
HAL Id: hal-02984946
https://hal.science/hal-02984946

Submitted on 1 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic web
Jérôme Euzenat, Marie-Christine Rousset

To cite this version:
Jérôme Euzenat, Marie-Christine Rousset. Semantic web. Pierre Marquis, Odile Papini, Henri
Prade. A guided tour of artificial intelligence research, Springer, pp.181-207, 2020, 978-3-030-06169-2.
�10.1007/978-3-030-06170-8_6�. �hal-02984946�

https://hal.science/hal-02984946
https://hal.archives-ouvertes.fr


Semantic web∗

Jérôme Euzenat and Marie-Christine Rousset

Abstract The semantic web aims at making web content interpretable. It is no less
than offering knowledge representation at web scale. The main ingredients used in
this context are the representation of assertional knowledge through graphs, the def-
inition of the vocabularies used in graphs through ontologies, and the connection of
these representations through the web. Artificial intelligence techniques and, more
specifically, knowledge representation techniques, are put to use and to the test by
the semantic web. Indeed, they have to face typical problems of the web: scale,
heterogeneity, incompleteness, and dynamics. This chapter provides a short presen-
tation of the state of the semantic web and refers to those techniques at work in the
semantic web.

1 Introduction

The idea of using knowledge representation on the worldwide web appeared rapidly
after the development of the web. Systems like SHOE [Luke et al, 1997] and Onto-
broker [Fensel et al, 1998] integrated formal knowledge representation in web pages
while Ontoserver [Farquhar et al, 1995] and HyTroeps [Euzenat, 1996] used the web
to browse and edit knowledge.
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In 1998, Tim Berners-Lee described the principles of what he called the ‘seman-
tic web’. He already had launched, within the W3C2, the development of the RDF
language whose initial goal was to annotate web pages. At that time, he wrote ‘A Se-
mantic Web is not Artificial Intelligence’, but later he added that it was ‘Knowledge
Representation goes Global’ [Berners-Lee, 1998].

In 2000, this idea had not taken off nor been subject to ambitious developments.
The US DARPA launched the DAML (DARPA Agent Markup Language) program
directed by James Hendler, the initiator of SHOE. Right afterwards, was held a sem-
inar on ‘Semantics for the Web’ [Fensel et al, 2003] which steered the EU OntoWeb
thematic network, itself leading to the Knowledge Web network of excellence. Such
efforts have involved many artificial intelligence researchers in the development of
semantic web technologies [Euzenat, 2002].

The semantic web is often presented as a ‘web for machines’: it aims at rep-
resenting knowledge on the web with formal languages that can be processed by
machines. For that purpose, it is natural to use techniques developed in artificial
intelligence.

Indeed, the main target application for the semantic web is information retrieval
(Chapter “Artificial intelligence and information retrieval” of this volume): being
able to retrieve precise information on the web because documents are annotated
with ‘semantic metadata’. Although this goal seemed remote in 2000, it is nowa-
days far more tangible. In the interval, we witnessed the use of of Open Graph by
Facebook, the definition of the lightweight ontology schema.org by four of the main
search engines (Bing, Google, Yahoo, Yandex), and the use by Google of the knowl-
edge graph providing structured answers to queries instead of lists of documents.

Since then, many other types of applications have emerged, each based on the an-
notation of resources using the semantic web knowledge representation languages.
Such applications are referred to as applications of semantic technologies. In partic-
ular, this covers:

• Semantic web services in which web service interfaces (input/output) are seman-
tically annotated,

• Semantic peer-to-peer systems in which shared resources are semantically anno-
tated,

• Semantic social networks in which social relations and people profiles are se-
mantically annotated,

• Semantic desktop in which personal information (agenda, address book, etc.) is
semantically expressed,

• Semantic web of things in which sensors, effectors and the information they ex-
change are semantically annotated,

• The web of data in which data sources are expressed and linked in semantic web
languages (see Section 2.2).

The semantic web has thus spread out of its initial playground. It is now a broad
experimentation field in which various problems are investigated such as trust in
peer-to-peer systems, statistical data integration, or smart city monitoring. As web

2 WorldWide Web Consortium: the organisation in charge of recommending web technologies.
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technologies, semantic technologies have the potential to progressively affect all
computer developments [Janowicz et al, 2015].

We focus on the relationships between artificial intelligence techniques and se-
mantic web technologies. For that purpose, we shall consider three problems at the
heart of the semantic web: knowledge representation (Section 2), reasoning with
knowledge and data (Section 3), and relating data and knowledge sources (Sec-
tion 4). This organisation may seem arbitrary. Indeed, it is not organised chronolog-
ically, e.g. the definition of an ontology may occur before or after that of data, and
reasoning may occur within a simple data graph or across a network of ontologies.
However, each section corresponds to one type of activity with a well-identified set
of techniques. Each relies on artificial intelligence techniques, mostly from knowl-
edge representation and reasoning, and could take advantage of other techniques
described in this book. We can only survey them: there exist more extensive treat-
ments of these [Antoniou and van Harmelen, 2008; Hitzler et al, 2009; Abiteboul
et al, 2011].

2 Publishing data on the web

The first question solved by the semantic web is the expression of factual data on the
web. To address it, a data expression language, adapted to the characteristics of the
web, is required. The RDF (Resource Description Framework) language has been
developed and recommended by the W3C and adopted in practice.

2.1 RDF: simple conceptual graphs

RDF [Lassila and Swick, 1999; Cyganiak et al, 2014] is a formal language for ex-
pressing assertion of relations between ‘resources’. It is first used to annotate doc-
uments written in non structured languages, or as interface between data sources
expressed in languages with a comparable semantics, e.g. data bases.

An RDF graph is a set of triples 〈subject, predicate, object〉. The three elements
may be IRIs (Internationalized Resource Identifiers generalising URIs, i.e. Uniform
Resource Identifiers [Berners-Lee et al, 1998] themselves comprising URLs), liter-
als, e.g. character strings or dates, or variables, also called ‘blanks’.

The use of IRIs is specific to semantic web technologies, with respect to artificial
intelligence practice. IRIs behave as simple identifiers. However, they are gener-
ally associated with a name space identifying their provenance (vocabulary or data
source). For instance, foaf:Person identifies the Person concept in the friend-of-
a-friend name space http://xmlns.com/foaf/0.1/ shortened as foaf:. Thus an
RDF graph may use different vocabularies with very little risks of conflict or ambi-
guity.

