomins) Comics 181 1,925 158,234

DC Database (dc) Comics 5 177 128,495
Memory Alpha (memory-alpha) TV 0 326 63,240

Star Trek Expanded Universe (expanded) TV 3 201 17,659
Memory Beta (memory-beta) Books 11 413 63,223
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Fig. 3. The results of FCA-based KG matching. Charts in the same row are about
the same category, i.e., Games, Comics, and TV&Books. In each chart, the bars show
precision, F-measure and recall of each task, whereas the lines show the number of
mappings identified by our approach.
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ance can be achieved between quality and quantity. Overall, the DOME system
[11] stands out by having the best precision and F-measure in both property
matching and instance matching for most cases, followed by Holontology [10]
which ranks the first in overall precision.

Table 2. Comparing with OAEI 2018 KG Track participants by average performance
over 9 matching tasks, where # stands for the number of tasks that the system is able to
generate non-empty alignments, and Size the average number of generated mappings.

System #
Class Property Instance overall

Size Prec. F-m. Rec. Size Prec. F-m. Rec. Size Prec. F-m. Rec. Size Prec. F-m. Rec.
AML 5 11.6 0.85 0.64 0.51 0.0 0.00 0.00 0.00 82380.9 0.16 0.23 0.38 102471.1 0.19 0.23 0.31

POMAP++ 9 15.1 0.79 0.74 0.69 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 16.9 0.79 0.14 0.08
Holontology 9 16.8 0.80 0.83 0.87 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 18.8 0.80 0.17 0.10

DOME 9 16.0 0.73 0.73 0.73 207.3 0.86 0.84 0.81 15688.7 0.61 0.61 0.61 15912.0 0.68 0.68 0.67
LogMap 7 21.7 0.66 0.77 0.91 0.0 0.00 0.00 0.00 97081.4 0.08 0.14 0.81 97104.8 0.09 0.16 0.64

LogMapBio 9 22.1 0.68 0.81 1.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 24.1 0.68 0.19 0.11
LogMapLt 6 22.0 0.61 0.72 0.87 0.0 0.00 0.00 0.00 82388.3 0.39 0.52 0.76 88893.1 0.42 0.49 0.60

Our System 9 22.7 0.68 0.81 1.00 250.9 0.64 0.74 0.86 25903.9 0.39 0.55 0.95 26177.4 0.45 0.61 0.93

Table 3. Null mappings identified by our system, where Gold stands for the number
of null mappings in the gold standard.
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darkscape�oldschoolrunescape 7 6 22 6 6 455 38 34 25,032

runescape�darkscape 5 5 38 10 10 1,339 13 3 107,941
runescape�oldschoolrunescape 4 3 53 8 8 1,611 37 11 115,061

heykidscomics�dc 13 12 123 10 8 1,512 53 40 156,744
marvel�dc 3 3 0 12 11 143 65 56 164,543

marvel�heykidscomics 10 4 128 10 8 1,517 42 38 160,706
memory-alpha�memory-beta 11 11 1 10 7 511 49 42 92,334
memory-alpha�stexpanded 3 3 1 11 11 339 60 57 69,823
memory-beta�stexpanded 14 14 0 12 11 369 55 51 67,848

The gold standard of OAEI KG Track contains not only 1:1 mappings but
also cases where one entity in a KG is matched to “null” in the other KG.
They represent the uniqueness of classes, properties and instances to one knowl-
edge base with respect to another, which is complementary to 1:1 and complex
mappings in revealing the whole picture of the relationship between two sys-
tems. We call them null mappings, and the OAEI evaluation takes them into
account solely for calculating false positives in 1:1 mappings. By taking advan-
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Identifying Mappings among KGs by FCA 7

tage of the inherent feature of the FCA formalism, our system is able to iden-
tify such null mappings. When a formal concept in the derived lattice contains
strings solely from one entity in a KG, the corresponding entity contributes to
a null mapping. As shown in Table 3, there are 571 null mappings in the gold
standard and our system has successfully detected 473 of them, accounting for
83%, as exemplified by ⟨darkscape:Room, oldschoolrunescape:null⟩ for class null
mapping, ⟨marvel:null,dc:runtime⟩ for property, and ⟨memory-beta:Victoria,
stexpanded:null⟩ for instance. At the same time, a large number of null map-
pings identified are not in the gold standard, and their validity needs further
investigation as the gold standard is only partial as reported by OAEI.

3 Identifying structural mappings between KGs

We call the obtained lexical mappings anchors, based on which we can build
formal contexts from the structural knowledge in KGs so as to extract addi-
tional mappings. A KG can be seen as an RDF graph where the vertex generally
represents a class or an instance and the edge a property from one instance
to another, or a type relation from an instance to a class. For given two KGs,
a property-based formal context is constructed by taking properties from two
KGs as objects, and pairing the lexical instance anchors across KGs as attributes.
When a property is used to link two instances in an anchor pair, the correspond-
ing cell in the formal context is marked. After the lattice is derived, if a formal
concept contains solely two properties from two KGs, respectively, they can be
extracted as a structural mapping. Again, in the following we use an example to
illustrate the matching process.

Example 2. Given two KGs memory-alpha (MA), memory-beta (MB) from OAEI
2018, a part of their (subject, predicate, object) (SPO triples) are listed in Table 4.

Table 4. Some SPO triples from two KGs MA and MB.

subject predicate object
MA:Rules_of_Acquisition_(episode) MA:wsstoryby MA:Hilary_J._Bader
MA:Rules_of_Acquisition_(episode) MA:wsteleplayby MA:Ira_Steven_Behr
MA:Battle_Lines_(episode) MA:wsstoryby MA:Hilary_J._Bader
MA:Battle_Lines_(episode) MA:wsteleplayby MA:Richard_Danus
MA:Paradise_Lost_(episode) MA:wsteleplayby MA:Robert_Hewitt_Wolfe

MB:Rules_of_Acquisition_(episode) MB:story MB:Hilary_J._Bader
MB:Rules_of_Acquisition_(episode) MB:teleplay MB:Ira_Steven_Behr
MB:The_Nagus MB:teleplay MB:Ira_Steven_Behr
MB:Battle_Lines_(episode) MB:story MB:Hilary_J._Bader
MB:Paradise_Lost_(episode) MB:teleplay MB:Robert_Hewitt_Wolfe
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8 G. Chen and S. Zhang

Some lexical instance anchors between MA and MB are as follow:
a = ⟨MA:Battle_Lines_(episode), MB:Battle_Lines_(episode)⟩
b = ⟨MA:Hilary_J._Bader, MB:Hilary_J._Bader⟩
c = ⟨MA:Ira_Steven_Behr, MB:Ira_Steven_Behr⟩
d = ⟨MA:Paradise_Lost_(episode), MB:Paradise_Lost_(episode)⟩
e = ⟨MA:Rules_of_Acquisition_(episode), MB:Rules_of_Acquisition_(episode)⟩
f = ⟨MA:Richard_Danus, MB:Richard_Danus⟩
g = ⟨MA:Robert_Hewitt_Wolfe, MB:Robert_Hewitt_Wolfe⟩
h = ⟨MA:The_Nagus, MB:The_Nagus⟩.

(d
,g
)

(e
,c
)

(e
,b
)

(a
,b
)

(a
,f

)

(h
,c
)

MA:wsteleplayby × × ×
MB:teleplay × × ×
MA:wsstoryby × ×
MB:story × ×

MA:wsteleplayby
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(d,g) (e,c)

MA:wsstoryby

MB:story

(e,b) (a,b)
MB:teleplay

(d,g) (e,c) (h,c)

MA:wsteleplayby MA:wsstoryby MB:teleplay MB:story

(d,g) (e,c) (e,b) (a,b) (a,f) (h,c)

MA:wsteleplayby

(d,g) (e,c) (a,f)

Fig. 4. Left: The structural formal context for properties in Example 2. Right: The
derived formal concept lattice.

Table 5. The property mappings solely identified structurally between two KGs MA
and MB.

Property mapping

Those in the gold standard
⟨MA:relative,MB:otherRelatives⟩
⟨MA:wsteleplayby,MB:teleplay⟩

Those not in the gold standard

⟨MA:wsstoryby,MB:story⟩
⟨MA:prev,MB:before⟩
⟨MA:next,MB:after⟩
⟨MA:relative,MB:grandparents⟩
⟨MA:abreadby,MB:narrator⟩

The constructed property-based formal context is presented on the left in
Fig. 4 and the lattice derived on the right. As shown by the gray area, a property
mapping ⟨MA:wsteleplayby,MB:teleplay⟩ is identified by structural knowl-
edge rather than by names. For the matching task between KGs MA and MB,
7 property mappings are detected solely by the structural matching, as listed
in Table 5, of which 2 are true positives. Note that the OAEI 2018 KG gold
standard is declared to be only partial, and the lower part of Table 5 shows
promising candidates. With these additional structural mappings, the precision,
F-measure and recall for the property task have all increased compared with the
lexical matching step, as shown by Fig. 5.
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Fig. 5. Evaluation of the additional structural mappings between properties of two
KGs MA and MB.

On the other hand, the structural property matching does not affect the
performance of the other 8 tasks, either because the mappings found are not
in the gold standard or none mappings are found at all. Note that as shown
by Fig. 3, these 8 property tasks have already obtained a higher performance
compared with the MA-MB task at the lexical matching step. To further improve,
comprehensive ways shall be explored to augment the structural formal contexts
with extended knowledge in KGs.

4 Discussion and conclusions

This paper reports an on-going study of constructing multiple FCA structures
for the purpose of matching knowledge graphs. Its lexical matching part already
receives the best recall and the second best F-measure in class, property, in-
stance, and overall matching for the OAEI 2018 KG Track tasks, revealing the
advantage of our FCA-based approach. Moreover, our system has identified 83%
of null mappings provided in the OAEI gold standard. All these come from the
inherent capability of FCA formalism in detecting commonalities among individ-
uals and accordingly forming concepts and classifying them in a lattice structure.
For the structural matching, we have realized a property-based lattice from the
knowledge of property linking one instance to another in KGs. Obviously, fur-
ther an instance-based lattice shall be computed similarly to identify structural
instance mappings. Moreover, the knowledge of instance belonging to class in
KGs can be used as well to explore commonalities among instances. As a matter
of fact, we are developing an iterative framework so as to perform class, prop-
erty, and instance matching in an augmented way until no further matches can
be found.

Our previous system FCA-Map is for matching ontologies and thus targets
classes. Although there are classes in the OAEI KGs, they are much fewer than
instances and properties, and basically none schema knowledge is specified. This
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10 G. Chen and S. Zhang

says that the structural matching part in FCA-Map cannot be applied directly,
and alternative types of formal contexts are being designed targeting instances
and properties. In addition to matching, FCA-Map includes a structural valida-
tion step to eliminate wrong mappings based on the disjoint axioms in ontologies.
When there is no such knowledge in KGs, we shall develop alternative validation
strategies so as to ensure the quality of mappings and prevent the mismatches
from propagating in the iterative framework.

What is worth noting is that the systems participated in OAEI 2018 are
basically ontology matching systems and not specifically tailored for knowledge
graph matching. Therefore it is understandable that the performance can be
unsatisfactory for some tasks. Nevertheless, systems like DOME still managed to
outperform. DOME uses the doc2vec approach to train vector representations for
ontology classes and instances based on large texts, so that the similarity among
entities can be computed according to the distance of vectors. Such numerical
ways of embedding KG entities into a high-dimensional, continuous space are
called representation learning, which have already been adopted for matching
ontologies, as in [21,22,23]. To compare our FCA-based approach with these
works will be of interest, not only by conducting comparative experiments but
also exploring the possible combining ways.
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Abstract. This paper presents an approach for matching foundational ontologies
involving subsumption relations. The approach relies on extracting hypernym re-
lations from ontology annotations for establishing such kind of correspondences.
We report preliminary results on exploiting lexico-syntactic patterns and defini-
tions layout. Experiments were run on DOLCE and SUMO and the generated
alignment was evaluated on a manually generated subsumption reference.

1 Introduction

Foundational ontologies describe general concepts (e.g., physical object) and relations
(e.g., parthood), which are independent of a particular domain. The clarity in seman-
tics and the rich formalization of these ontologies are fundamental requirements for
ontology development [5] improving ontology quality. They may also act as semantic
bridges supporting interoperability between ontologies [8, 10]. However, the develop-
ment of different foundational ontologies re-introduces the interoperability problem, as
stated in [6]. This paper addresses the problem of matching foundational ontologies.

Early works addressed this problem on different perspectives e.g., discussing their
different points of view [14, 16, 9] or providing concept alignments between them [13,
7]. Few works have addressed the automatic matching of this kind of ontologies, such
as in [7] where alignments between BFO, DOLCE and GFO were built both with au-
tomatic tools and manually, with substantially fewer alignments found by the tools. In
fact, current tools fail on correctly capturing the semantics behind the ontological foun-
dational concepts, what requires deeper contextualization of the concepts. Besides that,
the task requires the identification of other relations than equivalences, such as sub-
sumption and meronym. Few systems are able to discover other relations than equiv-
alence (e.g., AML and BLOOM), with few propositions in the literature [19, 20]. We
argue here that the knowledge encoded in the ontologies has to be further exploited.
In that way, we propose to borrow approaches from relation extraction from text in
NLP in order to establish subsumption relations between the ontologies to be matched.

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).
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While the approach is not completely new, as NLP techniques are often used to extract
knowledge from text, their exploitation in ontology matching brings some novelty.

Relation extraction in ontology matching has been considered in few works. In [15],
a supervised method learns patterns of subsumption evidences, while in [1] the ap-
proach relies on free-text parts of Wikipedia in order to help detecting different types
of relations, even without clear evidence in the input ontologies themselves. Hearst pat-
terns has been adopted in [17] and [18], with the former using them to eliminate noise
in matching results. Here, we report preliminary results on exploiting lexico-syntactic
patterns from Hearst [4] and evidences of hypernym relation carried out in definitions
layout. Experiments were run on DOLCE and SUMO and the generated alignment has
been evaluated on a manually generated subsumption reference. The novelty here is to
exploit such methods for foundational ontology matching involving subsumption.

2 Proposed approach

Our approach relies on two main steps: (i) hypernym extraction from ontology annota-
tions and (ii) subsumption generation between ontology concepts, as detailed below.

Hypernym extraction The hypernym relation extraction takes as input the ontology
annotations as concept definitions (what are common in top-level ontologies). A defini-
tion attaches a meaning to a term denoting the concept. The term that is to be defined
is called the definiendum, and the term or action that defines it is called the definiens.
In the example below, the definiendum = “Product” and the definiens=“An Artifact that
is produced by Manufacture and that is intended to be sold”. Many linguistic studies
show that definitions mostly express one of the main lexical relations e.g., hypernymy,
meronymy or synonymy, between definiens and definiendum [11].

<owl:Class rdf:ID= "Product">
<rdfs:comment> An Artifact that is produced by Manufacture and
that is intended to be sold.</rdfs:comment>

</owl:Class>

Different strategies are exploited for extracting the hypernym relations:

Hypernym relations expressed using definitions layout We focus on cases where the
definiens starts by expressing an entity (denoted by a term and different from the definien-
dum) which have some properties. In the above example, the entity in the definiens is
“Artifact” and the property is “that is produced by Manufacture and that is intended
to be sold”. Thus the definiendum (Product) is an hyponym of the definiens (Artifact).
When no property is expressed, it is usually a synonym relation, as below:

<owl:Class rdf:about="#Quale">
<rdfs:comment> An atomic region. </rdfs:comment>

</owl:Class>
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Hypernym relations lexically expressed in text annotations OWL class definitions may
also be more fine grained exploited, as comment paragraphs may contain well-written
text. We then exploit this text using a set of lexico-syntactic patterns from Hearst [4]:

[NP such as {NP ,}* {or|and} NP], [NP like {NP ,}* {or|and} NP], [NP which

is an example of NP], [NP including {NP ,}* {or|and} NP], [NP is called

NP if], [NP is an NP that].
For instance, the pattern [NP like {NP ,}* {or|and} NP] means that a noun

phrase (NP) must be followed by the word “like”, which must be followed by an NP or
by a list of NPs separated by comma, having before the last NP “or” or “and”. When
applied on the definition below, the hypernym relations (Self Connected Object, planet),
(Self Connected Object, star) and (Self Connected Object, asteroid) can be identified.

<owl:Class rdf:about="#AstronomicalBody">
<rdfs:comment> The Class of all astronomical objects of

significant size. It includes Self Connected Objects
like planets, stars, and asteroids ...

</rdfs:comment>
</owl:Class>

Hypernym relations carried out by the concept identifier Hypernym relations may also
be identified from modifiers of a head of a compound noun denoting the identifier of
the OWL class. In the example above, the hypernym relation (astronomical body, body)
can be identified thanks to this strategy.

Subsumption generation Having extracted all the hypernym relations from both on-
tologies to be matched, we verify if the terms appearing as hyponyms and hypernyms
denote concepts in the ontologies. In the example above, as the alignment is directional,
“Product” denotes a concept in the source ontology and “Artifact” in the target ontology,
hence this hypernym pair is kept.

3 Experiments

Material and methods We used the foundational ontologies DOLCE [3]1, an ontol-
ogy of particulars which aims at capturing the ontological categories underlying hu-
man commonsense; and SUMO [12]2, an ontology of particulars and universals. The
reference alignment involving 41 subsumption correspondences comes from [13]. The
approach has been implemented with GATE: to extract concepts and their associated
comments from the ontology OWL file and restructuring them according to an XML
format; to identify terms using first the TermoStat term extractor, and then expanding
the recognition of terms using JAPE rules (for instance, the sequence made of a Ter-
moStat term preceded or followed by adjectives, constitutes a new term); to annotate
the XML corpus with different NLP tools (ANNIE Tokenizer, Stanford POS, Stanford
parser, Gazeteer of identified terms); and to identify hypernym relations.

1 http://www.loa.istc.cnr.it/old/DOLCE.html
2 https://github.com/ontologyportal/sumo
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Results and discussion Table 1 shows the results of each strategy and their combina-
tion. As somehow expected, patterns are very precise while head modifier provides good
results in terms of recall with respect to the other strategies. Comparing the approach
to the OAEI 2018 matchers3 (Table 2), besides the fact that we do not distinguish sub-
sumption and equivalence relations when computing precision and recall, no matcher
were able to find the correspondences. From the 41 reference correspondences, only
one correspondence refers to similar terms (dolce:geographical-object and
sumo:GeographicArea) and 5 of them could be found via a head modifier method
(e.g., dolce:organization and sumo:PoliticalOrganization). In order
to see how close the generated alignments were to the reference, we have calculated the
relaxed precision and recall [2], that measure the closeness of the results to the refer-
ence. While the results of our approach are not that close to the reference, in terms of
recall we obtain results similar than the relaxed recall for all matchers.

Combination Layout Patterns Head modifier Layout+patterns
P F R P F R P F R P F R P F R

.27 .23 .20 .18 .13 .10 1,00 .05 .03 .32 .20 .15 .22 .16 .13
Table 1. Results of the different relation extraction strategies.

System Classical Relaxed
P F R P F R

M1 .00 .00 .00 .00 .00 .00
M2 .00 .00 .00 .33 .18 .15
M3 .00 .00 .00 .39 .27 .21
M4 .00 .00 .00 .77 .34 .21
M5 .00 .00 .00 .32 .25 .17
M6 .00 .00 .00 .28 .14 .12
M7 .00 .00 .00 .57 .31 .21
M8 .00 .00 .00 .50 .42 .21
Proposed approach .27 .23 .20 .28 .28 .29

Table 2. Classical and relaxed precision (P), recall (R) and F-measure (F) of the proposed ap-
proach and matchers.

4 Conclusions

We have reported here preliminary results on exploiting symbolic hypernym relation
extraction approaches for generating subsumption correspondences between founda-
tional ontologies. This task is still a gap in the field and the initial results presented
here can be improved in different ways. First of all, we plan to improving the relation
extraction by (i) extending the list of lexico-syntactic patterns, (ii) exploiting syntactic
analysis of the text and treating anaphores, and (iii) using background resources such
as DBpedia, BabelNet (in particular top level layers of these resources). We also plan
to combine relation extraction strategies with matching strategies (structural) and word
embeddings, as well as to work on other lexical relations like meronymy. Finally, we
plan to apply the approach on domain ontologies.

3 The aim here is not to evaluate the matching systems themselves, for that reason, their names
have been anonymized.
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9. L. Muñoz and M. Grüninger. Verifying and mapping the mereotopology of upper-level on-
tologies. In Proceedings of the International Conference on Knowledge Discovery, Knowl-
edge Engineering and Knowledge Management, pages 31–42, 2016.

10. J. C. Nardi, R. de Almeida Falbo, and J. P. A. Almeida. Foundational ontologies for semantic
integration in EAI: A systematic literature review. In Proceedings of the 12th IFIP WG
Conference on e-Business, e-Services, and e-Society, I3E, pages 238–249, 2013.

11. R. Navigli, P. Velardi, and J. M. Ruiz-Martı́nez. An annotated dataset for extracting def-
initions and hypernyms from the web. In Proceedings of the International Conference on
Language Resources and Evaluation, 2010.

12. I. Niles and A. Pease. Towards a Standard Upper Ontology. In Proceedings of the Conference
on Formal Ontology in Information Systems, pages 2–9, 2001.

13. D. Oberle, A. Ankolekar, P. Hitzler, P. Cimiano, M. Sintek, M. Kiesel, B. Mougouie, S. Bau-
mann, S. Vembu, M. Romanelli, and Buitelaar. DOLCE Ergo SUMO: On Foundational and
Domain Models in the SmartWeb Integrated Ontology. Web Semantics, 5(3):156–174, 2007.

14. A. Seyed. BFO/DOLCE Primitive Relation Comparison. In Nature Proceedings, 2009.
15. V. Spiliopoulos, G. A. Vouros, and V. Karkaletsis. On the discovery of subsumption relations

for the alignment of ontologies. Journal of Web Semantics, 8(1):69 – 88, 2010.
16. L. Temal, A. Rosier, O. Dameron, and A. Burgun. Mapping BFO and DOLCE. In Proceed-

ings of the World Congress on Medical Informatics, pages 1065–1069, 2010.
17. W. R. van Hage, S. Katrenko, and G. Schreiber. A method to combine linguistic ontology-

mapping techniques. In International Semantic Web Conference, pages 732–744, 2005.
18. R. Vazquez and N. Swoboda. Combining the semantic web with the web as background

knowledge for ontology mapping. In Meaningful Internet Systems, pages 814–831, 2007.
19. A. Vennesland. Matcher composition for identification of subsumption relations in ontology

matching. In Proceedings of the Conference on Web Intelligence, pages 154–161, 2017.
20. N. Zong, S. Nam, J.-H. Eom, J. Ahn, H. Joe, and H.-G. Kim. Aligning ontologies with

subsumption and equivalence relations in linked data. Knowledge Based Systems, 76(1):30–
41, 2015.

40



Generating corrupted data sources for the
evaluation of matching systems

Fiona McNeill1[0000−0001−7873−5187], Diana Bental1[0000−0003−3834−416X],
Alasdair J G Gray1[0000−0002−5711−4872], Sabina Jedrzejczyk1, and

Ahmad Alsadeeqi1

Heriot-Watt University, Edinburgh, Scotland
{f.mcneill, d.bental,a.j.g.gray,sj22,aa1262}@hw.ac.uk

Abstract. One of the most difficult aspects of developing matching sys-
tems – whether for matching ontologies or for other types of mismatched
data – is evaluation. The accuracy of matchers are usually evaluated by
measuring the results produced by the systems against reference sets,
but gold-standard reference sets are expensive and difficult to create.
In this paper we introduce crptr, which generates multiple variations of
different sorts of dataset, where the degree of variation is controlled, in
order that they can be used to evaluate matchers in different context.

Keywords: Matching · Evaluation · Data Corruption.

1 Introduction

One of the central problems of data matching is the issue of evaluation: when
a system returns a set of matches, how are we to determine whether they are
correct or not? How exactly do we define what a correct match is, and how do
we determine whether the proposed matches fall into that category? If we have
a range of different options, how do we determine which is the ‘best’ match?

In this paper we describe the use of the crptr system to create evaluation
datasets for matching. crptr was developed to simulate data quality issues for
test datasets used for record linkage evaluation. It can create multiple similar
datasets with varying amounts of variation controlled by input settings, and
provides a clear mapping back to the original dataset. This creates training and
evaluation sets for matchers to run against. We have extended the crptr system
to deal with structure in a context where we want to corrupt data sources in
order to evaluate the semantic rewriting of queries to unknown data sources.

In Section 2 we describe the crptr system and its original application domain.
Section 3 then details how we extended crptr to address corruption of other data
sets and of queries. We discuss issues around evaluation in Section 4 and touch
on related work in Section 5 before concluding the paper in Section 6.

0 Copyright 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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2 The crptr system

Synthetically generated data is a common approach for evaluating and testing
data analysis and mining approaches [9]. However, the use of synthetically gen-
erated data fails to capture the messiness of real world data, i.e., they omit data
quality issues [5]. To overcome this we developed crptr: a data corruption appli-
cation that injects data errors and variations based on user requirements. crptr
allows the user to control data quality in the generated dataset by simulating and
injecting data corruptions into any dataset using known (non-random) methods
that mimic real-world data quality issues (errors and variations). Applying these
corruptions on a synthetic dataset enables the control of data quality, which
makes the synthetic data more realistic and usable for evaluations. crptr con-
tains many corruption methods that mimic commonly found data quality issues,
e.g., typing errors, alternative spellings, and missing or swapped attributes, that
can be used to simulate different corruption scenarios based on the experiment
or project requirements.

crptr works by using a corruption profile that controls which methods are
used and how much. The idea is that the profile attempts to capture the data
quality characteristics of the dataset being modelled. The corruption profile con-
sist of many factors that define the way data need to be corrupted such as the
total number of records that need to be corrupted and the corruption methods
required to be applied on the data. By controlling the factors of the corruption
profile, the user can configure crptr to mimic the data quality characteristics
that fit the purpose of the research.

3 Application of crptr to Query Rewriting

The CHAIn system (Combining Heterogenous Agencies’ Information) [7] has
been designed to support users to successfully query data from a wide range of
different data sources, even when these data sources are not known in advance
(e.g., data sources of new collaborators). It is primarily aimed at supporting
decision makers during crisis response, but is applicable in many domains. Any
queries pre-written to extract required information are likely to fail (i.e., not
return any data) on these unknown or updated data sources because the queries
were not written according to the structure and terminology of the target data
source. However, the data sources may well have relevant information that is
closely related to the query. CHAIn extracts data from the target source that
approximately matches the query (i.e., exceeds a given threshold) and uses this
data to rewrite the query so that it succeeds on the datasource. It returns (po-
tentially) multiple rewritten queries, the mappings used to generate them, the
data they retrieved and a similarity score ∈ [0, 1], ranked in order of similarity.

Evaluation in this context therefore means determining whether the scores
returned are a reasonable reflection of the distance between the original query
and the rewritten query, and hence whether the ranked list is a reasonable order-
ing of the likely relevance of the responses to what the decision maker actually
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wants to know. In this context, the matching is done between the schema of the
query and the schema of the target datasource1. In order to mimic the process
of rewriting a query designed for one data source to succeed on a different data
source, we create a query based on the data in a particular data source (i.e.,
so that it would be able to successfully query that data source) and then in-
troduce corruption reflecting naturally-occurring differences. We can either keep
the query fixed and corrupt the data source in multiple ways, or keep the data
source fixed and corrupt the query. In practice, we focused on corrupting data-
sources and then generating corrupted queries from these corrupted datasources
- firstly, because it created a more generic process that was able to corrupt both
datasources and queries; secondly, because it allows us to more easily focus on
the part of the query that is relevant in this context, which is the terminology
referring to the target datasource.

We therefore needed to extend the functionality of crptr in two ways. (i) We
need to consider the domain in which this matching is occurring to determine
how terms should be corrupted; (ii) Because there is a structural element to
schema, we need to consider how this could be corrupted and extend the system
to perform this.

In terms of the first requirement, some of the corruptions methods in crptr
(e.g., those focusing on spelling errors) are not relevant, whilst others such as
abbreviations, need to be adapted, as some kinds of abbreviations (e.g., of first
names) are unlikely to occur in our data sources. We need to determine what
kinds of mismatches are likely to occur in our domain, and determine what
sources we can automatically extract them from. CHAIn is designed to be do-
main independent, and when addressing the problem of matching different (but
similar) data sources in the general case, we need a domain-independent lexical
resource to suggest the kinds of synonyms, hyponyms, hypernyms and meronyms
that different creators of data sources in a similar domain may naturally use. We
therefore turned to WordNet [8], a generic and widely used lexical resource, to
allow us to do term corruption. WordNet does provide some information about
abbreviations and acronyms which we are able to use in our matching, although
additional resources that provide more relevant corruptions in this area would
improve performance (but are hard to find).

In terms of the second requirement, we needed to make sure any potential
structural change in the schema of a CSV file was considered. This is structurally
simple, consisting of columns which are named and ordered, and thus structural
changes are restricted to reorganisation (addition, deletion and reordering) of
the columns. For SPARQL queries in general there are, of course, many more
structural elements (e.g, the potential presence of SPARQL commands such
as aggregate functions), and a complete list of potential structural mismatches
would be more complicated. As we are only concerned with the terms in the
query which correspond with those of the expected data source, we can ignore
all of the additional SPARQL structure, stripping out the relevant terms and
reinserting the new terms after matching.

1 Matching at the data level is required when queries are partially instantiated.
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4 Evaluation of crptr for different data formats

The quality of the crptr output depends on whether the corrupted data sources
it produces are a reasonable facsimile of different but related data sources that
would naturally be found. If this is the case then we can infer that the perfor-
mance of a matching system when matching different data sources created by
crptr is a good indication of the matchers performance in real-world settings,
and that therefore crptr is a useful matching evaluation tool.

This depends on two things: (i) are the terms in the look up table a good
approximation of terms that could be used interchangable or in a similar way: is
it modelling genuine semantic and syntactic mismatches?; (ii) are the structural
mismatches introduced through the corruption process a good approximation of
how similar data sources may differ? The first is highly domain dependent. We
use WordNet, which is a very widely used lexical resource. It is also likely to be
of benefit to also use domain-specific ontologies and lexicographies for each par-
ticular domain; however, these are hard to find and often of questionable quality,
so this kind of domain-specific corruption may be hard to perform. Matching in
such domains is also more efficient for the same reasons. The second aspect is
domain independent but format specific. For each format the system is extended
to, an analysis of what structural mismatches are possible is necessary in order
to demonstrate that the corruptions produced are plausible and thorough.

5 Related work

To the best of our knowledge, a system to generate reference sets (records,
queries, RDF data sources, ontologies, etc) in order to evaluate matching in
these domains is unique.

Since reference ontologies are expensive to generate and often not available,
[6], automatically generated test sets have been used to evaluate ontology match-
ing since the Benchmark Test Set was developed for the Ontology Alignment
Evaluation Initiative in 2004 and updated in 2016 [3]. Several other generators
were inspired by this, including Swing [4]. These tend to focus on OWL ontologies
and are less broadly applicable than crptr. The range of methods they use are
in some cases more sophisticated than our techniques, and in domains for which
they are relevant, crptr could be improved by incorporated such approaches.

Aside from ontology matching, there is existing work on generating syn-
thetic datasets with structural variations for relational and RDF data for use
in benchmarking. The Linked Data Benchmark Council [2] has supported the
development of configurable and scalable synthetic RDF datasets with similar
irregularities to real data, including structural irregularities, specifically in the
domains of social networks and semantic publishing. Existing work on generating
structural variatons in RDF data (e.g. [2]) is intended to test the functionality
and scalability of searches and the maintenance of RDF datasets. STBenchmark
[1] generates test cases for schema mapping systems, taking an original dataset
and applying structural and term variations. This is used to create benchmark
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data for hand-mapping systems rather than for automated matching or query-
ing. Our work could be extended with similar strategies to these to experiment
with greater structural variations.

6 Conclusions

In this paper we have discussed using the crptr system for generating multiple
similar datasets for evaluating matchers within different domains. We briefly
described how crptr was developed to focus on records and then extended to
deal with queries based on CSV files, and could be extended to deal with other
kinds of data sources. We discussed what evaluation of these corruption systems
means in different contexts.
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3 Università degli studi di Milano, Italy

{alfio.ferrara,stefano.montanelli}@unimi.it
4 Institute of Computer Science-FORTH, Heraklion, Greece

{jsaveta,fundul}@ics.forth.gr
5 Pistoia Alliance Inc., USA

{ian.harrow,andrea.splendiani}@pistoiaalliance.org
6 University of Mannheim, Germany

{sven,heiko}@informatik.uni-mannheim.de
7 City, University of London, UK

ernesto.jimenez-ruiz@city.ac.uk
8 Department of Informatics, University of Oslo, Norway

ernestoj@ifi.uio.no
9 Fraunhofer FOKUS, Berlin, Germany

naouel.karam@fokus.fraunhofer.de
10 Fraunhofer IAIS, Sankt Augustin, Bonn, Germany
abderrahmane.khiat@iais.fraunhofer.de
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Abstract. The Ontology Alignment Evaluation Initiative (OAEI) aims at com-
paring ontology matching systems on precisely defined test cases. These test
cases can be based on ontologies of different levels of complexity (from simple
thesauri to expressive OWL ontologies) and use different evaluation modalities
(e.g., blind evaluation, open evaluation, or consensus). The OAEI 2019 campaign
offered 11 tracks with 29 test cases, and was attended by 20 participants. This
paper is an overall presentation of that campaign.

1 Introduction

The Ontology Alignment Evaluation Initiative1 (OAEI) is a coordinated international
initiative, which organizes the evaluation of an increasing number of ontology matching
systems [21, 23]. The main goal of the OAEI is to compare systems and algorithms
openly and on the same basis, in order to allow anyone to draw conclusions about
the best matching strategies. Furthermore, our ambition is that, from such evaluations,
developers can improve their systems.

Two first events were organized in 2004: (i) the Information Interpretation and In-
tegration Conference (I3CON) held at the NIST Performance Metrics for Intelligent
Systems (PerMIS) workshop and (ii) the Ontology Alignment Contest held at the Eval-
uation of Ontology-based Tools (EON) workshop of the annual International Semantic
Web Conference (ISWC) [48]. Then, a unique OAEI campaign occurred in 2005 at the
workshop on Integrating Ontologies held in conjunction with the International Con-
ference on Knowledge Capture (K-Cap) [5]. From 2006 until the present, the OAEI
campaigns were held at the Ontology Matching workshop, collocated with ISWC [4,
1–3, 7, 8, 10, 13, 17–20, 22], which this year took place in Auckland, New Zealand2.

Since 2011, we have been using an environment for automatically processing eval-
uations (§2.1) which was developed within the SEALS (Semantic Evaluation At Large
Scale) project3. SEALS provided a software infrastructure for automatically executing
evaluations and evaluation campaigns for typical semantic web tools, including ontol-
ogy matching. Since OAEI 2017, a novel evaluation environment called HOBBIT (§2.1)
was adopted for the HOBBIT Link Discovery track, and later extended to enable the
evaluation of other tracks. Some tracks are run exclusively through SEALS and others
through HOBBIT, but several allow participants to choose the platform they prefer.

This paper synthesizes the 2019 evaluation campaign and introduces the results
provided in the papers of the participants. The remainder of the paper is organized as
follows: in §2, we present the overall evaluation methodology; in §3 we present the
tracks and datasets; in §4 we present and discuss the results; and finally, §5 discusses
the lessons learned.

1 http://oaei.ontologymatching.org
2 http://om2019.ontologymatching.org
3 http://www.seals-project.eu
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2 Methodology

2.1 Evaluation platforms

The OAEI evaluation was carried out in one of two alternative platforms: the SEALS
client or the HOBBIT platform. Both have the goal of ensuring reproducibility and
comparability of the results across matching systems.

The SEALS client was developed in 2011. It is a Java-based command line inter-
face for ontology matching evaluation, which requires system developers to implement
a simple interface and to wrap their tools in a predefined way including all required
libraries and resources. A tutorial for tool wrapping is provided to the participants, de-
scribing how to wrap a tool and how to run a full evaluation locally.

The HOBBIT platform4 was introduced in 2017. It is a web interface for linked
data and ontology matching evaluation, which requires systems to be wrapped inside
docker containers and includes a SystemAdapter class, then being uploaded into the
HOBBIT platform [34].

Both platforms compute the standard evaluation metrics against the reference align-
ments: precision, recall and F-measure. In test cases where different evaluation modali-
ties are required, evaluation was carried out a posteriori, using the alignments produced
by the matching systems.

2.2 OAEI campaign phases

As in previous years, the OAEI 2019 campaign was divided into three phases: prepara-
tory, execution, and evaluation.

In the preparatory phase, the test cases were provided to participants in an initial
assessment period between June 15th and July 15th, 2019. The goal of this phase is to
ensure that the test cases make sense to participants, and give them the opportunity to
provide feedback to organizers on the test case as well as potentially report errors. At
the end of this phase, the final test base was frozen and released.

During the ensuing execution phase, participants test and potentially develop their
matching systems to automatically match the test cases. Participants can self-evaluate
their results either by comparing their output with the reference alignments or by using
either of the evaluation platforms. They can tune their systems with respect to the non-
blind evaluation as long as they respect the rules of the OAEI. Participants were required
to register their systems and make a preliminary evaluation by July 31st. The execution
phase was terminated on September 30th, 2019, at which date participants had to submit
the (near) final versions of their systems (SEALS-wrapped and/or HOBBIT-wrapped).

During the evaluation phase, systems were evaluated by all track organizers. In
case minor problems were found during the initial stages of this phase, they were re-
ported to the developers, who were given the opportunity to fix and resubmit their sys-
tems. Initial results were provided directly to the participants, whereas final results for
most tracks were published on the respective OAEI web pages by October 14th, 2019.

4 https://project-hobbit.eu/outcomes/hobbit-platform/
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3 Tracks and test cases

This year’s OAEI campaign consisted of 11 tracks gathering 29 test cases, all of which
were based on OWL ontologies. They can be grouped into:

– Schema matching tracks, which have as objective matching ontology classes and/or
properties.

