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ACTIONS OF SYMPLECTIC

HOMEOMORPHISMS/DIFFEOMORPHISMS ON FOLIATIONS

BY CURVES IN DIMENSION 2

MARIE-CLAUDE ARNAUD†,‡, MAXIME ZAVIDOVIQUE∗,∗∗

Abstract. The two main results of this paper concern the regularity of the
invariant foliation of a C0-integrable symplectic twist diffeomorphisms of the

2-dimensional annulus, namely that

• the generating function of such a foliation is C1;
• the foliation is Hölder with exponent 1

2
.

We also characterize foliations by graphs that are straightenable via a sym-

plectic homeomorphism and prove that every symplectic homeomorphsim that
leaves invariant all the leaves of a straightenable foliation has Arnol’d-Liouville

coordinates, in which the Dynamics restricted to the leaves is conjugated to

a rotation. We deduce that every Lipschitz integrable symplectic twist dif-
feomorphisms of the 2-dimensional annulus has Arnol’d-Liouville coordinates

and then provide examples of ‘strange’ Lipschitz foliations in smooth curves
that cannot be straightened by a symplectic homeomorphism and cannot be

invariant by a symplectic twist diffeomorphism.

1. Introduction and Main Results.

1.1. Main results. This article deals with foliations by curves in a 2-dimensional
symplectic setting. The questions we raise for such a foliation are

• When is it (locally or globally) symplectically homeomorphic to the straight
foliation1?
• What can be said on the foliation when it is invariant2 by a symplectic

twist?
• What can be said on a symplectic Dynamics that preserves such a foliation?

Before going more into details, let us explain our motivations.
The first problem in which we were interested is the possible extension of Arnol’d-

Liouville theorem (see e.g. [6]). This classical theorem concerns Hamiltonian Dy-
namics associated to a C2 Hamiltonian function endowed with a complete system
of independent commuting C2 integrals. Then there exists an invariant C2 foliation
into Lagrangian submanifolds and in the neighbourhhood of every compact leaf of
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∗∗ financé par une bourse PEPS du CNRS.
1This will be precisely defined later.
2In this article, we will say that a foliation is invariant by f if every leaf is (globally) invariant.

1
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this foliation, there exist symplectic C1 angle-action coordinates H : (q, p) ∈ U ⊂
M 7→ (θ, I) ∈ U ⊂ Tn × Rn such that in these coordinates

• the invariant foliation is the straight foliation I = constant;
• the flow is (θ, I) 7→ (θ + tOh(I), I) where h is a C2 function.

In fact, there are two steps in this result.

• The first step consists in symplectically straightening the foliation via the
chart H. The diffeomorphism H is defined via its generating function
S(q, I). We recall

H(q, p) = (θ, I)⇐⇒ θ =
∂S

∂I
(q, I) et p =

∂S

∂q
(q, I).

A priori this generating function S is only C2 as the foliation was and the
diffeomorphism H is only C1, but because the invariant foliation is C2, we
can say a little more: when I is fixed, Φ = H−1 is C2 in the θ-variables
• Then the second step consists in noticing that a symplectic flow that pre-

serves every leaf of the straight foliation has to be a flow of rotations on
every leaf.

In [3], the hypothesis concerning the regularity of the invariant foliation was relaxed
and the invariant foliation was just assumed to be C1. In this case, when the
Hamiltonian satisfies the so-called A-non degeneracy condition (that contains the
case of Tonelli Hamiltonians), the authors proved the existence of a symplectic
homeomorphism H straightening the invariant Lagrangian foliation, such that H−1

is C1 in the θ variable and such that the flow is written in the chart: (θ, I) 7→
(θ + tOh(I), I) where h is a C1 function.

Here we raise the problem of invariant C0 foliation into invariant C0-Lagrangian
tori. In high dimension, the first problem is to define what is a C0-foliation into
Lagrangian tori. An interesting discussion on this topic is provided in the appendix
of [3], but here we will consider the simplest case: in dimension 2, any foliation into
curves can be seen as Lagrangian. Also we will assume that the foliations that we
consider are not too complicated, because they are (at least locally in C1 charts)
foliations into graphs.

Even in this setting and for a symplectic twist diffeomorphism of the 2-dimensional
annulus A = T × R, there exist results in which the authors are able to prove the
existence of such an invariant continuous foliation into curves that are graphs, see
e.g. [5] or [9], but not able to say more (e.g. to describe the Dynamics or prove
that the foliation is symplectically straightenable). Observe too that the case of a
Tonelli Hamiltonian with two degrees of freedom corresponds to the case of twist
maps by using a Poincaré section close to some invariant torus in an energy surface,
and that in this setting also the same questions are open and relevant (see e.g. [18]).