This set of triples can be represented in a natural way as a graph, or more pre-
cisely as a directed labelled multigraph, in which the elements appearing as subject
or object are vertices and each triple is represented by an edge between the subject
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and object labelled by the predicate (see Figure 1). Such a graph may be encoded as
an RDF/XML [Gandon and Schreiber, 2014] or N-triple [Carothers and Seaborne,
2014] document.

:b3 :b2

foaf:Person:b1Pierre

foaf:name foa
f:k

now
s

rel:worksWith

rel:daughter

rdf:type

Fig. 1 A RDF graph: Pierre knows a parent of one of his colleagues. Blank nodes are identified by
ids in the name space.

Figure 1 displays an RDF graph fragment. The IRIs of some resources belong to
specific vocabularies: FOAF, RDF, rel. The literals are represented by a rectangle,
such as “Pierre”. Non-labelled vertices represent variables, also called blanks. In-
tuitively, this graph may be understood as: ‘Someone called Pierre knows a parent
of one of his colleagues’. This intuitive semantics is not sufficient for an automated
treatment; hence, RDF has been given a formal semantics.

The semantics of an RDF graph is defined in model theory [Hayes and Patel-
Schneider, 2014]. RDF is thus a proper logics. This semantics has this pecu-
liarity that predicates, which naturally correspond to classical dyadic predicates,
may also be considered as resources. Hence, the triple 〈rdf:type, rdf:type,
rdf:Property〉 is legitimate in RDF and can be interpreted (it indeed means that
rdf:type denotes a predicate). This is achieved by interpreting triples in two steps:
a first step associates a denotation to each IRI used and a second step interprets
those used in predicate position as binary relations. This is the main specificity of
the RDF semantics with respect to that of first-order logics.

Some RDF graphs may be translated as formulas in a positive (without negation),
conjunctive, existential and function-free first-order logic. To each triple 〈s, p,o〉
corresponds the atomic formula p(s,o), such that p is a predicate name, and o and
s are constants if these elements are IRIs or literals, and variables otherwise. A
graph is translated as the existential closure of the conjunction of atomic formulas
associated to its triples. Hence, the graph of Figure 1 is translated by:

∃?b1,?b2,?b3;rdf:type(?b1,foaf:Person)∧
rel:daughter(?b1,?b2)∧rel:worksWith(?b2,?b3)∧

foaf:name(?b3,”Pierre”)∧foaf:knows(?b3,?b1)

The models of such a formula are isomorphic to those of the direct semantics of
graphs. This logical translation of RDF illustrates the proximity with other repre-
sentations: logics, of course, as well as positive Datalog (see Chapter “Databases
and artificial intelligence” of this volume) or conceptual graphs (see Chapter “Rea-
soning with ontologies” of Volume 1).
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RDF is a simple and stable language. It fulfils adequately its function on the
semantic web. It benefits from a good software support in many programming lan-
guages.

RDF 1.1 has acknowledged the notion of RDF Dataset which is a collection of
RDF graphs and that of named graphs which are graphs identified by IRIs. This
identification may be exploited to assert statements (triples) about graphs and hence
triples. Such statements may be about the origin of the graph or the confidence in
what it asserts. This function was previously fulfilled by ‘quads’, i.e. triples which
were usually tagged by a IRI.

It has also embraced various formats used for expressing RDF graphs: beyond
RDF/XML and n-triples. The new well-defined formats are RDFa —enabling the
embedding of RDF within HTML—, Turtle, N-Quads —extending ntriples by
quads—, and JSON-LD. These formats are usually supported by RDF data man-
agement systems, so-called triple stores.

2.2 The web of data

In 2006, from the observation that the semantic web development was lagging due
to the lack of resources, Tim Berners-Lee put forth a methodology for publishing
large quantities of data on the web so that they can help the semantic web [2006].

This defined the ‘web of data’ through four principles for publishing data on the
web, summarised as [Berners-Lee, 2006; Heath and Bizer, 2011]:

1. Resources are identified by IRIs.
2. IRIs are dereferenceable, i.e. can be looked up on the web.
3. When a IRI is dereferenced, a description of the identified resource should be

returned, ideally adapted through content negotiation.
4. Published web data sets must contain links to other web data sets.

Although not explicitly specified, linked data sources are more usable if they are
published with semantic web technologies: IRIs for identifying resources, RDF for
describing them, OWL for defining the used vocabularies, SPARQL for accessing
data, and asserting links between sources through the owl:sameAs predicate.

The ‘five stars rating’, to be interpreted as incremental steps, has been introduced
for measuring how much of this usability is achieved, namely:

? Publish data on the web in any format, e.g. a scan of a table in PDF;
? ? Use structured data formats, e.g. a table in Excel instead of its scan in PDF;

??? Use non-proprietary formats, e.g. CSV instead of Excel, such that users
have direct access to the raw data;

??? ? Use universal formats to represent data, such as RDF, which encapsulates
both syntax and semantics;

????? Link data to other data sets on the web, thereby providing context.
The first three stars are easy to reach and these already enable some data reuse.

However, humans still have to handle all the semantic issues related to integration. In
order to have data that is more easily discoverable and interoperable, it is necessary
to reach the fourth and the fifth stars.
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The web of data is thus a huge RDF graph reachable through the HTTP proto-
col like the web. Very quickly it developed around DBpedia [Bizer et al, 2009], a
massive extraction of Wikipedia in RDF. Many efforts linked their resources to DB-
pedia. Soon after, several governments encouraged the publication of their (open)
data in RDF. Since then, libraries, museums, research institutions of various kinds
joined the linked open data cloud. In 2016, it contained 9960 data sources providing
more than 150 billion triples using 576 vocabularies or ontologies3.

2.3 Querying RDF with SPARQL

The RDF recommendation [Hayes and Patel-Schneider, 2014] defines the RDF se-
mantics so that developers can assess the soundness and completeness of their infer-
ence mechanisms. Such a mechanism is however discussed in W3C documents in
direct relation with simple conceptual graphs (see Chapter “Reasoning with ontolo-
gies” of Volume 1). RDF consequence can be tested by looking for a labelled graph
homomorphism. Although finding a homomorphism is an NP-complete problem,
efficient algorithms are available for implementing it.

A major way to deal with RDF graphs consists of answering structured queries,
as opposed to testing if a formula is a consequence. SPARQL [Prud’hommeaux and
Seaborne, 2008; Harris and Seaborne, 2013] is the recommended query language
for RDF. It is inspired by the SQL relational data base query language. It returns
the values of variables that make a graph pattern consequence of a given graph.
For instance, the query of Figure 2 returns the answer: {〈“Pierre”, :b3〉} from the
graph of Figure 1.