– Instance Matching tracks, which have as objective matching ontology instances.
– Instance and Schema Matching tracks, which involve both of the above.
– Complex Matching tracks, which have as objective finding complex correspon-

dences between ontology entities.
– Interactive tracks, which simulate user interaction to enable the benchmarking of

interactive matching algorithms.

The tracks are summarized in Table 1.

Table 1. Characteristics of the OAEI tracks.

Track
Test Cases

Relations Confidence Evaluation Languages Platform
(Tasks)

Schema Matching
Anatomy 1 = [0 1] open EN SEALS

Biodiversity
2 = [0 1] open EN SEALS

& Ecology
Conference 1 (21) =, <= [0 1] open+blind EN SEALS
Disease &

2 =, <= [0 1] open+blind EN SEALS
Phenotype

Large Biomedical
6 = [0 1] open EN both

ontologies

Multifarm 2 (2445) = [0 1] open+blind

AR, CZ, CN,

SEALS
DE, EN, ES,
FR, IT, NL,

RU, PT

Instance Matching
Link Discovery 2 (9) = [0 1] open EN HOBBIT
SPIMBENCH 2 = [0 1] open+blind EN HOBBIT

Instance and Schema Matching
Knowledge Graph 5 = [0 1] open EN SEALS

Interactive Matching
Interactive 2 (22) =, <= [0 1] open EN SEALS

Complex Matching
Complex 4 =, <=, >= [0 1] open+blind EN, ES SEALS

Open evaluation is made with already published reference alignments and blind evaluation is
made by organizers, either from reference alignments unknown to the participants or manually.
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3.1 Anatomy

The anatomy track comprises a single test case consisting of matching two fragments
of biomedical ontologies which describe the human anatomy5 (3304 classes) and the
anatomy of the mouse6 (2744 classes). The evaluation is based on a manually curated
reference alignment. This dataset has been used since 2007 with some improvements
over the years [15].

Systems are evaluated with the standard parameters of precision, recall, F-measure.
Additionally, recall+ is computed by excluding trivial correspondences (i.e., correspon-
dences that have the same normalized label). Alignments are also checked for coherence
using the Pellet reasoner. The evaluation was carried out on a server with a 6 core CPU
@ 3.46 GHz with 8GB allocated RAM, using the SEALS client. However, the evalua-
tion parameters were computed a posteriori, after removing from the alignments pro-
duced by the systems, correspondences expressing relations other than equivalence, as
well as trivial correspondences in the oboInOwl namespace (e.g., oboInOwl#Synonym
= oboInOwl#Synonym). The results obtained with the SEALS client vary in some cases
by 0.5% compared to the results presented below.

3.2 Biodiversity and Ecology

The second edition of biodiversity track features two test cases based on highly over-
lapping ontologies that are particularly useful for biodiversity and ecology research:
matching Environment Ontology (ENVO) to Semantic Web for Earth and Environment
Technology Ontology (SWEET), and matching Flora Phenotype Ontology (FLOPO) to
Plant Trait Ontology (PTO). The track was motivated by two projects, namely GFBio7

(The German Federation for Biological Data) and AquaDiva8, which aim at providing
semantically enriched data management solutions for data capture, annotation, index-
ing and search [35, 37]. Table 2 summarizes the versions and the sizes of the ontologies
used in OAEI 2019. Compared to the first edition, the number of concepts of the ENVO
and FOLPO ontologies has increased, which required the creation of new reference
alignments for both tasks.

Table 2. Versions and number of classes of the Biodiversity and Ecology track ontologies.

Ontology Version Classes
ENVO 2019-03-18 8968

SWEET 2018-03-12 4543
FLOPO 2016-06-03 28965

PTO 2017-09-11 1504

5 www.cancer.gov/cancertopics/cancerlibrary/terminologyresources
6 http://www.informatics.jax.org/searches/AMA_form.shtml
7 www.gfbio.org
8 www.aquadiva.uni-jena.de
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To this end, we updated the reference alignments for the two test cases following
the same procedure as in the first edition. In particular, alignment files were produced
through a hybrid approach consisting of (1) an updated consensus alignment based on
matching systems output, then (2) manually validating a subset of unique mappings
produced by each system (and adding them to the consensus if considered correct), and
finally (3) adding a set of manually generated correspondences. The matching systems
used to generate the consensus alignments were those participating in this track last
year [4], namely: AML, Lily, LogMap family, POMAP and XMAP.

The evaluation was carried out on a Windows 10 (64-bit) desktop with an Intel Core
i5-7500 CPU @ 3.40GHz x 4 with 15.7 Gb RAM allocated, using the SEALS client.
Systems were evaluated using the standard metrics.

3.3 Conference

The conference track features a single test case that is a suite of 21 matching tasks corre-
sponding to the pairwise combination of 7 moderately expressive ontologies describing
the domain of organizing conferences. The dataset and its usage are described in [52].

The track uses several reference alignments for evaluation: the old (and not fully
complete) manually curated open reference alignment, ra1; an extended, also manu-
ally curated version of this alignment, ra2; a version of the latter corrected to resolve
violations of conservativity, rar2; and an uncertain version of ra1 produced through
crowd-sourcing, where the score of each correspondence is the fraction of people in
the evaluation group that agree with the correspondence. The latter reference was used
in two evaluation modalities: discrete and continuous evaluation. In the former, corre-
spondences in the uncertain reference alignment with a score of at least 0.5 are treated
as correct whereas those with lower score are treated as incorrect, and standard evalu-
ation parameters are used to evaluated systems. In the latter, weighted precision, recall
and F-measure values are computed by taking into consideration the actual scores of
the uncertain reference, as well as the scores generated by the matching system. For
the sharp reference alignments (ra1, ra2 and rar2), the evaluation is based on the stan-
dard parameters, as well the F0.5-measure and F2-measure and on conservativity and
consistency violations. Whereas F1 is the harmonic mean of precision and recall where
both receive equal weight, F2 gives higher weight to recall than precision and F0.5 gives
higher weight to precision higher than recall.

Two baseline matchers are used to benchmark the systems: edna string edit distance
matcher; and StringEquiv string equivalence matcher as in the anatomy test case.

The evaluation was carried out on a Windows 10 (64-bit) desktop with an Intel
Core i7–8550U (1,8 GHz, TB 4 GHz) x 4 with 16 GB RAM allocated using the SEALS
client. Systems were evaluated using the standard metrics.

3.4 Disease and Phenotype

The Disease and Phenotype is organized by the Pistoia Alliance Ontologies Mapping
project team9. It comprises 2 test cases that involve 4 biomedical ontologies cov-
ering the disease and phenotype domains: Human Phenotype Ontology (HP) versus

9 http://www.pistoiaalliance.org/projects/ontologies-mapping/
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Mammalian Phenotype Ontology (MP) and Human Disease Ontology (DOID) ver-
sus Orphanet and Rare Diseases Ontology (ORDO). Currently, correspondences be-
tween these ontologies are mostly curated by bioinformatics and disease experts who
would benefit from automation of their workflows supported by implementation of on-
tology matching algorithms. More details about the Pistoia Alliance Ontologies Map-
ping project and the OAEI evaluation are available in [25]. Table 3.4 summarizes the
versions of the ontologies used in OAEI 2019.

Table 3. Disease and Phenotype ontology versions and sources.

Ontology Version Source
HP 2017-06-30 OBO Foundry
MP 2017-06-29 OBO Foundry

DOID 2017-06-13 OBO Foundry
ORDO v2.4 ORPHADATA

The reference alignments used in this track are silver standard consensus alignments
automatically built by merging/voting the outputs of the participating systems in 2016,
2017 and 2018 (with vote=3). Note that systems participating with different variants
and in different years only contributed once in the voting, that is, the voting was done
by family of systems/variants rather than by individual systems. The HP-MP silver
standard thus produced contains 2232 correspondences, whereas the DOID-ORDO one
contains 2808 correspondences.

Systems were evaluated using the standard parameters as well as the number of
unsatisfiable classes computed using the OWL 2 reasoner HermiT [41]. The evaluation
was carried out in a Ubuntu 18 Laptop with an Intel Core i5-6300HQ CPU @ 2.30GHz
x 4 and allocating 15 Gb of RAM.

3.5 Large Biomedical Ontologies

The large biomedical ontologies (largebio) track aims at finding alignments between
the large and semantically rich biomedical ontologies FMA, SNOMED-CT, and NCI,
which contain 78,989, 306,591 and 66,724 classes, respectively. The track consists of
six test cases corresponding to three matching problems (FMA-NCI, FMA-SNOMED
and SNOMED-NCI) in two modalities: small overlapping fragments and whole ontolo-
gies (FMA and NCI) or large fragments (SNOMED-CT).

The reference alignments used in this track are derived directly from the UMLS
Metathesaurus [6] as detailed in [32], then automatically repaired to ensure logical
coherence. However, rather than use a standard repair procedure of removing prob-
lem causing correspondences, we set the relation of such correspondences to “?” (un-
known). These “?” correspondences are neither considered positive nor negative when
evaluating matching systems, but are simply ignored. This way, systems that do not
perform alignment repair are not penalized for finding correspondences that (despite
causing incoherences) may or may not be correct, and systems that do perform align-
ment repair are not penalized for removing such correspondences. To avoid any bias,
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correspondences were considered problem causing if they were selected for removal
by any of the three established repair algorithms: Alcomo [39], LogMap [31], or AML
[43]. The reference alignments are summarized in Table 4.

Table 4. Number of correspondences in the reference alignments of the large biomedical ontolo-
gies tasks.

Reference alignment “=” corresp. “?” corresp.

FMA-NCI 2,686 338
FMA-SNOMED 6,026 2,982
SNOMED-NCI 17,210 1,634

The evaluation was carried out in a Ubuntu 18 Laptop with an Intel Core i5-6300HQ
CPU @ 2.30GHz x 4 and allocating 15 Gb of RAM. Evaluation was based on the
standard parameters (modified to account for the “?” relations) as well as the number
of unsatisfiable classes and the ratio of unsatisfiable classes with respect to the size of
the union of the input ontologies. Unsatisfiable classes were computed using the OWL
2 reasoner HermiT [41], or, in the cases in which HermiT could not cope with the
input ontologies and the alignments (in less than 2 hours) a lower bound on the number
of unsatisfiable classes (indicated by ≥) was computed using the OWL2 EL reasoner
ELK [36].

3.6 Multifarm

The multifarm track [40] aims at evaluating the ability of matching systems to deal with
ontologies in different natural languages. This dataset results from the translation of 7
ontologies from the conference track (cmt, conference, confOf, iasted, sigkdd, ekaw and
edas) into 10 languages: Arabic (ar), Chinese (cn), Czech (cz), Dutch (nl), French (fr),
German (de), Italian (it), Portuguese (pt), Russian (ru), and Spanish (es). The dataset
is composed of 55 pairs of languages, with 49 matching tasks for each of them, taking
into account the alignment direction (e.g. cmten →edasde and cmtde →edasen are dis-
tinct matching tasks). While part of the dataset is openly available, all matching tasks
involving the edas and ekaw ontologies (resulting in 55 × 24 matching tasks) are used
for blind evaluation.

We consider two test cases: i) those tasks where two different ontologies
(cmt→edas, for instance) have been translated into two different languages; and ii)
those tasks where the same ontology (cmt→cmt) has been translated into two differ-
ent languages. For the tasks of type ii), good results are not only related to the use of
specific techniques for dealing with cross-lingual ontologies, but also on the ability to
exploit the identical structure of the ontologies.

The reference alignments used in this track derive directly from the manually cu-
rated Conference ra1 reference alignments. The systems have been executed on a
Ubuntu Linux machine configured with 8GB of RAM running under a Intel Core CPU
2.00GHz x4 processors, using the SEALS client.
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3.7 Link Discovery

The Link Discovery track features two test cases, Linking and Spatial, that deal with
link discovery for spatial data represented as trajectories i.e., sequences of longi-
tude, latitude pairs. The track is based on two datasets generated from TomTom10 and
Spaten [12].

The Linking test case aims at testing the performance of instance matching tools
that implement mostly string-based approaches for identifying matching entities. It
can be used not only by instance matching tools, but also by SPARQL engines that
deal with query answering over geospatial data. The test case was based on SPIM-
BENCH [44], but since the ontologies used to represent trajectories are fairly simple
and do not consider complex RDF or OWL schema constructs already supported by
SPIMBENCH, only a subset of the transformations implemented by SPIMBENCH was
used. The transformations implemented in the test case were (i) string-based with differ-
ent (a) levels, (b) types of spatial object representations and (c) types of date representa-
tions, and (ii) schema-based, i.e., addition and deletion of ontology (schema) properties.
These transformations were implemented in the TomTom dataset. In a nutshell, instance
matching systems are expected to determine whether two traces with their points anno-
tated with place names designate the same trajectory. In order to evaluate the systems
a ground truth was built that contains the set of expected links where an instance s1 in
the source dataset is associated with an instance t1 in the target dataset that has been
generated as a modified description of s1.

The Spatial test case aims at testing the performance of systems that deal with
topological relations proposed in the state of the art DE-9IM (Dimensionally Extended
nine-Intersection Model) model [47]. The benchmark generator behind this test case
implements all topological relations of DE-9IM between trajectories in the two dimen-
sional space. To the best of our knowledge such a generic benchmark, that takes as
input trajectories and checks the performance of linking systems for spatial data does
not exist. The focus for the design was (a) on the correct implementation of all the topo-
logical relations of the DE-9IM topological model and (b) on producing datasets large
enough to stress the systems under test. The supported relations are: Equals, Disjoint,
Touches, Contains/Within, Covers/CoveredBy, Intersects, Crosses, Overlaps. The test
case comprises tasks for all the DE-9IM relations and for LineString/LineString and
LineString/Polygon cases, for both TomTom and Spaten datasets, ranging from 200 to
2K instances. We did not exceed 64 KB per instance due to a limitation of the Silk
system11, in order to enable a fair comparison of the systems participating in this track.

The evaluation for both test cases was carried out using the HOBBIT platform.

3.8 SPIMBENCH

The SPIMBENCH track consists of matching instances that are found to refer to the
same real-world entity corresponding to a creative work (that can be a news item,

10 https://www.tomtom.com/en_gr/
11 https://github.com/silk-framework/silk/issues/57
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blog post or programme). The datasets were generated and transformed using SPIM-
BENCH [44] by altering a set of original linked data through value-based, structure-
based, and semantics-aware transformations (simple combination of transformations).
They share almost the same ontology (with some differences in property level, due
to the structure-based transformations), which describes instances using 22 classes, 31
data properties, and 85 object properties. Participants are requested to produce a set of
correspondences between the pairs of matching instances from the source and target
datasets that are found to refer to the same real-world entity. An instance in the source
dataset can have none or one matching counterpart in the target dataset. The SPIM-
BENCH task uses two sets of datasets12 with different scales (i.e., number of instances
to match):

– Sandbox (380 INSTANCES, 10000 TRIPLES). It contains two datasets called
source (Tbox1) and target (Tbox2) as well as the set of expected correspondences
(i.e., reference alignment).

– Mainbox (1800 CWs, 50000 TRIPLES). It contains two datasets called source
(Tbox1) and target (Tbox2). This test case is blind, meaning that the reference
alignment is not given to the participants.

In both cases, the goal is to discover the correspondences among the instances in the
source dataset (Tbox1) and the instances in the target dataset (Tbox2).

The evaluation was carried out using the HOBBIT platform.

3.9 Knowledge Graph

The Knowledge Graph track was run for the second year. The task of the track is to
match pairs of knowledge graphs, whose schema and instances have to be matched si-
multaneously. The individual knowledge graphs are created by running the DBpedia ex-
traction framework on eight different Wikis from the Fandom Wiki hosting platform13

in the course of the DBkWik project [27, 26]. They cover different topics (movies,
games, comics and books) and three Knowledge Graph clusters shares the same do-
main e.g. star trek, as shown in Table 5.

The evaluation is based on reference correspondences at both schema and instance
levels. While the schema level correspondences were created by experts, the instance
correspondences were extracted from the wiki page itself. Due to the fact that not all
inter wiki links on a page represent the same concept a few restrictions were made: 1)
Only links in sections with a header containing “link” are used 2) all links are removed
where the source page links to more than one concept in another wiki (ensures the
alignments are functional) 3) multiple links which point to the same concept are also
removed (ensures injectivity). Since we do not have a correspondence for each instance,
class, and property in the graphs, this gold standard is only a partial gold standard.

The evaluation was executed on a virtual machine (VM) with 32GB of RAM and
16 vCPUs (2.4 GHz), with Debian 9 operating system and Openjdk version 1.8.0 212,
using the SEALS client (version 7.0.5). We used the -o option in SEALS to provide the

12 Although the files are called Tbox1 and Tbox2, they actually contain a Tbox and an Abox.
13 https://www.wikia.com/
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Table 5. Characteristics of the Knowledge Graphs in the Knowledge Graph track, and the sources
they were created from.

Source Hub Topic #Instances #Properties #Classes
Star Wars Wiki Movies Entertainment 145,033 700 269
The Old Republic Wiki Games Gaming 4,180 368 101
Star Wars Galaxies Wiki Games Gaming 9,634 148 67
Marvel Database Comics Comics 210,996 139 186
Marvel Cinematic Universe Movies Entertainment 17,187 147 55
Memory Alpha TV Entertainment 45,828 325 181
Star Trek Expanded Universe TV Entertainment 13,426 202 283
Memory Beta Books Entertainment 51,323 423 240

two knowledge graphs which should be matched. We used local files rather than HTTP
URLs to circumvent the overhead of downloading the knowledge graphs. We could not
use the ”-x” option of SEALS because the evaluation routine needed to be changed
for two reasons: first, to differentiate between results for class, property, and instance
correspondences, and second, to deal with the partial nature of the gold standard.

The alignments were evaluated based on precision, recall, and f-measure for classes,
properties, and instances (each in isolation). The partial gold standard contained 1:1
correspondences and we further assume that in each knowledge graph, only one rep-
resentation of the concept exists. This means that if we have a correspondence in our
gold standard, we count a correspondence to a different concept as a false positive. The
count of false negatives is only increased if we have a 1:1 correspondence and it is not
found by a matcher. The whole source code for generating the evaluation results is also
available14.

As a baseline, we employed two simple string matching approaches. The source
code for these matchers is publicly available15.

3.10 Interactive Matching

The interactive matching track aims to assess the performance of semi-automated
matching systems by simulating user interaction [42, 14, 38]. The evaluation thus fo-
cuses on how interaction with the user improves the matching results. Currently, this
track does not evaluate the user experience or the user interfaces of the systems [29,
14].

The interactive matching track is based on the datasets from the Anatomy and Con-
ference tracks, which have been previously described. It relies on the SEALS client’s
Oracle class to simulate user interactions. An interactive matching system can present
a collection of correspondences simultaneously to the oracle, which will tell the system
whether that correspondence is correct or not. If a system presents up to three corre-
spondences together and each correspondence presented has a mapped entity (i.e., class
14 http://oaei.ontologymatching.org/2019/results/knowledgegraph/
matching-eval-trackspecific.zip

15 http://oaei.ontologymatching.org/2019/results/knowledgegraph/
kgBaselineMatchers.zip
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or property) in common with at least one other correspondence presented, the oracle
counts this as a single interaction, under the rationale that this corresponds to a sce-
nario where a user is asked to choose between conflicting candidate correspondences.
To simulate the possibility of user errors, the oracle can be set to reply with a given
error probability (randomly, from a uniform distribution). We evaluated systems with
four different error rates: 0.0 (perfect user), 0.1, 0.2, and 0.3.

In addition to the standard evaluation parameters, we also compute the number of
requests made by the system, the total number of distinct correspondences asked, the
number of positive and negative answers from the oracle, the performance of the system
according to the oracle (to assess the impact of the oracle errors on the system) and
finally, the performance of the oracle itself (to assess how erroneous it was).

The evaluation was carried out on a server with 3.46 GHz (6 cores) and 8GB RAM
allocated to the matching systems. Each system was run ten times and the final result
of a system for each error rate represents the average of these runs. For the Conference
dataset with the ra1 alignment, precision and recall correspond to the micro-average
over all ontology pairs, whereas the number of interactions is the total number of inter-
actions for all the pairs.

3.11 Complex Matching

The complex matching track is meant to evaluate the matchers based on their abil-
ity to generate complex alignments. A complex alignment is composed of com-
plex correspondences typically involving more than two ontology entities, such as
o1:AcceptedPaper ≡ o2:Paper u o2:hasDecision.o2:Acceptance. Four datasets with
their own evaluation process have been proposed [51].

The complex conference dataset is composed of three ontologies: cmt, conference
and ekaw from the conference dataset. The reference alignment was created as a con-
sensus between experts. In the evaluation process, the matchers can take the simple
reference alignment ra1 as input. The precision and recall measures are manually cal-
culated over the complex equivalence correspondences only.

The populated complex conference is a populated version of the Conference
dataset. 5 ontologies have been populated with more or less common instances result-
ing in 6 datasets (6 versions on the seals repository: v0, v20, v40, v60, v80 and v100).
The alignments were evaluated based on Competency Questions for Alignment, i.e.,
basic queries that the alignment should be able to cover [49]. The queries are automati-
cally rewritten using 2 systems: that from [50] which covers (1:n) correspondences with
EDOAL expressions; and a system which compares the answers (sets of instances or
sets of pairs of instances) of the source query and the source member of the correspon-
dences and which outputs the target member if both sets are identical. The best rewritten
query scores are kept. A precision score is given by comparing the instances described
by the source and target members of the correspondences.

The Hydrography dataset consists of matching four different source ontologies
(hydro3, hydrOntology-translated, hydrOntology-native, and cree) to a single target on-
tology (SWO) [9]. The evaluation process is based on three subtasks: given an entity
from the source ontology, identify all related entities in the source and target ontology;
given an entity in the source ontology and the set of related entities, identify the logical

57



relation that holds between them; identify the full complex correspondences. The three
subtasks were evaluated based on relaxed precision and recall [16].

The GeoLink dataset derives from the homonymous project, funded under the U.S.
National Science Foundation’s EarthCube initiative. It is composed of two ontologies:
the GeoLink Base Ontology (GBO) and the GeoLink Modular Ontology (GMO). The
GeoLink project is a real-world use case of ontologies, and the instance data is also
available and populated into the benchmark. The alignment between the two ontologies
was developed in consultation with domain experts from several geoscience research
institutions. More detailed information on this benchmark can be found in [54, 55].
Evaluation was done in the same way as with the Hydrography dataset. The evaluation
platform was a MacBook Pro with a 2.5 GHz Intel Core i7 processor and 16 GB of
1600 MHz DDR3 RAM running mac OS Yosemite version 10.10.5.

The Taxon dataset is composed of four knowledge bases containing knowledge
about plant taxonomy: AgronomicTaxon, AGROVOC, TAXREF-LD and DBpedia. The
evaluation is two-fold: first, the precision of the output alignment is manually assessed;
then, a set of source queries are rewritten using the output alignment. The rewritten tar-
get query is then manually classified as correct or incorrect. A source query is consid-
ered successfully rewritten if at least one of the target queries is semantically equivalent
to it. The proportion of source queries successfully rewritten is then calculated (QWR
in the results table). The evaluation over this dataset is open to all matching systems
(simple or complex) but some queries can not be rewritten without complex correspon-
dences. The evaluation was performed with an Ubuntu 16.04 machine configured with
16GB of RAM running under a i7-4790K CPU 4.00GHz x 8 processors.

4 Results and Discussion

4.1 Participation

Following an initial period of growth, the number of OAEI participants has remained
approximately constant since 2012, which is slightly over 20. This year we count with
20 participating systems. Table 6 lists the participants and the tracks in which they
competed. Some matching systems participated with different variants (AML, LogMap)
whereas others were evaluated with different configurations, as requested by developers
(see test case sections for details).

A number of participating systems use external sources of background knowledge,
which are especially critical in matching ontologies in the biomedical domain. LogMap-
Bio uses BioPortal as mediating ontology provider, that is, it retrieves from BioPortal
the most suitable top-10 ontologies for each matching task. LogMap uses normaliza-
tions and spelling variants from the general (biomedical) purpose SPECIALIST Lexi-
con. AML has three sources of background knowledge which can be used as mediators
between the input ontologies: the Uber Anatomy Ontology (Uberon), the Human Dis-
ease Ontology (DOID) and the Medical Subject Headings (MeSH). XMAP and Lily
use a dictionary of synonyms (pre)extracted from the UMLS Metathesaurus. In addi-
tion Lily also uses a dictionary of synonyms (pre)extracted from BioPortal.
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Table 6. Participants and the status of their submissions.
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Confidence X X X X X X X X X X X X X X X X X X X X
anatomy    # # #  #  #     #  #  #  12

conference #   # # #  # # #   #   # #  #  9
multifarm # #  # # # # # # # G#  # # # # # # #  4

complex # # # G# G# G# # # # # # # # # # # # # # # 3
interactive #   # # # # # # # #  # # # # # # # # 3

largebio  #  # # #  #  # #    #  #  #  10
phenotype # #  # # #  #  # #    #  # # #  8

biodiv # #  # # #  #  # #    #  # # # # 7
spimbench # #  # # # # # #    # # # #  #  # 6

link discovery # #  # # # # # #   # # # # #  #  # 6
knowledge graph  #  # # #  #  # #    #  # # #  9

total 3 3 10 1 1 1 6 0 5 2 5 10 5 6 1 5 2 3 2 5 77

Confidence pertains to the confidence scores returned by the system, with X indicating that they
are non-boolean; # indicates that the system did not participate in the track;  indicates that it
participated fully in the track; andG# indicates that it participated in or completed only part of the
tasks of the track.

4.2 Anatomy

The results for the Anatomy track are shown in Table 7. Of the 12 systems partici-
pating in the Anatomy track, 10 achieved an F-measure higher than the StringEquiv
baseline. Two systems were first time participants (Wiktionary and AGM). Long-term
participating systems showed few changes in comparison with previous years with re-
spect to alignment quality (precision, recall, F-measure, and recall+), size and run time.
The exceptions were LogMapBio which increased in both recall+ (from 0.756 to 0.801)
and alignment size (by 57 correspondences) since last year, and ALIN that increased
in F-measure (from 0.758 to 0.813) and recall+ (from 0.0 to 0.365), as well as had a
substantial increase of 158 correspondences since last year.

In terms of run time, 5 out of 12 systems computed an alignment in less than 100
seconds, a ratio which is similar to 2018 (6 out of 14). LogMapLite remains the system
with the shortest runtime. Regarding quality, AML remains the system with the high-
est F-measure (0.943) and recall+ (0.832), but 3 other systems obtained an F-measure
above 0.88 (LogMapBio, POMap++, and LogMap) which is at least as good as the best
systems in OAEI 2007-2010. Like in previous years, there is no significant correlation
between the quality of the generated alignment and the run time. Four systems produced
coherent alignments.
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Table 7. Anatomy results, ordered by F-measure. Runtime is measured in seconds; “size” is the
number of correspondences in the generated alignment.

System Runtime Size Precision F-measure Recall Recall+ Coherent

AML 76 1493 0.95 0.943 0.936 0.832
√

LogMapBio 1718 1607 0.872 0.898 0.925 0.801
√

POMAP++ 345 1446 0.919 0.897 0.877 0.695 -
LogMap 28 1397 0.918 0.88 0.846 0.593

√
SANOM 516 - 0.888 0.865 0.844 0.632 -
Lily 281 1381 0.873 0.833 0.796 0.52 -
Wiktionary 104 1144 0.968 0.832 0.73 0.288 -
LogMapLite 19 1147 0.962 0.828 0.728 0.288 -
ALIN 5115 1086 0.974 0.813 0.698 0.365

√
FCAMap-KG 25 960 0.996 0.772 0.631 0.042 -
StringEquiv - 946 0.997 0.766 0.622 0.000 -
DOME 23 936 0.996 0.76 0.615 0.007 -
AGM 628 1942 0.152 0.171 0.195 0.154 -

4.3 Biodiversity and Ecology

Five of the systems participating this year had participated in this track in OAEI 2018:
AML, LogMap family systems (LogMap, LogMapBio and LogMapLT) and POMAP.
Three were new participants: DOME, FCAMapKG and LogMapKG. The newcomers
DOME, FCAMapKG did not register explicitly to this track but could cope with at least
one task so we did include their results.

We observed a slight increase in the number of systems (8 systems) that succeeded
to generate alignments for the FLOPO-PTO task in comparison to previous year (7
systems). However, we witnessed a slight decrease in the number of systems (6 systems)
that succeeded to generate alignments for the test ENVO-SWEET in comparison to
previous year (7 systems). Lily did not manage to generate mappings for both tasks and
LogMapBio did not manage to generated mappings for the ENVO-SWEET task.

As in the previous edition, we used precision, recall and F-measure to evaluate the
performance of the participating systems. This year we included the execution times.
The results for the Biodiversity and Ecology track are shown in Table 8.

Overall, the results of the participating systems have decreased in terms of F-
measure for both tasks compared to last year. In terms of run time, most of the systems
(except POMAP) computed an alignment in less than 100 seconds.

For the FLOPO-PTO task, AML and LogMapKG achieved the highest F-measure
(0.78), with a slight difference in favor of AML. However, AML showed a remarkable
decrease in terms of precision (from 0.88 to 0.76) and F-measure (from 0.86 to 0.78)
compared to last year. LogMap also showed a slight decrease in terms of F-measure
(from 0.80 to 0.78). The DOME system (newcomer) achieved the highest precision
(0.99) with quite a good F-measure (0.739).

Regarding the ENVO-SWEET task, AML ranked first in terms of F-measure (0.80),
followed by POMAP (0.69), FCAMapKG (0.63) and LogMapKG (0.63). As last year
AML showed a very high recall and significant larger alignment than the other top
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Table 8. Results for the Biodiversity & Ecology track.

System Time (s) Size Precision Recall F-measure

FLOPO-PTO task
AML 42 511 0.766 0.811 0.788
DOME 8.22 141 0.993 0.588 0.739
FCAMapKG 7.2 171 0.836 0.601 0.699
LogMap 14.4 235 0.791 0.782 0.768
LogMapBio 480.6 239 0.778 0.782 0.780
LogMapKG 13.2 235 0.791 0.782 0.786
LogMapLite 6.18 151 0.947 0.601 0.735
POMap 311 261 0.651 0.714 0.681

ENVO-SWEET task
AML 3 925 0.733 0.899 0.808
FCAMapKG 7.8 422 0.803 0.518 0.630
LogMap 26.9 443 0.772 0.523 0.624
LogMapKG 7.98 422 0.803 0.518 0.630
LogMapLite 13.8 617 0.648 0.612 0.629
POMap 223 673 0.684 0.703 0.693

systems, but a comparably lower precision and a slight decrease in terms of F-measure
(from 0.84 to 0.80). POMAP ranked second this year with a remarkable decrease in
terms of precision (from 0.83 to 0.68) and F-measure (from 0.78 to 0.69). FCAMapKG
and LogMapKG showed the highest results in terms of precision (0.80).

AML generated a significantly large number of mappings (much bigger than the size
of the reference alignments for both tasks), those alignments were mostly subsumption
mappings. In order to evaluate the precision in a more significant manner, we had to
calculate an approximation by assessing manually a subset of mappings not present in
the reference alignment (around a 100 for each task).

Overall, in this second evaluation, the results obtained from participating systems
remained similar with a slight decrease in terms of F-measure compared to last year.
It is worth noting that most of the participating systems, and all of the most successful
ones use external resources as background knowledge.

4.4 Conference

The conference evaluation results using the sharp reference alignment rar2 are shown
in Table 9. For the sake of brevity, only results with this reference alignment and con-
sidering both classes and properties are shown. For more detailed evaluation results,
please check conference track’s web page.

With regard to two baselines we can group tools according to matcher’s position:
four matching systems outperformed both baselines (SANOM, AML, LogMap and
Wiktionary); two performed the same as the edna baseline (DOME and LogMapLt);
one performed slightly worse than this baseline (ALIN); and two (Lily and ONTMAT1)
performed worse than both baselines. Three matchers (ONTMAT1, ALIN and Lily) do
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Table 9. The highest average F[0.5|1|2]-measure and their corresponding precision and recall for
each matcher with its F1-optimal threshold (ordered by F1-measure). Inc.Align. means number
of incoherent alignments. Conser.V. means total number of all conservativity principle violations.
Consist.V. means total number of all consistency principle violations.

System Prec. F0.5-m. F1-m. F2-m. Rec. Inc.Align. Conser.V. Consist.V.

SANOM 0.72 0.71 0.7 0.69 0.68 9 103 92
AML 0.78 0.74 0.69 0.65 0.62 0 39 0

LogMap 0.77 0.72 0.66 0.6 0.57 0 25 0
Wiktionary 0.65 0.62 0.58 0.54 0.52 7 133 27

DOME 0.73 0.65 0.56 0.5 0.46 3 105 10
edna 0.74 0.66 0.56 0.49 0.45

LogMapLt 0.68 0.62 0.56 0.5 0.47 3 97 18
ALIN 0.81 0.68 0.55 0.46 0.42 0 2 0

StringEquiv 0.76 0.65 0.53 0.45 0.41
Lily 0.54 0.53 0.52 0.51 0.5 9 140 124

ONTMAT1 0.77 0.64 0.52 0.43 0.39 1 71 37

not match properties at all. Naturally, this has a negative effect on their overall perfor-
mance.

The performance of all matching systems regarding their precision, recall and F1-
measure is plotted in Figure 1. Systems are represented as squares or triangles, whereas
the baselines are represented as circles.

With respect to logical coherence [45, 46], only three tools (ALIN, AML and
LogMap) have no consistency principle violation (the same tools as last year). This
year all tools have some conservativity principle violations as the last year). We should
note that these conservativity principle violations can be “false positives” since the en-
tailment in the aligned ontology can be correct although it was not derivable in the
single input ontologies.

This year we additionally analyzed the False Positives, i.e. correspondences dis-
covered by the tools which were evaluated as incorrect. The list of the False Positives
is available on the conference track’s web page. We looked at the reasons why a cor-
respondence was incorrect or why it was discovered from a general point of view, and
defined 3 reasons why alignments are incorrect and 5 reasons why they could have been
chosen. Looking at the results, it can be said that when the reason a correspondence was
discovered was the same name, all or at least most tools generated the correspondence.
False Positives not discovered based on the same name or synonyms were produced
by Lily, ONTMAT1 and SANOM. SANOM was the only tool which produced these
correspondences based on similar strings. In three cases, a class was matched with a
property by DOME (1x), LogMapLt (1x) and Wiktionary (3x).

The Conference evaluation results using the uncertain reference alignments are pre-
sented in Table 10.

Out of the 9 alignment systems, five (ALIN, DOME, LogMapLt, ONTMAT1,
SANOM) use 1.0 as the confidence value for all matches they identify. The remaining
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Fig. 1. Precision/recall triangular graph for the conference test case. Dotted lines depict level
of precision/recall while values of F1-measure are depicted by areas bordered by corresponding
lines F1-measure=0.[5|6|7].

Table 10. F-measure, precision, and recall of matchers when evaluated using the sharp (ra1),
discrete uncertain and continuous uncertain metrics. Sorted according to F1-m. in continuous.

System
Sharp Discrete Continuous

Prec. F1-m. Rec. Prec. F1-m. Rec. Prec. F1-m. Rec.

ALIN 0.87 0.58 0.44 0.87 0.68 0.56 0.87 0.69 0.57
AML 0.84 0.74 0.66 0.79 0.78 0.77 0.80 0.77 0.74

DOME 0.78 0.59 0.48 0.78 0.68 0.60 0.78 0.65 0.56
Lily 0.59 0.56 0.53 0.67 0.02 0.01 0.59 0.32 0.22

LogMap 0.82 0.69 0.59 0.81 0.70 0.62 0.80 0.67 0.57
LogMapLt 0.73 0.59 0.50 0.73 0.67 0.62 0.72 0.67 0.63
ONTMAT1 0.82 0.55 0.41 0.82 0.64 0.52 0.82 0.64 0.53

SANOM 0.79 0.74 0.69 0.66 0.74 0.83 0.65 0.72 0.81
Wiktionary 0.69 0.61 0.54 0.81 0.68 0.58 0.74 0.69 0.64
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four systems (AML, Lily, LogMap, Wiktionary) have a wide variation of confidence
values.

When comparing the performance of the matchers on the uncertain reference align-
ments versus that on the sharp version (with the corresponding ra1), we see that in
the discrete case all matchers except Lily performed the same or better in terms of
F-measure (Lily’s F-measure dropped almost to 0). Changes in F-measure of discrete
cases ranged from -1 to 17 percent over the sharp reference alignment. This was pre-
dominantly driven by increased recall, which is a result of the presence of fewer ’con-
troversial’ matches in the uncertain version of the reference alignment.

The performance of the matchers with confidence values always 1.0 is very similar
regardless of whether a discrete or continuous evaluation methodology is used, because
many of the matches they find are the ones that the experts had high agreement about,
while the ones they missed were the more controversial matches. AML produces a
fairly wide range of confidence values and has the highest F-measure under both the
continuous and discrete evaluation methodologies, indicating that this system’s confi-
dence evaluation does a good job of reflecting cohesion among experts on this task. Of
the remaining systems, three (DOME, LogMap, SANOM) have relatively small drops
in F-measure when moving from discrete to continuous evaluation. Lily’s performance
drops drastically under the discrete and continuous evaluation methodologies. This is
because the matcher assigns low confidence values to some matches in which the la-
bels are equivalent strings, which many crowdsourcers agreed with unless there was a
compelling technical reason not to. This hurts recall significantly.

Overall, in comparison with last year, the F-measures of most returning matching
systems essentially held constant when evaluated against the uncertain reference align-
ments. The exception was Lily, whose performance in the discrete case decreased dra-
matically. ONTMAT1 and Wiktionary are two new systems participating in this year.
ONTMAT1’s performance in both discrete and continuous cases increases 16 percent
in terms of F-measure over the sharp reference alignment from 0.55 to 0.64, which it
is mainly driven by increased recall. Wiktionary assigns confidence value of 1.0 to the
entities with identical strings in two ontologies, while gives confidence value of 0.5 to
other possible candidates. From the results, its performance improves significantly from
sharp to discrete and continuous cases.

4.5 Disease and Phenotype Track

In the OAEI 2019 phenotype track 8 systems were able to complete at least one of the
tasks with a 6 hours timeout. Table 11 shows the evaluation results in the HP-MP and
DOID-ORDO matching tasks, respectively.