Definition. A map f : A→ A is C0-integrable if f has an invariant C0-foliation
into graphs.
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For such a foliation into graphs of θ ∈ T 7→ ηc(θ) ∈ R where
∫
T ηc(θ) = c, we

introduce what we call its generating function3 that is u : A→ R defined by

u(θ, c) =

∫ θ

0

(ηc(t)− ct)dt.

Definition. Let F be a continuous foliation of A into graphs. Then the unique
continuous function u : A→ R that is C1 with respect to the T variable such that

• ∀c ∈ R, u(0, c) = 0,
• ∀c ∈ R, the graph of c+ ∂u

∂θ (., c) is a leaf of F ,

is called the generating function of F

Our first result proves that in the C0 integrable case of twist diffeomorphisms,
there is more regularity of the generating function giving the foliation than we
should expect.

Theorem 1.1. Let f : A → A be a C1 symplectic twist diffeomorphism. When f
is C0 integrable, the generating function u of its invariant foliation is C1

Moreover, in this case, we have4

• the graph of c+ ∂u
∂θ (., c) is a leaf of the invariant foliation;

• hc : θ 7→ θ + ∂u
∂c (θ, c) is a semi-conjugacy between the projected Dynamics

gc : θ 7→ π1 ◦ f
(
θ, c+ ∂u

∂θ (θ, c)
)

and a rotation R of T, i.e. hc ◦ gc = R ◦ hc.
This allows us to give an example of a foliation of the annulus into smooth graphs

that cannot be invariant by a C0-integrable symplectic twist diffeomorphism. But
we will see in subsection 7 that it can be invariant by an exact symplectic twist
homeomorphism that is a C1-diffeomorphism.

Corollary 1.1. Let ε : R → R be a non-C1 function that is 1
4π -Lipschitz. Then

the function

(θ, c) 7→ u(θ, c) =
ε(c)

2π
sin(2πθ)

is the generating function of a foliation of A into smooth graphs of θ ∈ T 7→ c +
ε(c) cos(2πθ) that is invariant by no C0-integrable symplectic twist diffeomorphism.

The striking fact is the regularity in c. Indeed, if we have a Ck foliation in graphs
for some k ≥ 1, we can only claim that u and ∂u

∂θ are Ck. So in the C0 case, even
the derivability with respect to c is surprising, which is a result of the invariance
by a symplectic twist diffeomorphism. Also, the fact that the semi-conjugacy hc
continuously depends on c even at a c where the rotation number is rational is very
surprising. At an irrational rotation number, this is an easy consequence of the
uniqueness of the invariant measure supported on the corresponding leaf, but what
happens for a rational rotation number is more subtle.

Another result for C0-integrable twist diffeomorphisms is that the invariant fo-
liation is not only C0, but also 1

2 -Hölder. It is well-known since Birkhoff that it
is locally uniformly Lipschitz in the variable θ and we prove here some regularity
with respect to c.

3This terminology will be better understood when we will introduce the generating functions
of a large class of symplectic homeomorphisms. Let us mention that for a general foliation, the
generating function of the foliation is not necessarily the generating function of a symplectic

homeomorphism. We will later give conditions for this to be true.
4See the notation π1 at the beginning of subsection 1.2 .



4 MARIE-CLAUDE ARNAUD†,‡, MAXIME ZAVIDOVIQUE∗,∗∗

Theorem 1.2. Let f : A → A be a C1 symplectic twist diffeomorphism that is
C0 integrable with generating function u of its invariant foliation. Then on every
compact subset of A, the foliation (θ, c) 7→ ηc(θ) = c+ ∂u

∂θ (θ, c) is uniformly 1
2 -Hölder

in the variable c.

In the C0-integrable case, the Dynamics restricted to a leaf with a rational ro-
tation number is completely periodic.
It is an open question if it can be a Denjoy counter-example when restricted to a
leaf with an irrational rotation number.
With the notations Theorem 1.1, let us observe that when f : A → A is C0 inte-
grable, there exists a dense Gδ subset G of R such that for every c ∈ G, the Dynamics
restricted to the graph of ηc is minimal. Indeed, the set R of recurrent points is a
Gδ set with full Lebesgue measure, hence R is dense. Hence there exists a dense Gδ
subset G1 of R such that for every c ∈ G1, the set

{
θ ∈ T,

(
θ, ηc(θ)

)
is recurrent

}
is a dense Gδ subset of T. Hence, for c ∈ G1, the Dynamics restricted to the graph
of ηc cannot be Denjoy. If we remove from G1 the countable set of c’s that corre-
spond to a rational rotation number, we obtain a dense Gδ subset of R such that
the Dynamics f|Graph

(
c+ ∂u

∂θ (.,c)
) is minimal.

We will give some conditions that imply that the Dynamics restricted to a leaf
cannot be Denjoy.

Before this, we need to explain the notion of straightenable foliation.