SELECT ?n, ?z
FROM Figure 1
WHERE {

?x rel:daughter ?y .
?y rel:worksWith ?z .
?z foaf:knows ?x .
OPTIONAL { ?z foaf:name ?n }

}

?z ?y

?x?n

foaf:name foa
f:k

now
s

rel:worksWith

rel:daughter

Fig. 2 A SPARQL query and the corresponding graph pattern (the optional part is displayed in
dashed lines).

SPARQL is based on the graph pattern concept (RDF graphs containing vari-
ables) composed through classical operators (conjunction, disjunction, optional con-
junction, filtering). The answers are provided by graph homomorphisms between
the queried graph and the graph patterns. These homomorphisms are then combined
by operators reflecting the semantics of the composition, like in SQL [Pérez et al,
2009]. SPARQL is thus a hybrid language between conceptual graphs (see Chapter
“Reasoning with ontologies” of Volume 1) and data bases.

3 Sources: http://stats.lod2.eu/ and http://lov.okfn.org.

http://stats.lod2.eu/
http://lov.okfn.org
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Beside the SELECT query form, it is possible to use a CONSTRUCT query
form which returns a graph. As relational SELECT queries extract a relation from
relations, a SPARQL CONSTRUCT query extracts a graph from graphs.

The following query is a rewriting of that of Figure 2 as a CONSTRUCT query:
instead of returning a set of homomorphisms (or assignments to the SELECT vari-
ables which satisfy the pattern), it will return an RDF graph made of the CON-
STRUCT graph pattern whose variables are instantiated with the resulting homo-
morphisms.

CONSTRUCT {
?z rdf:knowsTheFatherOf ?y .
?z foaf:name ?n }

FROM Figure 1
WHERE {

?z foaf:knows/rel:daughter ?y .
?y rel:workWith+ ?z .
OPTIONAL { ?z foaf:name ?n }

}

The query also uses paths which have been introduced in SPARQL 1.1. Triple pat-
terns may use regular path, such as the sequence of foaf:knows and rel:daughter

or the unbounded sequence of rel:workWith predicate instead of atomic predi-
cates. This leads to suppress any unnecessary variables from the initial graph pat-
tern.

In addition, SPARQL 1.1 [Harris and Seaborne, 2013] introduced the opportu-
nity to combine queries and sources. In particular, queries can integrate subqueries,
evaluate a query part againts a specific named graph (with the FROM NAMED and
GRAPH clauses), and evaluate federated queries, i.e. queries against several data
sources whose results are combined (with the SERVICE construct).

2.4 Beyond SPARQL: streams and navigation

Many applications in sensor networks, smart cities or the web of things are gener-
ating streams of RDF triples or quads, i.e. in this context, RDF triples labelled by
their occurrence time. One may want to query such streams for detecting particular
events occurring and alerting some monitor about it. Because the expressiveness of
triples is very poor, these queries rely on graph patterns. The difficulty is that ap-
plications should be able to deal quickly with large amounts of real time data. For
that purpose, they can take advantage of techniques defined in artificial intelligence
for rule compilation (RETE, TREAT), as well as more sophisticated techniques for
recognising chronicles [Dousson et al, 1993]. This has to be combined with time
windowing techniques matching events only related to closer events.

The C-SPARQL language has been designed for that purpose [Barbieri et al,
2010] and theoretical studies for stream reasoning are under development [Beck
et al, 2015].

The path facilities of SPARQL 1.1 are a good way to specify navigational queries
and to evaluate queries against the semantic web in a ‘follow your nose’ fashion, i.e.
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by dereferencing reachable IRIs and querying their own data sources. This querying
mode is well adapted to the web of data (Section 2.2).

However, SPARQL queries are usually evaluated against one particular graph
specified in the FROM or GRAPH clauses. The new federated query feature also
requires that graph patterns be evaluated against one specific server. Thus the
SPARQL recommendation does not specify the semantics of evaluating queries
against the web. Moreover, the availability of the web is unpredictable and the eval-
uation would require, in principle, to look-up a potentially infinite number of data
sources. To better specify the semantics of such queries evaluated over the web,
reachability-based and context-based query semantics have been defined [Hartig
and Pirró, 2016]. They characterise the set of answers to a query by answers with
respect to reachable data sources or those selected from the IRIs instantiating the
paths. They also identify web-safe queries which can be evaluated according to the
new semantics and return complete answers.

3 A little knowledge representation goes a long way

The title of this section is an adaptation of James Hendler’s catch phrase ‘A little
semantics goes a long way’.

Once able to express data on the web, the next problem is the definition of the
vocabulary used in the RDF graphs. This requires listing the terms used to describe
data as well as expressing the axioms constraining the use of such terms allowing a
machine to interpret them properly. Such vocabularies are defined as ontologies (see
Chapters “Reasoning with ontologies” and “Knowledge engineering” of Volume 1).
We will consider below ontologies as sets of axioms in a specific logic. Several such
logics have been defined.

3.1 RDFS

RDFS (for RDF Schema [Brickley and Guha, 2004]) extends the RDF language
by more precisely describing the resources used for labelling the graphs. In RDFS,
this extension is seen as the introduction of a specific vocabulary (a set of IRIs)
carrying a precise semantics. RDF already introduced a few keywords in the rdf:

name space for structuring knowledge:

• 〈ex:Sonia rdf:type ex:Employee〉 asserts that the resource ex:Sonia is an
instance of the class ex:Employee;

• 〈rel:worksWith rdf:type rdf:Property〉 tells that rel:worksWith is a pred-
icate, i.e. a resource used for labelling edges.

RDFS is expressed as RDF triples using a few more keywords in the rdfs: name
space, such as:

• 〈ex:Employee rdf:type rdfs:Class〉 indicating that the resource ex:Employee
as for type rdfs:Class, it is thus a class.
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• 〈ex:Employee rdfs:subClassOf foaf:Person〉 meaning that ex:Employee
is a subclass of foaf:Person, thus each instance of ex:Employee is also an
instance of foaf:Person, like ex:Sonia;

• 〈ex:worksWith rdfs:range ex:Employee〉 asserts that any resource used as
the extremity of an edge labelled by rel:worksWith is an instance of the
ex:Employee class.

The RDFS semantics extends that of RDF by considering some IRIs as identi-
fying classes and interpreting them in two steps, as properties [Hayes and Patel-
Schneider, 2014]. ρDF [Pérez et al, 2009] is the subset of RDFS that concentrate on
the purely ontology description features.