Since the consensus reference alignments only allow us to assess how systems per-
form in comparison with one another, the proposed ranking is only a reference. Note
that some of the correspondences in the consensus alignment may be erroneous (false
positives) because all systems that agreed on it could be wrong (e.g., in erroneous corre-
spondences with equivalent labels, which are not that uncommon in biomedical tasks).
In addition, the consensus alignments will not be complete, because there are likely to
be correct correspondences that no system is able to find, and there are a number of

64



Table 11. Results for the HP-MP and DOID-ORDO tasks based on the consensus reference
alignment.

System Time (s) # Corresp. # Unique
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

HP-MP task
LogMap 43 2,130 1 0.88 0.85 0.82 0 0.0%
LogMapBio 1,740 2,201 50 0.86 0.85 0.83 0 0.0%
AML 90 2,029 330 0.89 0.84 0.80 0 0.0%
LogMapLt 6 1,370 2 1.00 0.75 0.60 0 0.0%
POMAP++ 1,862 1,502 218 0.86 0.68 0.57 0 0.0%
FCAMapKG 14 734 0 1.00 0.49 0.32 0 0.0%
DOME 11 692 0 1.00 0.47 0.30 0 0.0%
Wiktionary 745 61,872 60,634 0.02 0.04 0.55 0 0.0%

DOID-ORDO task
LogMapBio 2,312 2,547 123 0.91 0.86 0.81 0 0.0%
LogMap 24 2,323 0 0.95 0.85 0.77 0 0.0%
POMAP++ 2,497 2,563 192 0.89 0.84 0.79 0 0.0%
LogMapLt 8 1,747 20 0.99 0.75 0.60 0 0.0%
AML 173 4,781 2,342 0.52 0.65 0.87 0 0.0%
FCAMapKG 23 1,274 2 1.00 0.61 0.44 0 0.0%
DOME 17 1,235 5 0.99 0.60 0.43 0 0.0%
Wiktionary 531 909 366 0.57 0.28 0.18 7 0.067%

correspondences found by only one system (and therefore not in the consensus align-
ments) which may be correct. Nevertheless, the results with respect to the consensus
alignments do provide some insights into the performance of the systems.

Overall, LogMap and LogMapBio are the systems that provide the closest set of cor-
respondences to the consensus (not necessarily the best system) in both tasks. LogMap
has a small set of unique correspondences as most of its correspondences are also sug-
gested by its variant LogMapBio and vice versa. By contrast, AML and Wiktionary
produce the highest number of unique correspondences in HP-MP and DOID-ORDO
respectively, and the second-highest inversely. Nonetheless, Wiktionary suggests a very
large number of correspondences with respect to the other systems which suggest that
it may also include many subsumption and related correspondences and not only equiv-
alence. All systems produce coherent alignments except for Wiktionary in the DOID-
ORDO task.

4.6 Large Biomedical Ontologies

In the OAEI 2019 Large Biomedical Ontologies track, 10 systems were able to complete
at least one of the tasks within a 6 hours timeout. Eight systems were able to complete all
six tasks.16 The evaluation results for the largest matching tasks are shown in Table 12.

The top-ranked systems by F-measure were respectively: AML and LogMap in Task
2; LogMap and LogMapBio in Task 4; and AML and LogMapBio in Task 6.
16 Check out the supporting scripts to reproduce the evaluation: https://github.com/
ernestojimenezruiz/oaei-evaluation
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Table 12. Results for the whole ontologies matching tasks in the OAEI largebio track.

System Time (s) # Corresp. # Unique
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

Whole FMA and NCI ontologies (Task 2)
AML 75 3,110 276 0.81 0.84 0.88 4 0.012%
LogMap 82 2,701 0 0.86 0.83 0.81 3 0.009%
LogMapBio 2,072 3,104 139 0.78 0.81 0.85 3 0.009%
LogMapLt 9 3,458 75 0.68 0.74 0.82 8,925 27.3%
Wiktionary 4,699 1,873 56 0.93 0.73 0.61 3,476 10.6%
DOME 21 2,413 7 0.80 0.73 0.67 1,033 3.2%
FCAMapKG 0 3,765 316 0.62 0.71 0.82 10,708 32.8%
AGM 3,325 7,648 6,819 0.08 0.12 0.22 28,537 87.4%

Whole FMA ontology with SNOMED large fragment (Task 4)
LogMap 394 6,393 0 0.84 0.73 0.65 0 0.0%
LogMapBio 2,853 6,926 280 0.79 0.72 0.67 0 0.0%
AML 152 8,163 2,525 0.69 0.70 0.71 0 0.0%
FCAMapKG 0 1,863 77 0.88 0.36 0.22 1,527 2.0%
LogMapLt 15 1,820 47 0.85 0.33 0.21 1,386 1.8%
DOME 38 1,589 1 0.94 0.33 0.20 1,348 1.8%
Wiktionary 12,633 1,486 143 0.82 0.28 0.17 790 1.0%
AGM 4,227 11,896 10,644 0.07 0.09 0.13 70,923 92.7%

Whole NCI ontology with SNOMED large fragment (Task 6)
AML 331 14,200 2,656 0.86 0.77 0.69 ≥578 ≥0.5%
LogMapBio 4,586 13,732 940 0.81 0.71 0.63 ≥1 ≥0.001%
LogMap 590 12,276 0 0.87 0.71 0.60 ≥1 ≥0.001%
LogMapLt 16 12,864 658 0.80 0.66 0.57 ≥91,207 ≥84.7%
FCAMapKG 0 12,813 1,115 0.79 0.65 0.56 ≥84,579 ≥78.5%
DOME 38 9,806 26 0.91 0.64 0.49 ≥66,317 ≥61.6%
Wiktionary 9,208 9,585 518 0.90 0.62 0.47 ≥65,968 ≥61.2%
AGM 5,016 21,600 16,253 0.23 0.25 0.28 - -

Interestingly, the use of background knowledge led to an improvement in recall from
LogMapBio over LogMap in all tasks, but this came at the cost of precision, resulting
in the two variants of the system having very similar F-measures.

The effectiveness of all systems decreased from small fragments to whole ontolo-
gies tasks.17 One reason for this is that with larger ontologies there are more plausible
correspondence candidates, and thus it is harder to attain both a high precision and a
high recall. In fact, this same pattern is observed moving from the FMA-NCI to the
FMA-SNOMED to the SNOMED-NCI problem, as the size of the task also increases.
Another reason is that the very scale of the problem constrains the matching strategies
that systems can employ: AML for example, forgoes its matching algorithms that are
computationally more complex when handling very large ontologies, due to efficiency
concerns.

17 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2019/results/
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The size of the whole ontologies tasks proved a problem for a some of the systems,
which were unable to complete them within the allotted time: POMAP++ and SANOM.

With respect to alignment coherence, as in previous OAEI editions, only two distinct
systems have shown alignment repair facilities: AML, LogMap and its LogMapBio
variant. Note that only LogMap and LogMapBio are able to reduce to a minimum the
number of unsatisfiable classes across all tasks, missing 3 unsatisfiable classes in the
worst case (whole FMA-NCI task). For the AGM correspondences the ELK reasoner
could not complete the classification over the integrated ontology within the allocated
time.

As the results tables show, even the most precise alignment sets may lead to a huge
number of unsatisfiable classes. This proves the importance of using techniques to as-
sess the coherence of the generated alignments if they are to be used in tasks involving
reasoning. We encourage ontology matching system developers to develop their own
repair techniques or to use state-of-the-art techniques such as Alcomo [39], the repair
module of LogMap (LogMap-Repair) [31] or the repair module of AML [43], which
have worked well in practice [33, 24].

4.7 Multifarm

This year, 5 systems registered to participate in the MultiFarm track: AML, EVOCROS,
Lily, LogMap and Wiktionary. This number slightly decreases with respect to the last
campaign (6 in 2018, 8 in 2017, 7 in 2016, 5 in 2015, 3 in 2014, 7 in 2013, and 7 in
2012). The reader can refer to the OAEI papers for a detailed description of the strate-
gies adopted by each system. In fact, most systems still adopt a translation step before
the matching itself. However, a few systems had issues when evaluated: i) EVOCROS
encountered problems to complete a single matching task; and ii) Lily has generated
mostly empty alignments.

The Multifarm evaluation results based on the blind dataset are presented in Ta-
ble 13. They have been computed using the Alignment API 4.9 and can slightly differ
from those computed with the SEALS client. We haven’t applied any threshold on the
results. We do not report the results of non-specific systems here, as we could observe
in the last campaigns that they can have intermediate results in the “same ontologies”
task (ii) and poor performance in the “different ontologies” task (i).

AML outperforms all other systems in terms of F-measure for task i) (same be-
haviour than last year). In terms of precision, the systems have relatively similar results.
With respect to the task ii) LogMap has the best performance. AML and LogMap have
participated last year. Comparing the results from last year, in terms F-measure (cases
of type i), AML maintains its overall performance (.45 in 2019, .46 in 2018, .46 in 2017,
.45 in 2016 and .47 in 2015). The same could be observed for LogMap (.37 in 2018,
.36 in 2017, and .37 in 2016).

In terms of performance, the F-measure for blind tests remains relatively stable
across campaigns. AML and LogMap keep their positions and have similar F-measure
with respect to the previous campaigns. As observed in previous campaigns, systems
privilege precision over recall, and the results are expectedly below the ones obtained
for the original Conference dataset. Cross-lingual approaches remain mainly based on
translation strategies and the combination of other resources (like cross-lingual links
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Table 13. MultiFarm aggregated results per matcher, for each type of matching task – different
ontologies (i) and same ontologies (ii). Time is measured in minutes (for completing the 55× 24
matching tasks); #pairs indicates the number of pairs of languages for which the tool is able
to generate (non-empty) alignments; size indicates the average of the number of generated cor-
respondences for the tests where an (non-empty) alignment has been generated. Two kinds of
results are reported: those not distinguishing empty and erroneous (or not generated) alignments
and those—indicated between parenthesis—considering only non-empty generated alignments
for a pair of languages.

System Time #pairs
Type (i) – 22 tests per pair Type (ii) – 2 tests per pair

Size Prec. F-m. Rec. Size Prec. F-m. Rec.
AML 236 55 8.18 .72 (.72) .45 (.45) .34 (.34) 33.40 .93 (.95) .27 (.28) .17 (.16)

LogMap 49 55 6.99 .72 (.72) .37 (.37) .25 (.25) 46.80 .95 (.96) .41 (.42) .28 (.28)
Wiktionary 785 23 4.91 .76 (.79) .31 (.33) .21 (.22) 9.24 .94 (.96) .12 (.12) .07 (.06)

in Wikipedia, BabelNet, etc.) while strategies such as machine learning, or indirect
alignment composition remain under-exploited.

4.8 Link Discovery

This year the Link Discovery track counted one participant in the Linking test case
(AML) and three participants in the Spatial test case: AML, Silk and RADON. Those
were the exact same systems (and versions) that participated on OAEI 2018.

In the Linking test case, AML perfectly captures all the correct links while not
producing wrong ones, thus obtaining perfect precision and a recall (1.0) in both the
Sandbox and Mainbox datasets. It required 9.7s and 360s, respectively, to complete the
two tasks. The results can also be found in HOBBIT platform (https://tinyurl.
com/yywwlsmt - Login as Guest).

We divided the Spatial test cases into four suites. In the first two suites (SLL and
LLL), the systems were asked to match LineStrings to LineStrings considering a given
relation for 200 and 2K instances for the TomTom and Spaten datasets. In the last two
tasks (SLP, LLP), the systems were asked to match LineStrings to Polygons (or Poly-
gons to LineStrings depending on the relation) again for both datasets. Since the pre-
cision, recall and f-measure results from all systems were equal to 1.0, we are only
presenting results regarding the time performance. The time performance of the match-
ing systems in the SLL, LLL, SLP and LLP suites are shown in Figures 2-3. The results
can also be found in HOBBIT platform (https://tinyurl.com/y4vk6htq -
Login as Guest).

In the SLL suite, RADON has the best performance in most cases except for the
Touches and Intersects relations, followed by AML. Silk seems to need the most time,
particularly for Touches and Intersects relations in the TomTom dataset and Overlaps
in both datasets.

In the LLL suite we have a more clear view of the capabilities of the systems with
the increase in the number of instances. In this case, RADON and Silk have similar
behavior as in the the small dataset, but it is more clear that the systems need much
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more time to match instances from the TomTom dataset. RADON has still the best
performance in most cases. AML has the next best performance and is able to handle
some cases better than other systems (e.g. Touches and Intersects), however, it also hits
the platform time limit in the case of Disjoint.

Fig. 2. Time performance for TomTom & Spaten SLL (top) and LLL (bottom) suites for AML
(A), Silk (S) and RADON (R).

In the SLP suite, in contrast to the first two suites, RADON has the best performance
for all relations. AML and Silk have minor time differences and, depending on the case,
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one is slightly better than the other. All the systems need more time for the TomTom
dataset but due to the small size of the instances the time difference is minor.

In the LLP suite, RADON again has the best performance in all cases. AML hits the
platform time limit in Disjoint relations on both datasets and is better than Silk in most
cases except Contains and Within on the TomTom dataset where it needs an excessive
amount of time.

Fig. 3. Time performance for TomTom & Spaten SLP (top) and LLP (bottom) suites for AML
(A), Silk (S) and RADON (R).
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Taking into account the executed test cases we can identify the capabilities of the
tested systems as well as suggest some improvements. All the systems participated in
most of the test cases, with the exception of Silk which did not participate in the Covers
and Covered By test cases.

RADON was the only system that successfully addressed all the tasks, and had the
best performance for the SLP and LLP suites, but it can be improved for the Touches
and Intersects relations for the SLL and LLL suites. AML performs extremely well in
most cases, but can be improved in the cases of Covers/Covered By and Contains/Within
when it comes to LineStrings/Polygons Tasks and especially in Disjoint relations where
it hits the platform time limit. Silk can be improved for the Touches, Intersects and
Overlaps relations and for the SLL and LLL tasks and for the Disjoint relation in SLP
and LLP Tasks.

In general, all systems needed more time to match the TomTom dataset than the
Spaten one, due to the smaller number of points per instance in the latter. Comparing the
LineString/LineString to the LineString/Polygon Tasks we can say that all the systems
needed less time for the first for the Contains, Within, Covers and Covered by relations,
more time for the Touches, Instersects and Crosses relations, and approximately the
same time for the Disjoint relation.

4.9 SPIMBENCH

This year, the SPIMBENCH track counted four participants: AML, Lily, LogMap
and FTRLIM. FTRLIM participated for the first time this year while AML, Lily, and
LogMap also participated the previous years. The evaluation results of the track are
shown in Table 14. The results can also be found in HOBBIT platform (https:
//tinyurl.com/yxhsw48c - Login as Guest).

Table 14. SPIMBENCH track results.

System Precision Recall F-measure Time (ms)
Sandbox (100 instances)

AML 0.8348 0.8963 0.8645 6223
Lily 0.8494 1.0 0.9185 2032
LogMap 0.9382 0.7625 0.8413 6919
FTRLIM 0.8542 1.0 0.9214 1474

Mainbox (5000 instances)
AML 0.8385 0.8835 0.8604 39515
Lily 0.8546 1.0 0.9216 3667
LogMap 0.8925 0.7094 0.7905 26920
FTRLIM 0.8558 1.0 0.9214 2155

Lily and FTRLIM had the best performance overall both in terms of F-measure and
run time. Notably, their run time scaled very well with the increase in the number of
instances. Lily, FTRLIM, and AML had a higher recall than precision, while Lily and
FTRLIM had a full recall. By contrast, LogMap had the highest precision but lowest
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recall of all the systems. AML and LogMap had a similar run time for the Sandbox task,
but the latter scaled better with the increase in the number of instances.

4.10 Knowledge Graph

We evaluated all SEALS participants in the OAEI (even those not registered for the
track) on a very small matching task18. This revealed that not all systems were able to
handle the task, and in the end, only the following systems were evaluated: AGM, AML,
DOME, FCAMap-KG, LogMap, LogMapBio, LogMapKG, LogMapLt, POMap++,
Wiktionary. Out of those only LogMapBio, LogMapLt and POMap++ were not reg-
istered for this track. In comparison to last year, more matchers participate and return
meaningful correspondences. Moreover there are systems which especially focus on the
knowledge graph track e.g. FCAMap-KG and LogMapKG.

Table 15 shows the aggregated results for all systems, including the number of tasks
in which they were able to generate a non-empty alignment (#tasks) and the average
number of generated correspondences in those tasks (size). In addition to the global
average precision, F-measure, and recall results, in which tasks where systems pro-
duced empty alignments were counted, we also computed F-measure and recall ignor-
ing empty alignments which are shown between parentheses in the table, where appli-
cable.

Nearly all systems were able to generate class correspondences. In terms of F-
measure, AML is the best one (when considering only completed test cases). Many
matchers were also able to beat the baseline. The highest recall is about 0.77 which
shows that some class correspondences are not easy to find.

In comparison to last year, more matchers are able to produce property correspon-
dences. Only the systems of the LogMap family and POMAP++ do not return any
alignments. While Wiktionary and FCAMap-KG achieve an F-Measure of 0.98, other
systems need more improvement here because they are not capable of beating the base-
line (mostly due to low recall).

With respect to instance correspondences, AML and DOME are the best systems,
but they outperform the baselines only by a small margin. On average, the systems re-
turned between 3,000 and 8,000 instance alignments. Only LogMapKG returned nearly
30,000 mappings. This is interesting because it should be focused on generating only
1:1 alignments, but deviates here.

We also analyzed the arity of the resulting alignments because in the knowledge
graph track it is probably better to focus on a 1:1 mapping. Such a strict mapping
is returned by the following systems: AGM, baselineLabel, DOME and POMAP++.
LogMap and LogMapBio return a few correspondences with same source or target in
only two test cases. BaselineAltLabel, FCAMap-KG and Wiktionary returned some n:m
mappings in all test cases. AML and LogMapLt returned more of those and LogMapKG
has the highest amount of n:m mappings.

When analyzing the confidence values of the alignments, it turns out that most
matchers set it to 1 (AGM,baselineAltLabel, baselineLabel, FCAMap-KG, LogMapLt,

18 http://oaei.ontologymatching.org/2019/results/knowledgegraph/
small_test.zip
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Table 15. Knowledge Graph track results, divided into class, property, instance, and overall cor-
respondences.

System Time (s) # tasks Size Prec. F-m. Rec.

Class performance
AGM 10:47:38 5 14.6 0.23 0.09 0.06)
AML 0:45:46 4 27.5 0.78 (0.98) 0.69 (0.86) 0.61 (0.77)
baselineAltLabel 0:11:48 5 16.4 1.0 0.74 0.59
baselineLabel 0:12:30 5 16.4 1.0 0.74 0.59
DOME 1:05:26 4 22.5 0.74 (0.92) 0.62 (0.77) 0.53 (0.66)
FCAMap-KG 1:14:49 5 18.6 1.0 0.82 0.70
LogMap 0:15:43 5 26.0 0.95 0.84 0.76)
LogMapBio 2:31:01 5 26.0 0.95 0.84 0.76)
LogMapKG 2:26:14 5 26.0 0.95 0.84 0.76)
LogMapLt 0:07:28 4 23.0 0.80 (1.0) 0.56 (0.70) 0.43 (0.54)
POMAP++ 0:14:39 5 2.0 0.0 0.0 0.0
Wiktionary 0:20:14 5 21.4 1.0 0.8 0.67

Property performance
AGM 10:47:38 5 49.4 0.66 0.32 0.21)
AML 0:45:46 4 58.2 0.72 (0.91) 0.59 (0.73) 0.49 (0.62)
baselineAltLabel 0:11:48 5 47.8 0.99 0.79 0.66
baselineLabel 0:12:30 5 47.8 0.99 0.79 0.66
DOME 1:05:26 4 75.5 0.79 (0.99) 0.77 (0.96) 0.75 (0.93)
FCAMap-KG 1:14:49 5 69.0 1.0 0.98 0.96
LogMap 0:15:43 5 0.0 0.0 0.0 0.0)
LogMapBio 2:31:01 5 0.0 0.0 0.0 0.0)
LogMapKG 2:26:14 5 0.0 0.0 0.0 0.0)
LogMapLt 0:07:28 4 0.0 0.0 0.0 0.0)
POMAP++ 0:14:39 5 0.0 0.0 0.0 0.0)
Wiktionary 0:20:14 5 75.8 0.97 0.98 0.98

Instance performance
AGM 10:47:38 5 5169.0 0.48 0.25 0.17)
AML 0:45:46 4 7529.8 0.72 (0.90) 0.71 (0.88) 0.69 (0.86)
baselineAltLabel 0:11:48 5 4674.2 0.89 0.84 0.80
baselineLabel 0:12:30 5 3641.2 0.95 0.81 0.71
DOME 1:05:26 4 4895.2 0.74 (0.92) 0.70 (0.88) 0.67 (0.84)
FCAMap-KG 1:14:49 5 4530.6 0.90 0.84 0.79
LogMap 0:15:43 5 0.0 0.0 0.0 0.0)
LogMapBio 2:31:01 5 0.0 0.0 0.0 0.0)
LogMapKG 2:26:14 5 29190.4 0.40 0.54 0.86)
LogMapLt 0:07:28 4 6653.8 0.73 (0.91) 0.67 (0.84) 0.62 (0.78)
POMAP++ 0:14:39 5 0.0 0.0 0.0 0.0
Wiktionary 0:20:14 5 3483.6 0.91 0.79 0.70

Overall performance
AGM 10:47:38 5 5233.2 0.48 0.25 0.17)
AML 0:45:46 4 7615.5 0.72 (0.90) 0.70 (0.88) 0.69 (0.86)
baselineAltLabel 0:11:48 5 4739.0 0.89 0.84 0.80
baselineLabel 0:12:30 5 3706.0 0.95 0.81 0.71
DOME 1:05:26 4 4994.8 0.74 (0.92) 0.70 (0.88) 0.67 (0.84)
FCAMap-KG 1:14:49 5 4792.6 0.91 0.85 0.79
LogMap 0:15:43 5 26.0 0.95 0.01 0.0)
LogMapBio 2:31:01 5 26.0 0.95 0.01 0.0)
LogMapKG 2:26:14 5 29216.4 0.40 0.54 0.84)
LogMapLt 0:07:28 4 6676.8 0.73 (0.91) 0.66 (0.83) 0.61 (0.76)
POMAP++ 0:14:39 5 19.4 0.0 0.0 0.0
Wiktionary 0:20:14 5 3581.8 0.91 0.8 0.71
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Wiktionary). AML and LogMapKG set it higher than 0.6 whereas only DOME uses the
full range between zero and one. LogMap and LogMapBio uses a range of 0.3 and 0.8.
The confidences were analyzed with the MELT dashboard19 [28].

Regarding runtime, AGM (10:47:38) was the slowest system, followed by
LogMapKG and LogMapBio which were much faster. Besides AGM all five test cases
could be completed in under 3 hours.

4.11 Interactive matching

This year, three systems participated in the Interactive matching track. They are ALIN,
AML, and LogMap. Their results are shown in Table 16 and Figure 4 for both Anatomy
and Conference datasets.

The table includes the following information (column names within parentheses):

– The performance of the system: Precision (Prec.), Recall (Rec.) and F-measure (F-
m.) with respect to the fixed reference alignment, as well as Recall+ (Rec.+) for the
Anatomy task. To facilitate the assessment of the impact of user interactions, we
also provide the performance results from the original tracks, without interaction
(line with Error NI).

– To ascertain the impact of the oracle errors, we provide the performance of the
system with respect to the oracle (i.e., the reference alignment as modified by the
errors introduced by the oracle: Precision oracle (Prec. oracle), Recall oracle (Rec.
oracle) and F-measure oracle (F-m. oracle). For a perfect oracle these values match
the actual performance of the system.

– Total requests (Tot Reqs.) represents the number of distinct user interactions with
the tool, where each interaction can contain one to three conflicting correspon-
dences, that could be analysed simultaneously by a user.

– Distinct correspondences (Dist. Mapps) counts the total number of correspondences
for which the oracle gave feedback to the user (regardless of whether they were
submitted simultaneously, or separately).

– Finally, the performance of the oracle itself with respect to the errors it introduced
can be gauged through the positive precision (Pos. Prec.) and negative precision
(Neg. Prec.), which measure respectively the fraction of positive and negative an-
swers given by the oracle that are correct. For a perfect oracle these values are equal
to 1 (or 0, if no questions were asked).

The figure shows the time intervals between the questions to the user/oracle for the
different systems and error rates. Different runs are depicted with different colors.

The matching systems that participated in this track employ different user-
interaction strategies. While LogMap, and AML make use of user interactions exclu-
sively in the post-matching steps to filter their candidate correspondences, ALIN can
also add new candidate correspondences to its initial set. LogMap and AML both re-
quest feedback on only selected correspondences candidates (based on their similarity

19 http://oaei.ontologymatching.org/2019/results/knowledgegraph/
knowledge_graph_dashboard.html

74



Table 16. Interactive matching results for the Anatomy and Conference datasets.

Tool Error Prec. Rec. F-m. Rec.+
Prec.
oracle

Rec.
oracle

F-m.
oracle

Tot.
Reqs.

Dist.
Mapps

Pos.
Prec.

Neg.
Prec.

Anatomy Dataset

ALIN

NI 0.974 0.698 0.813 0.365 – – – – – – –
0.0 0.979 0.85 0.91 0.63 0.979 0.85 0.91 365 638 1.0 1.0
0.1 0.953 0.832 0.889 0.599 0.979 0.848 0.909 339 564 0.854 0.933
0.2 0.929 0.817 0.869 0.569 0.979 0.848 0.909 332 549 0.728 0.852
0.3 0.908 0.799 0.85 0.54 0.979 0.847 0.908 326 536 0.616 0.765

AML

NI 0.95 0.936 0.943 0.832 – – – – – – –
0.0 0.968 0.948 0.958 0.862 0.968 0.948 0.958 236 235 1.0 1.0
0.1 0.954 0.944 0.949 0.853 0.969 0.947 0.958 237 235 0.696 0.973
0.2 0.944 0.94 0.942 0.846 0.969 0.948 0.959 252 248 0.565 0.933
0.3 0.935 0.933 0.933 0.827 0.969 0.946 0.957 238 234 0.415 0.878

LogMap

NI 0.918 0.846 0.88 0.593 – – – – – – –
0.0 0.982 0.846 0.909 0.595 0.982 0.846 0.909 388 1164 1.0 1.0
0.1 0.962 0.831 0.892 0.566 0.964 0.803 0.876 388 1164 0.752 0.965
0.2 0.945 0.822 0.879 0.549 0.945 0.763 0.844 388 1164 0.57 0.926
0.3 0.933 0.815 0.87 0.535 0.921 0.724 0.811 388 1164 0.432 0.872

Conference Dataset

ALIN

NI 0.871 0.443 0.587 – – – – – – – –
0.0 0.914 0.695 0.79 – 0.914 0.695 0.79 228 373 1.0 1.0
0.1 0.809 0.658 0.725 – 0.919 0.704 0.798 226 367 0.707 0.971
0.2 0.715 0.631 0.67 – 0.926 0.717 0.808 221 357 0.5 0.942
0.3 0.636 0.605 0.62 – 0.931 0.73 0.819 219 353 0.366 0.908

AML

NI 0.841 0.659 0.739 – – – – – – –
0.0 0.91 0.698 0.79 – 0.91 0.698 0.79 221 220 1.0 1.0
0.1 0.846 0.687 0.758 – 0.916 0.716 0.804 242 236 0.726 0.971
0.2 0.783 0.67 0.721 – 0.924 0.729 0.815 263 251 0.571 0.933
0.3 0.721 0.646 0.681 – 0.927 0.741 0.824 273 257 0.446 0.877

LogMap

NI 0.818 0.59 0.686 – – – – – – – –
0.0 0.886 0.61 0.723 – 0.886 0.61 0.723 82 246 1.0 1.0
0.1 0.845 0.595 0.698 – 0.857 0.576 0.689 82 246 0.694 0.973
0.2 0.818 0.586 0.683 – 0.827 0.546 0.657 82 246 0.507 0.941
0.3 0.799 0.588 0.677 – 0.81 0.519 0.633 82 246 0.376 0.914

NI stands for non-interactive, and refers to the results obtained by the matching system in the
original track.
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Fig. 4. Time intervals between requests to the user/oracle for the Anatomy (top 4 plots) and Con-
ference (bottom 4 plots) datasets. Whiskers: Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1. The labels
under the system names show the average number of requests and the mean time between the
requests for the ten runs.
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patterns or their involvement in unsatisfiabilities) and AML presents one correspon-
dence at a time to the user. ALIN and LogMap can both ask the oracle to analyze
several conflicting correspondences simultaneously.

The performance of the systems usually improves when interacting with a perfect
oracle in comparison with no interaction. ALIN is the system that improves the most,
because its high number of oracle requests and its non-interactive performance was the
lowest of the interactive systems, and thus the easiest to improve.

Although system performance deteriorates when the error rate increases, there are
still benefits from the user interaction—some of the systems’ measures stay above their
non-interactive values even for the larger error rates. Naturally, the more a system relies
on the oracle, the more its performance tends to be affected by the oracle’s errors.

The impact of the oracle’s errors is linear for ALIN, and AML in most tasks, as
the F-measure according to the oracle remains approximately constant across all error
rates. It is supra-linear for LogMap in all datasets.

Another aspect that was assessed, was the response time of systems, i.e., the time
between requests. Two models for system response times are frequently used in the liter-
ature [11]: Shneiderman and Seow take different approaches to categorize the response
times taking a task-centered view and a user-centered view respectively. According to
task complexity, Shneiderman defines response time in four categories: typing, mouse
movement (50-150 ms), simple frequent tasks (1 s), common tasks (2-4 s) and complex
tasks (8-12 s). While Seow’s definition of response time is based on the user expec-
tations towards the execution of a task: instantaneous (100-200 ms), immediate (0.5-1
s), continuous (2-5 s), captive (7-10 s). Ontology alignment is a cognitively demanding
task and can fall into the third or fourth categories in both models. In this regard the re-
sponse times (request intervals as we call them above) observed in all datasets fall into
the tolerable and acceptable response times, and even into the first categories, in both
models. The request intervals for AML, LogMap and XMAP stay at a few milliseconds
for most datasets. ALIN’s request intervals are higher, but still in the tenth of second
range. It could be the case, however, that a user would not be able to take advantage
of these low response times because the task complexity may result in higher user re-
sponse time (i.e., the time the user needs to respond to the system after the system is
ready).

4.12 Complex Matching

Three systems were able to generate complex correspondences: AMLC, AROA [53],
and CANARD. The results for the other systems are reported in terms of simple align-
ments. The results of the systems on the five test cases are summarized in Table 17.

With respect to the Hydrography test case, only AMLC can generate two correct
complex correspondences which are stating that a class in the source ontology is equiv-
alent to the union of two classes in the target ontology. Most of the systems achieved
fair results in terms of precision, but the low recall reflects that the current ontology
alignment systems still need to be improved to find more complex relations.

In terms of GeoLink test cases, the real-world instance data from GeoLink Project is
also populated into the ontology in order to enable the systems that depend on instance-
based matching algorithms to evaluate their performance. There are three alignment
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Table 17. Results of the Complex Track in OAEI 2019.

Conference Populated Conference Hydrography GeoLink Taxon
Matcher

Prec. F-meas. Rec. Prec. Coverage relaxed Prec. relaxed F-meas. relaxed Rec. relaxed Prec. relaxed F-meas. relaxed Rec. Prec. Coverage
AGM - - - - - - - - - - - 0.06 - 0.14 0.03 - 0.04
Alin - - - 0.68 - 0.98 0.20 - 0.28 - - - - - - - -
AML - - - 0.59 - 0.93 0.31 - 0.37 - - - - - - 0.53 0.00
AMLC 0.31 0.34 0.37 0.30 - 0.59 0.46 - 0.50 0.45 0.10 0.05 0.50 0.32 0.23 - -
AROA - - - - - - - - 0.87 0.60 0.46 - -
CANARD - - - 0.21 - 0.88 0.40 - 0.51 - - - 0.89 0.54 0.39 0.08 - 0.91 0.14 - 0.36
DOME - - - 0.59 - 0.94 0.40 - 0.51 - - - - - - - -
FcaMapKG - - - 0.51 - 0.82 0.21 - 0.28 - - - - - - 0.63 - 0.96 0.03 - 0.05
Lily - - - 0.45 - 0.73 0.23 - 0.28 - - - - - - - -
LogMap - - - 0.56 - 0.96 0.25 - 0.32 0.67 0.10 0.05 0.85 0.29 0.18 0.63 - 0.79 0.11 - 0.14
LogMapBio - - - - - 0.70 0.10 0.05 - - - 0.54 - 0.72 0.08 - 0.11
LogMapKG - - - 0.56 - 0.96 0.25 - 0.32 0.67 0.10 0.05 - - - 0.55 - 0.69 0.14 - 0.17
LogMapLt - - - 0.50 - 0.87 0.23 - 0.32 0.67 0.10 0.05 - - - 0.54 - 0.72 0.08 - 0.11
ONTMAT1 - - - 0.67 - 0.98 0.20 - 0.28 - - - - - - - -
POMAP++ - - - 0.25 - 0.54 0.20 - 0.29 0.65 0.07 0.04 0.90 0.26 0.16 1.00 0.00
Wikitionary - - - 0.48 - 0.88 0.26 - 0.34 - - - - - - - -

systems that generate complex alignments in GeoLink Benchmark, which are AMLC,
AROA, and CANARD. AMLC didn’t find any correct complex alignment, while AROA
and CARARD achieved relatively good performance. One of the reasons may be that
these two systems are instance-based systems, which rely on the shared instances be-
tween ontologies. In other words, the shared instance data between two ontologies
would be helpful to the matching process.

In the Taxon test cases, only the output of LogMap, LogMapLt and CANARD could
be used to rewrite source queries.

With respect to the Conference test cases although the performance in terms of
precision and recall decreased for AMLC, AMLC managed to find more true positives
than the last year. Since AMLC provides confidence, it could be possible to include
confidence into the evaluation and this could improve the performance results. AMLC
discovered one more kind of complex mappings: the union of classes.

A more detailed discussion of the results of each task can be found in the OAEI
page for this track. For a second edition of complex matching in an OAEI campaign,
and given the inherent difficulty of the task, the results and participation are promising
albeit still modest.

5 Conclusions & Lessons Learned

In 2019, we witnessed a slight decrease in the number of participants in comparison
with previous years, but with a healthy mix of new and returning systems. However,
like last year, the distribution of participants by tracks was uneven.

The schema matching tracks saw abundant participation, but, as has been the trend
of the recent years, little substantial progress in terms of quality of the results or run
time of top matching systems, judging from the long-standing tracks. On the one hand,
this may be a sign of a performance plateau being reached by existing strategies and
algorithms, which would suggest that new technology is needed to obtain significant
improvements. On the other hand, it is also true that established matching systems tend
to focus more on new tracks and datasets than on improving their performance in long-
standing tracks, whereas new systems typically struggle to compete with established
ones.
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The number of matching systems capable of handling very large ontologies has in-
creased slightly over the last years, but is still relatively modest, judging from the Large
Biomedical Ontologies track. We will aim at facilitating participation in future editions
of this track by providing techniques to divide the matching tasks in manageable sub-
tasks (e.g., [30]).

According to the Conference track there is still need for an improvement with regard
to the ability of matching systems to match properties. To assist system developers in
tackling this aspect we provided a more detailed evaluation in terms of the analysis of
the false positives per matching system (available on the Conference track web page).
However, this could be extended by the inspection of the reasons why the matching
system found the given false positives.As already pointed out last year, less encouraging
is the low number of systems concerned with the logical coherence of the alignments
they produce, an aspect which is critical for several semantic web applications. Perhaps
a more direct approach is needed to promote this topic, such as providing a more in-
depth analysis of the causes of incoherence in the evaluation or even organizing a future
track focusing on logical coherence alone.

The consensus-based evaluation in the Disease and Phenotype track offers limited
insights into performance, as several matching systems produce a number of unique
correspondences which may or may not be correct. In the absence of a true reference
alignment, future evaluation should seek to determine whether the unique correspon-
dences contain indicators of correctness, such as semantic similarity, or appear to be
noise.

Despite the quite promising results obtained by matching systems for the Biodi-
versity and Ecology track, the most important observation is that none of the systems
has been able to detect mappings established by the experts. Detecting such correspon-
dences requires the use of domain-specific core knowledge that captures biodiversity
concepts. We expect this domain-specific background to be integrated in future ver-
sions of the systems.

The interactive matching track also witnessed a small number of participants.
Three systems participated this year. This is puzzling considering that this track is based
on the Anatomy and Conference test cases, and those tracks had 13 participants. The
process of programmatically querying the Oracle class used to simulate user interac-
tions is simple enough that it should not be a deterrent for participation, but perhaps
we should look at facilitating the process further in future OAEI editions by providing
implementation examples.

The complex matching track opens new perspectives in the field of ontology
matching. Tackling complex matching automatically is extremely challenging, likely
requiring profound adaptations from matching systems, so the fact that there were three
participants that were able to generate complex correspondences in this track should
be seen as a positive sign of progress to the state of the art in ontology matching. This
year automatic evaluation has been introduced following an instance-based comparison
approach.

The instance matching tracks and the new instance and schema matching track
counted few participants, as has been the trend in recent years. Part of the reason for
this is that several of these tracks ran on the HOBBIT platform, and the transition
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from SEALS to HOBBIT has not been as easy as we might desire. Thus, participation
should increase next year as systems become more familiar with the HOBBIT platform
and have more time to do the migration. Furthermore, from an infrastructure point of
view, the HOBBIT SDK will make the developing and debugging phase easier, and
the Maven-based framework will facilitate submission. However, another factor behind
the reduced participation in the instance matching tracks lies with their specialization.
New schema matching tracks such as Biodiversity and Ecology typically demand very
little from systems that are already able to tackle long-standing tracks such as Anatomy,
whereas instance matching tracks such as Link Discovery and last year’s Process Model
Matching, are so different from one another that each requires dedicated development
time to tackle. Thus, in future OAEI editions we should consider publishing new in-
stance matching (and other more specialized) datasets with more time in advance, to
give system developers adequate time to tackle them. Equally critical will be to en-
sure stability by maintaining instance matching tracks and datasets over multiple OAEI
editions, so that participants can build upon the development of previous years.