Notations. We will work in some open subsets U , V of either A or R2, on which
we have global symplectic coordinates that we denote by (θ, r) or (θ, c). Moreover,
we will assume that V = {(θ, r); θ ∈ (α, β) and a(θ) < r < b(θ)} or V = A where
a, b are some continuous functions and that 0 ∈ (α, β).

Firstly, we introduce the notion of exact symplectic homeomorphism, which is a
particular case of the notion of symplectic homeomorphism that is due to Oh and
Müller, [16]. Their notion coincides in this 2-dimensional setting with the one of
orientation and Lebesgue measure preserving homeomorphism.

Definition. An exact symplectic homeomorphism from U onto V is a homeomor-
phism that is the limit for the for the C0 compact-open topology of a sequence of
exact symplectic diffeomorphisms.5.

Remark.

• In R2, every 1-form is exact and then the notions of symplectic homeomor-
phisms and exact symplectic homeomorphisms coincide.
• Let us recall that a symplectic diffeomorphism f of A that is isotopic to

identity is exact symplectic if and only if for every essential6 curve γ of the
annulus, the algebraic area between γ and f(γ) is zero.

A remarkable tool can be associated to the exact symplectic homeomorphisms
that maps the standard horizontal foliation onto a foliation that is transverse to
the vertical one. This is called a generating function.

5We recall that a diffeomorphism f : A→ A is exact symplectic if the 1-form f∗(rdθ)− rdθ is

exact.
6An essential curve is a simple closed curve that is not homotopic to a point.
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Theorem 1.3 (and definition). We use the same meaning for U and V as in the
notations.
Let Φ : U → V be an exact symplectic homeomorphism that maps the standard
horizontal foliation onto a foliation F that is transverse to the vertical one and that
preserves the orientation of the leaves7. We use the notation

W = {(θ, c);∃(x, c) ∈ U ,Φ(x, c) = (θ, r) ∈ V} = [α, β]× I
where I is either [c−, c+] or R. Then there exists a C1 function u : W → R such
that u(β, c) = u(α, c)8 and

Φ(x, c) = (θ, r)⇐⇒ x = θ +
∂u

∂c
(θ, c) and r = c+

∂u

∂θ
(θ, c).

In particular, when defined, every map θ 7→ θ + ∂u
∂c (θ, c) is injective and

{(
θ, c +

∂u
∂θ (θ, c)

)
; (θ, c) ∈ W

}
is a leaf of the image of the standard horizontal foliation.

The function u is called a generating function for Φ.
Conversely, we consider a C0-foliation of V into graphs of ηc for c ∈ I and

assume that there exists a C1 map u :W → R such that

• u(0, c) = 0 for all c ∈ I,
• the graph of θ 7→ c+ ∂u

∂θ (θ, c) defines a leaf of the original foliation,

• for all c ∈ I, the map θ 7→ θ + ∂u
∂c (θ, c) is injective.

Then the exact symplectic homeomorphism defined by

Φ(x, c) = (θ, r)⇐⇒ x = θ +
∂u

∂c
(θ, c) and r = c+

∂u

∂θ
(θ, c)

maps the standard horizontal foliation onto the original foliation.

Corollary 1.2. The foliation given in Corollary 1.1 cannot be straightened via an
exact symplectic homeomorphism that preserves the horizontal orientation of the
leaves. Even locally, in any neighbourhood of points where u is not C1, it cannot be
straightened via an exact symplectic homeomorphism that preserves the horizontal
orientation of the leaves.

Remarks.

(1) The formulas of Theorem 1.3 can be also written as follows.

Φ
(
θ +

∂u

∂c
(θ, c), c

)
=
(
θ, c+

∂u

∂θ
(θ, c)

)
.

(2) Observe that Theorem 1.1 gives us a C1 function u, but not the injectivity
of θ 7→ θ + ∂u

∂c (θ, c). This is why a priori the maps hc are not conjugacies,
but only semi-conjugacies and in this case the restricted Dynamics may be
Denjoy.

We will now give a condition that implies that a foliation is straightenable by an
exact symplectic homeomorphism.

Definition.

• A foliation into graphs a 7→ ηa is a Lipschitz foliation if (θ, a) 7→
(
θ, ηa(θ)

)
is an homeomorphism that is locally biLipschitz;
• if f has an invariant Lipschitz foliation, f is Lipschitz integrable.

7Here we means the orientation projected on the horizontal foliation.
8When [α, β] = T, we have α = β and there is no condition.



6 MARIE-CLAUDE ARNAUD†,‡, MAXIME ZAVIDOVIQUE∗,∗∗

The following proposition is a consequence of Theorem 1.3 and results of Min-
guzzi on the mixed derivative, [15].

Proposition 1.1. Let u : A → R be the generating function of a continuous
foliation of A into graphs. We assume that u is C1. Then two following assertions
are equivalent:

(1) the foliation is Lipschitz;
(2) we have

• ∂u
∂θ locally Lipschitz continuous;

• ∂u
∂c uniformly Lipschitz continuous in the variable θ on any compact
set of c’s;

• for every compact subset K ⊂ A, there exists two constants k+ > k− >

−1 such that k+ ≥ ∂2u
∂θ∂c ≥ k− Lebesgue almost everywhere in K.