However, RDFS only provides limited mechanisms to specify classes further. Its
expressiveness is limited to that of frame languages, hence other languages have
been introduced to address more demanding needs.

3.2 OWL: description logics on the web

The OWL language [Horrocks et al, 2003; Dean and Schreiber (eds.), 2004; Beckett,
2009] is dedicated to class and property definitions. Inspired from description logics
(see Chapter “Reasoning with ontologies” of Volume 1), it provides constructors to
constrain them precisely. The OWL syntax, based on RDF, introduces a specific
vocabulary in the owl: name space, but contrary to RDFS, this is not sufficient to
define the full OWL syntax, such as the owl:Restriction imbrication presented
below. Hence, not all RDF graphs using this vocabulary are necessarily valid OWL
ontologies: further constraints have to be satisfied.

The semantic of OWL constructors is defined through model theory [Patel-
Schneider et al, 2004; Motik et al, 2009c] and directly follows description logics. It
is more precise than the semantics assigned to the RDF graphs representing OWL
ontologies: more can be deduced from the ontology.

OWL allows one to finely describe relations, e.g. the relation daughter, is here
defined as a subrelation of the inverse of hasParent whose codomain is of female
gender:

<owl:ObjectProperty rdf:about="rel:daughter">
<owl:subPropertyOf>

<owl:ObjectProperty>
<owl:inverseOf rdf:resource="rel:hasParent"/>

</owl:ObjectProperty>
</owl:subPropertyOf>
<rdfs:range>

<owl:Restriction>
<owl:onProperty rdf:resource="foaf:gender"/>
<owl:hasValue>female</owl:hasValue>

</owl:Restriction>
</rdfs:range>

</owl:ObjectProperty>

We provide the main OWL constructors and their intuitive semantics (see [Motik
et al, 2009b] for a formal definition):
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• RDF keywords (rdf:type, rdf:Property) and RDFS’ (rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:range, rdfs:domain) are used with the same se-
mantics.

• owl:Class is a new (meta)class.
• owl:sameAs and owl:differentFrom are used to assert that two resources are

equal or different.
• owl:inverseOf asserts that a property p is the converse of a property p′ (in

this case, the triple 〈s p o〉 entails 〈o p′ s〉); other characteristics may be as-
signed to properties such as reflexivity (owl:ReflexiveProperty), transitivity
(owl:TransitiveProperty), symmetry (owl:SymmetricProperty) or func-
tionality (owl:FunctionalProperty).

• owl:allValuesFrom associates a class c to a relation p. This defines the class
of objects x such that if 〈x p y〉 holds, then y belong to c (this is a universally
quantified role in description logics). owl:someValuesFrom encodes existen-
tially quantified roles.

• owl:minCardinality (resp. owl:maxCardinality) defines the class of objects
related to at least (resp. at most) a specific number of objects through a given
property. A qualified version of these constructors constrains, in addition, that
these objects belong to a particular class.

• owl:oneOf defines a class in comprehension by enumerating the set of its in-
stances.

• owl:hasValue constrains a property to have a particular individual as value.
• owl:disjointWith asserts that two classes cannot have a common instance.
• owl:unionOf, owl:intersectionOf and owl:complementOf define a class as

the disjunction, the conjunction or the negation of other classes.
• owl:hasSelf defines the class of objects related to themselves through a specific

relation.
• owl:hasKey asserts that a set of properties is a key for a class, i.e. that two

distinct instances cannot share the same values for these properties.
• owl:propertyChainAxiom composes several relations and properties to obtain

a new relation or property.

We have not mentioned all constructors. Many of them can be trivially implemented
by using the cited ones, e.g. owl:equivalentClass asserting that two classes are
equivalent can be expressed with two rdfs:subClassOf assertions. OWL also uses
data types that are not considered here. They are however important as they can lead
to inconsistency.

OWL 2 interprets differently and independently a IRI if it has to be considered
as a class or a property. This constraint does not apply to OWL full.

3.3 Expressiveness/efficiency trade-off

The expressiveness/efficiency trade-off has always been present in the work on de-
scription logics (see Chapter “Reasoning with ontologies” of Volume 1). It is pos-
sible to adopt a unified encoding of description logics preserving the opportunity to
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OWL Full

OWL DL

OWL Lite

RDFS

DL-LiteR=OWL2 QL
OWL2 EL

OWL2 RL

ρDF

DL-LiteF

DL-Litecore

RDF

OWL 2

OWL 1 DL

RL QL

EL

Fig. 3 A hierarchy of ontology languages for the semantic web. Arrows and set inclusion represent
the expressibility order between these different languages.

choose the one corresponding to a particular trade-off [Euzenat and Stuckenschmidt,
2003]. This attitude has been adopted in OWL 1 [Dean and Schreiber (eds.), 2004]
through only three languages:

• OWL Lite covers a subset of the available constructors and their use may be
restricted, e.g. cardinality constraints can only use 0 or 1. It corresponds to the
SHIF description logics for which optimized reasoners based on tableau meth-
ods have been implemented and used in practice with a reasonable performances,
despite that the reasoning problems such as subsumption checking or satistiabil-
ity checking are known to be EXPTIME-complete [Baader et al, 2003].

• OWL DL extends OWL Lite by covering all constructors including number re-
strictions, but enforcing specific constraints, e.g. a resources cannot be both a
class and a property. It corresponds to the SHOIN description logics for which
the reasoning problems are decidable but with high complexity (NEXPTIME-
complete). Nevertheless, like for OWL-Lite, practical reasoners such as FaCT++
[Tsarkov and Horrocks, 2006], Pellet [Sirin et al, 2007] or HermiT [Glimm et al,
2014] have acceptable performances on most OWL DL ontologies built in prac-
tice.

• OWL Full is a semantic extension of both OWL DL and RDF(S) and cannot be
translated into a description logic language. In addition, the fact that arbitrary
roles can be used in number restrictions would make entailment (and thus sub-
sumption) in the underlying logic undecidable [Horrocks et al, 2000].

However, the various usages of these languages may have led to a different organ-
isation. For instance, some applications may be more easily dealt with a version of
OWL DL without disjunction, with intuitionistic negation and such that classes may
be considered as instances. Such a language does not exist because OWL has not
been defined modularly.