Automatic instance-matching benchmark generation algorithms have been gaining
popularity, as evidenced by the fact that they are used in all three instance matching
tracks of this OAEI edition. One aspect that has not been addressed in such algorithms
is that, if the transformation is too extreme, the correspondence may be unrealistic and
impossible to detect even by humans. As such, we argue that human-in-the-loop tech-
niques can be exploited to do a preventive quality-checking of generated correspon-
dences, and refine the set of correspondences included in the final reference alignment.

In the knowledge graph track, we could observe that simple baselines are still
hard to beat – which was also the case in other tracks when they were still new. We
expect more sophisticated and powerful implementations in the next editions.

Like in previous OAEI editions, most participants provided a description of their
systems and their experience in the evaluation, in the form of OAEI system papers.
These papers, like the present one, have not been peer reviewed. However, they are full
contributions to this evaluation exercise, reflecting the effort and insight of matching
systems developers, and providing details about those systems and the algorithms they
implement.

The Ontology Alignment Evaluation Initiative will strive to remain a reference to
the ontology matching community by improving both the test cases and the testing
methodology to better reflect actual needs, as well as to promote progress in this field.
More information can be found at: http://oaei.ontologymatching.org.
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45. Alessandro Solimando, Ernesto Jiménez-Ruiz, and Giovanna Guerrini. Detecting and cor-
recting conservativity principle violations in ontology-to-ontology mappings. In Proceedings
of the International Semantic Web Conference, pages 1–16. Springer, 2014.

46. Alessandro Solimando, Ernesto Jimenez-Ruiz, and Giovanna Guerrini. Minimizing con-
servativity violations in ontology alignments: Algorithms and evaluation. Knowledge and
Information Systems, 2016.

47. Christian Strobl. Encyclopedia of GIS, chapter Dimensionally Extended Nine-Intersection
Model (DE-9IM), pages 240–245. Springer, 2008.
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49. Élodie Thiéblin. Do competency questions for alignment help fostering complex correspon-
dences? In Proceedings of the EKAW Doctoral Consortium 2018, 2018.
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AnyGraphMatcher Submission to the OAEI
Knowledge Graph Challenge 2019?

Alexander Lütke1

University of Mannheim, Germany

Abstract. Matching objects between two different data bases typically
relies on syntactic similarity measurements and the exhausting of ontol-
ogy restrictions. As opposed to them, AnyGraphMatcher (AGM) intro-
duces an additional source of information for semantically matching data
– i.e. the creation of word embeddings. AGM’s key idea wraps around
a stable marriage for determining best matching data objects between
two data bases. Results on the OAEI knowledge graph track however
indicate the need for a more advanced blocking technique. Results show
that word embeddinngs are to be seen a supportive feature for mapping
rather than a key source of information.

Keywords: Ontology matching · Word embeddings · Semi-supervised
machine learning.

1 Presentation of the system

1.1 State, purpose, general statement

In recent years, data has developed into a differentiator for business success. But
organizations gathered data typically comes from various sources, which are mu-
tually heterogeneous and inconsistent. Identity resolution is required to locate
and integrate common pieces of information between these data sources. More
precisely, data elements between those data bases have to be compared to each
other and a decision on whether they describe the same real world concept must
be made. Most prevalent techniques resolve around the comparison of syntac-
tic elements, like titles, labels or descriptions. However, those techniques fail to
preserve the actual semantic meaning of data objects. Consider for example the
word Berlin, either describing Germany’s capital or a cargo ship. Just from the
title, the semantic meaning of the word “Berlin” cannot be determined. Recent
breakthrough in linguistics research on the latent representation of words offers
a promising opportunity [3]. The main notion wraps around the distributional
hypothesis by Harris, stating that the meaning of a word is defined by its con-
text. First, the hypothesis referred to linguistics only. But the adaptation in
Paulheim’s RDF2Vec approach [5] showcased, that the same concept is appli-
cable to (semi-)structured databases. ALOD2VEC [4] and DOME [1] are two

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 Internation (CC BY 4.0)
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systems, which already used the idea of word embeddings for data integration
in the 2018 OAEI challenge. Compared to them, AnyGraphMatcher (AGM) is a
novel concept specifically for identity resolution, which extends RDF2Vec with
the use of semi-supervised machine learning and stable marriage.

1.2 Specific techniques used

The task of identity resolution is perceived as a binomial statement whether two
given data elements describe the same real-world object. The final goal is such
a binomial prediction for the entire Cartesian product of all elements of two
databases A and B. Essentially, AnyGraphMatcher employs a five step process
to get there:

1. Blocking
2. Graph walk
3. Word embedding model
4. Semi-supervised machine learning
5. Stable marriage

The Cartesian product can be extremely large depending on the size of the
input datasets, representing a burden to runtime performance. However, most of
the object pairs from the Cartesian product will not be matching, particularly
if the input datasets are considered free of duplicates. So blocking is required.
Instead of performing the following, computationally expensive predictions on
the whole Cartesian product, a number of candidate-pairs is chosen based on
an efficient similarity computation first. All pairs except the candidate-pairs are
directly predicted non-matching. For the efficient candidate selection, a leven-
shtein automata is utilized, which measures syntactic distances. More precisely,
edit distances up to two edits per word in a string are calculated. Note one ma-
jor limitation in this concept: An assumption is met that actually corresponding
data objects have similar labels. This might increase precision, but decrease
recall.

Afterwards, a graph walk is employed, which iterates through the set of ver-
tices and edges of an ontology graph. While walking through the graph, visited
paths are written down, so that a corpus file is created in the end. The more de-
tailed, recursive procedure looks as follows: For each vertice, an outgoing edge is
selected. The edge is traced to its endpoint and the selection-procedure is started
from there on again. At each vertice visited, such a selection is triggered n times.
Furthermore, after excelling a distance of k steps from the vertice, where the path
started, the procedure is terminated. Due to runtime limitations, for the OAEI
submission, n equalling the number of outgoing edges of the current vertice and
k = 1 was chosen. Basically, this boils down to a simple NT-file representation
of an ontology. Further improvements could be derived from experiments with
larger k values.

The graph walk has generated a text corpus, which can be passed to a word
embedding model to form a latent representation of each word occurring in the
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corpus. As the utilized SkipGram neural model is quite prevalent today, further
details on the concept remains to the respective works in the literature. Since
the SkipGram model is however highly configurable, most parameters have been
adopted from the general recommendation of the inventors (e.g. hidden layer
size = 100) Only the number of epochs has been modified. Due to runtime
limitations, those depend on the size of the generated corpus, but halts between
10 and 250. After running the SkipGram model on the corpus, each resource in
the input ontology can be assigned a 100-dimensional vector.

The final goal is a prediction whether two candidate pairs correspond to each
other. This is achieved by semi-supervised machine learning. Supervision
requires for a gold standard, which cannot be presupposed for said mapping
tasks. That is why AnyGraphMatcher employs an automatic gold standard set
generation. For this purpose, the candidate-pairs from the blocking are con-
sidered once again. Special attention is paid to the similarity of data object’s
labels. For the efficient calculation, the library “Apache Lucene” is used, which
measures similarity in a value range of up to 2.5 for identical strings and 0.0
for very distant strings.1 Very similar candidate-pairs with a similarity-score of
2.0 or above are assumed matches. All further candidate-pairs, in which one of
the matching data objects occurs, are assumed non-matches. In the end, this
gold standard captures most apparent matches, but differentiates them by the
inclusion of matches (i.e. positives) and non-matches (i.e. negatives).

With the gold standard in place, a binary machine learning classifier – here
an XGBoost – can work properly. Besides, the classifier takes more information
than just the syntactic similarity into account. I.e. latent information is derived
from the SkipGram model and passed to the classifier. Pairwise cosine similarity,
Euclidean distance and SkipGram context probability (i.e. the probability that
resource x appears in the context of resource y) are calculated. Other than
expected, the binary classification is not meant to be the final prediction step
however. Rather, it is implemented as another, more enhanced way of blocking.
This is done by up-sampling the matching pairs during training until there are
1.5 times as many matches as non-matches. This procedure makes sure, that
only very likely non-matches are classified negatives and excluded from further
processing.

The final prediction is achieved by stable marriage under the assump-
tion of 1:1 cardinality mappings. Here, each data object is considered in isola-
tion first. All remaining candidate-pairs, in which a given data object appears,
are extracted. For all found candidate-pairs, an overall similarity score is cal-
culated. That score includes cosine similarity, Euclidean distance, SkipGram
context probability and levenshtein distance. For each of these measures, the
relative similarity in comparison with other candidate-pairs is computed. This
is quantified by the position p in the following formula:

simrelative = 2−(p−1) (1)

1 The exact calculation is not meant to be explained here. For further details, refer to
https://lucene.apache.org/core/3 5 0/scoring.html.
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The following tables 1.2, 1.2 and 1.2 illustrate the idea once more. The focused
data object in these tables is called A. A might match to B, C and D. Table
1.2 shows various thought similarity values between the candidate objects and
A. Stable marriage goes on as follows to determine which one of the candidates
is the best matching one: Table 1.2 indicates the order, how well a candidate-
pair matches compared to other candidate pairs. Note that each of the similarity
measure is still considered in isolation here. Table 1.2 then translates the ordering
into values computed by the equation above. The final score in table 1.2 is
calculated by summing the translated values for each of the candidate pairs. The
one pair with the highest total score is assumed to match best. As a secondary
criterion for further discrimination, the score derived from Levenshtein distance
is taken. The way the final score is calculated is to be seen as an optimisable
characteristic of AGM.

Candidate-pair Cos. sim Eucl. dist. Lev. dist. P(Context)

A – B 0.5 1.5 4 0.1

A – C 0.8 1.0 8 0.15

A – D 0.7 1.4 5 0.2
Table 1. Similarity measures of candidate pairs

Candidate-pair Relative Position

Cos. sim Euclid. dist Lev. dist. P(Context)

A – B 3 3 1 3

A – C 1 1 3 2

A – D 2 2 2 1
Table 2. Ordering candidate pairs based on their relative similarity

Candidate-pair Preliminary score Total score
Cos. sim Euclid. dist Lev. dist. P(Context)

A – B 0.25 0.25 1 0.25 1.75

A – C 1 1 0.25 0.5 2.75

A – D 0.5 0.5 0.5 1 2.5
Table 3. Ordering candidate pairs based on a final score calculation
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1.3 Summary of the system’s limitations

Despite AnyGraphMatcher’s exploitation of a wide range of characteristics of
data objects, it suffers from two major limitations:

First, strong confidence is set to syntactic similarity. Basically two assump-
tion lead to this conclusion: (1) data objects, which are syntactically similar, do
match (see gold standard generation) and (2) actually matching data objects
have similar labels (see blocking).

Second limitation is the recall-bias in the entire pipeline. Note that the only
three steps in place to predict candidate-pairs negative are (1) blocking, (2)
semi-supervised machine learning and (3) stable marriage. Blocking (1) and semi-
supervised machine learning (2) themselves are recall-biased. So they prefer to
predict (syntactically) similar samples as positives rather than negatives. Stable
marriage can only predict negatives, if a data object has already been identified
a match with another data object. So all in all, there is no strict exclusion of
negatives from the set of candidate-pairs. This might raise precision, but reduce
recall.

In sum, AGM can basically exploit semantics, if and only if the underlying
data sets consistently follow the syntactic similarity assumption from above.

1.4 Adaptations made for the evaluation

For the OAEI submission, the melt framework provided by the University of
Mannheim has been used [2]. Melt handles most of the regulations required
for submitting matcher systems to the OAEI challenge. Since melt is originally
written in Java, while AGM is mainly developed in Python, melt is used as a
wrapper service, that calls the AGM pipeline by starting a new Python-process.
Furthermore, the blocking process has been adapted to run more efficiently on
the larger of the data sets in the OAEI knowledge graph track. A very strict
blocking is applied, that initially excludes a lot candidate matches. Whether
this technique harms recall is to be clarified in the results section.

1.5 Link to the system and parameters file

The implementation of AGM can be found on Github using the link
https://github.com/XLexxaX/AnyGraphMatcher/tree/SUBMISSION.

2 Results

The following paragraphs shortly outline the results of AGM compared to the
baseline figures. It therefore refers to the full result table available online on
http://oaei.ontologymatching.org/2019/results/knowledgegraph/index.html. For
the reason of comprehensibility, table 4 lists a more compact overview of the
knowledge graph track.
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System Prec. F-m. Rec.

AGM 0.48 (0.48) 0.25 (0.25) 0.17 (0.17)
AML 0.72 (0.90) 0.70 (0.88) 0.69 (0.86)
baselineAltLabel 0.89 (0.89) 0.84 (0.84) 0.80 (0.80)
baselineLabel 0.95 (0.95) 0.81 (0.81) 0.71 (0.71)
DOME 0.74 (0.92) 0.70 (0.88) 0.67 (0.84)
FCAMap-KG 0.91 (0.91) 0.85 (0.85) 0.79 (0.79)
LogMapKG 0.40 (0.40) 0.54 (0.54) 0.84 (0.84)
LogMapLt 0.73 (0.91) 0.66 (0.83) 0.61 (0.76)
Wiktionary 0.91 (0.91) 0.80 (0.80) 0.71 (0.71)

Table 4. Comprehensive overview of the OAEI knowledge graph track results

2.1 Marvel Cinematic Universe Wiki ∼ MarvelDatabase

With an overall F-score of 11%, AGM fails to output proper mappings on the
first of the five mapping tasks. Taking a closer look at the five steps in the AGM
pipeline, the exclusion of many candidate-mappings during blocking stands out.

2.2 Memory Alpha ∼ MemoryBeta

The mapping of Memory Alpha to Memory Beta yielded slightly better results
with an F-score of 32%. But still, the purely syntax-based baseline oupterforms
AGM by approximately 50%. Notable is however, that this time, precision (47%)
is significantly better than recall (24%).

2.3 Memory Alpha ∼ StarTrekExpandedUniverse

The observations from Memory Alpha and Memory Beta continue throughout
the remaining three mapping tasks. All in all, an F-score of 30% was achieved
when mapping Memory Alpha to Star Trek Expanded Universe. The baseline of
91% F-score is missed.

2.4 Star Wars Wiki ∼ StarWarsGalaxiesWiki

For the Star wars wiki mapping, again 30% F-score is achieved. The baseline
F-score of 67% is out of reach. Note however the even larger gap of 52% between
AGM’s precision and recall this time.

2.5 Star Wars Wiki ∼ TheOldRepublicWiki

Repeatedly, a 52% gap between recall and precision is conspicious. The F-score
of 20% does not meet the pretension of the baseline by far.
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3 General comments

3.1 Comments on the results

In sum, results of AGM on the knowledge graph track are relatively weak com-
pared to the baseline figures. Mainly recall is lacking behind the competition’s
results. This can be traced back to the strict blocking technique. However, pre-
cision also lacks behind the baseline figures. Recap, that a levenshtein automata
has been used, which can only measure edit distances of up to 2 edits per word. In
case two long texts are compared, this restriction leads to imprecise measuring.
So the levenshtein automata as implemented in AGM is rather an approxima-
tion of syntactic similarity. Nevertheless, a static threshold has been used for
blocking (see section 1.2), such that in the end precision suffers as well.

3.2 Discussions on the way to improve the proposed system

In order to compensate for the weak results, another way has to be found block
based on a weaker threshold, while ensuring runtime efficiency of the AGM
pipeline. One idea is to loosen the current threshold and introduce a second
blocking step, that blocks based on exact edit distances for all candidates found
by the levensthein automata.

4 Conclusion

AGM follows a novel approach to data mappings by utilizing the idea of word
embeddings. It implements a five step process including blocking, a graph walk,
embedding creation, semi-supervised machine learning and stable marriage. By
combining different similarity measures derived from syntax and word embed-
dings, AGM aims to yield semantically correct mappings. However results show
a relatively poor performance compared to the purely syntax based baseline fig-
ures. A strict and imprecise blocking technique has been identified a root cause.
Though the results cannot achieve the baseline figures, they provide a valuable
outcome for AGM’s approach in general: The stable marriage depends a lot on
the upstream steps and suffers from error-propagation. This implies that fea-
tures derived from embeddings cannot be solely used for mapping. Embeddings
are to be seen an approximation of concept’s semantic meaning, such that they
can additionally support in distinguishing them. In order to compensate for this
observation in the future, a more advanced blocking technique is required.
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Abstract. 1 ALIN is an ontology matching system specialized in the
interactive ontology matching, and its main characteristic is the use of
expert feedback to improve the set of selected mappings, using semantic
and structural techniques to make this improvement. This paper de-
scribes its configuration for the OAEI 2019 competition and discusses its
results.
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1 Presentation of the System

Due to the advances in information and communication technologies, a large
amount of data repositories became available. Those repositories, however, are
highly semantically heterogeneous, which hinders their integration. Ontology
matching has been successfully applied to solve this problem, by discovering
mappings between two distinct ontologies which, in turn, conceptually define
the data stored in each repository. Among the various ontology matching ap-
proaches that exist in the literature, interactive ontology matching includes the
participation of domain experts to improve the quality of the final alignment [1].
ALIN is an interactive ontology matching system and has been participating in
all OAEI editions since 2016, with improving results.

1.1 State, Purpose and General Statement

ALIN is a system for interactive ontology matching that consists of two steps:
one non-interactive and one interactive. In the first step, ALIN chooses the first
mappings, among which some are directly placed in the alignment and others
are presented to the expert. In the 2019 version, ALIN uses new techniques to
improve the first step, thus placing more mappings directly in the alignment
without having to present them to the expert.

1 Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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1.2 Specific Techniques Used

Alin handles three sets of mappings: (i) Accepted, which is a set of mappings
definitely to be retained in the alignment; (ii) Selected, which is a set of mappings
where each is yet to be decided if it will be included in the alignment; and (iii)
Suspended, which is a set of mappings that have been previously selected, but
(temporarily or permanently) filtered out of the alignment.

Given the previous definitions, Alin procedure follows 5 Steps, described as
follows:

1. Select mappings: select the first mappings and automatically accepts some
of them. We explain the selection and acceptance process below;

2. Filter mappings: suspend some selected mappings, using lexical criteria for
that;

3. Ask expert: accepts or rejects selected mappings, according to expert feed-
back

4. Propagate: select new mappings, reject some selected mappings or unsuspend
some suspended mappings (depending on newly accepted mappings)

5. Go back to 3 as long as there are undecided selected mappings

All versions of ALIN (since its very first OAEI participation) follow this
general procedure. In this 2019 version, however, we introduced modifications in
Step 1. In previous versions, ALIN automatically accepted only the entities with
the same name. In this version, ALIN also automatically accepts the entities
whose names are synonyms or with variations in name words. ALIN searches
synonyms in the Wordnet. In the Anatomy track, ALIN uses the FMA ontology
too.

ALIN applies the following techniques:

– Line 1. ALIN selects mappings using linguistic similarities between entity
names. ALIN uses synonyms and variations in entity name words to auto-
matically accept mappings. At this time, ALIN automatically selects and
accepts only concept mappings. To do that, ALIN uses linguistic metrics.
ALIN uses the Wordnet and domain-specific ontologies (the FMA Ontology
in the Anatomy track) to find synonyms between entities.

– Line 2. ALIN suspends the selected mappings whose entities have low lexical
similarity. We use the Jaccard, Jaro-Wrinkler, and n-gram lexical metrics to
calculate the lexical similarity of the selected mappings. We based the process
of choosing the similarity metrics used by ALIN on the result of these metrics
in assessments [2]. It is important to know that these suspended mappings
can be unsuspended later, by structural analysis, as proposed in [3].

– Line 3. At this point, the expert interaction begins. ALIN sorts the selected
mappings in a descending order according to the sum of similarity metric
values. The sorted selected mappings are submitted to the expert.

– Line 4. Initially, the set of selected mappings contains only concept map-
pings. At each interaction with the expert, if the expert accepts the mapping,
ALIN (i) removes from the set of selected mappings all the mappings that
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compose the mapping anti-pattern [4][5] (we explain mapping anti-pattern
below) with the accepted mappings; (ii) selects data property (like [6]) and
object property mappings related to the accepted concept mappings; (iii)
unsuspends all concept mappings whose both entities are subconcepts of the
concept of an accepted mapping, following a similar technique proposed in
our previous work [3].

– Line 5. The interaction phase continues until there are no selected mappings.

An ontology may have construction constraints, such as a concept cannot be
equivalent to its superconcept. An alignment may have other constraints like,
for example, an entity of ontology O cannot be equivalent to two entities of the
ontology O′. A mapping anti-pattern is a combination of mappings that generates
a problematic alignment, i.e., a logical inconsistency or a violated constraint.

1.3 Link to the System and Parameters File

ALIN is available 2 as a package to be run through the SEALS client.

2 Results

Interactive ontology matching is the focus of the ALIN system. Comparing its
results in the 2019 campaign to its previous participations (Table 5), ALIN
improvements include an expressive reduction on the number of interactions
with the expert and the increase of the quality of the generated alignment.

2.1 Comments on the Participation of the ALIN in Non-Interactive
Tracks

ALIN used new techniques to automatically accept mappings. These techniques
led to an increase in the F-Measure of non-interactively generated alignment,
which shows the effectiveness of the techniques. (Table 1 and Table 2). Confer-
ence track, unlike the Anatomy track, has relationship mappings and attribute
mappings that ALIN does not automatically accept, thus making the F-Measure
on the Conference track, although higher than last year, still low.

Table 1. Participation of ALIN in Anatomy Non-Interactive Track - OAEI
2018[7]/2019[8]

Year Precision Recall F-measure

2018 0.998 0.611 0.758
2019 0.974 0.698 0.813

2 https : //drive.google.com/file/d/1SxJL6fLRV qI84epm8DbAM lcscEoGbgZ/view?usp =
sharing
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Table 2. Participation of ALIN in Conference Non-Interactive Track - OAEI
2018/2019[9]

Year Precision Recall F-measure

2018 0.81 0.42 0.55
2019 0.82 0.43 0.56

2.2 Comments on the Participation of the ALIN in Interactive
Tracks

In the Anatomy track, ALIN was tied for second in quality (F-Measure) with
slightly lower total requests (Table 3). In the Conference track, ALIN was tied
for first in quality with a slightly higher total request (Table 4).

Table 3. Participation of ALIN in Anatomy Interactive Track - Error Rate 0.0[10]

Tool Precision Recall F-measure Total Requests

ALIN 0.979 0.85 0.91 365
AML 0.968 0.948 0.958 236

LogMap 0.982 0.846 0.909 388

Table 4. Participation of ALIN in Conference Interactive Track - Error Rate 0.0[10]

Tool Precision Recall F-measure Total Requests

ALIN 0.914 0.695 0.79 228
AML 0.91 0.698 0.79 221

LogMap 0.886 0.61 0.723 82

Interactive Anatomy Track In this track, ALIN has had a decrease in the
number of expert interactions and an increase in the quality of the generated
alignment, showing that the new techniques used to automatically accept correct
mappings are effective (Table 5).

ALIN used the FMA ontology to help find synonyms between the two on-
tologies of the Anatomy track. The Foundational Model of Anatomy Ontology
(FMA) is a reference ontology for the domain of Human anatomy 3.

3 “Foundational Model of Anatomy Ontology”. Available at
http://sig.biostr.washington.edu/projects/fm/AboutFM.html Last accessed on
Oct, 11, 2019.
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Interactive Conference Track In this track, ALIN has had a decrease in the
number of expert interactions keeping a good quality of the generated alignment
(Table 7).

2.3 Comparison of the Participation of ALIN in OAEI 2019 with
his Participation in OAEI 2018

In this version, ALIN uses new techniques to automatically accept mappings.
These techniques use synonyms and word variations to find equal entities be-
tween the two ontologies. ALIN also started to use FMA ontology as an external
resource.

The use of the new techniques proved to be effective as it reduced the number
of interactions while keeping a good level of quality. The new techniques also
increased the quality of the alignment generated in Anatomy interactive tracking,
where ALIN used the FMA ontology.

It is not always possible to use an external resource to find synonyms between
entities of two ontologies, but when this is possible, the results showed that it is
worth it.

The quality of the alignment generated by ALIN is dependent on the correct
expert feedback, as expert responses are used to select new mappings. When
ALIN selects wrong mappings, the quality of the generated alignment tends to
decrease. But if we compare this year’s quality decline with last year’s, we see
that this fall is less sharp (Table 6 and Table 8). The less sharp decline in quality
is because we need less user interaction as we are automatically accepting more
mappings.

The organization of FMA ontology in memory and the search for synonyms
and word variations led to longer run time (Table 9 and Table 10)

Table 5. Participation of ALIN in Anatomy Interactive Track - OAEI
2016[11]/2017[12]/2018[7]/2019[10] - Error Rate 0.0

Year Precision Recall F-measure Total Requests

2016 0.993 0.749 0.854 803
2017 0.993 0.794 0.882 939
2018 0.994 0.826 0.902 602
2019 0.979 0.85 0.91 365

3 General Comments

Evaluating the results, we can see that the system has improved, although it can
improve even further, towards:

– handling user error rate;
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Table 6. F-Measure of ALIN in Anatomy Interactive Track - OAEI /2018[7]/2019[10]
- with Different Error Rates

Year Error rate 0.0 Error rate 0.1

2018 0.902 0.854
2019 0.91 0.889

Table 7. Participation of ALIN in Conference Interactive Track - OAEI
2016[11]/2017[12]/2018[7]/2019[10] - Error Rate 0.0

Year Precision Recall F-measure Total Requests

2016 0.957 0.735 0.831 326
2017 0.957 0.731 0.829 329
2018 0.921 0.721 0.809 276
2019 0.914 0.695 0.79 228

Table 8. F-Measure of ALIN in Conference Interactive Track - OAEI /2018[7]/2019[10]
- with Different Error Rates

Year Error rate 0.0 Error rate 0.1

2018 0.809 0.705
2019 0.79 0.725

Table 9. Run Time (sec) in Anatomy Interactive Track - OAEI /2018[13]//2019[10]

Tool 2018 2019

ALIN 317 2132
AML 48 82

LogMap 23 29

Table 10. Run Time (sec) in Conference interactive track - OAEI /2018[13]/2019[10]

Tool 2018 2019

ALIN 106 397
AML 35 34

LogMap 37 37

– generating a higher quality initial alignment in its non-interactive phase;

– reducing the number of interactions with the expert;

And there was a worsening run time, where we could improve too.
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3.1 Conclusions

ALIN used new techniques to automatically accept new mappings. They have
been effective in reducing the number of interactions, while also keeping good
quality in the generated alignment. In the case of the Anatomy track, these new
techniques both decreased the number of interactions and increased the quality
of the generated alignment. We can explain this quality improvement in this
track by the use of the FMA ontology as a new external resource. With the use
of the new techniques in both Anatomy and Conference tracks, there has been
a less sharp drop in quality as the expert makes mistakes. Nevertheless, ALIN
had an increase in run time due to the use of the new techniques, which may be
addressed in future work.
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Abstract. AgreementMakerLight (AML) is an ontology matching system de-
signed with scalability, extensibility and satisfiability as its primary guidelines,
as well as an emphasis on the ability to incorporate external knowledge. In OAEI
2019, AML’s development focused mainly on expanding its range of complex
matching algorithms, but there were also improvements on its instance match-
ing pipeline and ontology parsing algorithm. AML remains the system with the
broadest coverage of OAEI tracks, and among the top performing systems over-
all.

1 Presentation of the System

1.1 State, Purpose, General Statement

AgreementMakerLight (AML) is an ontology matching system inspired on Agreement-
Maker [1, 2] and drawing on its design principles, but with an added focus on scalability
to tackle large ontology matching problems [8]. While initially focused primarily on the
biomedical domain, it is currently a general purpose ontology matching system that is
able to successfully tackle a broad range of problems.
AML is primarily based on lexical matching algorithms [9], but also includes structural
algorithms for both matching and filtering, as well as its own logical repair algorithm
[10]. It makes use of external biomedical ontologies and the WordNet as sources of
background knowledge [7].
This year, our development of AML was mainly focused on expanding the arsenal of
complex matching algorithms of AML to improve its performance in the new Complex
Matching track. The complex matching version of AML, dubbed AMLC, remains sep-
arate from the main AML submission, as we have been as of yet unable to integrate the
complex code into the main code-base.
In addition to these two versions, we again participated in the SPIMBENCH and Link
Discovery tracks via the HOBBIT platform. In the case of SPIMBENCH, we partici-
pated with the HOBBIT adaptation of the main AML code-base. In the case of Link
Discovery, we participated with two specialized versions of AML (AML-Spatial and
AML-Linking for the Spatial and Linking tasks respectively) as had been the case in

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).
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OAEI 2017 and 2018, due to the unique characteristics of these matching tasks and to
the unavailability of the TBox assertions in the HOBBIT datasets.

1.2 Specific Techniques Used
This section describes only the features of AML that are new for the OAEI 2019. It also
describes AMLC, a variant of AML tailored to complex matching. For further infor-
mation on AML’s simple matching strategy, please consult AML’s original paper [8] as
well as the AML OAEI results publications of the last four editions [4, 5, 3, 6].

1.2.1 AML

Ontology Parsing

We made a few extensions to AML’s ontology parser to enable it to infer the types of
ontology properties declared only as rdf:property (which the OWL API interprets as
annotation properties by default). There were critical to correctly interpret and match
the datasets for the Knowledge Graph track.

Instance Matching

We refined AML’s instance matching pipeline to more adequately distinguish between
cases where lexical matching should be the primary strategy complemented by property-
based matching, and cases where property-based matching should be the primary strat-
egy, by using the ratios of labels per instances and property values per instances as de-
ciding factors. These improvements were critical to AML’s effectiveness on the Knowl-
edge Graph track.

1.2.2 AMLC

For the complex matching track, we developed algorithms to tackle additional types of
EDOAL mappings, namely mappings involving union class constructs. Furthermore,
we refined the Attribute Occurrence Restrictions and Attribute Domain Restrictions al-
gorithms developed last year to take into account instance data when available.

These changes allowed AML to match ontologies from the GeoLink dataset, in
addition to those from the Conference dataset.

1.3 Adaptations made for the evaluation
As was the case last year, the Link Discovery submissions of AML are adapted to these
particular tasks and datasets, as their specificities (namely the absence of a Tbox) de-
mand a dedicated submission. The same is also true to some extent of AML’s Complex
Matching submission.
As usual, our submission included precomputed dictionaries with translations, to cir-
cumvent Microsoftr Translator’s query limit.

1.4 Link to the system and parameters file
AML is an open source ontology matching system and is available through GitHub:
https://github.com/AgreementMakerLight.
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2 Results

2.1 Anatomy

AML’s result was the same as in previous years, with 95% precision, 93.6% recall,
94.3% F-measure, and 83.2% recall++. It remains the best ranking system in this track
by both F-measure and recall++.

2.2 Conference

AML’s result was exactly the same as in recent years, with 74% F-measure according
to the full reference alignment 1, 70% F-measure according to the extended reference
alignment 2, 78% F-measure according to the discrete uncertain reference alignment,
and 77% according to the continuous one. It remains the best ranking system in this
track or tied for best by F-measure according to 4 of the 5 sets of reference alignments
available. It ranks second by F-measure on the violation free version of reference align-
ment 2, as enforcing the removal of conservativity violations can produce undesired
practical effects that are not aligned with AML’s guiding principles, so our repair algo-
rithm does not take them into account.

2.3 Multifarm

AML’s results were similar to last year, ranking first with 45% F-measure in the differ-
ent ontologies modality, but second with only 27% F-measure in the same ontologies
modality. We are still unsure as to why AML performs worse in the same ontologies
modality.

2.4 Complex Matching

AMLC was configured only for the Conference and Geolink datasets. It also produced
results in the Hydrography dataset, but these were expectedly mediocre.
On the conference dataset, AMLC was the only system to participate in the non-populated
version (using the simple reference alignment as input). It improved its recall in relation
to last year (37% versus 25%) but this came at the expense of precision and so resulted
in an identical F-measure of 34%. On the populated version, it had the highest range of
coverage (query F-measure) with 46-50%.
On the GeoLink dataset, AMLC obtained a comparably modest F-measure of 32% (the
top system had 60%).

2.5 Interactive Matching

AML had an identical performance to last year, as no changes were made to its interac-
tive algorithms. It remains the system with the best F-measure in both the Anatomy and
Conference datasets across all error rates (though it also has the best non-interactive
F-measure in these datasets).

103



2.6 Large Biomedical Ontologies

AML had an F-measure of 93.3% in FMA-NCI small, 84.1% in FMA-NCI whole,
83.5% in FMA-SNOMED small, 69.7% in FMA-SNOMED whole, 81.8% in SNOMED-
NCI small and 76.5% in SNOMED-NCI whole. In comparison with last year, its per-
formance decreased in all large tasks, due to the erroneous addition of an imprecise
matching algorithm in the matching pipeline when testing new configurations. Despite
this, it remains the best performing system in five of the six tasks.

2.7 Disease and Phenotype

AML generated 2029 mappings in the HP-MP task, 330 of which were unique. It ranked
third by F-measure according to the 3-vote silver standard, but this does not necessarily
reflect its actual performance, as the unique mappings were not evaluated. If half of
AML’s unique mappings were proven correct, which is highly likely given the high
precision AML obtains in other biomedical tasks, it would rank first in F-measure.
In the DOID-ORDO task, it generated by far the most mappings (4781) and the most
unique mappings (2342), and as a result had a relatively low F-measure according to the
3-vote silver standard (65.1%). Again, assessing the correctness of the unique mappings
would be essential to gauge AML’s true performance.

2.8 Biodiversity and Ecology

AML obtained the highest F-measure in both datasets, with 78.8% in the FLOPO-PTO
task and 80.8% in the ENVO-SWEET task. It ranked first in recall and produced both
the most mappings and the most unique mappings.

2.9 SPIMBENCH

AML obtained the same results as last year, with an F-measure of 86%, ranking third
by F-measure.

2.10 Link Discovery

As in previous years, AML produced a perfect result (100% F-measure) in the Linking
and all the Spatial tasks. It was among the most efficient systems in the later, and the
only system participating in the former.

2.11 Knowledge Graph

AML was able to complete only four of the five tasks due to an unforeseen timeout in
the largest task (which it had been able to carry out in testing). It produced an average
F-measure of only 70% if the missing task is counted as zero, but of 88% when it is
ignored. In fact, it ranked either first or second in F-measure in all the four tasks it
completed.
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3 General comments

3.1 Comments on the results

This year, AML was again the system that tackled the most OAEI tracks and datasets,
maintaining its status as one of the broadest and best performing matching systems
available to the community.
However, unlike AML’s performance in traditional (simple) matching tracks, there is
clearly room for improvement for AML in complex matching, as it had modest F-
measures. We will strive to refine and improve AML’s complex matching pipeline and
contribute to the development of this branch of ontology matching.

3.2 Comments on the OAEI test cases

We once again laud the efforts of the organizers of both returning and especially new
tracks, as the effort involved in organizing them cannot be overstated.
Nevertheless, we must again comment on the unsatisfactory evaluation in the Disease
and Phenotype track by means of silver standards generated from the alignments pro-
duced by the participating systems via voting. We understand the effort required to build
a manually curated reference alignment, but we believe that it is paramount to invest in
it, in order to enable a proper evaluation of matching systems.

4 Conclusion

Like in recent years, AML was the matching system that participated in the most OAEI
tracks and datasets, and it was among the top performing systems in most of them.
AML’s performance did not improve in any of the long-standing OAEI tracks, as most
of our development effort went into tackling new challenges and extending the range
of AML. We improved substantially our results in the knowledge graph track in com-
parison with last year, thanks to the extensions to AML’s ontology parsing algorithm
and its instance matching pipeline. We were also able to extend AML’s complex match-
ing algorithm portfolio, but despite this, AML complex matching performance requires
further improvement. We will continue to invest in addressing this aspect of ontology
matching in the near future
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Abstract. This paper introduces the results of alignment system AROA
in the OAEI 2019 campaign. AROA stands for Association Rule-based
Ontology Alignment system. This ontology alignment system can pro-
duce simple and complex alignment between ontologies that share com-
mon instance data. This is the first participation of AROA in the OAEI
campaign, and it produces best performance on one of complex bench-
marks (GeoLink).

1 Presentation of the system

1.1 State, purpose, general statement

AROA (Association Rule-based Ontology Alignment) system is aimed to auto-
matically generate simple and complex alignment between two and more ontolo-
gies. These ontologies would be required to share common instance data because
AROA relies on association rule mining and would require these instances as in-
puts. After generating a set of association rules, AROA utilizes some simple and
complex correspondences that have been widely accepted in Ontology Match-
ing community [4, 6] to further narrow the large number of rules down to more
meaningful ones and finally establishes the alignments.

1.2 Specific techniques used

Figure 1 illustrates the overview of AROA alignment system. In this section, we
introduce each step of AROA alignment system along with some concepts that
we frequently use in AROA system, such as association rule mining, FP-growth
algorithm, and complex alignment generation.

Clean Triple. First, AROA extracts all triples as the format of 〈Subject,
Predicate, Object〉 from the source and target ontologies. Each item in a triple
is expressed as a web URI. After collecting all of the triples, we clean the data
based on the following criteria: we only keep the triples that contain at least one
entity under the source or the target ontology namespace or the triples contain
rdf:type information, since our algorithm relies on this information.

∗Copyright c© 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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Fig. 1. Overview of AROA Alignment System

Generate Transaction Database. After filtering process, we generate
the transaction database as the input for the FP-growth algorithm. Let I =
{i1, i2, . . . , in} be a set of distinct attributes called items. Let D = {t1, t2, . . . , tm}
be a set of transactions where each transaction in D has a unique transaction ID
and contains a subset of the items in I. Table 1 shows a list of transactions cor-
responding to a list of triples. Instance data can be displayed as a set of triples,
each consisting of subject, predicate, and object. Here, subjects represent the
identifiers and the set of corresponding properties with the objects represent
transactions, which are separated by the symbol “|”. I.e., a transaction is a set
T = (s, Z) such that s is a subject, and each member of Z is a pair (p, o) of a
property and an object such that (s, p, o) is an instance triple.