In this case, u is the generating function of an exact symplectic homeomorphism
Φ : A→ A that maps the standard foliation onto the invariant one.

Observe that Corollary 1.2 gives an example of a Lipschitz foliation into smooth
curves that is not straightenable via a symplectic homeomorphism. Hence the
hypothesis that u is C1 is crucial in Proposition 1.1.

Definition.

• A map a 7→ ηa defines a Ck foliation if (θ, a) 7→
(
θ, ηa(θ)

)
is a Ck diffeo-

morphism; if f has an invariant Ck foliation, f is Ck integrable;
• following [12], a map a 7→ ηa defines a Ck lamination if (θ, a) 7→

(
θ, ηa(θ)

)
is a homeomorphism, every ηa is Ck and the map a 7→ ηa is continuous
when Ck(T,R) is endowed with the Ck topology.

Corollary 1.3. Let k ≥ 1 and r 7→ fr be a Ck-foliation in graphs. Then there
exists a Ck−1 exact symplectic diffeomorphism9 Φ : (θ, r) 7→

(
h(θ, r), η(h(θ, r), r)

)
such that for each r ∈ R, the set

{(
θ, η(θ, r)

)
, θ ∈ T

}
is a leaf of the foliation.

When a symplectic homeomorphism preserves a symplectic foliation that is sym-
plectically straightenable, the Dynamics is very simple. Let us introduce a notion
before explaining this point.

Definition. If f : A→ A is a symplectic homeomorphism, C0 Arnol’d-Liouville
coordinates are given by a symplectic homeomorphism Φ : A → A such that the
standard foliation into graphs T× {c} is invariant by Φ−1 ◦ f ◦ Φ and

Φ−1 ◦ f ◦ Φ(x, c) = (x+ ρ(c), c)

for some (continuous) function ρ : R→ R.

Proposition 1.2. Let f : A → A be a symplectic homeomorphism that preserves
(each leaf of) a C0-foliation F . If the foliation is symplectically straightenable
(by Φ : A → A that maps the standard foliation F0 to F = Φ(F0)), then the
homeomorphism Φ provides C0 Arnol’d-Liouville coordinates.

Corollary 1.4. A symplectic twist diffeomorphism f : A → A is C0-integrable
with the Dynamics on each leaf conjugated to a rotation if and only if the invariant

9A C0 diffeomorphism is a homeomorphism.
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foliation is exact symplectically homeomorphic to the standard foliation. In this
case, f admits global C0 Arnol’d-Liouville coordinates.

In the case where the invariant foliation by a symplectic twist diffeomorphism is
Lipschitz, we are in the case of Proposition 1.2 and so for every leaf, the restricted
Dynamics is not Denjoy.

Corollary 1.5. Let f : A → A be a symplectic twist diffeomorphism that is Lips-
chitz integrable. We denote by u the generating function of its invariant foliation.

Then u is the generating function of an exact symplectic homeomorphism Φ :
A→ A that maps the standard foliation onto the invariant one such that:

∀(x, c) ∈ A, Φ−1 ◦ f ◦ Φ(x, c) = (x+ ρ(c), c);

where ρ : R→ R is an increasing biLipschitz homeomorphism.
Moreover, the invariant foliation is a C1 lamination and Φ admit a partial deriv-
ative with respect to θ. The projected Dynamics gc restricted to every leaf is C1

conjugated to a rotation via the C1 diffeomorphism hc = IdT + ∂u
∂c (·, c) : T → T

such that hc ◦ gc = R ◦ hc.

Corollary 1.5 provides some C0 Arnol’d-Liouville coordinates. A similar state-
ment for Tonelli Hamiltonians is proved in [3], without the fact that the conjugation
is C1.

1.2. Some notations and definitions. We will use the following notations.

Notations.

• T = R/Z is the circle and A = T×R is the annulus ; π : R→ T is the usual
projection;
• the universal covering of the annulus is denoted by p : R2 → A;
• the corresponding projections are π1 : (θ, r) ∈ A 7→ θ ∈ T and π2 : (θ, r) ∈
A 7→ r ∈ R; we denote also the corresponding projections of the universal
covering by π1, π2 : R2 → R;
• the Liouville 1-form is defined on A as being λ = π2dπ1 = rdθ; then A is

endowed with the symplectic form ω = −dλ.

Let us give the definition of an exact symplectic twist diffeomorphism.

Definition. An symplectic twist diffeomorphism f : A → A is a C1 diffeomor-
phism such that

• f is isotopic to identity;
• f is symplectic, i.e. if f∗ω = ω;
• f has the twist property i.e. if F = (F1, F2) : R2 → R2 is any lift of f , for any

θ̃ ∈ R, the map r ∈ R 7→ F1(θ̃, r) ∈ R is an increasing C1 diffeomorphism
from R onto R.