Hence, some languages have been studied independently from the W3C in order
to offer efficient reasoning services. First, description logic research has proposed
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languages for answering efficiently to queries modulo ontologies. DL-Lite [Cal-
vanese et al, 2007; Artale et al, 2009] is a subfamilly of OWL which contains no
disjunction, limited constraints on properties and a restricted negation (see Chapter
“Reasoning with ontologies” of Volume 1). In consequence, conjunctive queries in
DL-Lite may be evaluated efficiently by rewriting them into SQL queries and using
existing database management systems. This family features a language, DL-LiteR,
more expressive than ρDF, for which reasoning is tractable.

Another approach [Voltz, 2004; Hustadt et al, 2007] consists of determining a
subset of OWL whose expressiveness is lower than that of OWL Lite and to comple-
ment it with a rule language in such a way that its complexity remains polynomial.

OWL 2 integrated these approaches by introducing the notion of language pro-
files [Motik et al, 2009a]. In addition to the languages of OWL 1, it provides profiles
that correspond to tractable description logics in which subsumption checking can
be performed in polynomial time:

OWL 2 EL suppresses all universal quantification from OWL DL, i.e. it forbids
universal quantification, cardinality restrictions, disjunction, negation and rela-
tion properties as well as inverse role, but it preserves role composition. If the
ontology is made only of concept definitions, i.e. if general concept inclusions
are forbidden, EL knowledge bases correspond to simple conceptual graphs (see
Chapter “Reasoning with ontologies” of Volume 1). General concept inclusions
in the ontology correspond to existential rules that have been studied both in
Datalog+− [Calı̀ et al, 2009a] and as an extension of conceptual graphs with rules
(see Chapter “Reasoning with ontologies” of Volume 1);

OWL 2 QL corresponds to DL-LiteR;
OWL 2 RL suppresses any construction which may generate unknown objects

and direct the axioms so that, only some expressions (existential) are autho-
rised in the superclass and others (universals) are expressed in subclass of a
rdfs:subClassOf axiom.

Figure 3 offers two views of the relations between the main languages defined
around OWL and RDFS.

3.4 Reasoning

Reasoning is at the core of many tasks performed by semantic web applications,
such as data interlinking, answering queries through ontologies, or data consistency
checking. The availability of efficient reasoning tools is a decisive criterion for the
adoption of a particular language for expressing ontological constraints. Such tools
may be embedded in query systems in order to process sophisticated queries and
link and enrich the returned answers (see Section 3.5).

However, the problem of determining if an RDF graph is the consequence of an-
other is already an NP-complete problem. Efficient algorithms have been developed
to compute the graph homomorphisms which correspond to this problem, based on
backtracking methods pioneered in constraint networks (see Chapter “Constraint
reasoning” of Volume 2).
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In the semantic web, several factors make the problem more difficult:

• One may want to achieve reasoning on the whole semantic web, i.e. all the RDF
and OWL information available on the web (see Section 2.4).

• These graphs and the reasoning to be performed depend on ontologies for which
reasoning problems may be of high complexity or even undecidable.

• Last, but not least, this information is distributed and heterogeneous.

Research on reasoning with the semantic web languages are being pursued in
several directions:

• developing efficient decision procedures for the underlying description logics
[Horrocks and Sattler, 2007; Motik et al, 2009d], and

• isolating OWL fragments for which efficient procedures are known.

In the semantic web setting, the size of the ontologies is usually much smaller
than the size of the data described using these ontologies. Therefore, it is of utter
importance to distinguish reasoning tasks concerning the ontological part only (such
as subsomption test or query rewriting) from reasoning tasks involving data (such
as instance checking or answering queries). In the latter case, measuring the data
complexity is more meaningful for evaluating the practical performances of the rea-
soning algorithms than measuring the combined complexity that takes into account
the size of the ontology and possibly the size of the query in addition to the size of
the data. For instance, answering conjunctive queries by query rewriting in DL-Lite
has an exponential combined complexity in the worst-case but its data complexity is
in AC0, a highly parallelizable subclass of LOGSPACE, just as in standard relational
data bases for which optimisations are available.

3.5 Querying modulo ontologies

The definition of SPARQL through graph homomorphisms does not make it easy to
apply it with other semantics than that of simple RDF graphs. Indeed, without cor-
respondence results between consequence and homomorphisms for such languages,
query evaluation is disconnected from their semantics. This happens if one queries
RDF graphs without taking into account their RDFS Schema or OWL ontologies.
SPARQL could have been grounded on the notion of logical consequences instead
of graph homomorphism [Alkhateeb et al, 2009]. With such a foundation, any on-
tology language using model theory for expressing its semantics could be used for
interpreting queries.

Various attempts have been made to deal with this situation. For instance, it is
possible to answer a SPARQL query with respect to an ontology written in ρDF
or DL-Lite through simple rewriting of the query as a PSPARQL [Alkhateeb et al,
2008], SPARQL 1.1 or SQL query. Similar results have been obtained by restricting
SPARQL itself [Pérez et al, 2010]. Similarly, the SPARQL-DL language [Sirin and
Parsia, 2007] evaluates a fragment of SPARQL (conjunctive queries with limited
use of variables) with respect to an OWL DL ontology.
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SPARQL 1.1 introduced the notion of SPARQL entailment regime [Glimm and
Ogbuji, 2013] which replaces graph homomorphism by the notion of logical entail-
ment. Hence, the queried data may be interpreted under OWL or RDFS semantics
among others. It also introduces further constraints on the types of authorised query
pattern, expected answers, or what to do in case of inconsistency.

Independently from SPARQL, other works have extended Datalog to deal with
queries written in DL-LiteR (hence in ρDF) [Calı̀ et al, 2009b] or studied the com-
plexity of such queries when introducing the SPARQL disjunction operator [Artale
et al, 2009]. This work has sparked the new domain of ontology-based data access
(see Chapter “Reasoning with ontologies” of Volume 1) in which such an ontology
is used for extracting more conveniently data from relational data bases. This, in
particular, contributes exposing traditional data bases as SPARQL endpoints.

3.6 Rules

Concerning rules, the situation is less clear than for other semantic web languages.
The W3C has recommended a ‘rule interchange format’ (RIF [Boley et al, 2013])
whose goal is to offer both logic programming rules (Chapter “Logic programming”
of Volume 2) and ‘business rules’, a kind of rule triggering an action when a con-
dition is satisfied. Two dialects, sharing part of their syntax (RIF-Core), have been
defined: BLD for ‘Basic Logic Dialect’ and PRD for ‘Production Rule Dialect’.
RIF has a syntax different from those provided by other languages. In particular, the
RDF syntax of RuleML and SWRL [Horrocks et al, 2004] has not been retained for
RIF.