Generate Typed Transaction Database. Then we replace the object
in the triples with its rdf:type3 because we focus on generating schema-level
(rather than instance-level) mapping rules between two ontologies, and the type

3If there are multiple types of the object, it can also combine the subject and
predicate as additional information to determine the correct type, or keep both types
as two triples.

Table 1. Triples and Corresponding Transactions

s1 p1 o1
s1 p2 o2
s1 p4 o4
s2 p1 o1
s2 p2 o2
s2 p3 o3
s2 p4 o4
s3 p1 o1
s3 p2 o2

TID Itemsets

s1 p1|o1, p2|o2, p4|o4
s2 p1|o1, p2|o2, p3|o3, p4|o4
s3 p1|o1, p2|o2
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Table 2. Original Transaction Database

TID Itemsets

x1 gbo:hasAward|y1, gmo:fundedBy|y2
x2 gbo:hasFullName|y3, gmo:hasPersonName|y4
x3 rdf:type|gbo:Cruise, rdf:type|gmo:Cruise

Table 3. Typed Transaction Database

TID Itemsets

x1 gbo:hasAward|gbo:Award, gmo:fundedBy|gmo:FundingAward

x2 gbo:hasFullName|xsd:string, gmo:hasPersonName|gmo:PersonName

x3 rdf:type|gbo:Cruise, rdf:type|gmo:Cruise

information of the object is more meaningful than the original URI. If an object
in a triple has rdf:type of a class in the ontology, we replace the URI of the object
with its class. If the object is a data value, the URI of the object is replaced
with the datatype. If the object already is a class in the ontology, it remains
unchanged. Tables 2 and 3 show some examples of the conversion.

Generate Association Rules. Our alignment system mainly depends on
a data mining algorithm called association rule mining, which is a rule-based
machine learning method for discovering interesting relations between variables
in large databases [3]. Many algorithms for generating association rules have
been proposed, like Apriori [1] and FP-growth algorithm [2]. In this paper,
we use FP-growth to generate association rules between ontologies, since the
FP-growth algorithm has been proven superior to other algorithms [2]. The FP-
growth algorithm is run on the transaction database in order to determine which
combinations of items co-occur frequently. The algorithm first counts the num-
ber of occurrences of all individual items in the database. Next, it builds an
FP-tree structure by inserting these instances. Items in each instance are sorted
by descending order of their frequency in the dataset, so that the tree can be
processed quickly. Items in each instance that do not meet the predefined thresh-
olds, such as minimum support and minimum confidence (see below for these
terms), are discarded. Once all large itemsets have been found, the association
rule creation begins. Every association rule is composed of two sides. The left-
hand-side is called the antecedent, and the right-hand-side is the consequent.
These rules indicate that whenever the antecedent is present, the consequent is

Table 4. Examples of Association Rules

Antecedent Consequent

p4|o4, p1|o1 p2|o2
p2|o2 p1|o1
p4|o4 p1|o1
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Table 5. The Alignment Pattern Types Covered in AROA System

Pattern Category

Class Equivalence 1:1

Class Subsumption 1:1

Property Equivalence 1:1

Property Subsumption 1:1

Class by Attribute Type 1:n

Class by Attribute Value 1:n

Property Typecasting Equivalence 1:n

Property Typecasting Subsumption 1:n

Typed Property Chain Equivalence m:n

Typed Property Chain Subsumption m:n

likely to be as well. Table 4 shows some examples of association rules generated
from the transaction database in Table 1.

Generate Alignment. AROA utilizes some simple and complex correspon-
dences that have been widely accepted in Ontology Matching community to
further filter rules [4, 6] and finally generate the alignments. There are totally
10 different types of correspondences that AROA covers in this year. Table 5
lists all the simple and complex alignment correspondences and corresponding
category. Since the association rule mining might generate a large number of
rules, in order to narrow the association rules down to a smaller set, AROA
follows these patterns to generate corresponding alignments. For example, Class
by Attribute Type (CAT) is a classic complex alignment pattern. This type of
pattern was first introduced in [4]. It states that a class in the source ontology
is in some relationship to a complex construction in the target ontology. This
complex construction may comprise an object property and its range. Class C1

is from ontology O1, and object property op1 and its range t1 are from ontology
O2.

Association Rule format: rdf:type|C1 → op1|t1
Example: rdf:type|gbo:PortCall→ gmo:atPort|gmo:Place
Generated Alignment: gbo:PortCall(x)→ gmo:atPort(x, y) ∧ gmo:Place(y)

In this example, this association rule implies that if the subject x is an indi-
vidual of class gbo:PortCall, then x is subsumed by the domain of gmo:atPort with
its range gmo:Place. The equivalence relationship can be generated by combin-
ing another association rule holding the reverse information. Other simple and
complex alignments are also generated by following the same steps.

1.3 Adaptations made for the evaluation

AROA is an instance-based ontology alignment system. Therefore, AROA em-
beds Apache Jena Fuseki server in the system. The ontologies are first down-
loaded from the SEALS repository. And then, AROA uploads and stores the
ontologies in the embedded Fuseki server, which might take some time for this
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Table 6. The Number of Alignments Found on GeoLink Benchmark

Alignment Patterns Category Reference Alignment AROA

- - - # of Correct Entities # of Correct Relation

Class Equiv. 1:1 10 10 10

Class Subsum. 1:1 2 1 0

Property Equiv. 1:1 7 5 5

Property Typecasting Subsum. 1:n 5 3 0

Property Chain Equiv. m:n 26 15 13

Property Chain Subsum. m:n 17 7 0

step to load large-size ontology pairs. The generated alignments in EDOAL for-
mat are available at this link.4

2 Results

Since this is the first-year participation, AROA alignment system only eval-
uates its performance on the GeoLink benchmark. We will evaluate on other
benchmarks in the near future. In the GeoLink benchmark, there are 19 simple
mappings, including 10 class equivalences, 2 class subsumption, and 7 property
equivalences. And there are 48 complex mappings, including 5 property sub-
sumption, 26 property chain equivalences, and 17 property chain subsumption.
Table 6 shows alignment patterns and categories in the GeoLink Benchmark and
the results of AROA system. We list the numbers of identified mappings for each
pattern. There are two dimensions that we can look into the performance. One
is the entity identification, which means, given an entity in the source ontology,
the system should be able to generate related entities in the target ontology.
Another dimension is relationship identification, which the system should de-
tect the correct the relationship between these entities, such as equivalence and
subsumption. Therefore, we list the number of correct entities and the number
of correct relationships in order to help the reader to understand the strengths
and weaknesses of the system. For example, In the Table 6, AROA correctly
identifies all 1:1 class equivalence including entity and relationship. However,
AROA also finds one class subsumption alignment, which is the class PortCall
in the GeoLink Base Ontology (GBO) is related to the class Fix in the Ge-
oLink Modular Ontology (GMO). However, it outputs the relationship between
PortCall and Fix as equivalence, which it should be subsumption. Therefore,
we count the number of correct entities as 1 and number of correct relations as
0. This criterion is also applied to other patterns. In addition, we compare the
performance of AROA against other alignment systems in Table 7. And AROA
achieved the best performance in terms of relaxed recall and f-measure.5

4http://oaei.ontologymatching.org/2019/results/complex/geolink/geolink results.zip
5http://oaei.ontologymatching.org/2019/results/complex/geolink/index.html
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Table 7. The Performance Comparison on GeoLink Benchmark

Matcher AMLC AROA CANARD LogMap LogMapKG LogMapLt POMAP++

Relaxed Precision 0.50 0.86 0.89 0.85 0.85 0.69 0.90

Relaxed Recall 0.23 0.46 0.39 0.18 0.18 0.25 0.16

Relaxed F-measure 0.32 0.60 0.54 0.29 0.29 0.36 0.26

3 General comments

From the performance comparison, only AROA and CANARD [5] can gener-
ate almost correct complex alignment, which means some alignments found by
these two systems may not be completely correct, but it can be easily improved
by semi-automated fashion. For example, the system can produce correct enti-
ties that should be involved in a complex alignment, but it doesn’t output the
correct relationship. Another situation is that the system can detect the cor-
rect relationship but fails to find all the entities. Based on these situations, we
will investigate the incorrect alignments and improve the algorithm to find the
relationship and entities as accurate as possible.

4 Conclusions

This paper introduces the AROA ontology alignment system and its preliminary
results in the OAEI 2019 campaign. This year, AROA evaluates its performance
on GeoLink benchmark and achieves the best performance in terms of recall
and f-measure. We will continue to evaluate AROA on other benchmarks and
improve the algorithm in the near future.
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Abstract. This paper presents the results from the CANARD system
in the OAEI 2019 campaign. CANARD is a system able to generate
complex alignments. It is based on the notion of competency questions for
alignment, as a way of expressing user needs. The system has participated
in tracks where instances are available (populated Conference and Taxon
datasets). This is the second participation of CANARD in the OAEI
campaigns.

1 Presentation of the system

1.1 State, purpose, general statement

The CANARD (Complex Alignment Need and A-box based Relation Discov-
ery) system discovers complex correspondences between populated ontologies
based on Competency Questions for Alignment (CQAs). CQAs represent the
knowledge needs of a user and define the scope of the alignment [4]. They are
competency questions that need to be satisfied over two or more ontologies. Our
approach takes as input a set of CQAs translated into SPARQL queries over the
source ontology. The answer to each query is a set of instances retrieved from a
knowledge base described by the source ontology. These instances are matched
with those of a knowledge base described by the target ontology. The generation
of the correspondence is performed by matching the subgraph from the source
CQA to the lexically similar surroundings of the target instances.

In comparison with last year’s version [3], CANARD can now deal with
binary CQAs, i.e., CQAs whose expected answers are pairs of instances or literal
values. Last year it could only deal with unary CQAs (i.e., CQAs whose expected
answers are sets of instances). For example, here are examples of unary, binary
and N-ary CQAs:

– A unary CQA expects a set of instances or values, e.g., Which are the ac-
cepted paper? (paper1), (paper2).

– A binary CQA expects a set of instances or value pairs, e.g., Who wrote
which paper? (person1, paper1), (person2, paper2).

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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– An n-ary CQA expects a tuple of size 3 or more, e.g., What is the rate
associated with which review of which paper? (paper1, review1, weak accept),
(paper1, review2, reject).

1.2 Specific techniques used

The approach has not changed much from last year [3]. The main difference with

respect to binary CQAs is in Step 4 , where two instances of the pair answer

are matched instead of one (as in the case of unary CQAs), Step 5 and Step

8 which deal with the subgraph extraction and pruning.
The approach is detailed in the following steps over an example: the CQA

expressed as a SPARQL query over the source knowledge base is:
SELECT ?x ?y WHERE { ?x o1:paperWrittenBy ?y. }

1 Extract source DL formula es (e.g., o1:paperWrittenBy) from the SPARQL
query.

2 Extract lexical information from the CQA, Ls set labels of atoms from the
DL formula (e.g., “paper written by”).

3 Extract source answers anss of the CQA (e.g., a pair of instances (o1:paper1,
o1:person1)).

4 Find equivalent or similar target answers anst to the source instances anss
(e.g. o1:paper1 ∼ o2:paper1 and o1:person1 ∼ o2:person1 ).

5 Retrieve the subgraphs of target answers: for a binary query, it is the set
of paths between two answer instances as well as the types of the instances
appearing in the path (e.g., a path of length 1 is found between o2:paper1
and o2:person1 ). The path is composed of only one property and there are no
other instances than o2:paper1 and o2:person1 in this path. Their respective
types are retrieved: (o2:Paper,o2:Document) for o2:paper1 and (o2:Person)
for o2:person1.

6 For each subgraph, retrieve Lt the labels of its entities (e.g., o2:writes →
“writes”, o2:Person → “person”, o2:Paper → “paper”, etc.).

7 Compare Ls and Lt.

8 Select the subgraph parts with the best score, transform them into DL for-
mulae. Keep the best path variable types if their similarity is higher than
a threshold. (e.g., the best type for the instance o2:paper1 is o2:Paper be-
cause its similarity with the CQA labels is higher than the similarity of
o2:Document).

9 Filter the DL formulae based on their confidence score (if their confidence
score is higher than a threshold).

10 Put the DL formulae es and et together to form a correspondence (e.g.,

〈 o1:paperWrittenBy , dom(o2:Paper) u o2:writes− , ≡ 〉 and express this
correspondence in a reusable format (e.g., EDOAL). The confidence assigned
to a correspondence is the similarity score of the DL formula computed.

115



The instance matching phase (Step 4 ) is based on existing owl:sameAs,
skos:closeMatch, skos:exactMatch. In case these links are not available, and exact
label matching is applied instead.

Finding a subgraph (Step 5 and 8 ) for a pair of instances consists in
finding a path between the two instances. The shortest paths are considered more
accurate. Because finding the shortest path between two entities is a complex
problem, paths of length below a threshold are sought. First, paths of length 1
are sought, then if no path of length 1 is found, paths of length 2 are sought,
etc. If more than one path of the same length are found, all of them go through
the following process. When a path is found, the types of the instances forming
the path are retrieved. If the similarity of the most similar type to the CQA is
above a threshold, this type is kept in the final subgraph.

For example, for a “paper written by” CQA with the answer (o2:paper1,o2:person1 )
in the target knowledge, a subgraph containing the following triples is found:

1. 〈 o2:person1 , o2:writes , o2:paper1 〉
2. 〈 o2:paper1 , rdf:type , o2:Paper 〉
3. 〈 o2:paper1 , rdf:type , o2:Document 〉
4. 〈 o2:person1 , rdf:type , o2:Person 〉

The most similar type of o2:person1 is o2:Person, which is below the similar-
ity threshold. Triple 4 is then removed from the subgraph. The most similar
type of o2:paper1 is o2:Paper. Triple 3 is therefore removed from the subgraph.
o2:Paper ’s similarity is above the similarity threshold: triple 2 stays in the sub-
graph. The translation of a subgraph into a SPARQL query is the same for binary
and unary CQAs. Therefore, the subgraph will be transformed into a SPARQL
query and saved as the following DL formula: dom(o2:Paper) u o2:writes−.

The similarity between the sets of labels Ls and Lt of Step 7 is the cartesian
product of the string similarities between the labels of Ls and Lt (equation 1).

sim(Ls, Lt) =
∑

ls∈Ls

∑

lt∈Lt

strSim(ls, lt) (1)

strSim is the string similarity between two labels ls and lt (equation 2). τ is the
threshold for the similarity measure. In our experiments, we have empirically set
up τ = 0.5. τ = 0.5 in our implementation.

strSim(ls, lt) =




σ if σ > τ , where σ = 1− levenshteinDist(ls, lt)

max(|ls|, |lt|)
0 otherwise

(2)

The confidence value score of a correspondence (Step 9 ) is calculated with
the following equation, then truncated to 1:

confidence = labelSim+ structuralSim (3)

Label similarity labelSim is the sum of the label similarity of each entity of
the formula with the CQA.
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Structural similarity structSim. This similarity was introduced to enhance
some structural aspects in a formula. In the implementation of the approach,
this value is set to 0.5 when a path between the two instances of the answer,
and 0 for a unary CQA subgraph. Indeed, if the label similarity of the path
is 0, the structural similarity hints that the fact that a path was found is a
clue in favour of the resulting DL formula.

1.3 Adaptations made for the evaluation

Automatic generation of CQAs OAEI tracks do not cover CQAs i.e., the
CQAs can not be given as input in the evaluation. We extended last year’s query
generator so that it can output binary queries. The query generator now produces
three types of SPARQL queries: Classes, Properties and Property-Value pairs.

Classes For each owl:Class populated with at least one instance, a SPARQL
query is created to retrieve all the instances of this class. If <o1#class1> is a
populated class of the source ontology, the following query is created:
SELECT DISTINCT ?x WHERE {?x a <o1#class1>.}

Properties For each owl:ObjectProperty or owl:Dataproperty with at least one
instantiation in the source knowledge base, a SPARQL query is created to re-
trieve all instantiations of this property. If <o1#property1> is an instantiated
property of the source ontology, the following query is created:
SELECT DISTINCT ?x ?y WHERE {?x <o1#property1> ?y.}

Property-Value pairs Inspired by the approaches of [1,2,5], we create SPARQL
queries of the form

– SELECT DISTINCT ?x WHERE {?x <o1#property1> <o1#Value1>.}
– SELECT DISTINCT ?x WHERE {<o1#Value1> <o1#property1> ?x.}
– SELECT DISTINCT ?x WHERE {?x <o1#property1> "Value".}

These property-value pairs are computed as follow: for each property (object or
data property), the number of distinct object and subject values are retrieved.
If the ratio of these two numbers is over a threshold (arbitrarily set to 30)
and the smallest number is smaller than a threshold (arbitrarily set to 20), a
query is created for each of the less than 20 values. For example, if the property
<o1#property1> has 300 different subject values and 3 different object values
("Value1", "Value2", "Value3"), the ratio |subject|/|object| = 300/3 > 30 and
|object| = 3 < 20. The 3 following queries are created as CQAs:

– SELECT DISTINCT ?x WHERE {?x <o1#property1> "Value1".}
– SELECT DISTINCT ?x WHERE {?x <o1#property1> "Value2".}
– SELECT DISTINCT ?x WHERE {?x <o1#property1> "Value3".}

The threshold on the smallest number ensures that the property-value pairs
represent a category. The threshold on the ratio ensures that properties represent
categories and not properties with few instantiations.
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Implementation adaptations In the initial version of the system, Fuseki
server endpoints are given as input. For the SEALS evaluation, we embedded a
Fuseki server inside the matcher. The ontologies are downloaded from the SEALS
repository, then uploaded in the embedded Fuseki server before the matching
process can start. This downloading-uploading phase takes time, in particular
when dealing with large files.

The CANARD system in the SEALS package is available at http://doi.

org/10.6084/m9.figshare.7159760.v2. The generated alignments in EDOAL
format are available at:

– Populated Conference: http://oaei.ontologymatching.org/2019/results/
complex/popconf/populated_conference_results.zip

– GeoLink: http://oaei.ontologymatching.org/2019/results/complex/
geolink/geolink_results.zip

– Taxon: http://oaei.ontologymatching.org/2019/results/complex/taxon/
results_taxon_2019.zip

In this year’s OAEI complex track, the Populated Conference, GeoLink and
Taxon subtracks provide datasets with common instances. CANARD could gen-
erate alignments on these three datasets.

2 Results

2.1 Populated Conference

CANARD achieves this task with the longest runtime (96 min). The number
of correspondences output by CANARD is detailed in Table 1. The results are
detailed in Table 2.

CANARD achieves the highest the best query Fmeasure CQA Coverage
score. AMLC achieves the best classical CQA Coverage, CANARD the second
best. Both achieve CQA Coverage scores above ra1, but CANARD does not rely
on an input alignment (in opposite to AMLC).

The classical Precision of CANARD is the lowest, its query Fmeasure preci-
sion above that of AMLC.

2.2 GeoLink

The number of correspondences output by CANARD is detailed in Table 3. The
results are detailed in Table 4.

Relaxed precision and recall scores are calculated based on how the entities in
the output correspondences are similar to those in the reference correspondences.
All multiplied by a coefficient given the relation of the output correspondence
and that of the reference one.

CANARD achieves the second best relaxed precision score, behind POMAP++
and the second best relaxed recall score behind AROA.
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Table 1: Number of correspondences output by CANARD over the Populated
Conference dataset

pair (1:1) (1:n) (m:1) (m:n) Total

cmt-conference 19 100 0 5 124
cmt-confOf 18 17 0 6 41
cmt-edas 22 59 2 12 95
cmt-ekaw 11 111 0 12 134

conference-cmt 17 80 0 7 104
conference-confOf 28 13 3 0 44
conference-edas 17 38 0 8 63
conference-ekaw 31 120 2 3 156

confOf-cmt 15 37 0 0 52
confOf-conference 14 22 0 0 36

confOf-edas 15 36 0 0 51
confOf-ekaw 14 39 0 0 53

edas-cmt 20 50 0 4 74
edas-conference 16 49 0 2 67

edas-confOf 24 28 1 0 53
edas-ekaw 18 121 0 4 143
ekaw-cmt 15 71 0 0 86

ekaw-conference 31 80 0 0 111
ekaw-confOf 13 16 0 0 29
ekaw-edas 30 55 0 1 86

TOTAL 388 1142 8 64 1602

2.3 Taxon

CANARD has the longest runtime over the Taxon dataset (512 minutes ∼ 8h32).
It is longer than last year’s rutime (42 minutes) because the inclusion of binary
queries in the process increases the number of input queries. Moreover the path
finding algorithm consists in looking for all possible paths between two instances
relies on SPARQL queries which take a long time to be executed.

The number of correspondences output by CANARD is detailed in Table 1.
The results are detailed in Table 2.

Last year, CANARD had output 142 correspondences. This year it has output
791.

CANARD achieves the best CQA Coverage scores over the Taxon dataset.
This year, the evaluation was oriented. For example, let’s take a set of equiva-
lent correspondences: Q=〈SELECT ?x WHERE{ ?x a agtx:Taxon}, SELECT ?x
WHERE{ ?x a dbo:Species}〉. If an output alignment agronomicTaxon-dbpedia
contains 〈 agtx:Taxon , dbo:Species , ≡ 〉 but the alignment dbpedia-agronomicTaxon
does NOT contain 〈 dbo:Species , agtx:Taxon , ≡ 〉. The coverage score of Q for
the pair agronomicTaxon-dbpedia is 1 but the coverage score of Q for dbpedia-
agronomicTaxon is 0. Last year the evaluation was non-oriented, so the coverage
score of Q would be the same (1.0) for both pairs. Taking that into consider-
ation, we computed that if the evaluation was oriented this year, the classical
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Table 2: Results of CANARD over the Populated Conference dataset
Coverage Precision

pair classical query Fmeasure classical query Fmeasure not disjoint

cmt-conference 0.28 0.53 0.15 0.48 0.90
cmt-confOf 0.50 0.50 0.22 0.60 0.98
cmt-edas 0.65 0.65 0.14 0.42 0.97
cmt-ekaw 0.35 0.59 0.07 0.39 0.97
conference-cmt 0.41 0.45 0.14 0.50 0.85
conference-confOf 0.30 0.35 0.25 0.55 0.73
conference-edas 0.36 0.38 0.19 0.41 0.79
conference-ekaw 0.38 0.47 0.19 0.45 0.78
confOf-cmt 0.50 0.71 0.19 0.76 1.00
confOf-conference 0.27 0.40 0.39 0.73 1.00
confOf-edas 0.23 0.28 0.14 0.45 0.67
confOf-ekaw 0.29 0.42 0.17 0.43 0.83
edas-cmt 0.59 0.67 0.27 0.54 0.97
edas-conference 0.39 0.53 0.37 0.62 0.97
edas-confOf 0.33 0.39 0.21 0.39 0.60
edas-ekaw 0.62 0.72 0.16 0.45 0.87
ekaw-cmt 0.43 0.58 0.30 0.58 0.92
ekaw-conference 0.30 0.50 0.30 0.62 0.93
ekaw-confOf 0.23 0.33 0.31 0.61 0.93
ekaw-edas 0.58 0.64 0.10 0.46 0.92

Average 0.40 0.51 0.21 0.52 0.88

Table 3: Number of correspondences output by CANARD over the GeoLink
dataset

pair (1:1) (1:n) (m:1) (m:n) Total

gbo-gmo 14 17 13 1 45
gmo-gbo 12 3 0 0 15

CQA Coverage of CANARD would have been 0.197, which shows significant
improvement over last year’s result: 0.13.

Some correspondences such as 〈 agronomicTaxon:FamilyRank , ∃ dbo:family−.wikidata:Q756 ,
≡ 〉 or 〈 agronomicTaxon:GenusRank , ∃ dbo:genus−.wikidata:Q756 , ( 〉wikidata:Q756
being the Plant class in wikidata) have more specific target members because of
the Plant type restriction. Such correspondences entail higher precision-oriented
CQA Coverage and Precision scores than classical ones.

3 General comments

CANARD relies on common instances between the ontologies to be aligned.
Hence, when such instances are not available, as for the Hydrography datasets,
the approach is not able to generated complex correspondences. Furthermore,
CANARD is need-oriented and requires a set competency questions to guide the
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Table 4: Results of CANARD over the Populated Conference dataset
Relaxed Precision Relaxed Fmeasure Relaxed Recall

0.85 0.59 0.46

Table 5: Number of correspondences output by CANARD over the Taxon dataset
pair (1:1) (1:n) (m:1) (m:n) Total

agronomicTaxon-agrovoc 3 25 0 0 28
agronomicTaxon-dbpedia 10 38 0 0 48
agronomicTaxon-taxref 4 28 0 0 32

agrovoc-agronomicTaxon 0 6 4 23 33
agrovoc-dbpedia 3 33 2 21 59
agrovoc-taxref 0 0 0 0 0

dbpedia-agronomicTaxon 5 62 4 26 97
dbpedia-agrovoc 8 57 0 29 94
dbpedia-taxref 18 198 0 29 245

taxref-agronomicTaxon 9 26 0 13 48
taxref-agrovoc 2 17 0 5 24
taxref-dbpedia 5 50 5 23 83

TOTAL 67 540 15 169 791

matching process. Here, these “questions” have been automatically generated
based on a set of patterns.

In comparison to last year’s campaign, CANARD can now deal with binary
CQAs in the form of SPARQL queries with two variables in the SELECT clause.

CANARD’s runtime is extremely long. It depends (among other things) on
the performance of the SPARQL endpoint it interrogates and the presence (or
not) of equivalent links.

However, even with generated queries (instead of user input CQAs) it obtains
some of the best coverage scores.

4 Conclusions

This paper presented the adapted version of the CANARD system and its prelim-
inary results in the OAEI 2019 campaign. This year, we have been participated
in the Taxon, Populated Conference and GeoLink track, in which ontologies are
populated with common instances. CANARD was the only system to output
complex correspondences on the Taxon track.
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Table 6: Results of CANARD over the Taxon dataset
CQA Coverage Precision

pair classical rec.-or. prec.-or. overlap classical re.-or. prec.-or. overlap

agronomicTaxon-agrovoc 0 0.67 0.33 0.83 0.14 0.64 0.39 1.00
agronomicTaxon-dbpedia 0 0.42 0.58 0.83 0.06 0.40 0.42 0.98
agronomicTaxon-taxref 0.33 0.50 0.42 0.50 0.28 0.76 0.57 1.00
agrovoc-agronomicTaxon 0.17 0.17 0.17 0.17 0.12 0.79 0.50 0.91
agrovoc-dbpedia 0.17 0.17 0.17 0.17 0.07 0.27 0.22 0.58
agrovoc-taxref 0 0 0 0 NaN NaN NaN NaN
dbpedia-agronomicTaxon 0.17 0.17 0.17 0.17 0.06 0.53 0.56 0.89
dbpedia-agrovoc 0.17 0.17 0.17 0.17 0.03 0.47 0.36 0.78
dbpedia-taxref 0.17 0.17 0.17 0.17 0.03 0.21 0.16 0.94
taxref-agronomicTaxon 0.33 0.50 0.42 0.50 0.04 0.31 0.24 1.00
taxref-agrovoc 0.17 0.42 0.42 0.50 0.04 0.33 0.28 1.00
taxref-dbpedia 0 0.08 0.17 0.33 0.04 0.30 0.30 0.99

Average 0.14 0.28 0.26 0.36 0.08 0.45 0.36 0.91
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Abstract. DOME (Deep Ontology MatchEr) is a scalable matcher for
instance and schema matching which relies on large texts describing the
ontological concepts. The doc2vec approach is used to generate a vector
representation of the concepts based on the textual information con-
tained in literals. The cosine distance between two concepts in the em-
bedding space is used as a confidence value. In comparison to the previous
version of DOME it uses an instance based class matching approach. Due
to its high scalability, it can also produce results in the largebio track of
OAEI and can be applied to very large knowledge graphs. The results
look promising if huge texts are available, but there is still a lot of room
for improvement.

Keywords: Ontology Matching · Knowledge Graph · Doc2Vec

1 Presentation of the system

Ontology matching is a key feature for the semantic web vision because it al-
lows to use and interpret datasets which are unknown at the time of writing
knowledge accessing software. [11] shows that there are many different elemen-
tary matching approaches on element, structure and instance levels. The Deep

Ontology MatchEr (DOME) focuses at element and instance level matching.
One of the reasons is that there are more and more instance matching tracks
at the OAEI (Ontology Alignment Evaluation Initiative) like SPIMBENCH, Link
Discovery, and Knowledge graph. These tracks need a scalable matching sys-
tem. Thus, the main signal for finding correspondences is string based. Many
other knowledge graphs in the Linked Open Data Cloud [2] also have a lot of
literals with long texts which can be optimally used by the matching framework
presented in this paper. Especially knowledge graphs extracted from Wikipedia
such as DBpedia [1] or YAGO [5] contains descriptions of resources (abstracts
of wiki pages).

1.1 State, purpose, general statement

The overall matching strategy of DOME is shown in figure 1. It starts with a
simple string matching followed by a confidence adjustment. This is applied for

0 Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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Ontology 1

Ontology 2

String matching
Confidence
Adjustment

Instance based
class matching

Type FilterCardinality Filter
final 

alignment

Fig. 1. Overview of the DOME matching strategy.

all classes, instances, and properties. The latter one includes owl:ObjectProperty,
owl:DatatypeProperty, and rdf:Property (as retrived by the jena1 method Ont-
Model.listAllOntProperties()). As a next step in the pipeline, an instance based
class matching is applied. It uses all matched individuals and based on those
types, tries to find meaningful class mappings.

The following type filter deletes all correspondences where the type of source
and target concept is different (like owl:DatatypeProperty - owl:ObjectProperty).
This might happen because all properties (also rdf:Property) can be matched
with each other. The final cardinality filter ensures a one to one mapping by
sorting the correspondences by confidence and iterates over them in descending
order. If the source or target entity is not already matched, it counts a valid
correspondence - otherwise it will be dropped and will not appear in the final
alignment.

In the following, the first three matching stages of DOME are discussed in
more detail.

String matching As shown in figure 2, DOME uses multiple properties for match-
ing all types of resources. If a rdfs:label from ontology A matches the rdfs:label
from a resources in ontology B after the preprocessing, DOME creates a map-
ping with a static confidence of 1.0. The same confidence is applied when a
skos:prefLabel matches. In case a URI fragment or skos:altLabel fits, a lower
confidence of 0.9 is used.

The string preprocessing consists of tokenizing the text (also takes care of
CamelCase2 formatting), stopword removal and lowercasing. Afterwards the text
is concatenated together to form a new textual representation. In case the initial
text contains mostly numbers, the whole text is discarded.

Confidence Adjustment The confidence adjustment stage of DOME iterates over
all correspondences and reassign a new confidence in case it is possible. The main
approach used here is doc2vec [7] which is based on word2vec [8]. It allows to
compare texts of different lengths and represent them as a fixed length vector.
A comparison of these vectors can be achieved with a cosine similarity.

1 https://jena.apache.org
2 https://en.wikipedia.org/wiki/Camel_case
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Fig. 2. DOME literal comparisons.

In comparison to DOME submitted to OAEI 2018, the generation of the
text for a given resource has changed. In the current version, all statements
in the ontology are examined where a given resource has the subject position.
If the object is a literal and the datatype of it corresponds to xsd:string or
rdf:langString or contains a language tag, it will be selected. All those literals
are preprocessed in the same way as described in paragraph string matching and
concatenated together. This text forms a document which is used for training a
doc2vec model. DOME uses the DM sequence learning algorithm with a vector
size of 300 and window size of 5 as in the previous version of this matcher dla[3].
The minimal word frequency is set to one to allow all words contribute to the
concept vector. The adjusted confidence is later used in the cardinality filter to
create a 1:1 mapping.

Instance based class matching After the class, instance, and property matching
an additional class alignment step is performed. The basic idea is to inspect the
types (classes) of already matched instances. If two individuals are the same,
there is a high probability that some of the corresponding types should be also
matched.

We experimented with three different similarity metrics for two given classes
c1 and c2. The dice similarity metric [9] is defined as follows:

SimDICE(c1, c2) =
2 ∗ |Ic1 ∩ Ic2 |
|Ic1 |+ |Ic2 |

∈ [0...1]

Ic1 and Ic2 denotes the set of instances which have c1 (c2) as one of its type.
Ic1 ∩Ic2 corresponds to the matched instances which are typed with both c1 and
c2. SimDICE corresponds to the overlap of matched instances with both classes
and all instances of the two classes separately.

[6] also includes a more relaxed version of the previous similarity called
SimMIN which is defined as

SimMIN (c1, c2) =
|Ic1 ∩ Ic2 |

min(|Ic1 |, |Ic2 |)
∈ [0...1]
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It interrelates the matched instances with both classes and the instances of
the smaller-sized class. As stated in [6] SimDICE is always smaller or equal to
SimMIN .

A third possibility is SimBASE [6] which matches the classes c1 and c2 in
case at least one instance with those classes is matched:

SimBASE(c1, c2) =

{
1 if |Ic1 ∩ Ic2 | > 0

0 if |Ic1 ∩ Ic2 | = 0
∈ [0...1]

After experimenting with those measures, it turned out that SimBASE intro-
duces a lot of wrong correspondences because each error in the instance matching
is directly forwarded to the class matches. SimMIN needed a very low threshold
and ranks the classes suboptimal. Thus some similarity between SimBASE and
SimMIN is needed. One possible way is to incorporate the quality of the matcher
at hand - especially how many instance correspondences it finds. Thus another
similarity called SimMATCH is used in DOME and defined as follows:

SimMATCH(c1, c2) =
|Ic1 ∩ Ic2 |
|CI |

∈ [0...1]

where CI represents all instance correspondences created by the matcher. The
threshold is set to 0.01 meaning that 1 % of the matches should have the
same class. If this is the case, the classes will be matched with a confidence
of SimMATCH(c1, c2). This value is rather low. All correspondences generated
by this step are therefore scaled to minimum of 0.1 and maximum of 1.0.

1.2 Specific techniques used

The two main techniques used in DOME are the doc2vec approach [7] for com-
paring the textual representation of the resources and the instance based class
matching component.

1.3 Adaptations made for the evaluation

As in the previous version of DOME for OAEI 2018 the DL4J3 (Deep Learning
for Java) library is used as an implementation of the doc2vec approach. Running
DOME with this dependency is not easy in SEALS. Therefore we use MELT[4] to
package our matcher. The framework generates an intermediate matcher which
executes an external process (which is again in Java). This process runs now
in its own Java virtual machine (JVM) and allows to load system dependent
library files (files with dll or so extension). [3] explains in more detail why this
is necessary.

1.4 Link to the system and parameters file

DOME can be downloaded from
https://www.dropbox.com/s/1bpektuvcsbk5ph/DOME.zip?dl=0.

3 https://deeplearning4j.org
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2 Results

This section discusses the results of DOME for each track of OAEI 2019 where
the matcher is able to produce results. The following tracks are included: anatomy,
conference, largebio, phenotype, and knowledge graph track.

Similar to the previous version of DOME, the current matcher is not able to
match multiple languages and thus fail on multifarm track. Specific interfaces
and matching strategies for the complex and interactive track are currently not
implemented.

2.1 Anatomy

For the anatomy track, DOME uses the string comparison method which re-
sults in similar precision and recall as the baseline. Properties like oboInOwl:
hasRelatedSynonym or oboInOwl:hasDefinition are used to generate a textual
representation of the concepts but this does not introduce better confidence
values.

DOME returns 948 correspondences. 932 matches with a confidence of 1.0
which are all correct. 12 correspondences scored with 0.9 are all false positives.
Therefore a confidence filter would make sense for this specific track.

The presented matcher has a very low runtime and scales to very huge on-
tologies. The runtime of 23 seconds is the second best value in this track.

Due to a slightly lower recall (0.007) and precision (0.001) DOME has a lower
F-Measure (0.006) than the baseline. The reason could be the different string
preprocessing techniques.

2.2 Conference

In the following analysis we refer to the rar24 reference alignment because it
contains more correspondences which are carefully resolved by an evaluator.

When matching classes DOME is same as the edna baseline. Most corre-
spondences have a confidence of 0.9 because the conference track has mostly
all textual information in URL fragments. Only one mapping is scored with 1.0
which is <edas:Country, iasted:Conference state, =, 1.0>. It is generated by the
instance based class matching because both contain Mexico as an individual.
This mapping is a false positive. The instance based class matching could not
help here, because in most of the test cases no instances are available. Properties
are matched with an F1-measure of 0.22 which is better than the edna baseline
but lower than 5 other matchers. In comparison to the old version of this matcher,
the F1-measure is increased by 0.01. Figure 3 shows the result of DOME divided
into test cases. It shows that in four test cases (where the source ontology is
confOf ) the matcher is not able to return true positive correspondences.

4 http://oaei.ontologymatching.org/2019/results/conference/index.html
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Fig. 3. Analysis of results for conference track. The x axis represents the test cases
and y axis the amount of correspondences. Green bars indicates true positives, orange
bars false positives, and blue bars false negatives. The plot is generated by MELT
framework [4].

2.3 Largebio

As the name already suggests, the largebio track needs matchers which scale
well. Test case four is a large test case which matches the whole FMA ontology
with a large fragment of SNOMED. The source ontology has 78,989 classes and
the target ontology 122,464 classes. This would result in more than 9 billion
comparisons when doing it naively. The runtime of DOME for this test case is
38 seconds which is the second best runtime. Moreover DOME is able to complete
all tasks within the given timeout.

In task 3, 4, 5, and 6 DOME has the highest precision of all matchers but
misses a lot of correspondences in the gold standard and has therefore a lower
recall. In task one and two matcher Wiktionary have a higher precision. F-
measure wise DOME usually beats Wiktionary and AGM but AML and LogMap
variants are better.

2.4 Phenotype

In phenotype track, the matcher should find alignments between disease and
phenotype ontologies. The matcher has the highest precision of 0.997 together
with FCAMapKG for test case HP-MP and second best for task DOID-ORDO.
With the low recall of 0.303 and 0.426 the F-measure is around 0.465 and 0.596.
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Fig. 4. Analysis of confidences in knowledge graph track. The x axis represents the
confidence value and the y axis shows the amount of correspondences. Green bars
indicates true positives and orange bars indicates false positives. False negatives are
left out because they don’t have any confidence assigned by the matching system. The
plot is generated by MELT framework [4].