1.3. Content of the different sections. The main tools that will use are tools
of ergodic theory, symplectic (continuous or differentiable) Dynamics, in particular
symplectic twist maps, Green bundles. Let us detail what will be in the different
sections

• Section 2 contains the proof of of Theorem 1.1; after recalling some gener-
alities about symplectic twist diffeomorphisms, we consider the case of the
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rational curves by using some ergodic theory, then we prove regularity of u
by using also ergodic theory;
• Theorem 1.2 is proved in section 3;
• Theorem 1.3 is proved in section 4;
• Section 5 contains the proofs of Proposition 1.1 and Corollary 1.3;
• Section 6 contains the proofs of Proposition 1.2, Corollary 1.4, Corollary

1.5;
• Section 7 introduces a strange foliation, provides the proofs of Corollaries

1.1 and 1.2 and an example of an exact symplectic twist map that leaves
the strange foliation invariant;
• Appendix A contains an example of a foliation by graphs that is the inverse

image of the standard foliation by a symplectic map but not by a symplectic
homeomorphism and Appendix B recalls some results about Green bundles.

Acknowledgements. The authors are grateful to Philippe Bolle for insightful
discussions that helped clarify and simplify some proofs of this work.

2. Proof of Theorem 1.1

We assume that f : A → A is a Ck symplectic twist diffeomorphism (with
k ≥ 1) that has a continuous invariant foliation into continuous graphs with gener-
ating function denoted by u. We write ηc = c+ ∂u

∂θ (·, c) and we recall that Birkhoff’s
theorem (see [4], [8] and [10]) implies that all the ηc are Lipschitz.

Notation. For every c ∈ R, we will denote by gc : T→ T the restricted-projected
Dynamics to the graph of ηc, i.e

gc(θ) = π1 ◦ f
(
θ, ηc(θ)

)
.

2.1. Some generalities.

Notations.

• In R2 we denote by B(x, r) the open disc for the usual Euclidean distance
with center x and radius r;
• we denote by Rα : T→ T the rotation Rα(θ) = θ + α;
• if E is a finite set, ](E) is the number of elements it contains;
• we denote by b·c : R→ Z the integer part.

We fix a lift F : R2 → R2 of f . We denote by η̃c : R → R the lift of ηc. We
denote by ρ the function that maps c ∈ R to the rotation number ρ(c) ∈ R of the
restriction of F to the graph of η̃c.

The map ρ is then an increasing homeomorphism.
When moreover the foliation is biLipschitz, we will prove that ρ is a biLipschitz
homeomorphism (see Proposition 6.1). We recall a well-known result concerning
the link between invariant measures and semi-conjugacies for orientation preserving
homeomorphisms of T.

Proposition 2.1. Assume that µc is a non-atomic Borel invariant probability mea-
sure by gc. Then, if ρ(c) is irrational or gc is C0 conjugated to a rotation, the map
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hc : T → T defined by hc(θ) =
∫ θ

0
dµc is a semi-conjugacy between gc and the

rotation with angle ρ(c), i.e:

hc
(
gc(θ)

)
= hc(θ) + ρ(c).

Proof. Let µ̃c be the pull back measure of µc to R and let g̃c : R → R be a lift of
gc to R. Then we have for every Θ ∈ [0, 1] lift of θ ∈ T:

µ̃c([0,Θ]) = µ̃c([g̃c(0), g̃c(Θ)]) = µ̃c
([
bg̃c(0)c, g̃c(Θ)

])
− µ̃c

([
bg̃c(0)c, g̃c(0)

])
;

where bg̃c(0)c is the integer part of g̃c(0). This implies10

hc(θ) = hc
(
gc(θ)

)
− µ̃c

([
0, gc(0)

])
= hc

(
gc(θ)

)
− ρ(c).

Moreover, as we assumed that µc is non-atomic, hc is continuous. �

Remarks.

(1) In the other sense, if hc is a (non-decreasing) semi-conjugacy such that
hc ◦ gc = hc + ρ(c), then µ([0, θ]) = hc(θ) − hc(0) defines a gc-invariant
Borel probability measure;

(2) When ρ(c) is irrational, it is well known that the Borel invariant probabil-
ity measure µc is unique and that the semi-conjugacy hc is unique up to
constant.

Notation. When ρ(c) is irrational, we will denote by hc the semi-conjugacy such
that hc(0) = 0.

Before entering the core of the proof, let us mention a useful fact about iterates
of C0-integrable symplectic twist diffeomorphisms:

Proposition 2.2. Let f : A→ A be a C0-integrable C1 symplectic twist diffeomor-
phism, then so is fn for all n > 0.

This is specific to the integrable case: in general, an iterated twist diffeomor-
phism is not a twist diffeomorphism as can be seen in the neighborhood of an elliptic
fixed point.