From a theoretical standpoint, all work developed in logic programming applies
naturally to the semantic web and can be transposed in the RIF-BLD dialect. More-
over, some connection between rules and ontologies have been specified [de Bruijn
and Welty, 2013].

Combining description logics and Datalog has been studied [Levy and Rousset,
1998]. In the semantic web context, work has started from less expressive fragments:
DLP (‘description logic programs’ [Grosof et al, 2003]) is a minimal language com-
bining Horn clauses and description logics. It cannot express all OWL Lite, nor all
logic programming. However, it could be adopted to reason at large scale. DLP has
been the inspiration for OWL 2 RL.

A closer integration of description logics (Chapter “Reasoning with ontologies”
of Volume 1) and of ‘answer set programming’ (Chapter “Logic programming” of
Volume 2), which reintroduces aspects such as negation-as-failure and the closed
world assumption, has also been considered [Eiter et al, 2008; Motik and Rosati,
2010]. Other works have attempted the definition of description logics on a logic
programming language basis [Hustadt et al, 2007, 2008].

From the conceptual graph side, logical rules have been studied as an extension of
simple conceptual graphs (see Chapter “Reasoning with ontologies” of Volume 1,
[Baget et al, 2011]) which can be directly applied to RDF given the proximity of
these formalisms.
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3.7 Robust inference

A typical property of the web is the huge quantity of available information. The
semantic web is no exception. Unfortunately, it also contains erroneous, outdated,
redundant or incomplete pieces of information. A human user is, in general, able
to detect these problems and to overcome them. It is thus necessary to develop rea-
soning modes taking the semantic web into account, i.e. which remain as faithful as
possible to the recommended languages, without being disrupted by errors found in
the data sources. In summary, robust reasoners are needed.

Various techniques may be adapted to the semantic web context to achieve ro-
bustness: paraconsistent logics or statistical models, intuitionistic logics, etc. Some
proposals use non monotonic logics [Pührer et al, 2010] to counter inconsistency.
Anytime reasoning or reasoning under resource constraints might be used to over-
come the huge size of the web. However, this aspect is not very developed.

Other works aim to reduce the impact of errors in ontologies. They only take into
account axioms that extend an ontology by defining new concepts and not those that
constrain the meaning of existing ones [Hogan et al, 2009]. This is a radical option
to obtain conservative extensions (see Section 4.3).

4 Dealing with heterogeneity

The semantic web being grounded in the same principles of autonomy and inde-
pendence as the web, ontologies used by various sources of knowledge may be dif-
ferent. It is thus necessary to reconcile them and to express relations between these
ontologies.

4.1 From alignments to networks of ontologies

The first problem is the description of relations between data or ontologies, i.e. that
an individual in a data source is the same as another in another source or that a class
in one ontology is more general than another class in another ontology. In general,
such a relation, called a correspondence expresses the relation between two entities
of two different ontologies. For instance, one may want to express that the property
daughter is more specific than the property child:

〈rel:daughter,v,my:child〉

Such correspondences, when they are generated by ontology matching systems are
often assigned a confidence measure.

However, correspondences may go beyond the ontology language. This is espe-
cially useful when the ontology languages are not very expressive, e.g. SKOS. For
instance, the former correspondence could have been expressed as a daughter to be
equivalent to the conjunction of the converse of the parent relation whose domain is
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Female:

〈rel:daughter,≡,my:parent−1udomain(my:Female)〉

The EDOAL language [David et al, 2011] provides description logics construc-
tors within the alignment language and can thus express such correspondences. It
offers four types of features:

• Constructions of entities from other entities can be expressed through algebraic
operators (here u).

• Restrictions can be expressed on entities in order to narrow their scope (here
domain(my:Female)).

• Transformations of property values can be specified, e.g. concatenation of first
and last name to give the name or conversion from m/s to miles-per-hour.

• Link keys can be defined for expressing conditions under which, instances of the
aligned entities should be considered equivalent (see Section 4.5).

A set of such correspondences between the two same ontologies is called an
alignment [Euzenat and Shvaiko, 2013]. More generally, it may be necessary to
express networks of ontologies involving several ontologies and alignments between
these.

The Distributed Ontology Language (DOL) [Mossakowski et al, 2015] has been
designed for the purpose of dealing in a unified manner with ontologies defined in
different languages. Such languages are considered in the categorical formalisms of
institutions and operations are defined to use them together. In the DOL framework,
alignments and networks of ontologies are syntactic objects. Alignments are inter-
preted as ontologies which relate two other ontologies. DOL is becoming an Object
Management Group standard and is supported by the Hets tool.

4.2 Semantics of alignments

There exists a consensus on the necessity to express alignments between ontologies.
However, contrary to ontology languages, there is no recommendation for express-
ing alignments, networks of ontologies and their semantics.

A first solution is simply to use OWL to express ontologies and alignments.
This is called the reduced semantics [Euzenat and Shvaiko, 2013]. OWL offers
the owl:sameAs relation to express that two individuals are the same. This is par-
ticularly used in the web of data (Section 2.2) for expressing link sets, very of-
ten kept separated from the data sets. It also offers owl:equivalentClass and
rdfs:subClassOf to express the equivalence or subsumption between two classes
(the same exists for properties). However, using OWL in this context constrains to
merge data sources in order to exploit them: the alignments between ontologies do
not exist on their own.

The same remarks apply to the SKOS language [Miles and Bechhofer, 2009] de-
signed for expressing thesauri and which offers relations between terms of different
thesauri, such as skos:broadMatch and skos:exactMatch.
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Several proposals have been made to preserve this ontology/alignment duality. C-
OWL [Bouquet et al, 2004] is a language for expressing oriented alignments, called
mappings, between ontology expressed in OWL. A correspondence expresses how
the information from one ontology may be imported to another ontology, but not the
other way. Its originality is that networks of ontologies are considered as such and
their semantics is provided on top of OWL semantics preserving the locality of each
ontology (contrary to the previous solution). The semantics of C-OWL is grounded
on that of distributed description logics [Borgida and Serafini, 2003].

The equalising semantics [Zimmermann and Euzenat, 2006] is an alternative to
the distributed semantics which does not require that the ontologies be expressed
in OWL. It also preserves the interpretations of the various ontologies and projects
these interpretations in a common domain of interpretation in which the alignment
relations can be interpreted. Global reasoning on networks of ontologies, e.g. com-
posing alignments, can thus be performed.