2.5 Knowledge Graph

In the second version of the knowledge graph track, the systems should be able
to match classes, properties and instances. DOME was able to run 4 out of 5 test
cases. The remaining test case could not be finished because of memory issues.

In comparison to the previous version of the track, classes are more difficult
to match. DOME could achive an F-measure of 0.77 for classes (not counting the
unfinished test case) and 0.96 for properties. Only FCAMap-KG and Wiktionary
are better in matching the latter one. Instances are matched with a F-measure
of 0.88 (again not counting the unfinished test case). In average DOME returns
22 class, 75 property, and 4,895 instance mappings.

3 General comments

3.1 Comments on the results

The discussion of the results shows that DOME is in a development phase. Some
improvements are already incorporated and some further ideas are discussed in
the next section.

3.2 Discussions on the way to improve the proposed system

One further improvment is still the ability to match different languages. As
stated in [3] we could use cross lingual embeddings as shown in [10]. Another
possibility would be to use a translation step in between.
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The confidence adjustment step can not only be done with doc2vec based
models but also with tf-idf or other document comparison methods. This should
be tried out in future version of this matcher.

The memory issue in the knowledge graph track can be solved by writing all
text representations of all resources on disk and train the doc2vec model on this
file.

4 Conclusions

In this paper, we have analyzed the results of DOME in OAEI 2019. It shows
that DOME is a highly scalable matcher which generates class, property and
instance alignments. With the new component DOME is able to match classes
based on instances and thus increase the recall of class alignments.
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Abstract. This paper describes the updates in EVOCROS, a cross-
lingual ontology alignment system suited to create mappings between
ontologies described in different natural language. Our tool combines
syntactic and semantic similarity measures with information retrieval
techniques. The semantic similarity is computed via NASARI vectors
used together with BabelNet, which is a domain-neutral semantic net-
work. In particular, we investigate the use of rank aggregation techniques
in the cross-lingual ontology alignment task. The tool employs automatic
translation to a pivot language to consider the similarity. EVOCROS was
tested and obtained high quality alignment in the Multifarm dataset. We
discuss the experimented configurations and the achieved results in OAEI
2019. This is our second participation in OAEI.

Keywords: cross-lingual matching · semantic matching · background
knowledge · ranking aggregation

1 Presentation of the system

There is a growing number of ontologies described in different natural languages.
The mappings among different ontologies are relevant for the integration of het-
erogeneous data sources to facilitate the exchange of information between sys-
tems. EVOCROS is our approach to automatic cross-lingual ontology matching.
In our previous participation, in OAEI 2018, EVOCROS employed a weighted
combination of similarity and semantic measures. The new version, submitted
in OAEI 2019, combines syntactic and semantic similarity measures with infor-
mation retrieval techniques. In this section, we describe the modifications to the
system and the implemented techniques.

1.1 State, purpose, general statement

EVOCROS is a cross-lingual ontology alignment tool. The newest version of the
tool leverages supervised methods of ranking aggregation techniques exploiting

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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labeled information (i.e., training data) and ground-truth relevance to boost
the effectiveness of a new ranker. Our goal is to leverage rank aggregation in
cross-lingual mapping, by generating ranked lists based on distinct similarity
measurements between the concepts of source and target ontologies.

1.2 Specific techniques used

The tool is developed in Python 3 and uses learning to rank techniques imple-
mented in the well-known library RankLib. We model the mapping problem as
an information retrieval query. Figure 1 depicts the workflow of the proposed
technique. The inputs are source and target ontologies written in Web Ontology
Language (OWL). These ontologies are converted to objects. The first step is
the pre-processing of the source and target input ontologies, converting them
into owlready2 objects. Each concept of the source ontology is compared to all
concepts of the target ontology.

Fig. 1. General description of the technique. The mapping processing stage is where
the top-1 entity of the final ranking is mapped to the input concept e1.

RankLib: https://sourceforge.net/p/lemur/wiki/RankLib/ (As of November 16,
2019).
Python 3 library to manipulate ontologies as objects.
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Each entity of the source ontology is compared with all entities of the same
type found in the target ontology (i.e., classes are matched to classes and prop-
erties are matched to properties). In this sense, for each entity ei in the source
ontology OX , we calculate the similarity value with each entity ej in the target
ontology OY (Figure 2), thus generating a ranked list {rank1, rank2, rank3,
rank4} for each similarity measure used (cf. Figure 3).

Fig. 2. Concept c1 ∈ OX is compared against all concepts cn ∈ OY .

For similarity measures that rely on monolingual comparison (i.e., syntactic
and WordNet), the automatic translation of labels of entities ei ∈ OX and
ej ∈ OY to a pivot language is used by leveraging Google Translate API during
runtime. These similarity comparisons generate k ranks, each one based on a
different similarity measure. We use the measures to generate the ranks, thus
adding the flexibility to the use or the addition of different similarity measures
without disrupting the technique.

The ranks are then aggregated using LambdaMART [7] because this tech-
nique has the best score among the majority of languages during the execution
phase of OAEI 2019. Figure 4 presents that the set of multiple ranks are ag-
gregated in a final rank. The Top-1 result of the aggregated rank c2 ∈ COY is
mapped to the source ontology entity c1 ∈ COX , thus generating the candidate
mapping m(c1, c2) (cf. Figure 5). The mapping output follows the standard used
by the Alignment API [?].

1.3 Link to the set of provided alignments (in align format)

Alignment results are available at https://github.com/jmdestro/evocros-results
(As of November 16, 2019).
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Fig. 3. Ranked lists generated by each similarity measure used.

2 Results

In this section, we describe the results obtained in the experiments conducted
in OAEI 2019.

2.1 Multifarm

We consider the MultiFarm dataset [5], version released in 2015. Our experiments
built cross-language ontology mappings by using English as a pivot language
for Levenshtein [4], Jaro [3], and WordNet similarity measures. The semantic
similarity relying on the Babelnet does not require a translation as it can retrieve
the synsets used in NASARI vectors [1], by using the concepts original language.
The application of each similarity measure in our technique generated a rank.

A subset of all languages was used for training and validation. The subsets are
10% of queries for training set, 15% queries for validation set, and 75% queries
for testing. These subsets were generated per language and then combined, so
the algorithms were trained, validated and tested using all languages at once.
The comparable gold standard (i.e., MultiFarm manually curated mappings)
were adjusted to contain only the queries related to the testing subset. In this
sense, a lower number of entities was considered in the tests, because we removed
the set of queries used in training and validation from the reference mappings
to ensure consistency.

Table 1 presents the obtained values for precision, recall, and f-measure for
each language pair tested. The precision, recall, and f-measure scores have the
same value due to the nature of the experiments. Our approach generates n :
n mappings, where n = |OX | = |OY | because the ontologies are translations
of each other to different natural languages, thus every entity in the source
ontology presents a correspondence in the target ontology. In this sense, both
the gold standard and the generated mappings have the same size because each
query (i.e., each entity in the source ontology) generates a mapping between the
query (source entity) and the top-1 result of the final aggregated rank. Results
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Fig. 4. Rank aggregation of the ranked lists. Each rank aggregation algorithm generates
a distinct final rank.

Fig. 5. Mapping generated between source entity c1 ∈ OX and top-1 entity of the final
rank generated by the rank aggregation algorithm, c2 ∈ OY .

show competitive results when compared to the other tools participating in the
evaluation.

Table 1. Results achieved by different language pair

Language pair Precision Recall F-measure

fr-nl 0.61290 0.61290 0.61290

en-pt 0.59140 0.59140 0.59140

es-nl 0.58065 0.58065 0.58065

cz-nl 0.52688 0.52688 0.52688

cn-pt 0.50538 0.50538 0.50538

es-ru 0.38710 0.38710 0.38710

cn-ru 0.32258 0.32258 0.32258

cz-ru 0.32258 0.32258 0.32258

de-ru 0.32258 0.32258 0.32258
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3 General comments

In this section, we discuss our results and the ways to improve the system.

3.1 Comments on the results

The tool had satisfactory results, with competitive f-measure, but the execution
time was exceedingly long due even with local caches for Babelnet NASARI
vectors. This is due to the amount of comparisons required during execution
because each concept or attribute in the source ontology is compared against all
concepts and attributes of the target ontology.

3.2 Discussions on the way to improve the proposed system

This was the second evaluation of the system and results are encouraging. Our
main goals for future work are: Reduce execution time: the tool has a long
execution time even with local caches. Our future work will explore ontology
partitioning during the pre-processing stage of the matching task to reduce
the amount of comparisons needed, thus improving the execution time. Bag
of graphs: ontologies can be represented as graphs, thus allowing for partition-
ing [2] and comparison of sub-graphs. Bag-of-graphs [6] is a graph matching
approach, similar to bag-of-words. It represents graphs as feature vectors, highly
simplifying the computation of graph similarity and reducing execution time.
We propose as future investigation to use a simple vector-based representation
for graphs and investigate it for cross-lingual ontology matching.

3.3 Comments on OAEI

Although we were not participating, our tool was executed on the Knowledge
Graph track. There were issues during the evaluation phase, preventing the sys-
tem to fully participate in both Multifarm and KG tracks.

4 Conclusion

The newest version of EVOCROS proposed an approach considering four similar-
ity measures to build ranks and used a supervised method of rank aggregation.
This is the second participation of the system in OAEI. The evaluation with
the Multifarm dataset confirmed the quality of mappings generated by our tech-
nique. For future work, we plan to improve our cross-lingual alignment proposal
by considering different combinations of similarity measures and different ways of
computing the syntactic and semantic similarities taking into account additional
stages in the pre-processing of the ontology.
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et al.: Multifarm: A benchmark for multilingual ontology matching. Web Semantics:
Science, Services and Agents on the World Wide Web 15, 62–68 (2012)

6. Silva, F.B., de O. Werneck, R., Goldenstein, S., Tabbone, S., da S. Torres, R.:
Graph-based bag-of-words for classification. Pattern Recognition 74(Supplement
C), 266 – 285 (Feb 2018). https://doi.org/10.1016/j.patcog.2017.09.018,
http://www.sciencedirect.com/science/article/pii/S0031320317303680

7. Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Adapting boosting for infor-
mation retrieval measures. Information Retrieval 13(3), 254–270 (Jun 2010).
https://doi.org/10.1007/s10791-009-9112-1

137



FCAMap-KG Results for OAEI 2019

Fei Chang1, Guowei Chen2,3, and Songmao Zhang3

1 New York University, New York, USA

fc1271@nyu.edu
2 University of Chinese Academy of Sciences

chenguowei17@mails.ucas.ac.cn
3 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy

of Sciences, Beijing, P.R. China

smzhang@math.ac.cn

Abstract. In OAEI 2016, we submitted the system FCA-Map for taking advan-

tage of the Formal Concept Analysis (FCA) formalism in aligning large and com-

plex biomedical ontologies. This year, we present a variant called FCAMap-KG,

following the rationale of FCA-Map and designed formatching knowledge graphs.

Among the 12 matchers participating in the OAEI 2019 Knowledge Graph track,

our system ranks the first for instance and property mappings and ranks second

for class mappings. As a result, FCAMap-KG has achieved the best overall F-

measure for the track. This demonstrates the power of our FCA-based approach

in identifying correspondences across different kinds of data and knowledge rep-

resentation systems.

1 Presentation of the system

In OAEI 2016, we proposed the system FCA-Map [8,9,10] for taking advantage of the

Formal Concept Analysis (FCA) formalism in aligning large and complex biomed-

ical ontologies. Further in OAEI 2018, its variant FCAMapX [3] was submitted to

largely improve the efficiency of the system. This year, we present a new variant called

FCAMap-KG, for exploiting the potential of our FCA-based approach inmatching knowl-

edge graphs (KGs).

1.1 State, purpose, general statement

Formal Concept Analysis is a mathematical model for structuring concept hierarchies

from clustering individuals [4,7]. In FCA, the domain or problem is described first by

a formal context consisting of a set of objects, a set of attributes and their relations.

Based on this, a lattice structure can be computed with each node representing a formal

concept and edge a subconcept-superconcept relationship. Being a knowledge graph

matching system based on FCA, FCAMap-KG follows the rationale of our previous

systems FCA-Map and FCAMapX by consecutively constructing lexical and structural

formal contexts and extracting mappings across KGs.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).
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Ontologies and KGs are both knowledge representation models sharing RDF graphs

as the underlying data structure. Ontologies focus on schematic knowledge and adopt

logic-based reasoning to infer implied relations, whereas KGs mainly describe data in

RDF triples and train numerical vector representations so as to predict semantic corre-

lations [2]. Ontologies are limited to certain domains with precise knowledge and KGs

are much larger in scale where data can be noisy. For both, identifying correspondences

between systems is crucial for realizing semantic integration in the SemanticWeb. Their

distinctive differences, however, make applying ontology matching approaches to KGs

a nontrivial endeavor. Particularly in our case, for building formal contexts at the struc-

tural level, FCA-Map and FCAMapXmainly use the ontological relationships including

taxonomy, partonomy, disjointness, and property axioms among classes. While nor-

mally these are not available in KGs, FCAMap-KG turns to RDF triples where two

instances are connected by a property. In our FCA-based approach, lexical formal con-

text describes how names share tokens from which lexical mappings are generated. This

is effective for both ontology and KGmatching tasks as classes, properties and instances

are all labeled with preferred names and synonyms.

1.2 Specific techniques used

The steps that FCAMap-KG system implements are presented as follows.

1. Lexical matching. For the given two KGs in comparison, the system builds three

token-based formal contexts, for classes, properties and instances, respectively. One

entity in KG can have multiple names and labels, and every one of them is treated

as an object in the formal context; tokens extracted from all the names/labels in

two KGs are used as attributes. Note that one object in the formal context can be

associated with multiple entities in KGs and at the same time one entity can have

multiple entries as objects. In the Galois lattice constructed from token-based formal

context 4, lexical mappings are generated when formal concepts contain objects

originated from two KGs.

2. Structural matching. The system proceeds to construct the structural formal con-

text using lexical mappings obtained so far. KGs tend to have massive instances

while properties and classes are much less, and as stated in [6,5], matching instances

can be harder than classes and properties. Thus we focus on identifying structural

correspondence among instances at this step. For the given two KGs, every instance

is used as an object in the formal context. The attributes comes from pairing two

RDF triples across KGS whose properties and tail instances have been matched, re-

spectively, at the lexical step. Such a formal context describes how instances share

connections to other instances, thus has a potential to reflect the structural similar-

ities across KGs. In the lattice computed, structural mappings are generated when

formal concepts contain instances from two KGs.

3. Mapping filtering. The OAEI 2019 Knowledge Graph track bases its evaluation

on that all mappings are 1:1, i.e., one entity can only have at most one correspon-

dence in the other KG. Due to this, the system employs a filtering process on cases

4 We implemented the algorithm Hermes [1] for constructing the lattice.
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when one entity occurs inmultiplemappings identified.Mappings that possessmore

shared structural attributes and more lexical tokens are selected.

1.3 Adaptations made for the evaluation

Conforming to the evaluation criteria of theKnowledgeGraph track this year, the SEALS

submission of FCAMap-KG is modified to produce only 1:1 mappings. In general,

FCAMap-KG is not restricted this way and can find cases when one entity is matched

to multiple entities in another knowledge graph.

1.4 Link to the system and parameters file

The SEALS wrapped version of FCAMap-KG for OAEI 2019 is available at https:
//drive.google.com/open?id=1pZ5Hzv8_wfULKYN4Uc_kcmlkPseJ7kQ_

1.5 Link to the set of provided alignments

The results obtained by FCAMap-KG for OAEI 2019 are available at https://drive.
google.com/open?id=1bS19DDe7nZNC1MlHB8qX-yoACWBWELGR

2 Results

In this section, we present the evaluation results obtained by running FCAMap-KG on

Knowledge Graph track under the SEALS client in OAEI 2019 campaign. Although

our system was not intended to participate in other tracks, OAEI reported whenever

FCAMap-KG could generated an alignment 5. Therefore, the results for these tracks

will also be introduced including Anatomy, Large Biomedical Ontologies, Disease and

Phenotype, and Biodiversity and Ecology. The evaluation was performed on a virtual

machine (VM) with 32GB of RAM and 16 vCPUs (2.4 GHz).

2.1 The OAEI 2019 Knowledge Graph Track

The Knowledge Graph track requires finding alignments at both schema and data level,

including class mappings, property mappings and instance mappings. The track consists

of a total of five matching tasks among nine isolated knowledge graphs for describing

movies, comics, TV and books. We follow the OAEI evaluation criteria in counting

positives and negatives based on 1:1 matching and the partialness of gold standard. The

overview results of FCAMap-KG are presented in Table 1 where Size indicates an av-

erage number of mappings obtained. As reported by OAEI 6, among the 12 participants,

our system ranks the first in F-measure for instance and property mappings and ranks

second for class mappings. As a result, FCAMap-KG has achieved the best overall F-

measure for the track.

5 http://oaei.ontologymatching.org/2019/results/
6 http://oaei.ontologymatching.org/2019/results/knowledgegraph/index.html
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Table 1. Overview results for Knowledge Graph track

Class Property Instance Overall

Size Prec. Rec. F-m. Size Prec. Rec. F-m. Size Prec. Rec. F-m. Size Prec. Rec. F-m.

18.6 1.00 0.70 0.82 69.0 1.00 0.96 0.98 4530.6 0.90 0.79 0.84 4792.6 0.91 0.79 0.85

The overall performance of FCAMap-KG for each matching task is listed in Table 2,

and when breaking down into class, property and instance mappings, the results for each

task are shown by Table 3, Table 4, and Table 5, respectively. FCAMap-KG stands out

in matching properties by having a 100% precision for four tasks, and according to

OAEI, obtains the best F-measure for all five tasks among 12 participants. For instance

mappings, the system stays in top three F-measures for all tasks; all the class mappings

generated by FCAMap-KG for the track are correct and its F-measure ranks first for two

tasks.

Table 2. Overall results for each matching task in Knowledge Graph track

Matching task Size Precision Recall F-measure

marvel cinematic universe - marvel 2,682 0.84 0.65 0.73

memory alpha - memory beta 13,171 0.92 0.85 0.88

memory alpha - stexpanded 3,174 0.94 0.89 0.91

star wars - swg 2,140 0.90 0.71 0.80

star wars - swtor 2,796 0.93 0.87 0.90

2.2 Other OAEI 2019 Tracks

OAEI reported the performance of our system in tracks other than theKnowledgeGraph,

and they are Anatomy, Large Biomedical Ontologies, Disease and Phenotype, and Bio-

diversity and Ecology. The results obtained by FCAMap-KG for these tracks are shown

in Table 6, 7, 8, and 9, respectively.

– TheAnatomy track aims at finding an alignment between theAdultMouseAnatomy

(2744 classes) and a fragment of the NCI Thesaurus (3304 classes) for describing

the human anatomy.

– The Large Biomedical Ontologies track consists of identifying mappings among the

Foundational Model of Anatomy (FMA), SNOMED CT, and the National Cancer

Institute Thesaurus (NCI). These ontologies are of both large-scale and semantic

richness, and both whole ontologies and fragments are used.

– The Disease and Phenotype track involves the matching task between the Human

Phenotype (HP) Ontology and the Mammalian Phenotype (MP) Ontology, and the

141



FCAMap-KG Results for OAEI 2019 5

Table 3. Class results for each matching task in Knowledge Graph track

Matching task Size Precision Recall F-measure

marvel cinematic universe - marvel 8 1.00 1.00 1.00

memory alpha - memory beta 21 1.00 0.29 0.44

memory alpha - stexpanded 24 1.00 0.62 0.76

star wars - swg 12 1.00 0.80 0.89

star wars - swtor 28 1.00 0.80 0.89

Table 4. Property results for each matching task in Knowledge Graph track

Matching task Size Precision Recall F-measure

marvel cinematic universe - marvel 19 1.00 0.91 0.95

memory alpha - memory beta 93 1.00 0.94 0.97

memory alpha - stexpanded 73 0.98 0.98 0.98

star wars - swg 48 1.00 1.00 1.00

star wars - swtor 112 1.00 0.98 0.99

matching between Human Disease Ontology (DOID) and the Orphanet and Rare

Diseases Ontology (ORDO).

– The Biodiversity and Ecology track aims at detecting equivalence between the En-

vironment Ontology (ENVO) and the Semantic Web for Earth and Environment

Technology Ontology (SWEET), and between the Plant Trait Ontology (PTO) and

the Flora Phenotype Ontology (FLOPO).

Note that unlike FCAMap and FCAMapX specifically for aligning biomedical on-

tologies, FCAMap-KG targets knowledge graphs where schematic knowledge is gen-

erally rare, thus none domain thesauri or external terminologies have been used to fa-

cilitate the matching. It is understandable that FCAMap-KG did not perform as well

as FCAMap and FCAMapX on life sciences ontologies. Nevertheless, without the sup-

port of any domain knowledge, FCAMap-KG ranks first in precision for MA-NCI task

among 12 participants, for the two Disease and Phenotype tasks among 8 participants,

and for ENVO-SWEET task among 6 participants.

3 General comments

3.1 Comments on the results

This is the third time that we participate in the OAEI campaign with our Formal Concept

Analysis based system. Developed targeting knowledge graph matching, FCAMap-KG

has achieved a satisfactory result by ranking first in F-measure for overall five KG tasks

among 12 participants. For every single task, our system obtains the best F-measure
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Table 5. Instance results for each matching task in Knowledge Graph track

Matching task Size Precision Recall F-measure

marvel cinematic universe - marvel 2,603 0.84 0.65 0.73

memory alpha - memory beta 12,474 0.92 0.85 0.88

memory alpha - stexpanded 3,008 0.94 0.89 0.91

star wars - swg 2,004 0.90 0.70 0.79

star wars - swtor 2,564 0.93 0.86 0.89

Table 6. Results for Anatomy track

Matching Task Size Precision Recall F-measure

MA-NCI 960 0.996 0.631 0.772

for property mappings and remains in top three for instance mappings. Of note, tak-

ing advantage of the efficiency mechanism implemented by FCAMapX, FCAMap-KG

managed to finish all the KG tasks within given time despite the high computation com-

plexity of FCA formalism per se. Additionally, although unintended, FCAMap-KG is

reported in four biomedicine and ecology tracks by OAEI 2019 with a competitive per-

formance in precision.

3.2 Discussions on possible improvements

The very first step of FCAMap-KG is lexical matching whose resultant mappings are

used in the subsequent structural matching steps. This means that our system is sus-

ceptible to the lexical labeling of entities in knowledge graphs. When the naming is

diverse across KGs, as in the case of marvelcinematicuniverse - marvel, gold stan-

dard mappings like < marvelcinematicuniverse : Combat_Enhancers, marvel :
Adrenaline_Pills > can be missed. For this task, FCAMap-KG’s F-measure is 10%

to 20% lower than the other four tasks, as listed in Table 2. This indicates the impor-

tance of structural matchingwhich is capable of identifyingmatches not having anything

common in names. We are in the process of constructing an iterative framework for us-

ing mappings obtained so far to enhance the current loop of matching until no further

mappings are found. Such a comprehensive way of incorporating lexical and structural

information of classes, properties and instances can take advantage of data and knowl-

edge represented in KGs to the fullest.

As mentioned above, an adjustment made in FCAMap-KG for participating the

Knowledge Graph track is to limit the mappings selected to one-to-one. Again, take

the task marvelcinematicuniverse - marvel for example, where two mappings

< marvelcinematicuniverse : Zodiac, marvel : Zodiac > and

< marvelcinematicuniverse : Zodiac, marvel : Zodiac_V irus > are generated

by our system and eventually the former is selected whereas the latter is the correct

match in gold standard. None whatsoever relevant structural information within the two

143



FCAMap-KG Results for OAEI 2019 7

Table 7. Results for Large BioMedical Ontologies track

Matching Task Size Prec. Rec. F-m.

FMA-NCI
small fragments 2,508 0.967 0.817 0.886

whole ontologies 3,765 0.622 0.817 0.706

FMA-SNOMED
small fragments 1,720 0.973 0.222 0.362

FMA whole w/ SNOMED large fragment 1,863 0.881 0.222 0.355

SNOMED-NCI
small fragments 10,910 0.937 0.555 0.697

SNOMED large fragment w/ NCI whole 12,813 0.789 0.555 0.652

Table 8. Results for Disease and Phenotype track

Matching Task Size Precision Recall F-measure

HP-MP 734 0.997 0.322 0.487

DOID-ORDO 1,274 0.999 0.443 0.614

KGs makes it difficult to do the right decision. For such cases, external resources shall

be exploited, providing necessary knowledge for the domain of interest.

3.3 Comments on the OAEI procedure

With respect to the OAEI procedure, the Knowledge Graph track that our system partic-

ipated in this year is adequately well designed, with organizers being very supportive in

resolving issues arisen in the middle of execution phase. The only difficulty we encoun-

tered comes from a dependency on Jena packages on the SEALS platform. The problem

got settled successfully in the end, and it might be helpful if participants whose systems

include Jena packages can be informed in advance that re-packaging Jena on SEALS

platform requires additional declaration of the Global Location Mapper. Overall, we

sincerely appreciate the efforts by organizers in establishing the OAEI campaign, and

with the prospect of further improving the system, we look forward to be back next year.

4 Conclusions

In this paper, we present a variant of FCA-Map called FCAMap-KG, which is partic-

ularly designed for matching knowledge graphs. KGs are normally of large size and

focus on describing instance connected with properties rather than schematic knowl-

edge of classes as in domain ontologies. FCAMap-KG’s performance in the OAEI 2019

Knowledge Graph track, together with its two predecessors, demonstrates the power of

our FCA-based approach in detecting correspondences across different kinds of data

and knowledge representation systems. With the prevail of knowledge graph research

in Semantic Web and knowledge engineering community and in industry, extending

our system with comprehensive functions and frameworks shall contribute more to this

thriving domain.
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Table 9. Results for Biodiversity and Ecology track

Matching Task Size Precision Recall F-measure

FLOPO-PTO 171 0.836 0.601 0.699

ENVO-SWEET 422 0.803 0.518 0.630
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Abstract. To achieve better efficiency and feasibility in instance match-
ing between two datasets, we proposed a system named FTRLIM, which
is based on the FTRL (Follow the Regularized Leader) model. The FTR-
LIM system supports the generation of indexes for instances, which en-
ables the system to figure out possible matching instance pairs efficiently.
FTRLIM participated in the SPIMBENCH track of OAEI 2019, and
obtained the highest F-measure in SANDBOX and almost the highest
F-measure in MAINBOX, with the least time cost. The results also pro-
vided potential directions for further improvement of FTRLIM.

1 Presentation of the system

1.1 State, purpose, general statement

Researchers have worked a lot on ontology alignment, and early methods mainly
focused on matching ontologies based on the schema. Recently, the instance-
based matching has gradually become a promising topic.[1] There exists many
ontology matching systems that support the solution of the instance matching
problem, such as LogMap[2], AML[3], Lily[4], RiMOM-IM[5] and so on. With
the rapid growth of data scale, it has become a practical requirement to complete
the task of instance matching among large-scale knowledge graphs.

FTRLIM is designed to provide an effective and efficient solution for matching
instances among large-scale datasets, whose core functionalities are listed as
follows:

1. Build indexes for instances based on textual attributes. Only instances with
the same index have the possibility to be aligned.
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2. Calculate the similarity between two instances on certain attributes and
relationships. Different methods have been used to calculate the similarity
according to the data types of attributes or relationships.

3. Generate the train dataset for the FTRL model [6] from the given data
automatically. Specific instance pairs are selected as train set during the
matching process without manual operations.

4. Aggregate similarities of different attributes and relationships into a similar-
ity score with the FTRL model, which is trained after the generation of the
train set.

5. Select aligned instances according to similarity scores between each instance
pairs.

6. Customize all procedures based on configuration files.

FTRLIM is a newly developed system and it is the first time that we have
participated in the OAEI evaluation. We expect to check the feasibility and
efficiency of our system, and thus we rebuilt our system using Java with core
functionalities. The complete version of FTRLIM has been developed and de-
ployed on a Spark cluster, which provides the system with ability to deal with
large-scale data. The user feedback mechanism has been integrated into the sys-
tem as well. The system will correct matching results on the basis of feedback.
Last but not least, the system also supports merging aligned instances’ attributes
and relationships.

1.2 Specific techniques used

FTRLIM consists of five major components: Index Generator, Comparator,
Train set Generator, Model Trainer and Matcher. The system accepts input
instances in OWL format, which are stored in source dataset and target dataset
respectively. FTRLIM will find aligned instances between the two datasets. The
architecture of FTRLIM is presented in Fig.1.

Fig. 1. FTRLIM System OAEI 2019
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Index Generator Since the scale of instances that need to be aligned is usually
very large, it is very time-consuming and space-consuming to compare all the
instances with each other to find aligned instance pairs. FTRLIM uses textual
information related to instances to filter out instance pairs that could be aligned
efficiently. This work is done by Index Generator. Index Generator plays an im-
portant role in FTRLIM. It builds indexes for all input instances based on their
attributes. The system first extracts values of a specified instance attribute, then
regards each of the values as a document, all of which will constitute a docu-
ment set. The measurement TF-IDF is used to find keywords for each document.
Finally the indexes of an instance are generated from the combination of its key-
words. FTRLIM supports users to generate indexes for instances via more than
one attribute. In this scenario, different indexes of an instance created referring
to different attributes will be concatenated together as the final index. Instances
with the same index are divided into the same instance block, and instances from
different sources under the same block will form candidate instance pairs. Only
when a pair of instances is a candidate pair can it be aligned in the following
procedures. When there are only two instances from different data sources in
the same block, these two instances will form a unique instance pair[5], which
will be regarded as an aligned instance pair directly. Missing value of attributes
is taken into consideration to avoid losing candidate instances as far as possible.

Comparator All candidate pairs will be sent to the comparator to calculate
similarity. The comparator compares two instances from different aspects. The
edit distance similarity is calculated for textual instance attributes, while the
Jaccard similarity is calculated for instance relationships. The calculation re-
sults will be arranged in order to form the similarity vector. For example, if we
compare a candidate pair (x1, x2) under two attributes (a1, a2) and relationship
r1, the similarities of (x1, x2) from each aspect are 0.3, 1 and 0.8, respectively, the
similarity vector should be 〈0.3, 1, 0.8〉. All the pairs are compared from identical
aspects to ensure that the same dimension of different similarity vectors has the
same meaning.

Train set Generator Judging whether a pair of instances is aligned is actually
a binary classification problem. We innovatively introduced the FTRL model to
solve this problem. The FTRL model has ability to complete the task of clas-
sification in large-scale datasets. The model needs to be trained at first. The
component, Train set Generator, will generate train set for the FTRL model.
The train set is composed of instance pairs’ similarity vectors as well as their
similarity scores. The Train set Generator regards all unique pairs as aligned
pairs. Therefore, it selects all similarity vectors of unique pairs as positive sam-
ples, and assigns them with similarity score 1.0. The unaligned pairs are built
by replacing one instance of each unique pair randomly. These pairs are assigned
with similarity score 0.0 and treated as negative samples in the train set. The
input of the FTRL model is the similarity vector, and the output is the similarity
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score. This component is different from the complete version of FTRLIM, which
will be introduced in Section 1.3.

Model Trainer The FTRL model is trained in this component with hyperpa-
rameters in configuration files. Benefiting from the FTRL model’s feature, the
training process won’t cost a long time. The trainer plays a greater role in the
complete version as well: it can be used to accept the feedback of users and
adjust the parameters of the FTRL model. Users are allowed to choose a batch
of candidate instance pairs and correct the similarity score, or pick up a certain
pair to correct.

Matcher All candidate pairs will obtain their final similarity scores in this com-
ponent. The trained FTRL model accepts all the similarity vectors and predicts
the matching scores of them. Instance pairs with score larger than 0.5 will be
regarded as aligned pairs. They will form the final output of aligned instances
together with unique pairs.

Configurations FTRLIM is easily to be tailored according to user’s require-
ments. We expect that all matching procedures are under user’s control, thus
we allow users to customize their own FTRLIM system using configuration files.
Users are able to set the attributes for index generation, the attributes and re-
lationships for comparison, the hyperparameters for the FTRL model and many
other detailed parameters to get a better result.

1.3 Adaptions made for the evaluation

To participate in the evaluation, we rebuilt the FTRLIM system and replaced
some manual operations with automatic strategies. In the complete version,
FTRLIM does not regard all unique pairs as aligned pairs directly. It will com-
pute the mean value of similarity vectors’ elements as the raw score for each
instance pairs. Then it will select a batch of instance pairs that have raw scores
higher than a threshold as positive samples, as well as the same amount of in-
stance pairs whose raw scores are lower than the threshold as negative samples.
Users will determine the similarity score by themselves to generate the train set.
In the version developed for OAEI, this procedure is changed as we mentioned
in 1.2. We excluded the non-core functionalities of the system, and made the
ways of input and output suitable for the evaluation.

1.4 Link to the system and parameters file

The implementation of FTRLIM and relevant System Adapter for HOBBIT
platform can be found at this FTRLIM-HOBBIT’s gitlab page.3

3 https://git.project-hobbit.eu/937522035/ftrlimhobbit
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2 Result

In this section, we present the results obtained by FTRLIM in the OAEI 2019
competition. FTRLIM participated in the SPIMBENCH track, which aims at
determining when two OWL instances describe the same Creative Work. The
datasets are generated and transformed using SPIMBENCH[7]. We are the latest
team to join this track. Our competitors are LogMap[2], AML[3] and Lily[4], who
have participated in this track for many years. The results are published in this
OAEI 2019 result page4.

2.1 SPIMBENCH

The SPIMBENCH task is executed in two datasets, the SANDBOX and the
MAINBOX, of different size. The SANDBOX has about 380 instances and 10000
triplets, while the MAINBOX has about 1800 Create Works and 50000 triplets.

Table 1. The result of SANDBOX

FTRL-IM AML Lily LogMap

Fmeasure 0.9214175655 0.864516129 0.9185867896 0.8413284133
Precision 0.8542857143 0.8348909657 0.8494318182 0.9382716049

Recall 1 0.8963210702 1 0.762541806
Time performance 1474 6223 2032 6919

Evaluation results of SANDBOX are summarized in Table 1, where the best
results are indicated in bold. Compared with AML[3], Lily[4] and LogMap [2],
FTRLIM obtained the highest F-measure, highest recall and best time perfor-
mance, while the precision is 0.08 lower than LogMap that has the best precision.

Evaluation results of MAINBOX are presented in Table 2 with the best
results in bold. Our system is approximately 41% faster than Lily and 17 times
faster than the slowest one, while the F-measure is only 0.00014 lower than the
best one. We obtained the nearly full mark on recall and the second highest
precision as well.

Table 2. The result of MAINBOX

FTRL-IM AML Lily LogMap

Fmeasure 0.9214787657 0.8604576217 0.9216224459 0.790560472
Precision 0.85584563 0.8385678392 0.854638009 0.8925895087

Recall 0.9980145599 0.8835208471 1 0.7094639312
Time performance 2155 39515 3667 26920

4 http://oaei.ontologymatching.org/2019/results
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3 General comments

3.1 Comments on the result

FTRLIM has achieved satisfactory performance in both datasets of SPIMBENCH,
especially in the SANDBOX. The Index Generator makes a significant contri-
bution to achieving the results. It helps the system filter out instance pairs with
a high possibility to be aligned effectively and efficiently. The comparator only
needs to compare instances with the same indexes rather than every instance
pairs. The datasets of SPIMBENCH contain a wealth of textual information,
and there are many attributes that can be used to build indexes or to compare
the similarity among instances. The FTRL model trained by the Model Trainer
component is as smart as we expect to learn a weight for attributes or rela-
tionships and distinguish pairs of instances pointing to the same entity in real
world.

Compared with LogMap, the F-measure of FTRLIM is 8-13% higher while
the precision is 4-8% lower. This result shows that FTRLIM could still be im-
proved to obtain higher precision. The OAEI version of FTRLIM considers
unique pairs as aligned instances unconditionally, which is not always true. One
possible way to solve the problem is validating the matching results. This is one
of the centers of our future work.

3.2 Improvements

There are still many aspects to be improved in the FTRLIM system. Besides
adding validation stage that described in 3.1, we will continue to optimize the
algorithm of generating indexes for instances and the matching strategy in fol-
lowing work. More comparison methods and supporting data types should be
attached to our system as well. And we are committed to building the GUI for
our system. Although FTRLIM is specially designed to solve the instance match-
ing problem, it is also expected to produce meaningful results in other similar
tracks in the future.

4 Conclusion

In this paper, we briefly presented our instance matching system FTRLIM. The
core functionalities and components of the system were introduced, and the
evaluation results of FTRLIM were presented and analyzed. FTRLIM achieved
significantly better time performance than other systems in both datasets of
SPIMBENCH, and got the highest F-measure in SANDBOX and almost the
same F-measure as the best one in MAINBOX. The results proved the effec-
tiveness and high efficiency of our matching strategy, which is important for
matching instances among large-scale datasets.
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Abstract. This paper presents the results of Lily in the ontology align-
ment contest OAEI 2019. As a comprehensive ontology matching system,
Lily is intended to participate in three tracks of the contest: anatomy,
conference, and spimbench. The specific techniques used by Lily will be
introduced briefly. The strengths and weaknesses of Lily will also be
discussed.

1 Presentation of the system

With the use of hybrid matching strategies, Lily, as an ontology matching sys-
tem, is capable of solving some issues related to heterogeneous ontologies. It can
process normal ontologies, weak informative ontologies [1], ontology mapping de-
bugging [2], and ontology matching tunning [3], in both normal and large scales.
In previous OAEI contests [4–10], Lily has achieved preferable performances in
some tasks, which indicated its effectiveness and wideness of availability.

1.1 State, purpose, general statement

The core principle of matching strategies of Lily is utilizing the useful information
correctly and effectively. Lily combines several effective and efficient matching
techniques to facilitate alignments. There are five main matching strategies: (1)
Generic Ontology Matching (GOM) is used for common matching tasks with
normal size ontologies. (2) Large scale Ontology Matching (LOM) is used for
the matching tasks with large size ontologies. (3) Instance Ontology Matching
(IOM) is used for instance matching tasks. (4) Ontology mapping debugging is
used to verify and improve the alignment results. (5) Ontology matching tuning
is used to enhance overall performance.