Proof. We argue by induction on n > 0. The initialization being trivial, let us
assume the result true for some k > 0. Let F : R2 → R2 be a lift of f . For any
c ∈ R using the notations given at the beginning of section 2, we have

∀θ ∈ T,∀m > 0, fm
(
θ, ηc(θ)

)
=
(
gmc (θ), ηc ◦ gmc (θ)

)
.

Observe that if fm satisfies the twist condition and c1 < c2 are two real numbers,
then we have

g̃mc1(t) = π1 ◦ Fm
(
t, ηc1(t)

)
< π1 ◦ Fm

(
t, ηc2(t)

)
= g̃mc2(t)

and lim
t→±∞

g̃c1(t) = ±∞.

10 Recall that if f : T → T is an orientation preserving homeomorphism then either ρ(f) is

irrational, f is semi-conjugated (by h) to the rotation Rρ(f) and the only invariant measure is

the pull back of the Lebesgue measure by h; or ρ(f) is rational and the invariant measures are
supported on periodic orbits. When ρ(f) is irrational or when f is C0 conjugate to a rotation and
ρ(f) ∈ [0, 1[, then for any invariant measure µ and x ∈ T, µ([x, f(x)[) = ρ(f).
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Let c1 < c2 and t ∈ R. Denoting with ∼ the lifts of the considered functions we
obtain that

π1

(
Fn+1(t, c2)

)
−π1

(
Fn+1(t, c1)

)
= g̃c2◦g̃nc2(t)−g̃c1◦g̃nc1(t) ≥ g̃c2◦g̃nc1(t)−g̃c1◦g̃nc1(t),

where we have used the induction hypothesis and the fact that g̃c2 is increasing.
It follows that c 7→ π1

(
Fn+1(t, c)

)
is an increasing diffeomorphism on its image.

Observe also that this inequality implies that lim
c2→+∞

π1

(
Fn+1(t, c2)

)
= +∞ because

lim
c2→+∞

g̃c2(s) = +∞. Moreover

π1

(
Fn+1(t, c2)

)
−π1

(
Fn+1(t, c1)

)
= g̃c2◦g̃nc2(t)−g̃c1◦g̃nc1(t) ≤ g̃c2◦g̃nc2(t)−g̃c1◦g̃nc2(t),

implies that lim
c1→−∞

π1

(
Fn+1(t, c1)

)
= −∞ because lim

c1→−∞
g̃c1(s) = −∞. So finally

c 7→ π1

(
Fn+1(t, c)

)
is an increasing diffeomorphism onto R.

�

2.2. Differentiability and conjugacy along the rational curves. It is proved
in [1] that for every r = p

q ∈ Q, ηc = ηρ−1(r) is Ck and the restriction of f to the

graph Γc of ηc is completely periodic: fq|Γc = IdΓc . Moreover, along these particular

curves, the two Green bundles (see Appendix B for definition and results) are equal:

G−
(
θ, ηc(θ)

)
= G+

(
θ, ηc(θ)

)
.

Theorem 2.1. • Along every leaf Γc such that ρ(c) ∈ Q, the derivative
∂ηc(θ)
∂c = 1 + ∂2u

∂c∂θ > 0 exists and Ck−1 depends on θ;

• for any c such that ρ(c) is rational, the measure µc on T with density ∂ηc
∂c

is a Borel probability measure invariant by gc and for θ ∈ [0, 1], the equality

hc(θ) = µc([0, θ]) =

∫ θ

0

∂ηc
∂c

(t)dt

defines a conjugacy between gc and the rotation with angle ρ(c);
• then the map c ∈ R 7→ µc is continuous and also c ∈ R 7→ hc for the

uniform C0 topology. Thus (θ, c) 7→ hc(θ) is continuous.

Remarks.

(1) Observe that because c 7→ ηc is increasing, we know that for Lebesgue

almost every (θ, c) ∈ A, the derivative ∂ηc(θ)
∂c exists (see [13]). But our

theorem says something different.
(2) Because of the continuous dependence on θ along the rational curve, we

obtain that ∂ηc(θ)
∂c restricted to every rational curve is bounded (that is

clear when we assume that the foliation is Lipschitz but not if the foliation
is just continuous).

Proof of the first point. We fix A ∈ R such that ρ(A) = p
q ∈ Q. Replacing f by fq,

we can assume that ρ(A) ∈ Z. Observe that because of the C0-integrability of f ,
fq is also a (C0-integrable with the same invariant foliation) Ck symplectic twist
diffeomorphism (Proposition 2.2).

We define GA : A→ A by

(1) GA(θ, r) =
(
θ, r + ηA(θ)

)
.
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Then G−1
A ◦fq ◦GA is also a C0-integrable Ck symplectic twist diffeomorphism and

T× {0} is filled with fixed points.
We finally have to prove our theorem in this case and we use the notation f

instead of G−1
A ◦ fq ◦GA. We can assume that A = 0 instead of A ∈ Z.