The DOL framework [Mossakowski et al, 2015] supports these three semantics,
and the heterogeneity of ontological formalisms, at least on simple alignments.

4.3 Reasoning in networks of ontologies

Once ontologies are connected through alignments, methods for reasoning with
them have to be developed. This can concern several types of problems:

Consistency test: determining if a network of ontologies, or a sub-part of it, has a
model;

Entailment test: determining if a statement or a correspondence is entailed by a
network of ontologies;

Query answering: determining variable assignments that satisfy a formula.

Solving such problems often requires specific techniques. These are widely open
problems which have found only few concrete developments. They raise, in partic-
ular, strong scalability problems.

First, most OWL reasoners are able to reason with imported ontologies. However,
gathering the ontologies becomes less possible when data has to be considered in
addition to axioms. Furthermore, this approach cannot be adopted when data is only
accessible through SPARQL endpoints.

In the domain of semantic peer-to-peer systems, peers offer data expressed in
their own ontologies related by alignments (usually sets of subsumption statements).
SomeWhere [Adjiman et al, 2006] has developed an original approach to consis-
tency testing and query answering. It uses propositional reasoning about the ontol-
ogy structure in order to determine query evaluation plans, then it evaluates queries
from peer to peer.

DRAGO [Serafini and Tamilin, 2005] is a distributed reasoner for C-OWL. On-
tologies are described in OWL DL. It is implemented as a distributed tableau rea-
soner in which the construction of a model for one peer may recursively require the
satisfaction tests of formulas obtained through correspondences by other peers
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DRAOn [Zimmermann and Le Duc, 2008] is a distributed reasoner determining
the consistency of a network of ontologies in the equalising semantics [Zimmer-
mann and Euzenat, 2006]. It works independently of the logics used in each peer:
their only requirement is that they support the ALC logic. However, the alignment
language is reduced to the subsumption and the disjunction of concepts and proper-
ties.

One of the important aspects of these three reasoners is that they operate in a
decentralised manner: each peer is autonomous and has to communicate with others.

More localised attempts have concentrated on reasoning with only two aligned
ontologies in order to repair them [Meilicke et al, 2009; Jimenez Ruiz et al, 2009].
These approaches use the reduced semantics (Section 4.1) to identify correspon-
dences leading to inconsistency or incoherence and return a coherent alignment.
They typically choose a consistent sub-alignment satisfying some criterion, i.e. they
suppress correspondences causing incoherence. Alcomo [Meilicke et al, 2009] can
compute optimal repairs which minimally modify the alignment when several in-
consistency sources are detected. LogMap [Jimenez Ruiz et al, 2009] decomposes
equivalence correspondences into two subclass correspondences. Hence, it is pos-
sible to suppress only one of these when repairing. Alignment repair or debugging
is directly related to belief revision (see Chapter “Belief revision, belief merging
and information fusion” of Volume 1). Revision techniques have been developed
for networks of ontologies as well [Euzenat, 2015].

The notion of conservative extension has been defined for description logics
[Ghilardi et al, 2006; Lutz et al, 2007]. It means that, when an ontology is extended,
e.g. by connecting it to another ontology through an alignment, no additional state-
ment using the signature of the initial ontology can be deduced. This somewhat de-
feats the purpose of networks of ontologies since their goal is rather to benefit from
the knowledge exposed in other locations. However, it may be useful to ensure that
ontologies are loosely connected self-sufficient modules. Moreover, reasoning can
be implemented efficiently with conservative extensions since all formulas express-
ible with the vocabulary of an ontology can be derived from this ontology alone.
Unfortunately, deciding if an ontology or a network, is a conservative extension of
another ontology is hard and even non decidable for ALCQIO which is the heart
of OWL DL [Ghilardi et al, 2006].

4.4 Ontology matching

Ontology matching is the task of finding an alignment between two ontologies [Eu-
zenat and Shvaiko, 2013]. Numerous algorithms have been designed to fulfil this
task exploiting techniques developed in various domains, including artificial intelli-
gence. Ontology matching approaches may be organised in:

• content-based approaches which rely on ontology content. These may be based
on:

– Labels used to name or comment the entities found in the ontologies. Tech-
niques may be inspired from computational linguistics (Chapter “Artificial
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intelligence and natural language” of this volume) or information retrieval
(Chapter “Artificial intelligence and information retrieval” of this volume).

– Relationships between entities, and prominently the subsumption relation.
Techniques from graph theory may be used.

– Concept extensions, i.e. their instances when available. In this case, machine
learning (Chapters “Statistical computational learning” and “Reinforcement
learning” of Volume 1), data analysis or deduplication techniques are used.

– Semantics of ontologies which may be used for expanding alignments or test-
ing their consistency (Section 4.3). Then, techniques from automated reason-
ing (Chapter “Automated deduction” of Volume 2) and constraint program-
ming (see Chapter “Constraint reasoning” of Volume 2) may be used.

• context-based approaches which rely on relationships that the ontologies have
with other resources. These may be:

– a corpus of documents annotated by one or both of the ontologies on which
statistical machine learning (Chapters “Statistical computational learning”
and “Reinforcement learning” of Volume 1) may be used;

– one or several ontologies used as background knowledge for deducing re-
lations between entities through automated reasoning (Chapter “Automated
deduction” of Volume 2);

– user feedback when providing positive or negative assessment on correspon-
dences;

– the relation with specific resources such as DBPedia, WordNet or UMLS.

However, none of these approaches works satisfactorily in all situations. Hence, sys-
tems use several such techniques together. It is not possible to present these different
types of systems (see [Euzenat and Shvaiko, 2013]). We briefly consider below those
using machine learning, a typical artificial intelligence technique.

Ontology matching is an inductive rather than a deductive task. There are no
rules for deducing alignments, only heuristics to finding them. It is thus natural to
reuse machine learning techniques to match ontologies. Two types of techniques
may contribute: data mining (Chapter “Designing algorithms for machine learning
and data mining” of Volume 2), which isolates regularities in large quantity of data,
and learning from example (Chapters “Statistical computational learning” and “Re-
inforcement learning” of Volume 1), which induces correspondence patterns from
examples of correspondences.

Learning from examples is less frequent because, as mentioned, matching cannot
easily be generalised. It can, however, be used in two cases: first, when a user is able
to show some simple alignments from which the system can learn how to match,
and, second, when there are references alignments from which it is possible to learn
those algorithm parameters that provide the best results [Ehrig et al, 2005].