The matching process mainly contains three steps: (1) Pre-processing, when
Lily parses ontologies and prepares the necessary information for subsequent
steps. Meanwhile, the ontologies will be generally analyzed, whose characteris-
tics, along with studied datasets, will be utilized to determine parameters and
strategies. (2) Similarity computing, when Lily uses special methods to calculate

? This work is supported by National Key R&D Program of China (2018YFD1100302).
Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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the similarities between elements from different ontologies. (3) Post-processing,
when alignments are extracted and refined by mapping debugging.

In this year, some algorithms and matching strategies of Lily have been
modified for higher efficiency, and adjusted for brand-new matching tasks like
Author Recognition and Author Disambiguation in the Instance Matching track.

1.2 Specific techniques used

Lily aims to provide high quality 1:1 concept pair or property pair alignments.
The main specific techniques used by Lily are as follows.

Semantic subgraph An element may have heterogeneous semantic interpre-
tations in different ontologies. Therefore, understanding the real local meanings
of elements is very useful for similarity computation, which are the foundations
for many applications including ontology matching. Therefore, before similarity
computation, Lily first describes the meaning for each entity accurately. However,
since different ontologies have different preferences to describe their elements, ob-
taining the semantic context of an element is an open problem. The semantic
subgraph was proposed to capture the real meanings of ontology elements [11].
To extract the semantic subgraphs, a hybrid ontology graph is used to repre-
sent the semantic relations between elements. An extracting algorithm based on
an electrical circuit model is then used with new conductivity calculation rules
to improve the quality of the semantic subgraphs. It has been shown that the
semantic subgraphs can properly capture the local meanings of elements [11].

Based on the extracted semantic subgraphs, more credible matching clues can
be discovered, which help reduce the negative effects of the matching uncertainty.

Generic ontology matching method The similarity computation is based
on the semantic subgraphs, which means all the information used in the simi-
larity computation comes from the semantic subgraphs. Lily combines the text
matching and structure matching techniques.

Semantic Description Document (SDD) matcher measures the literal similar-
ity between ontologies. A semantic description document of a concept contains
the information about class hierarchies, related properties and instances. A se-
mantic description document of a property contains the information about hier-
archies, domains, ranges, restrictions and related instances. For the descriptions
from different entities, the similarities of the corresponding parts will be calcu-
lated. Finally, all separated similarities will be combined with the experiential
weights.

Matching weak informative ontologies Most existing ontology matching
methods are based on the linguistic information. However, some ontologies may
lack in regular linguistic information such as natural words and comments. Con-
sequently the linguistic-based methods will not work. Structure-based methods
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are more practical for such situations. Similarity propagation is a feasible idea
to realize the structure-based matching. But traditional propagation strategies
do not take into consideration the ontology features and will be faced with ef-
fectiveness and performance problems. Having analyzed the classical similarity
propagation algorithm, Similarity Flood, we proposed a new structure-based on-
tology matching method [1]. This method has two features: (1) It has more strict
but reasonable propagation conditions which lead to more efficient matching pro-
cesses and better alignments. (2) A series of propagation strategies are used to
improve the matching quality. We have demonstrated that this method performs
well on the OAEI benchmark dataset [1].

However, the similarity propagation is not always perfect. When more align-
ments are discovered, more incorrect alignments would also be introduced by
the similarity propagation. So Lily also uses a strategy to determine when to use
the similarity propagation.

Large scale ontology matching Matching large ontologies is a challenge due
to its significant time complexity. We proposed a new matching method for large
ontologies based on reduction anchors [12]. This method has a distinct advantage
over the divide-and-conquer methods because it does not need to partition large
ontologies. In particular, two kinds of reduction anchors, positive and negative
reduction anchors, are proposed to reduce the time complexity in matching.
Positive reduction anchors use the concept hierarchy to predict the ignorable
similarity calculations. Negative reduction anchors use the locality of matching
to predict the ignorable similarity calculations. Our experimental results on the
real world datasets show that the proposed methods are efficient in matching
large ontologies [12].

Ontology mapping debugging Lily utilizes a technique named ontology map-
ping debugging to improve the alignment results [2]. Different from existing meth-
ods that focus on finding efficient and effective solutions for the ontology mapping
problems, mapping debugging emphasizes on analyzing the mapping results to
detect or diagnose the mapping defects. During debugging, some types of map-
ping errors, such as redundant and inconsistent mappings, can be detected. Some
warnings, including imprecise mappings or abnormal mappings, are also locked
by analyzing the features of mapping result. More importantly, some errors and
warnings can be repaired automatically or can be presented to users with revising
suggestions.

Ontology matching tuning Lily adopted ontology matching tuning this year.
By performing parameter optimization on training datasets [3], Lily is able to
determine the best parameters for similar tasks. Those data will be stored. When
it comes to real matching tasks, Lily will perform statistical calculations on the
new ontologies to acquire their features that help it find the most suitable con-
figurations, based on previous training data. In this way, the overall performance
can be improved.
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Currently, ontology matching tuning is not totally automatic. It is difficult
to find out typical statistical parameters that distinguish each task from oth-
ers. Meanwhile, learning from test datasets can be really time-consuming. Our
experiment is just a beginning.

1.3 Adaptations made for the evaluation

For anatomy and conference tasks, Lily is totally automatic, which means Lily
can be invoked directly from the SEALS client. It will also determine which strat-
egy to use and the corresponding parameters. For a specific instance matching
task, Lily needs to be configured and started up manually, so only matching
results were submitted.

2 Results

2.1 Anatomy track

The anatomy matching task consists of two real large-scale biological ontologies.
Table 1 shows the performance of Lily in the Anatomy track on a server with
one 3.46 GHz, 6-core CPU and 8GB RAM allocated. The time unit is second
(s).

Table 1. The performance in the Anatomy track

Matcher Runtime Precision Recall Recall+ F-Measure
Lily 281 0.873 0.796 0.52 0.833

Compared with the result in OAEI 2018 [4], there is a sight improvement in
Precision, Recall and F-Measure. However, as can be seen in the overall result,
Lily lies in the middle position of the rank, which indicates it is still possible
to make further progress. External knowledge will be leveraged in the future for
the better results. Additionally, to futher reduce the time consumption, some
key algorithms will be parallelized.

2.2 Conference track

In this track, there are 7 independent ontologies that can be matched with one
another. The 21 subtasks are based on given reference alignments. As a result of
heterogeneous characters, it is a challenge to generate high-quality alignments
for all ontology pairs in this track.

Lily adopted ontology matching tuning for the Conference track this year.
Table 2 shows its latest performance.

156



Lily Results for OAEI 2019 5

Table 2. The performance in the Conference track

Test Case ID Precision Recall F.5-Measure F1-measure F2-measure
ra1-M1 0.59 0.6 0.61 0.62 0.63
ra1-M3 0.59 0.58 0.56 0.54 0.53
ra2-M1 0.58 0.58 0.57 0.56 0.56
ra2-M3 0.58 0.56 0.53 0.50 0.48
rar2-M1 0.60 0.59 0.57 0.55 0.44
rar2-M3 0.54 0.53 0.52 0.51 0.50
Average 0.58 0.57 0.56 0.55 0.52

Compared with the result in OAEI 2018 [4], there is no obvious progress
in mean Precision, Recall and F-Measure. All the tasks share the same config-
urations, so it is possible to generate better alignments by assigning the most
suitable parameters for each task. The performance of Lily was even worse than
StringEquiv in some tasks. ‘We will further analyze this task and our system to
find out the reason later.

2.3 Spimbench track

This tack is an instance-mactching tack which aims to match instances of cre-
ative works between two boxes. And ontology instances are described through
22 classes, 31 DatatypeProperty and 85 ObjectProperty properties.

There are about 380 instances and 10000 triples in sandbox, and about 1800
CWs and 50000 triples in mainbox.

Table 3. Performance in the spimbench task

Track Matcher Precision Recall F-Measure Time

SANDBOX

AML 0.8349 0.8963 0.8645 6223
FTRL-IM 0.8543 1.000 0.9214 1474
LogMap 0.9383 0.7625 0.8413 6919
Lily 0.8494 1.000 0.9186 2032

MAINBOX

AML 0.8386 0.8835 0.8605 39515
FTRL-IM 0.8558 0.9980 0.9215 2155
LogMap 0.8926 0.7095 0.7906 26920
Lily 0.8546 1.000 0.9216 3667

Lily utilized almost the same startegy to handle these two different size tasks.
We found that creative works in this task was rich in text information such as
titles, descriptions and so on. However, garbled texts and messy codes were mixed
up with normal texts. And Lily relied too much on text similarity calculation
and set a low threshold in this task, which accounted for the low precision.
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As is shown in Table 3, Lily outperforms the others in mainbox. And we
suppose that Lily and FTRL-IM share similar strategies in this track as their
results are close. Meanwhile, experiments shows that simple ensemble methods
and a low threshold contribute to increase of matching efficiency. Nevertheless,
compared with FTRL-IM, there is still potential for Lily to speed up in process
of matching.

3 General comments

In this year, a lot of modifications were done to Lily for both effectiveness and ef-
ficiency. The performance has been improved as we have expected. The strategies
for new tasks have been proved to be useful.

On the whole, Lily is a comprehensive ontology matching system with the
ability to handle multiple types of ontology matching tasks, of which the results
are generally competitive. However, Lily still lacks in strategies for some newly
developed matching tasks. The relatively high time and memory consumption
also prevent Lily from finishing some challenging tasks.

4 Conclusion

In this paper, we briefly introduced our ontology matching system Lily. The
matching process and the special techniques used by Lily were presented, and
the alignment results were carefully analyzed.

There is still so much to do to make further progress. Lily needs more opti-
mization to handle large ontologies with limited time and memory. Thus, tech-
niques like parallelization will be applied more. Also, we have just tried out
ontology matching tuning. With further research on that, Lily will not only
produce better alignments for tracks it was intended for, but also be able to
participate in the interactive track.
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LogMap Family Participation in the OAEI 2019 ?
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Abstract. We present the participation of LogMap and its variants in the OAEI
2019 campaign. The LogMap project started in January 2011 with the objective
of developing a scalable and logic-based ontology matching system. This is the
ninth participation in the OAEI and the experience has so far been very positive.
LogMap is one of the few systems that participates in (almost) all OAEI tracks.

1 Presentation of the system

LogMap [11, 13] is a highly scalable ontology matching system that implements the
consistency and locality principles [12]. LogMap is one of the few ontology matching
system that (i) can efficiently match semantically rich ontologies containing tens (and
even hundreds) of thousands of classes, (ii) incorporates sophisticated reasoning and
repair techniques to minimise the number of logical inconsistencies, and (iii) provides
support for user intervention during the matching process.

LogMap relies on the following elements, which are keys to its favourable scalabil-
ity behaviour (see [11, 13] for details).
Lexical indexation. An inverted index is used to store the lexical information contained
in the input ontologies. This index is the key to efficiently computing an initial set of
mappings of manageable size. Similar indexes have been successfully used in informa-
tion retrieval and search engine technologies [2].
Logic-based module extraction. The practical feasibility of unsatisfiability detection
and repair critically depends on the size of the input ontologies. To reduce the size of
the problem, we exploit ontology modularisation techniques. Ontology modules with
well-understood semantic properties can be efficiently computed and are typically much
smaller than the input ontology (e.g. [5]).
Propositional Horn reasoning. The relevant modules in the input ontologies together
with (a subset of) the candidate mappings are encoded in LogMap using a Horn propo-
sitional representation. Furthermore, LogMap implements the classic Dowling-Gallier
algorithm for propositional Horn satisfiability [6]. Such encoding, although incomplete,
allows LogMap to detect unsatisfiable classes soundly and efficiently.
Axiom tracking. LogMap extends Dowling-Gallier’s algorithm to track all mappings
that may be involved in the unsatisfiability of a class. This extension is key to imple-
menting a highly scalable repair algorithm.
? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).
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Local repair. LogMap performs a greedy local repair; that is, it repairs unsatisfiabilities
on-the-fly and only looks for the first available repair plan.

Semantic indexation. The Horn propositional representation of the ontology modules
and the mappings is efficiently indexed using an interval labelling schema [1] — an
optimised data structure for storing directed acyclic graphs (DAGs) that significantly
reduces the cost of answering taxonomic queries [4, 16]. In particular, this semantic
index allows us to answer many entailment queries as an index lookup operation over
the input ontologies and the mappings computed thus far, and hence without the need
for reasoning. The semantic index complements the use of the propositional encoding
to detect and repair unsatisfiable classes.

1.1 LogMap variants in the 2019 campaign

As in previous campaigns, in the OAEI 2019 we have participated with two additional
variants:

LogMapLt is a “lightweight” variant of LogMap, which essentially only applies (effi-
cient) string matching techniques.

LogMapBio includes an extension to use BioPortal [8, 9] as a (dynamic) provider of
mediating ontologies instead of relying on a few preselected ontologies [3].

In previous years we also participated with LogMapC3.

1.2 Link to the system and parameters file

LogMap is open-source and released under GNU Lesser General Public License 3.0.4

LogMap components and source code are available from the LogMap’s GitHub page:
https://github.com/ernestojimenezruiz/logmap-matcher/.

LogMap distributions can be easily customized through a configuration file contain-
ing the matching parameters.

LogMap, including support for interactive ontology matching, can also be used
directly through an AJAX-based Web interface: http://krrwebtools.cs.ox.
ac.uk/. This interface has been very well received by the community since it was
deployed in 2012. More than 3,000 requests coming from a broad range of users have
been processed so far.

1.3 LogMap as a mapping repair system

Only a very few systems participating in the OAEI competition implement repair tech-
niques. As a result, existing matching systems (even those that typically achieve very
high precision scores) compute mappings that lead in many cases to a large number of
unsatisfiable classes.

3 LogMapC is a variant of LogMap which, in addition to the consistency and locality principles,
also implements the conservativity principle (see details in [17–19, 15]).

4 http://www.gnu.org/licenses/
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We believe that these systems could significantly improve their output if they were
to implement repair techniques similar to those available in LogMap. Therefore, with
the goal of providing a useful service to the community, we have made LogMap’s ontol-
ogy repair module (LogMap-Repair) available as a self-contained software component
that can be seamlessly integrated in most existing ontology matching systems [14, 7].

1.4 LogMap as a matching task division system

LogMap also includes a novel module to divide the ontology alignment task into (inde-
pendent) manageable subtasks [10]. This component relies on LogMap’s lexical index,
a neural embedding model [20] and locality-based modules [5]. This module can be
integrated in existing ontology alignment systems as a external module. The prelimi-
naty results in [10] are encouraging as the division enabled systems to complete some
large-scale matching tasks.

2 General comments and conclusions

Please refer to http://oaei.ontologymatching.org/2019/results/ for
the results of the LogMap family in the OAEI 2019 campaign.

2.1 Comments on the results

As in previous campaigns, LogMap has been one of the top systems and one of the few
systems that participates in (almost) all tracks. Furthermore, it has also been one of the
few systems implementing repair techniques and providing (almost) coherent mappings
in all tracks.

LogMap’s main weakness is that the computation of candidate mappings is based
on the similarities between the vocabularies of the input ontologies; hence, in the cases
where the ontologies are lexically disparate or do not provide enough lexical informa-
tion LogMap is at a disadvantage.
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Abstract: This paper describes an ontology matching system named 

ONTMAT1, and presents the results obtained for the Ontology Alignment 

Evaluation Initiative (OAEI) 2019. ONTMAT1 compares entities of ontologies 

to align by structural and terminological methods which use a reasoner along 

with wordnet dictionnary. Thus, based on similarities of individual, datatype 

properties and the semantic of property restriction, the weight that estimates the 

performance of structural and linguistic similarities is calculated. 

Keywords: Ontology, Alignment, OWL. 

1 Presentation of the system 

ONTMAT1 (ONTology MATching) is an ontology alignment tool, aiming to align 

OWL entities (classes, object properties), participating for the first time in OAEI 

(Conference track). The specificities of ONTOMAT1 are presented below: 

1.1 State, purpose, general statement 

 

ONTMAT1 uses terminological methods based on n-gram measure and WordNet 

dictionary [1] that  is exploited as background knowledge along with pellet reasoner 

[2], to provide synonyms of names of individuals, concepts, and properties, of ontolo-

gies source (  ) and target(  ). The results obtained are saved in:  individual matrix 

(    ), concepts matrix (    ), and properties matrix (  ), for individuals, concepts 

and properties, respectively.  

Furthermore, a new weight that evaluates the impact of restriction property (object 

properties [3] and data type properties) on the structural similarity of concept is calcu-

lated. Thus, the impact of terminological similarity is 1 minus this weight. Then, the 

final result of concepts alignment is the sum of these similarities. 

                                                           
*
 Copyright © 2019 for this paper by its authors. Use permitted under 

Creative Commons License Attribution 4.0 International (CC BY 4.0). 
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1.2 Approach description 

The suggested algorithm is composed of 3 levels as explain in the following: 
1. In level 1, normalization techniques such as lemmatization [4], are applied 

on each entities name of matrices (    ,     ,   ). Then, the n-gram meas-
ure is used to assess the similarity among these entities. This measure is opt-
ed because it permits the control of the lexicon size and keeping at the same 
time a reasonable threshold for every composed term (names).The obtained 
value is assigned to the intersection between entities into every matrix. 
Since, the metric measures used to align entities may suffer of several draw-
backs, such as: the existence of synonyms that expresses the same entity us-
ing different words. Entities names are also compared to WordNet synsets 
using n-gram and the relation among synsets are inferred by Pellet reasoner. 
Then, the relations among these entities are deduced from relations inferred 
by the reasoner. 
 If synonym relation is inferred, then the value of intersection among these 
entities in their matrix becomes the average between 1.0 and the value calcu-
lated by the n-gram measure, else the existent value is preserved. 

2. In level 2, every property restriction defines the class allocated by a weight 

   that evaluates the influence of its semantic on this class.  

The sublanguage OWL-DL of OWL (Web Ontology Language) certified by 

the World Wide Web Consortium (W3C)
i
 is adopted in this paper to define 

the offered ontology matching algorithm. This language distinguishes two 

types of property restrictions: value constraints and cardinality constraints, 

which give a semantic sense to the assessed weight. A value constraint ap-

plies constraints on the range of the property. These constraints put on the 

class   or an object o can be:  

 allValuesFrom(C), is the same to the universal (for-all:  ) quantifi-

er of Predicate logic that for each instance of  , every value for 

Property must satisfies the constraint. Therefore, the algorithm can 

assert that this property has a robust impact on the class. Conse-

quently, from its semantic, the influence of this restriction on the 

class is considered “strong” and suggested 1.0 as weights          

in      , respectively, affected by ONTMAT1 to allValuesFrom. 

 someValuesFrom(C), is similar to the existential quantifier of Pred-

icate logic  that for each instance of  , there exists at least one value 

for Property that satisfies the constraint. Therefore, the influence of 

this constraint on a given class can be valued as average and   the 

value 0.75 is affected to     in    and     in   . 

  hasValue(o), joins a restriction class to a value o, which may be an 

individual or a data value. This restriction designates a class of all 

individuals for which the concerned property has at least one value 

semantically equivalent to o (it can, also, have supplementary val-

ues). The effect of this restriction can be considered as weak and the 

165



assigned weights (         in      , respectively) are evaluated to 

0.25.  

 A cardinality constraint is defined by maxCardinality(n) and min-

Cardinality(n), where (n) is the number of values that a property 

can take. Owl:maxCardinality(n) describes a class of all individuals 

that have at most n diverse values (individuals or data values) for 

the concerned property.  The influence of this constraint is only on 

n value, for this reason, it is estimated as a weak constraint and 

ONTMAT1 affects 0.25 to weights         in      , respectively. 

The same for minCardinality(n)  that describes a class of all indi-

viduals that have at least n various values for the concerned proper-

ty. 

3. Level 3 assesses structural similarity between concepts established upon 
properties restrictions. Property restrictions can be either datatype properties 
(data literal is the value of properties), or object properties (individual is the 
value of properties)

ii
. Firstly, restriction names of concepts (       ) to be 

matched are compared using terminological methods.  
Secondly, same terminological methods are used to measure similarities 
among datatype properties names of both concepts to align, as well as the 
average of these similarities is calculated to determine data similarities.  
Finally, similarities among individuals of concepts to match are extracted 
from      to compute their average data similarities.   

Afterwards, weights    and    evaluated influences of property on concepts 

are multiplied by data similarities and data similarities. Furthermore, values 

affected to    will be replaced by those deduced in this level. 

4. The last level consists on aggregation of above similarities of concepts. Con-
sequently, the final similarity is the sum of structural similarity and 1 minus 
the average of structural weights multiplied by terminological similarity. 

1.3 Adaptations made for the evaluation 

The alignment format adapted by the results, is  the “=” sign for equivalence relation 

with confidence of 1.  

 

However our system provides other relation called fuzzy relation symbolized by   

-1, proposed to resolve the problem of domination of structural similarity. This rela-

tion designates that the suggested system cannot decide about the relation that can be 

among the entities to match. This relation is assigned to concepts in which the differ-

ence between its        (       )                   , has a value that exceeds 

a certain threshold considered according to the expertise of the application in OAEI.  
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2 Results 

In this version we wish to test the techniques used by ONTMAT1, for instance: the 

inferences mechanisms applied upon WordNet, and the deduction of the matching 

among entities using weight based on restriction properties. The track used to perform 

these tests is the conference track.  Conference track comprises 16 ontologies from 

the domain of conference organization.  

The results of the evaluation based on crisp reference alignments that contains only 

classes (M1-rar2; M1-ra1;  M1-ra2 ) are considered in this study because the objec-

tive of this version is to show the influence of the weight and the reasoner on the clas-

ses alignment and properties will be treated in the next version 

As depicted in Table 1, ONTMAT1 provides fairly stable alignments when match-

ing conference ontologies. Table 2 illustrates that ONTMAT1's performance in dis-

crete and continuous cases increases 16 percent in terms of F-measure over the sharp 

reference alignment from 0.55 to 0.64, driven, principally, by increased recall.  

Table 1. Results based on the crisp reference alignments.  

 Precision  F-Measure 1 Recall 

M1-ra1 0.82 0.61 0.49 

M1-ra2 0.77 0.56 0.44 

M1-rar2 0.77 0.58 0.46 

 

 

 

Table 2. Results based on the uncertain version of the reference alignment. 

 

 

 

 

 

 

 

 

 

 

 

 

Finally,  ONTMAT1 have generated only one incoherent alignment in the evalua-

tion based on logical reasoning. 

Precision F-measure1 Recall 

 

Uncertain reference alignments (Sharp) 

0.82 0.55 0.41 

 

Uncertain reference alignments (Discrete) 

0.82 0.64 0.52 

 

Uncertain reference alignments (Continuous) 

0.82 0.64 0.53 
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2.1 Discussions on the way to improve the proposed system 

To improve the proposed application, properties of ontologies (     ) will also be 

aligned. Then, adapt it to read all files type, and integrate the translator to test our tool 

under other tracks as: Instance Matching, MultiFarm. 

3 Conclusion and future work 

We have briefly described the mechanisms exploited by our proposition 

ONTMAT1, and presented the results obtained under the conference track of OAEI 

2019.  

This is our firs participation in OAEI with ONTMAT1, the results are satisfying, 

and the system presents some limitations in term of recall. In the future, a greater 

effort will be made to improve ONTMAT1 results, and participate in more tracks.  
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Abstract. POMap++ is a novel ontology matching system based on
a machine learning approach. This year is the second participation of
POMap++ in the Ontology Alignment Evaluation Initiative (OAEI).
POMap++ follows a fully automated local matching learning approach
that breaks down a large ontology matching task into a set of independent
local sub-matching tasks. This approach integrates a novel partitioning
algorithm as well as a set of matching learning techniques. POMap++
provides an automated local matching learning for the biomedical tracks.
In this paper, we present POMap++ as well as the obtained results for
the Ontology Alignment Evaluation Initiative of 2019.

Keywords: Semantic web, Machine learning, ontology matching, ontol-
ogy partitioning

1 Presentation of the system

1.1 State, purpose, general statement

Ontologies have grown increasingly large in real application domains, notably the
biomedical domain, where ontologies, such as the Systematized Nomenclature of
Medicine and Clinical Terms (SNOMED CT) with 122464 classes, the National
Cancer Institute Thesaurus (NCI) with 150231 classes, and the Foundational
Model of Anatomy (FMA) with 104721 classes are widely employed [11]. These
ontologies can vastly vary in terms of their modeling standpoints and vocabular-
ies, even for the same domain of interest. To enable interoperability we will need
to integrate these large knowledge resources in a single representative resource [1,
3]. This integration can be established through a novel matching process which
specifies the correspondences between the entities of heterogeneous ontologies.

Copyright 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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Existing ontology matching systems have to overcome two major issues when
dealing with large ontologies: (i) integrating the large size not yet feasible with
a good matching accuracy, (ii) automating the ontology matching process.

The large size of these ontologies decreases the matching accuracy of on-
tology matching systems [5]. Large ontologies describing the same domain in-
cludes a high conceptual heterogeneity. Ontology developers can construct the
same domain ontology but using different conceptual models. As a result, find-
ing mappings between two ontologies became more difficult [9]. Consequently,
the matching of large ontologies became error-prone, especially while combining
different matchers in order to result in an adequate result [7]. To summarize, the
main issues of the alignment of large ontologies are the conceptual heterogeneity,
the high search space and the decreased quality of the resulted alignments. Deal-
ing effectively with biomedical ontologies requires a solution that will align large
alignment tasks such as ”divide and conquer” or parallelization approaches.

While dealing with different matching tasks, the main issue is the automa-
tion process is the choice of the matching settings. The matching tuning process
should be automated in order to reduce the matching process complexity, espe-
cially while dealing with large scale ontologies. As a result, the ontology matching
process needs to be self-tuned for a better selection of matching settings for each
matching problem. This process can improve the ontology matching accuracy.
In the case of large ontologies, it is important to have highly-automated, generic
processes which are independent of the input ontologies. To achieve quality align-
ments, ontology matching systems can employ a variety of matchers while man-
aging complex ontologies. The choice of these matchers should depend on the
matching context. In the context of large ontologies, the drawback of manual
solutions is the level of complexity and the time needed to generate results for
such a large problem.

To respond to the later issues, we propose POMap++ [2, 4, 10] as a novel local
matching learning approach that combines ontology partitioning with ontology
matching learning. In the following, we briefly describe the main processes of
the proposed contributions as depicted in Figure 1. This architectural overviw
has two ontologies as the input and alignments as the output. The output is a
set of correspondences generated from the two input ontologies.

Fig. 1. POMap++ overview

1. The two input ontologies are pre-processed and indexed in the first module.
We applied a set of natural language processes across the annotations for
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each input ontology. All the annotations and semantic relationships between
entities are stored in a data structure.

2. In the second module, the indexed ontologies are then partitioned in order
to generate the set of local matching tasks. The partitioning process ensures
good coverage of the alignments that should be discovered.

3. In the third module, we automatically build a local classifier for each local
matching task. These local classifiers automatically align the set of local
matching tasks based on their adequate features.

4. In the fourth module, the generated alignment file stores the set of corre-
spondences located by all the local matching tasks. The correspondences
are compared to the reference alignments provided by the Gold Standard to
assess the accuracy of local matching.

1.2 Specific techniques used

The workflow of POMap++ for our second participation in the OAEI comprises
four main steps, as flagged by the figure 1: Input ontologies indexing and load-
ing, input ontologies partitioning, local matching learning and output alignment
generation. The first and the last step are the same as in the last version of
POMap++ . In the second step, we define the pair of similar partitions between
the two input ontologies. In the third step, we apply machine learning techniques
in order to align every identified pair of similar partitions. In the following, we
detail the second step and the third step.

Fig. 2. POMap++ Architecture

Ontologies partitioning [6]: this step is based on a novel partitioning ap-
proach based on hierarchical agglomerative clustering. As input, it takes two on-
tologies and generates as an output a set of local matching tasks. The partitioning
approach split a large ontology matching task into a set of sub-matching tasks.
The large search space is reduced accordingly to the number of local matching
tasks. Therefore, the search space is minimized from the whole ontology match-
ing problem to a set of sub-matching problems. Consequently, the alignment of
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the two input ontologies can be more effective for each sub-matching task in
order to result in a better matching accuracy for the whole matching problem.
The proposed partitioning approach is based on a novel multi-cut strategy gen-
erating not large partitions or not isolated ones.

Local matching learning [8]: in this step we propose a local matching
learning approach in order to fully automate the matching tuning for each local
matching task. This automation has to be defined for every new matching con-
text in order to result in a context-independent local matching learning system.
This matching system should align each local matching context based on its
characteristics. State-of-the-art approaches define a set of predefined matching
settings for all the matching contexts. However, the benefit of the local matching
learning approach is the use of machine learning methods, which can be flexible
and self-configuring during the training process. We apply the proposed match-
ing learning approach locally and not globally. Consequently, we set the adequate
matching tuning for each local matching task. Therefore, we result in a better
matching quality independently of the matching context. Each local matching
task is automatically aligned using its local classifier from its local training set.
These local training sets are generated without the use of any reference align-
ments. Each local classifier automatically defines the matching settings for its
local matching task in terms of the appropriate element-level and structural-level
matchers, weights and thresholds.

2 Results

2.1 Anatomy

The Anatomy track consists of finding the alignments between the Adult Mouse
Anatomy and the NCI Thesaurus describing the human anatomy. The evaluation
was run on a server coupled with 3.46 GHz (6 cores) and 8GB of RAM. Table 1
draws the performance of POMap++ compared to the five top matching systems.
Our matching system achieved the third best result for this dataset with an F-
measure of 89.7%, which is very close to the top results.

Table 1. POMap++ results in the anatomy track compared to the OAEI 2017 systems.

System Precision Recall F-Measure Runtime

AML 0.95 0.936 0.943 76

LogMapBIo 0.872 0.925 0.898 1718

POMap++ 0.919 0.877 0.897 345

LogMap 0.918 0.846 0.880 28

SANOM 0.888 0.844 0.865 516
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2.2 Large biomedical ontologies

This tracks aims to find the alignment between three large ontologies: Founda-
tional Model of Anatomy (FMA), SNOMED CT, and the National Cancer Insti-
tute Thesaurus (NCI). Among six matching tasks between these three ontologies,
POMap++ succeeded to perform the matching between FMA-NCI (small frag-
ments) and FMA-SNOMED (small fragments) with an F-Measure respectively of
88.9% and 40.4%. For the other tasks of the large biomedical track, POMap++
exceeded the defined timeout due to the required time for the training and the
generation of machine learning classifiers. As a future work, we are planning to
cope with the matching process of the larger ontologies in a shorter time.

2.3 Disease and Phenotype

This track is based on a real use case in order to find alignments between disease
and phenotype ontologies. Specifically, the selected ontologies are the Human
Phenotype Ontology (HPO), the Mammalian Phenotype Ontology (MP), the
Human Disease Ontology (DOID) and the Orphanet and Rare Diseases Ontol-
ogy(ORDO). The evaluation was run on an Ubuntu Laptop with an Intel Core
i7-4600U CPU @ 2.10GHz x 4 coupled with 15Gb RAM. POMap++ produced
1502 mappings in the HP-MP task associated with 218 unique mappings. Among
twelve matching systems, POMap++ achieved the fifth highest F-measure with
an F-Measure of 83.6%. In the DOID-ORDO task, POMap++ generated 2563
mappings with 192 unique ones. According to the 2-vote silver standard, it scored
an F-Measure of 83.6%. We ranked third in the DOID-ORDO task among 8
matching systems

2.4 Biodiversity and Ecology

This track consists on finding alignments between the Environment Ontology
(ENVO) and the Semantic Web for Earth and Environment Technology On-
tology (SWEET), and between the Flora Phenotype Ontology (FLOPO) and
the Plant Trait Ontology (PTO). These ontologies are particularly useful for
biodiversity and ecology research and are being used in various projects. They
have been developed in parallel and are very overlapping. They are semantically
rich and contain tens of thousands of classes. For the FLOPO-PTO matching
task, we achieved an F-Measure of 68.1 %. For the FLOPO-PTO matching task,
POMap ++ achieved an F-measure of 69.3 %. We ranked as the second best
matching system for this task.

3 Conclusion

POMap++ obtained the top results for different matching tasks such as Anatomy,
DOID-ORDO and FLOPO-PTO. For the machine learning classifiers, we did not
opt to perform the local matching using semantic-level features. Consequently,
we are planning to add semantic-level features to the machine learning matching
based approach.
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Abstract. Simulated annealing-based ontology matching (SANOM) par-
ticipates for the second time at the ontology alignment evaluation ini-
tiative (OAEI) 2019. This paper contains the configuration of SANOM
and its results on the anatomy and conference tracks. In comparison
to the OAEI 2017, SANOM has improved significantly, and its results
are competitive with the state-of-the-art systems. In particular, SANOM
has the highest recall rate among the participated systems in the confer-
ence track, and is competitive with AML, the best performing system,
in terms of F-measure. SANOM is also competitive with LogMap on the
anatomy track, which is the best performing system in this track with no
usage of particular biomedical background knowledge. SANOM has been
adapted to the HOBBIT platfrom and is now available for the registered
users. abstract environment.

Keywords: SANOM, ontology alignment, OAEI.

1 System Representation

SANOM takes advantages of the well-known simulated annealing (SA) to dis-
cover the shared concepts between two given ontologies [3]. A potential alignment
is modeled as a state in the SA whose evolution would result in a more reliable
matching between ontologies. The evolution requires a fitness function in order
to gauge the goodness of the intermediate solutions to the ontology matching
problem.

A fitness function should utilize the lexical and structural similarity metrics
to estimate the fineness of an alignment. The version of SANOM participated
this year uses both lexical and structural similarity metrics, which are described
in the following.

1.1 Lexical Similarity Metric

The cleaning of strings before the similarity computation is essential to increase
the chance of mapping entities. SANOM uses the following pre-processing tech-
niques to this end:

Copyright c© 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).
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– Tokenization. It is quite common that the The terminology of concepts are
constructed from a bag of words (BoW). The words are often concatenated
by white space, the capital letter of first letters, and several punctuations
such as ”−” or ” ”. Therefore, they need to be broken into individual words
and then the similarity is computed by comparing the bag of words together.

– Stop word removal. Stop words are the typical words with no particular
meaning. The stop words should be detected by searching the tokens (iden-
tified after tokenization) in a table containing all possible stop words. The
Glasgow stop word list is utilized in the current implementation 1 .

– Stemming. Two entities from the given ontologies might refer to a simi-
lar concept, but they are named differently due to various verb tense, plu-
ral/singular, and so forth. Therefore, one needs to recover the normal words
so that the similar concepts will have higher similarity. The Porter stemming
method is used for this matter [4].

After the pre-processing step, the strings of two concepts can be given to a
similarity metric in order to calibrate the degree of similarity between concepts.
The base similarity metric computes the sameness of tokens obtained from each
entity. The current version of SANOM takes advantage of two similarity metrics
and take their maximum as the final similarity of two given tokens. One of this
similarity metric is for sole comparison of stirngs, and the other one is to guage
the linguistic relation of two given names. These similarity metrics are:

– Jaro-Winkler metric. The combination of TF-IDF and Jaro-Winkler is
popular and has been sucessful in ontology alignment as well. Similarly,
SANOM uses Jaro-Winkler with the threshold 0.9 as one of the base simi-
larity metrics.

– WordNet-based metric. The linguistic heterogeneity is also rampant in
various domains. Therefore, the existence of a similarity metric to measure
the lingual closeness of two entities is absolutely essential. In this study, the
relatedness of two given tokens are computed by the Wu and Palmer measure
[5] and is used as a base similarity metric with the threshold 0.95.

1.2 Structural Similarity Metric

The preceding string similarity metric gives a high score to the entities which
have lexical or linguistic proximity. Another similarity of two entities could be
derived from their positions in the given ontologies.

We consider two structural similarity measures for the current implementa-
tion of SANOM:

– The first structural similarity is gauged by the subsumption relation of
classes. If there are two classes c1 and c2 whose superclasses are s1 and
s2 from two given ontologies O1 and O2, then the matching of classes s1

1 http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words
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and s2 would increase the similarity of c1 and c2. Let s be a correspondence
mapping s1 to s2, then the increased similarity of c1 and c2 is gauged by

fstructural(c1, c2) = f(s). (1)

– Another structural similarity is derived from the properties of the given on-
tologies. The alignment of two properties would tell us the fact that their
corresponding domain and/or ranges are also identical. Similarly, if two prop-
erties have the analogous domain and/or range, then it is likely that they
are similar as well.
The names of properties and even their corresponding core concepts are
not a reliable meter based on which they are declared a correspondence. A
recent study has shown that the mapping of properties solely based on their
names would result in high false positive and false negative rates, e.g. there
are properties with identical names which are not semantically related while
there are semantically relevant properties with totally distinct names.
The current implementation treats the object and data properties differ-
ently. For the object properties op1 and op2, their corresponding domains
and ranges are computed as the concatenation of their set of ranges and
domains, respectively. Then, the fitness of the names, domains, and ranges
are computed by the Soft TF-IDF. The final mapping of two properties is
the average of top two fitness scores obtained by the Soft TF-IDF. For the
data properties, the fitness is computed as the similarity average of names
and their corresponding domain.
On the other flow of alignment, it is possible to derive if two classes are
identical based on the properties. Let e1 and e2 be classes, op1 and op2 be
the object properties, and R1 and R2 are the corresponding ranges, then the
correspondence c = (e1, e2) is evaluated as

fstructural(c) =
fstring(R1, R2) + fstring(op1, op2)

2
. (2)

2 Results

This section contains the results obtained by SANOM on the anatomy and con-
ference track.

2.1 Anatomy Track

The anatomy track is one of the earliest benchmarks in the OAEI. The task is
about aligning the Adult Mouse anatomy and a part of NCI thesaurus containing
the anatomy of humans. Each of the ontologies has approximately 3,000 classes,
which are designed carefully and are annotated in technical terms.

The best performing systems in this track use a biomedical background
knowledge. Thus, their results are not comparable with SANOM which does
not use any particular background knowledge. Among other systems, LogMap
[2] is best one with no use of a background knowledge.
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Table 1 tabulates the precision, recall, and F-measure of SANOM and LogMap
on the anatomy track. According to this table, the recall of SANOM is slightly
higher than LogMap which means that it could identify more correspondences
than LogMap. However, the precision of LogMap is better than SANOM with
the margin of three percent. The overall performance of SANOM is quite close
to LogMap since their F-measure has only 1% difference.