Because of the semi-continuity of the two Green bundles G− = R(1, s−) and
G+ = R(1, s+), we have that for any point x = (θ, r) sufficiently close to T × {0}:
max{|s−(x)|, |s+(x)|} < ε is small.

Now we fix c small and consider for every θ ∈ T the small triangular domain
T (θ) that is delimited by the three following curves

• the graph of ηc;
• the vertical Vθ = {θ} × R;
• the image f(Vθ) of the vertical at θ.

To be more precise, T (θ) is ‘semi-open’ in the following sense; it contains its whole
boundary except the image f(Vθ) of the vertical at θ.
We assume that c > 0. The case c < 0 is similar.
As the slope of ηc is almost 0 (because between the slope of the two Green bundles,
see Proposition B.1) and the slope of the side of the triangle that is in f(Vθ) is
almost 1

s(θ) where s(θ) > 0 is the torsion that is defined by

(2) Df(θ, 0) =

(
1 s(θ)
0 1

)
,

the area of this triangle is

(3) λ
(
T (θ)

)
=

1

2

(
ηc(θ)

)2(
s(θ) + ε(θ, c)

)
;

where

uniformly for θ ∈ T, lim
c→0

ε(θ, c) = 0.

Let λ be the Lebesgue measure restricted to the invariant sub-annulus

Ac =
⋃
θ∈T
{θ} × [0, ηc(θ)].

Being symplectic, f preserves λ. Moreover, every ergodic measure µ for f with
support in Ac is supported on one curve ΓA with A ∈ [0, c]. But f|ΓA is semi-
conjugated to a rotation with an angle ρ(A) that is in [0, 1[. Hence every interval in
ΓA that is between some

(
θ, ηA(θ)

)
and f

(
θ, ηA(θ)

)
has the same µ-measure, which

is just given by the rotation number ρ(A) ∈ [0, 1] on the graph of ηA. This implies
that θ 7→ µ

(
T (θ)

)
is constant. Hence for every θ, θ′ ∈ T and for every ergodic

measure µ with support in Ac, we have µ
(
T (θ)

)
= µ

(
T (θ′)

)
.

We now use the ergodic decomposition of invariant measures (see e.g. [14]). Let
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δx be the notation for the Dirac measure at x. For every a ∈ A, we denote

lim
n→∞

1

n

n−1∑
k=1

δfn(a) by λa. Then we have λ =
∫
λadλ(a). Denoting the rotation

number of a point a ∈ A by R(a), we deduce that:

(4) ∀θ, θ′ ∈ T, λ
(
T (θ)

)
= λ

(
T (θ′)

)
=

∫
Ac
R(a)dλ(a).

We deduce from equation (3) that

uniformly for θ, θ′ ∈ T, lim
c→0

ηc(θ
′)

ηc(θ)
=

√
s(θ)

s(θ′)
.

Integrating with respect to θ′, we deduce that uniformly in θ, we have

lim
c→0

c

ηc(θ)
=
√
s(θ)

∫
T

dt√
s(t)

.

This implies that

(5)
∂ηc(θ)

∂c |c=0
=
(∫

T

dt√
s(t)

)−1 1√
s(θ)

;

and even

(6) ηc(θ) = c
(∫

T

dt√
s(t)

)−1
(

1√
s(θ)

+ ε(θ, c)

)
where

uniformly for θ ∈ T, lim
c→0

ε(θ, c) = 0.

Observe that ∂ηc
∂c =

( ∫
T

dt√
s(t)

)−1
1√
s(·)

is a Ck−1 function of θ′. This proves the

first point of theorem 2.1.
Proof of the second point. We deduce from the first point that for any c such that
ρ(c) is rational, the function ∂ηc

∂c is continuous and positive. Moreover, its integral

on T is 1. Hence ∂ηc
∂c is the density of a Borel probability measure that is equivalent

to Lebesgue. We now introduce:

Notation. If c < c′, we denote by Λc,c′ the normalized Lebesgue measure between
the graph of ηc and the graph of ηc′ .

Then f preserves Λc,c′ . Observe that for any measurable I ⊂ T, we have

(7) Λc,c′
(
{(θ, r); θ ∈ I, r ∈ [ηc(θ), ηc′(θ)]}

)
=

1

c− c′

∫
I

(
ηc(θ)− ηc′(θ)

)
dθ.

Lemma 2.1. If ρ(c) is rational, then lim
c′→c

Λc,c′ is a measure supported on the

graph of ηc whose projected measure µc has density ∂ηc
∂c with respect to the Lebesgue

measure of T.