Data mining algorithms infer the similarity between two concepts from the sim-
ilarity between their instances, or the probability that the instances of one class be
instances of another one. This may be based on symbolic techniques such as formal
concept analysis [Stumme and Mädche, 2001; Kalfoglou and Schorlemmer, 2003]
(Chapter “Formal concept analysis” of Volume 3), decision trees [Xu and Embley,
2003] or numeric techniques such as neural networks [Mao et al, 2010], Bayes net-
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works [Pan et al, 2005], association rule extraction [David et al, 2007] or a mix of
such approaches [Doan et al, 2004].

4.5 Data interlinking

Data interlinking consists of finding representations of the same entity in two (or
more) data sets and linking these representation through the owl:sameAs predicate.
The resulting triple is called a link and a set of links across the same two data sets a
link set. It thus plays a very important role for the web of data (Section 2.2).

This task may be considered as very close to ontology matching: ontologies are
replaced by data sets and alignments by link sets. Like ontology matching this is
an inductive task. However, ontology matching is confronted with two ontologies
from which it is difficult to extract regularities, though data interlinking faces huge
data sets in which regularities can be found. Hence they use different types of tech-
niques. These two activities are rather complementary: link sets may be exploited
by extension-based matching techniques and alignments may guide the objects and
features to compare within two data sets.

Data interlinking may be divided in two broad types of approaches:

• Similarity-based approaches use a similarity measure to compare entities and, if
they are similar enough, they are considered as the same. The similarity either
compares different properties of RDF descriptions or project them in a vector
space in which similarity is computed.

• Key-based approaches isolate sufficient conditions, called keys or link keys, for
two resources to be the same and use them to find them in data sets. Keys are
an extension of relational data base keys which must be associated with an align-
ment if the data sources do not use the same ontologies [Symeonidou et al, 2014].
Link keys express directly in the same structure identification constraints across
ontologies [Atencia et al, 2014].

Both types of approaches may use machine learning or statistical [Capadisli et al,
2015] techniques in order to induce “linkage rules” exploiting similarity or link
keys. If a sample of links is provided, supervised methods may be used to learn
them; otherwise algorithms have to resort on a measure of the quality of the gener-
ated links [Atencia et al, 2014].

Linkage rules are used to generate the actual links. Link keys may be trans-
lated into SPARQL queries. Silk can express and process similarities to generate
links against large data sets [Volz et al, 2009]. LIMES also uses similarities in met-
ric spaces and focusses on exploiting them efficiently [Ngonga Ngomo and Auer,
2011]. Linkage rules have also been expressed in probabilistic Datalog [Al-Bakri
et al, 2016] or description logics [Gmati et al, 2016]. Hence, reasoning can be inter-
leaved with data interlinking.
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5 Perspectives

Research on efficient inference with semantic web languages (OWL, SPARQL), is
very active. It is at the crossroad between data bases, in which the huge amount of
data rules, and knowledge representation and reasoning (see Chapter “Automated
deduction” of Volume 2), in which expressiveness prevails. These traditional prob-
lems, never dealt with at such a scale, are combined with distributed system prob-
lems such as communication, latency and caches. It is thus an important source of
problems for artificial intelligence, and specifically for automated reasoning. From
the representation standpoint, semantic web languages are not very expressive and
oriented towards data expression. There exist work for providing non monotonic
[Eiter et al, 2008] or fuzzy [Stoilos et al, 2010] versions of semantic web represen-
tations.

The semantic web has reached some maturity. Its technologies are used in vari-
ous domains and could be in more. Thus users are requesting for making semantic
web technologies more reliable. Methods coming from programming languages are
used for providing guarantees. This is the case, for instance, of work on SPARQL
query containment which aims at ensuring that a query can have an answer or that a
data source can indeed provide an answer to a query before actually evaluating the
query [Chekol et al, 2012]. There are also work on supporting debugging of knowl-
edge expressed on the web, such as pinpointing used to narrow down the search
for inconsistency causes in ontological reasoning or alignment repair [Schlobach,
2005].

Another evolution of the semantic web goes out of the strict realm of artificial
intelligence: it is the involvement of users and society as a whole. This trend has
now pervaded all computing activities, in particular, through crowdsourcing various
kinds of tasks. This applies to query systems in which users can provide feedback
on the quality of answers and interactive ontology matching in which matchers ask
users for specific help.

Finally, the success of the semantic web should trigger work on its evolution.
Indeed, a large, uncontrollable mass of knowledge used directly by machines cannot
be stopped for maintenance. It has to continuously evolve without hiccup. Hence
specific mechanisms should be designed in order to support coherently evolving
ontology, data, alignments and links.

6 Conclusion

As the web, the semantic web is not a well-defined object. Both may be reduced
to the technologies of which they are made: URL, HTTP, HTML on the one hand,
IRI, RDF, OWL, SPARQL and alignments on the other hand. In both cases, such a
description would miss a lot.

Although the semantic web has initially been designed around these technolo-
gies, as time passes, they are used to encompass more diverse objects: from minimal
RDF snippets to encyclopaedic data bases, from simple schemas to foundational on-
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tologies, from path queries against the web to elaborate queries against triple stores,
from tiny devices to large back-ends. Embracing all these situations threatens the
unity of semantic technologies. It is thus remarkable that the semantic web ecosys-
tem remains grounded on these same technologies.

For artificial intelligence research, the semantic web is a wonderful application
field. As we tried to show it, many techniques originating from knowledge repre-
sentation (Chapter “Reasoning with ontologies” of Volume 1), automated reasoning
(Chapters “Automated deduction” and “Reasoning with propositional logic” of Vol-
ume 2), constraint programming (see Chapter “Constraint reasoning” of Volume 2),
and machine learning (Chapters “Statistical computational learning” and “Rein-
forcement learning” of Volume 1) are contributing to the semantic web. Another
topic not discussed in this chapter is the filling of the semantic web through data
and knowledge acquisition using techniques from knowledge engineering (Chap-
ter “Knowledge engineering” of Volume 1), computational linguistic (Chapter “Ar-
tificial intelligence and natural language” of this volume) and machine learning
(Chapters “Statistical computational learning” and “Reinforcement learning” of
Volume 1).

This is a demanding application field: the scale is gigantic, users are difficult.
Moreover, artificial intelligence techniques are confronted with specific constraints.
For instance, the distribution of resources over the network requires specific rea-
soning and query evaluation techniques and soon social constraints may force new
developments.

This is also a gratifying application field: each technique which will find a place
in semantic web technologies will have millions of users.
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