System Precision F-measure Recall

LogMap 0.918 0.88 0.846
SANOM 0.888 0.87 0.853

Table 1: The precision, recall, and F-measure of SANOM and LogMap on the
OAEI anatomy track.

SANOM AML LogMap
P F R P F R P F R

cmt-conference 0.61 0.74 0.93 0.67 0.59 0.53 0.73 0.62 0.53
cmt-confOf 0.80 0.62 0.50 0.90 0.69 0.56 0.83 0.45 0.31
cmt-edas 0.63 0.69 0.77 0.90 0.78 0.69 0.89 0.73 0.62
cmt-ekaw 0.54 0.58 0.64 0.75 0.63 0.55 0.75 0.63 0.55
cmt-iasted 0.67 0.80 1.00 0.80 0.89 1.00 0.80 0.89 1.00
cmt-sigkdd 0.85 0.88 0.92 0.92 0.92 0.92 1.00 0.91 0.83

conference-confOf 0.79 0.76 0.73 0.87 0.87 0.87 0.85 0.79 0.73
conference-edas 0.67 0.74 0.82 0.73 0.69 0.65 0.85 0.73 0.65
conference-ekaw 0.66 0.70 0.76 0.78 0.75 0.72 0.63 0.55 0.48
conference-iasted 0.88 0.64 0.50 0.83 0.50 0.36 0.88 0.64 0.50
conference-sigkdd 0.75 0.77 0.80 0.85 0.79 0.73 0.85 0.79 0.73

confOf-edas 0.82 0.78 0.74 0.92 0.71 0.58 0.77 0.63 0.53
confOf-ekaw 0.81 0.83 0.85 0.94 0.86 0.80 0.93 0.80 0.70
confOf-iasted 0.71 0.63 0.56 0.80 0.57 0.44 1.00 0.62 0.44
confOf-sigkdd 0.83 0.77 0.71 1.00 0.92 0.86 1.00 0.83 0.71

edas-ekaw 0.71 0.72 0.74 0.79 0.59 0.48 0.75 0.62 0.52
edas-iasted 0.69 0.56 0.47 0.82 0.60 0.47 0.88 0.52 0.37
edas-sigkdd 0.80 0.64 0.53 1.00 0.80 0.67 0.88 0.61 0.47
ekaw-iasted 0.70 0.70 0.70 0.88 0.78 0.70 0.75 0.67 0.60
ekaw-sigkdd 0.89 0.80 0.73 0.80 0.76 0.73 0.86 0.67 0.55
iasted-sigkdd 0.70 0.80 0.93 0.81 0.84 0.87 0.71 0.69 0.67

Average 0.74 0.72 0.73 0.84 0.74 0.67 0.84 0.68 0.59

Table 2: The precision, recall, and F-measure of SANOM, AML, and LogMap
on various datasets on the conference track
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2.2 Conference Track

The conference comprises the pairwise alignment of seven ontologies. Table 2
displays the precision, recall, and F-measure of SANOM, LogMap, and AML [1]
on the conference track. AML and LogMap are the top two systems in terms of
precision and recall.

According to Table 2, the recall of SANOM is superior to both LogMap and
AML. SANOM’s average recall is 7% and 14% more than those of AML and
LogMap, respectively, but its precision is 10% less than both of the systems.
Overall, the performance of SANOM is quite competitive with the top perform-
ing systems in the conference track.

2.3 Large BioMed Track

The conference comprises the pairwise alignment of seven ontologies. Table 3
displays the precision, recall, and F-measure of SANOM, LogMap, and AML [1]
on the Large BioMed track. AML and LogMap are the top two systems in terms
of precision and recall.

SANOM AML LogMap
P F R P F R P F R

FMA-NCI (whole) 0.61 0.74 0.841 0.805 0.59 0.881 0.856 0.831 0.808
FMA-SNOMED (whole) 0.905 0.283 0.167 0.685 0.697 0.710 0.840 0.730 0.645
SNOMED-NCI (whole) 0.868 0.618 0.479 0.862 0.765 0.687 0.867 0.706 0.596

Table 3: The precision, recall, and F-measure of SANOM, AML, and LogMap
on various datasets on the Large BioMed track

3 Conclusion

SANOM only participated in the OAEI 2019 anatomy, conference and Large
BioMed track. For the next year, we have aims to participate in more tracks
so that the performance of SANOM can be compared with that of the state-of-
the-art systems in other tracks as well. Another avenue to improve the system
is to equip it with a proper biomedical background knowledge since most of the
OAEI tracks are from this domain.
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Abstract. In this paper, we introduce Wiktionary Matcher, an ontology
matching tool that exploits Wiktionary as external background knowl-
edge source. Wiktionary is a large lexical knowledge resource that is
collaboratively built online. Multiple current language versions of Wik-
tionary are merged and used for monolingual ontology matching by ex-
ploiting synonymy relations and for multilingual matching by exploiting
the translations given in the resource.
We show that Wiktionary can be used as external background knowledge
source for the task of ontology matching with reasonable matching and
runtime performance.3

Keywords: Ontology Matching · Ontology Alignment · External Re-
sources · Background Knowledge · Wiktionary

1 Presentation of the System

1.1 State, Purpose, General Statement

The Wiktionary Matcher is an element-level, label-based matcher which uses
an online lexical resource, namely Wiktionary. The latter is ”[a] collaborative
project run by the Wikimedia Foundation to produce a free and complete dic-
tionary in every language”4. The dictionary is organized similarly to Wikipedia:
Everybody can contribute to the project and the content is reviewed in a com-
munity process. Compared to WordNet [4], Wiktionary is significantly larger and
also available in other languages than English. This matcher uses DBnary [15],
an RDF version of Wiktionary that is publicly available5. The DBnary data set
makes use of an extended LEMON model [11] to describe the data. For this
matcher, DBnary data sets for 8 Wiktionary languages6 have been downloaded

3 Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

4 see https://web.archive.org/web/20190806080601/https://en.wiktionary.

org/wiki/Wiktionary
5 see http://kaiko.getalp.org/about-dbnary/download/
6 Namely: Dutch, English, French, Italian, German, Portugese, Russian, and Spanish.
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and merged into one RDF graph. Triples not required for the matching algo-
rithm, such as glosses, were removed in order to increase the performance of the
matcher and to lower its memory requirements. As Wiktionary contains trans-
lations, this matcher can work on monolingual and multilingual matching tasks.
The matcher has been implemented and packaged using the MELT framework7,
a Java framework for matcher development, tuning, evaluation, and packaging
[7].

1.2 Specific Techniques Used

Monolingual Matching For monolingual ontologies, the matching system first
links labels to concepts in Wiktionary, and then checks whether the concepts are
synonymous in the external data set. This approach is conceptually similar to
an upper ontology matching approach. Concerning the usage of a collaboratively
built knowledge source, the approach is similar to WikiMatch [5] which exploits
the Wikipedia search engine.

Wiktionary Matcher adds a correspondence to the final alignment purely
based on the synonymy relation independently of the actual word sense. This
is done in order to avoid word sense disambiguation on the ontology side but
also on Wiktionary side: Versions for some countries do not annotate synonyms
and translations for senses but rather on the level of the lemma. Hence, many
synonyms are given independently of the word sense. In such cases, word-sense-
disambiguation would have to be performed also on Wiktionary [13].

The linking process is similar to the one presented for the ALOD2Vec match-
ing system [14]: In a first step, the full label is looked up on the knowledge source.
If the label cannot be found, labels consisting of multiple word tokens are trun-
cated from the right and the process is repeated to check for sub-concepts. This
allows to detect long sub-concepts even if the full string cannot be found. Label
conference banquet of concept http://ekaw#Conference Banquet from the Con-
ference track, for example, cannot be linked to the background data set using the
full label. However, by applying right-to-left truncation, the label can be linked
to two concepts, namely conference and banquet, and in the following also be
matched to the correct concept http://edas#ConferenceDinner which is linked
in the same fashion.

For multi-linked concepts (such as conference dinner), a match is only anno-
tated if every linked component of the label is synonymous to a component in the
other label. Therefore, lens (http://mouse.owl#MA 0000275) is not mapped to
crystalline lens (http://human.owl#NCI C12743) due to a missing synonymous
partner for crystalline whereas urinary bladder neck (http://mouse.owl#MA
0002491) is matched to bladder neck (http://human.owl#NCI C12336) because
urinary bladder is synonymous to bladder.

Multilingual Matching The multilingual capabilities of the matcher presented
in this paper are similar to the work of Lin and Krizhanovsky [10] who use

7 see https://github.com/dwslab/melt
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data of the English Wiktionary (as of 2010) to allow for multilangual matching
of the COMS matching system [9]. Unfortunately, the matching system never
participated in the OAEI MultiFarm track. The work presented here is different
in that it uses multiple language versions of Wiktionary, the corpora are much
larger because they are newer, and in terms of the matching strategy that is
applied.

The matcher first determines the language distributions in the ontologies. If
the ontologies appear to be in different languages, Wiktionary translations are
exploited: A match is created, if one label can be translated to the other one
according to at least one Wiktionary language version – such as the Spanish label
ciudad and the French label ville (both meaning city). This process is depicted
in figure 1: The Spanish label is linked to the entry in the Spanish Wiktionary
and from the entry the translation is derived.

If there is no Wiktionary version for the languages to be matched or the ap-
proach described above yields very few results, it is checked whether the two la-
bels appear as a translation for the same word. The Chinese label决定 (juéd̀ıng),

for instance, is matched to the Arabic label P@Q �̄
(qrār) because both appear

as a translation of the English word decision on Wiktionary. This (less precise)
approach is particularly important for language pairs for which no Wiktionary
data set is available to the matcher (such as Chinese and Arabic). The pro-
cess is depicted in figure 2: The Arabic and Chinese labels cannot be linked to
Wiktionary entries but, instead, appear as translation for the same concept.

Instance Matching The matcher presented in this paper can be also used for
combined schema and instance matching tasks. If instances are available in the
given data sets, the matcher applies a two step strategy: After aligning the
schemas, instances are matched using a string index. If there are many instances,
Wiktionary is not used for the instance matching task in order to increase the
matching runtime performance. Moreover, the coverage of schema level concepts
in Wiktionary is much higher than for instance level concepts: For example,
there is a sophisticated representation of the concept movie8, but hardly any
individual movies in Wiktionary.

For correspondences where the instances belong to classes that were matched
before, a higher confidence is assigned. If one instance matches multiple other
instances, the correspondence is preferred where both their classes were matched
before.

Explainability Unlike many other ontology matchers, this matcher uses the ex-
tension capabilities of the alignment format [2] in order to provide a human
readable explanation of why a correspondence was added to the final alignment.
To explain the correspondence involving (http://cmt de#c-7914897-1988765,
http://conference en#c-0918067-8070827), for instance, the matcher gives the
explanation ”The label of entity 1 was found in Wiktionary as ’Konferenz’ and
translated to ’conference’ which equals the normalized label of entity 2.” Such

8 see https://en.wiktionary.org/wiki/movie
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Fig. 1. Translation via the Wiktionary headword (using the DBnary RDF graph).
Here: One (of more) French translations for the Spanish word ciudad in the Spanish
Wiktionary.

Fig. 2. Translation via the written forms of Wiktionary entries (using the DBnary
RDF graph). Here: An Arabic and a Chinese label appear as translation for the same
Wiktionary entry (decision in the English Wiktionary).
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explanations can help to interpret and to trust a matching system’s decision.
Similarly, explanations also allow to comprehend why a correspondence was
falsely added to the final alignment: The explanation for the false positive match
(http://confOf#Contribution, http://iasted#Tax), for instance, is given as fol-
lows: ”The first concept was mapped to dictionary entry [contribution] and the
second concept was mapped to dictionary entry [tax]. According to Wiktionary,
those two concepts are synonymous.” Here, it can be seen that the matcher was
successful in linking the labels to Wiktionary but failed due to the missing word
sense disambiguation. In order to explain a correspondence, the description

property9 of the Dublin Core Metadata Initiative is used.

2 Results

2.1 Anatomy

On the Anatomy track [3,1] the matching system achieves a median rank given
F1 scores and significantly outperforms the baseline. The system is capable of
finding non-trivial matches such as temporalis (http://mouse.owl#MA 0002390)
and temporal muscle (http://human.owl#NCI C33743).

2.2 Conference

The matching system consistently ranks 4th on all reference alignments given
F1 scores in the Conference track [16]. Like most matchers, the system achieves
better results matching classes compared to matching properties. False positives
are in most cases due to string matches and only in some cases due to synonymous
relationships such as in (http://edas#Topic, http://iasted#Item).

2.3 Multifarm

The multilingual approach of the Wiktionary Matcher is different from most
multilingual ontology matching approaches that use a translation API: Instead
of an external function call, multiple multilingual resources are merged and used.
Out of the matchers that participated in the MultiFarm track [12], Wiktionary
Matcher performs third with an averaged F1 score of 0.31 on (i) different ontolo-
gies and an averaged F1 score of 0.12 on (ii) the same but translated ontologies.
For the latter task the matching system lacks the ability to recognize that the
structure of the ontologies that are to be matched is equal which would be an
advantage for this matching problem. As expected, Wiktionary Matcher works
better for languages for which a data set is available – such as English and French.
Compared to other matching systems, the results of this matcher fluctuate more
due to missing translation resources for some languages: While the matcher per-
forms competitively for tasks involving the English language, the performance
drastically falls when it comes to matching an ontology in the Arabic language.

9 see http://purl.org/dc/terms/description
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2.4 Knowledge Graph Track

On the Knowledge Graph (KG) Track [8,6], the matcher achieves the second-best
result of all submitted matchers on the averaged F1 scores. Compared to the best
matching system, FCAMap-KG, the system presented in this paper requires less
than a third of the runtime.

The matcher performs better in terms of F1 on classes and properties com-
pared to instances. This might be due to the fact that the matcher is optimized
to match schemas and that the Wiktionary background source is only used for
the schema matching task.

3 Discussions on the Way to Improve the Proposed
System

The current version of DBnary does not extract alternative forms of words such
as (color, colour). This is a limitation by the data set used for this matcher and
not by Wiktionary. An addition of this relation between lemmas to the data set
would likely improve results.

Furthermore, the matching system presented here only uses synonymy and
translation relations even though more information is available in the background
knowledge source. An extension to other relations that exist between words
would help to increase the performance. The false negative match between intes-
tine secretion and intestinal secretion of classes http://mouse.owl#MA 0002515
and http://human.owl#NCI C32875, respectively, could be found if the system
would exploit the fact that intestinal is derived from intestine (an information
that is available in the data set).

The runtime performance could be improved by loading the background
knowledge data (or aggregates) in specialized data structures that allow for a
faster data access at runtime, such as key-value stores (rather than querying an
RDF graph). This approach could particularly improve the performance on the
MultiFarm track which has a comparatively slow runtime performance due to
complex SPARQL queries.

4 Conclusions

In this paper, we presented the Wiktionary Matcher, a matcher utilizing a col-
laboratively built lexical resource. Given Wiktionary ’s continuous growth, it can
be expected that the matching results will improve over time – for example when
additional translations are added. In addition, improvements to the DBnary data
set, such as the addition of alternative word forms, may also improve the overall
matcher performance.
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Abstract. We study the problem of embedding-based entity alignment
(EA) between knowledge graphs (KGs), and propose a novel framework
that unifies multiple views of entities to learn their embeddings. Exper-
iments on real-world datasets show that this framework largely outper-
forms the current embedding-based methods.

1 Introduction

Entity alignment (EA) aims to find entities in different knowledge graphs (KGs)
referring to the same real-world identity. Conventional methods identify similar
entities based on the symbolic features, such as names, textual descriptions and
attribute values. Recently, increasing attention has been drawn to leveraging the
KG embedding techniques for dealing with this problem, where the key idea is
to learn vector representations (called embeddings) of KGs and find alignment
according to the similarity of the embeddings.

We propose a new EA framework, MultiKE, based on multi-view KG embed-
ding. The underlying idea is to divide the various features of KGs into multiple
subsets (called views), which are complementary to each other (see Figure 1 for
example). Thus, entity embeddings can be learnt from each separate view and
jointly optimized to improve the alignment performance.

2 Approach

Multi-view KG embedding. Based on the data model of KGs, we define three
representative views based on the name, relation and attribute features. First,
literals are constituted by sequences of tokens. We embed the name view using
the literal embeddings. Second, the relation view characterizes the structure of
KGs. We employ TransE to interpret a relation as a translation vector from its
head entity to tail entity. Third, for the attribute view, we use a convolutional
neural network to extract features from the attributes and values of entities.

Cross-KG training. We propose the cross-KG entity identity inference to cap-
ture the alignment information using seed alignment. We also present the cross-
KG relation/attribute identity inference to enhance EA.

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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Mona Lisa

– other title : La Gioconda

– year : 1503
…

Leonardo da Vinci

– description : Italian Renaissance polymath

– birth name : Leonardo di ser Piero da Vinci
…

author

Louvre

– caption : The Richelieu Wing

– established : 1793
…

Vinci, Italy

– population total : 14639

– postal code : 50059
…

museum birth place

Fig. 1. An example of the multi-view features of four entities in DBpedia. Notations:
names (bold font), relations (italic font) and attributes (regular font).

Table 1. Comparison with existing embedding-based EA methods

Features Methods
DBP-WD DBP-YG

Hits@1 Hits@10 MR MRR Hits@1 Hits@10 MR MRR

R
el

.+

Attributes JAPE [2] 31.84 58.88 266 0.411 23.57 48.41 189 0.320
Textual desc. KDCoE [1] 57.19 69.53 182 0.618 42.71 48.30 137 0.446
Literals AttrE [4] 38.96 66.77 142 0.487 23.24 42.70 706 0.300

Multiple views
MultiKE-WVA 90.42 94.59 22 0.921 85.92 94.99 19 0.891
MultiKE-SSL 91.86 96.26 39 0.935 82.35 93.30 21 0.862
MultiKE-ITC 91.45 95.19 114 0.928 88.03 95.32 35 0.906

View combinations. Intuitively, general entity embeddings can benefit from
multiple view-specific embeddings. We propose weighted view averaging (WVA),
shared space learning (SSL) and in-training combination (ITC).

3 Evaluation

We selected two datasets in [3], DBP-WD and DBP-YG, and compared MultiKE
with JAPE, KDCoE and AttrE, each of which used one type of extra features
as enhancement. Table 1 shows that MultiKE largely outperformed the others.

4 Conclusion

In this paper, we proposed a multi-view KG embedding framework for EA, and
our experiments demonstrated its effectiveness. In future work, we will investi-
gate more feasible views (e.g., entity types) and study cross-lingual EA.
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Abstract. This paper presents the design of our system, namely MTab,
for Semantic Web Challenge on Tabular Data to Knowledge Graph Match-
ing (SemTab 2019). MTab combines the voting algorithm and the prob-
ability model to solve critical bottlenecks of the matching task. Results
on SemTab 2019 show MTab obtains the promising performance.

1 Introduction

Tabular Data to Knowledge Graph Matching (SemTab 2019) 4 is a challenge on
matching semantic tags from table elements to knowledge bases (KBs), especially
DBpedia. Fig. 1 depicts the three sub-tasks for SemTab 2019. Given a table data,
CTA (Fig. 1a) is the task of assigning a semantic type (e.g., a DBpedia class)
to a column. In CEA (Fig. 1b), a cell is linked to an entity in KB. The relation
between two columns is assigned to a property in KB in CPA (Fig. 1c).

Class (dbo:)
(a) CTA

Entity (dbr:)
(b) CEA

Property
(c) CPA

Fig. 1. Tabular Data Matching to Knowledge Base (DBpedia)

2 Approach

To address the three tasks of the challenge, we designed our system (MTab) by
the 4-steps pipeline as shown in Fig. 2.

Step 1 is to pre-process a table data by predicting languages of the table with
fasttext [1], correcting spelling, predicting data types (e.g., number or text), and
searching relevant entities in DBpedia. Due to the heterogeneous problem, we
utilize entity searching on many services including DBpedia Lookup, DBpedia

4 http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
Copyright 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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Language Prediction

Spelling Correction

Data Type Prediction

Step 1

Type
Probability
Estimation
for Column

Step 2

Entity Searching

Entity
Probability
Estimation

for Cell

Step 3

Property
Probability
Estimation
for Relation

Table

Step 4

Output

CTA
Class Candiates

CEA
Entity Candiates

CPA
Property Candiates

Iteration

Fig. 2. The design of MTab framework

endpoint. Also, we search relevant entities on Wikipedia and Wikidata by redi-
rected links to DBpedia to increase the possibility of finding the relevant entities.
We assume that cells in a column have the same type. We then use information
from Step 1 to estimate the probability of the types for the column in Step 2.
The type candidate which has the highest probability is the result for CTA task.
In Step 3, the result of Step 2 and information of Step 1 are used to estimate
the probability for entities. Similarly, the entity candidate which has the highest
probability is the result for CEA task. In Step 4, we use the result from Step
3 to estimate the property between two entities, and then, adopt the voting
technique to estimate the probability for all rows of two columns. The result for
CPA is the highest probability of property candidate in Step 4. We repeatedly
execute Step 2, 3 and 4 to find the best candidates for columns, cells, and the
relation between two columns.

3 Results and Conclusion

Table 1 reports the overall results of MTab for three matching tasks. Overall,
these results show that MTab achieves a promising performance for the three
Tabular data matching tasks. The MTab performance might be explained in
part by searching cell values from multiple services to increase the possibility of
finding the relevant entities, and adopting the iteration procedure to boost the
overall performance for the three tasks.

Table 1. Results of MTab on Round 1 Data of SemTab 2019

Task F1 Precision Recall

CEA 0.816 0.799 0.834
CTA 0.934 0.926 0.942
CPA 0.594 0.698 0.516
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1 Introduction

A referring expression (RE) is a description in natural language or a logical formula
that can uniquely identify an entity. For instance, the 44th president of the United States
unambiguously characterizes Barack Obama. Referring expressions find applications in
disambiguation, data anonymization, query answering, or data linking. There may po-
tentially exist many logical expressions for uniquely identifying an entity. Generation
of referring expressions is a well-studied task in natural language generation [1]. Hence,
various algorithms with different objectives have been proposed to automatically dis-
cover REs. These approaches vary depending on the expressivity of the logical formulas
they can generate. For instance in [1, 2], REs that are created are conjunctions of atoms.
While in [3], more complex REs represented in description logics are discovered that
can involve the universal quantifier.
In this work our focus lies on automatically discovering REs for each entity within a
class of a knowledge graph. Keys of a class are sets of properties whose values can
uniquely identify one entity of that class. Hence, if the properties for the keys are in-
stantiated, they can each be considered as a referring expression. What interests us in
this work, is to efficiently discover REs by focusing on the ones that cannot be found
by instantiating the keys. It should be noted that the quality of REs we discover is very
dependent on the dataset. The completeness, correctness and lack of noise in the knowl-
edge graph plays a pivotal role in how good and interpretable REs are.

2 Referring Expression Generation Approach

In this work, we discover minimal REs existing in a class. By minimality, we mean
that there is no other RE that we discover and that can be logically entailed by the
minimal one. The REs we mine always consist of conjunctions that specify the classes
the entities belong to.

To generate REs for a given class C, we start by creating the maximal non-keys
of C (the set of properties such that addition of a property will make it a key for that
class) using SAKey [4]. The algorithm first generates candidate expressions containing
one instantiated property (i.e. p(x, v)). Whenever an expression E only describes one
instance i of C, E is output as a referring expression. Adding more properties to the

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
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description E will still uniquely identify the instance i, just making it more complex.
Hence, we remove the REs (e.g. p(i, v)) found at the end of this step and reduce the
search space. Then, the remaining candidate expressions are taken into account with
one more property at each step, until either the search space is empty or there is no more
set of non-keys to consider. To increase the depth of subgraph, we have to consider the
class of the new individual and obtain its corresponding set of maximal non-keys so
that the process can be reiterated. Some pruning techniques can be applied to limit the
size and the complexity of the REs discovered by our approach. For instance the depth
of the graph pattern and number of allowed variables can be limited.

3 Experimental Evaluation

We chose YAGO as the knowledge graph on which we discover the REs and used 10
different classes such as Actor, City and Book (same data used in VICKEY [5]). We
mined REs of depth one and for example, for the class City (with 1.1M triples) we
found 1.2M REs in less than 2 minutes. On average, our approach can detect from 1.5
to 14.3 RE per individual depending on the class.
This approach can discover RE such as: made in heaven is the album created by Queen
in the year 1991. Among the actors, only George Clooney has been born in Lexington-
Kentucky in the year 1961. When we ran the algorithm with depth 2, we obtained REs
like Alfred Werner is a scientist who has won the Nobel Prize in Chemistry and has
graduated from a university located in Zurich.

4 Conclusion

In this paper, we proposed an approach that can efficiently discover REs by reducing
the search space thanks to maximal non-keys. Due to the incompleteness of knowledge
graphs, entity linking using keys may be insufficient to link all individuals. We expect
that using REs will increase the recall of rule-based data linking methods.
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1 Introduction & Motivation

A vast amount of relevant structured data represented in tables are available on
the Web. However, querying such data is difficult since they are incorporated
in HTML web pages and are not easily query-able. Some approaches started
to propose [4, 2] extraction, annotation and transformation of tabular data into
machine-readable formats. The problem of annotating tables also known as Se-
mantic Table Interpretation (STI) takes a relational table and a Knowledge
Graph (KG) in input, and returns a semantically annotated table in output [1].
In this paper, we propose MantisTable3, a web interface and an open source
Semantic Table Interpretation tool that automatically annotates, manages and
makes accessible to humans and machines the semantic of tables. Although STI
contains several steps the key feature of our tool is the involvement of all the
STI steps that run fully automatically.

2 Overview of MantisTable
Figure 1 shows the architecture of MantisTable which is designed to be modular:

View Layer provides a graphic user interface to serve different types of tasks
such as storing and loading tables, exploration of the annotated tables which
allow users to navigate all the executed steps by clicking on each phase and
analyse the result, execution of the STI steps and the editing which allow users
to understand what has been achieved and give them the opportunity to modify
and enhance the results.

Controller Layer creates all the abstraction between the View layer and the
Model layer and implements all the STI steps as follows:

Data Preparation cleans and normalizes values in the table. Transforma-
tions applied to tables include text normalization such as solve acronyms and ab-
breviations by applying regular expressions [3]. Column Analysis assigns types

3 http://mantistable.disco.unimib.it
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Fig. 1. Architecture of MantisTable tool.

to columns that are named entity (NE-column) or literal column (L-column),
and then identify the subject column (S-column). To identify L-column candi-
dates the tool considers 16 regular expressions that identify several Regextypes.
If the number of occurrences of the most frequent Regextype in a column ex-
ceeds a given threshold, that column is annotated as L-column, otherwise, it is
annotated as NE-column. To detect the S-column, the tool considers the NE-
columns on which applies different statistic features (e.g. % of cells with unique
content). Concept and Datatype Annotation identifies the mappings be-
tween columns headers and semantic elements (concepts or datatypes) in a KG.
First, we perform the entity-linking by searching the KG with the content of
a cell, to get a set of candidate entities and use the DICE similarity measure
for text disambiguation. Second, the abstract and all concepts for each winning
entity are retrieved from DBpedia. For each extracted concept, we count the
occurrences in the abstract. For the Datatype Annotation we consider the L-
columns and for the identification of datatypes, a Regextype is applied on the
content of each column. Predicate Annotation finds relations, in the form
of predicates, between the S-column and the object columns to set the overall
meaning of the table. Further, the entities identified as subjects and objects are
searched in the KG to identify the correct predicate. Entity Linking deals with
mappings between the content of cells and entities in the KG.

Model Layer considers mainly data access for communicating with an appli-
cation’s data sources such as DB connector or DBpedia connector.
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Nowadays there exists an abundance of heterogeneous Semantic Web data
coming from multiple sources. As a result, matching Linked Data has become a
tedious and non-transparent task. One way to facilitate entity matching across
datasets is to provide human-readable explanations that highlight what the two
entities have in common, as well as what differentiates the two entities.

Entity comparison is an important information exploration problem that has
recently gained considerable research attention [1, 2, 4]. In this paper we propose
a solution towards explainable entity matching in Linked Data where entity
comparison is used as a subroutine that assists in debugging and validation of
matchings. To this end, we adopt the entity comparison framework in which
explanations are modelled as unary conjunctive queries of restricted form [3, 4].

We concentrate on the data model where a dataset is an RDF graph—that
is, a set of triples of IRIs and literals, jointly called entities. The basic building
block of a query is a triple pattern, which is a triple of entities and variables.
Then, a query is a non-empty finite set of triple patterns in which one variable,
usually denoted by X, is an answer variable. The set Q(D) of answer entities
to a query Q on a dataset D is defined as usual in databases.

The two main notions of the framework are the similarity and difference
queries for pairs of entities, which are defined as follows: a similarity query for
entities a and b in a dataset D is a query Q satisfying {a, b} ⊆ Q(D); a difference
query for a relative to b is a query Q satisfying a ∈ Q(D) and b 6∈ Q(D).

In our prior work we proposed an algorithm for computing comparison queries
that can be repurposed for similarity and difference queries [3]. The algorithm is
based on the computation of a similarity tree—a data structure that represents
commonalities and discrepancies in data for input entities a and b. It is a directed
rooted tree with nodes and edges labelled by pairs of sets of entities such that
the root is labelled by ({a}, {b}) and every edge labelled (E1, E2) between nodes
labelled (N1, N2) and (N ′

1, N
′
2) is justified in the sense that for every entity n in

Ni, i ∈ {1, 2}, there is a triple (n, e, n′) in the dataset with e ∈ Ei and n′ ∈ N ′
i .

For instance, suppose there are 3 entities, Emma_Watson, Emily_Watson
and E_Watson, that need to be either matched or disambiguated, and a data
fragment given in Figure 1. Then the similarity trees for Emma_Watson and
E_Watson, and for Emily_Watson and E_Watson are depicted in Figure 2 (where
singleton sets {`} and pairs ({`}, {`}) are both written as ` for readability).

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
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Fig. 1. A fragment of data involving three concepts to be matched

Each branch in a similarity tree can be treated as a separate similarity query,
in which each edge is encoded as a triple pattern, and each label (L1, L2) is en-
coded as either an entity `, if L1 = L2 = {`}) or a fresh variable otherwise.
For example, a query Q1 = (X, actedIn,Ballet_Shoes) is a similarity query for
Emma_Watson and E_Watson, while a query Q2 = (X, actedIn, Y ), (Y, year, Z)
is a similarity query for Emily_Watson and E_Watson. Moreover, each branch
involving non-entity labels can also be treated as a difference query, if instead
of some variables we take entities from one of the label sets. For example, query

Fig. 2. Similarity trees rooted in two pairs of entities

Q3 = (X, actedIn, Little_Women), (Little_Women, year, 2019) is a difference query
for E_Watson relative to Emily_Watson.

Both types of queries can assist in explaining why two entities should or
should not be merged: Q1 gives a good reason to match Emma_Watson and
E_Watson into one entity, Q2 is not specific enough to match the other pair, and
Q3 can act as an indicator that the two movies named Little_Women are indeed
two different movies, and Emily_Watson and E_Watson are different people.
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1 Introduction

Ontology matching and data interlinking as distinct tasks aim at facilitating the inter-
operability between different knowledge bases. Although the field has fully developed
in the last years, most ontology matching works still focus on generating simple corre-
spondences (e.g., Author ≡Writer). These correspondences are however insufficient
to fully cover the different types of heterogeneity between knowledge bases and com-
plex correspondences are required (e.g., LRIMember ≡ Researcheru∃belongsToLab.
{LRI}). Few approaches have been proposed for generating complex alignments, fo-
cusing on correspondence patterns or exploiting common instances between the on-
tologies. Similarly, unsupervised data interlinking approaches (which do not require
labelled samples) have recently been developed. One approach consists in discover-
ing linking rules on unlabelled data, such as simple keys [2] (e.g., {lastName, lab})
or conditional keys [3] (e.g., {lastName} under the condition c = Researcher u
∃lab.{LRI}). Results have shown that the more expressive the rules are, the higher
the recall is. However naive approaches cannot be applied on large datasets. Existing
approaches presuppose either that the data conform to the same ontology [2] or that
all possible pairs of properties be examined [1]. Complementary, link keys are a set
of pairs of properties that identify the instances of two classes of two RDF datasets
[1] (e.g., {〈creator, auteur〉, 〈title, titre〉} linkkey 〈Book, Livre〉, expresses that in-
stances of the Book class which have the same values for properties creator and title
as an instance of the Livre class has for auteur and titre are the same). Such, link
keys may be directly extracted without the need for an alignment.

2 Proposed approach

We introduce here an approach that aims at evaluating the impact of complex correspon-
dences in the task of data interlinking established from the application of keys (Figure
1).Given two populated ontologies O1 and O2, we first apply the CANARD system [4]

Copyright c© 2019 for this paper by its authors.
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for establishing complex correspondences (1). Then, the key discovery tools VICKEY
[3] and LinkEx are applied for the discovery of simple keys, conditional keys, and link
keys from the instances of O1 and O2, exploiting the complex correspondences as input
(as a way of reducing the key search space) (2). The keys are then applied in the data
interlinking task, which can also benefit from the complex correspondences (as a way
of extending the sets of instances to be compared) (3). Finally, as CANARD considers
shared instances, the matching is iterated by considering the detected identity links.

Fig. 1. Workflow of ontology matching and data interlinking enhanced by key discovery.

We plan to evaluate the approach to verify, on the one hand, whether the use of com-
plex correspondences allows to improve the results of data interlinking. On the other
hand, thanks to the use of the detected identity links, it would also be reasonable to ex-
pect improvements in ontology matching results. Experiments will be run on DBpedia
and YAGO, covering different domains such as people, organizations, and locations, as
there exists reference entity links or these datasets.
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3. D. Symeonidou, L. Galárraga, N. Pernelle, F. Saı̈s, and F. M. Suchanek. VICKEY: mining
conditional keys on knowledge bases. In ISWC, pages 661–677, 2017.
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1 Introduction

Reasoning on a network of aligned ontologies has been investigated in different
contexts where the semantics given to correspondences differs from one to an-
other. In this paper, we introduce a new semantics of correspondences which is
weaker than the usual one and propose a procedure for reasoning over a network
of aligned ontologies with link keys [1] in a decentralized manner, i.e. reasoning
can be independently performed on different sites This process allows to reduce
polynomially global reasoning to local reasoning.

To achieve such results for a network of ontologies expressed in the description
logic ALC, the semantics of a correspondence, denoted C → D where C and D
are concepts in ontologies Oi and Oj respectively, is defined as an implication
of concept unsatisfiabilities (i.e. unsatisfiability of D implies unsatisfiability of
C) rather than a concept subsumption as usual. This weakened semantics allows
to reduce the reasoning complexity over a network of aligned ontologies since
(i) only individual equalities and concept unsatisfiabilities such as a ≈ b, C v
⊥ can be propagated from one to another ontology, and (ii) if a concept is
locally unsatifiable in an ontology then it remains unsatisfiable when adding
to the ontology individual equalites or concept unsatisfiabilities. The weakened
semantics would be relevant for correspondences between ontologies of different
nature. Given two ontologies about equipment and staff and a correspondence
Computer → Developer between them. With this correspondence, the weakened
semantics tells us that if there is no developer then there is no computer. The
standard semantics is irrelevant in this case.

We use 〈{Oi}ni=1, {Aij}ni=1,j=2,i<j〉 to denote a network of ontologies where
each Oi is an ontology expressed in ALC and each Aij contains individual cor-
respondences, link keys with the usual semantics, or concept correspondences
with the weakened semantics. Such a network is consistent if there is a model
Ii of each ontology Oi which satisfies all correspondences in each Aij . We will
present our algorithms for a network composed of two ontologies O1, O2 and an
alignment A12. These algorithms can be straightforwardly extended to a general
network of aligned ontologies.
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2 Decentralized reasoning by propagating

As discussed in Section 1, the weakened semantics of alignments allows us to
decompose checking consistency of a network into two steps which consist in
propagating knowledge from one to another ontology.
Propagating individual equalities. This step discovers all inferred individual
equalities by applying link keys in the alignment and using local reasoners for
entailment on ontologies. For example, a new individual correspondence a ≈ b
will be discovered and added to A12 if {〈P,Q〉}linkkey〈C,D〉 ∈ A12, c ≈ d ∈ A12

and P (a, c) ∈ O1, Q(b, d) ∈ O2. A new equality a ≈ c will be discovered and
added to O1 if a ≈ b, c ≈ b ∈ A12. When a local reasoner is called to check
whether Oi |= a ≈ b, it needs only one Oi for reasoning.
Propagating concept unsatisfiabilities. This step uses local reasoners as-
sociated with ontologies to discover from each ontology Oi new unsatisfiable
concepts which can result from unsatisfiable concepts in Oj via concept corre-
spondences. For instance, if O1 |= C v ⊥ and C ← D ∈ A12 then a new axiom
D v ⊥ will be added to O2. As the previous step, each local reasoner needs only
one Oi for reasoning.
The main algorithm executes these two steps until either an inconsistency is
found, or a stationary state is reached. If O1, O2 are consistent, and A12 does not
contain any pair a ≈ b, a 6≈ b, then the network itself is consistent. Our algorithm
runs in polynomial time in the size of the network since the propagation proce-
dures add only axioms and assertions which are composed of (sub-)concepts and
named individuals occurring in the ontologies and alignments. Moreover, these
algorithms never remove anything from the network.
Implementation and tests. The algorithms has been implemented and inte-
grated within DRAOn [2]. HermiT [3] is used for local reasoners. We performed
some tests with several datasets available from the OAEI web site. We compared
the performances of DRAOn under the IDDL semantics [2] and the weakened
semantics. Better performance has been observed for the latter. For instance,
checking consistency of the network composed of SNOMED, FMA and the align-
ment took 81 seconds under the weakened semantics while it took greater than
15 minutes under the IDDL semantics. We also added to the alignments some
link keys, and ran other tests to validate the implementation of our algorithm.
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