Hence if hc(θ) =
∫ θ

0
∂ηc
∂c (t)dt, we have

hc ◦ π1 ◦ f
(
θ, ηc(θ)

)
= hc(θ) + ρ(c).
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Proof. Using Equation (6), we can take the limit in Equation (7) or more precisely
for any ψ ∈ C0(A,R) in∫

ψ(θ, r)dΛc,c′(θ, r) =

∫
T

1

c− c′

(∫ ηc(θ)

ηc′ (θ)

ψ(θ, r)dr

)
dθ

and obtain that the limit is an invariant measure supported in the graph of ηc
whose projected measure µc has a density with respect to Lebesgue that is equal to
∂ηc
∂c . We then use Proposition 2.1 to conclude that hc is the wanted conjugacy. �

Proof of the third point. We noticed that when ρ(c) is irrational, there is only one
invariant Borel probability measure that is supported on the graph of ηc. This
implies the continuity of the map c 7→ µc at such a c. Let us look at what happens
when ρ(c) is rational.

Proposition 2.3. For every c0 ∈ R such that ρ(c0) is rational, for every θ ∈ [0, 1],
we have

lim
c→c0

µc([0, θ]) = µc0([0, θ])

and the limit is uniform in θ.

This joint with the continuity of hc0 implies the continuity of (θ, c) 7→ hc(θ) at
(θ, c0).

Proof. In this proof, we will use different functions εi(τ, c) and all these functions
will satisfy uniformly in τ

lim
c→0

εi(τ, c) = 0.

As in the proof of the first point of Theorem 2.1, we can assume that ηc0 = 0 (and
then c0 = 0) and ρ(0) = 0.
We fix ε > 0. Because of the continuity of ρ, we can choose α such that if |c| < α,
then |ρ(c)| < ε.
Let us introduce the notation Nc = b 1

ρ(c)c for c 6= 0. Let us assume that c > 0 and

θ ∈ (0, 1]. We also denote by g̃c the lift of gc such that g̃c(0) ∈ [0, 1) and by Mc(θ)

Mc(θ) = ]{j ∈ N; g̃jc(0) ∈ [0, θ]}.

Hence, Mc(θ) is the number of points of the orbit of 0 under g̃c that belong to [0, θ].
Observe that Mc(θ) is non-decreasing with respect to θ.
As ηc > 0, any primitive Nc of ηc is increasing, hence Mc(θ) is also the number of
g̃k(0) such that Nc

(
g̃k(0)

)
belongs to [Nc(0),Nc(θ)], i.e.

(8)
Mc(θ) = ]

{
j ∈ N;

∫ g̃jc(0)

0
ηc(t)dt ≤

∫ θ
0
ηc(t)dt

}
= sup

{
j ∈ N;

∫ g̃jc(0)

0
ηc(t)dt ≤

∫ θ
0
ηc(t)dt

}
.

Note that Mc(1) = Nc because gc has rotation number ρ(c) and that we have
∀θ ∈ (0, 1], Mc(θ) ≤ Nc as Mc is non decreasing. We have also

µc([0, θ]) =

Mc(θ)−1∑
j=0

µc([g̃
j
c(0), g̃j+1

c (0)[) + µc([g̃
Mc(θ)(0), θ])
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and thus µc([0, θ]) = Mc(θ)ρ(c) + ∆ρ(c) with ∆ ∈ [0, 1] because [g̃Mc(θ)(0), θ] ⊂
[g̃Mc(θ)(0), g̃Mc(θ)+1(0)[.
Hence

(9) µc([0, θ]) ∈ [Mc(θ)ρ(c),Mc(θ)ρ(c) + ρ(c)] ⊂
[
Mc(θ)

Nc + 1
,
Mc(θ) + 1

Nc

]
.

Hence to estimate the measure µc([0, θ]) we need a good estimate of the number of
j such that g̃jc(0) belongs to [0, θ]. We have proved in Equation (6) that

(10) ηc(τ) =
(∫

T

dt√
s(t)

)−1 c
(
1 + ε0(τ, c)

)√
s(τ)

.

We deduce from Equation (2) that g̃c(τ) = τ +
(
s(τ) + ε1(τ, c)

)
ηc(τ) where

uniformly in τ , we have: lim
c→0

ε1(τ, c) = 0 and then by Equation (10):

(11)

∫ g̃c(τ)

τ

ηc(t)dt = ηc(τ)2
(
s(τ) + ε2(τ, c)

)
=
c2
(
1 + ε3(τ, c)

)( ∫
T

dt√
s(t)

)2 .

This says that the area between τ and g̃c(τ) that is limited by the zero section and
the graph of ηc is almost constant (i.e. doesn’t depend a lot on τ).

We deduce from Equation (8) that∫ g̃Mc(θ)c (0)

0

ηc(t)dt ≤
∫ θ

0

ηc(t)dt <

∫ g̃Mc(θ)+1
c (0)

0

ηc(t)dt.

Hence
Mc(θ)−1∑
j=0

∫ g̃j+1(0)

g̃j(0)

ηc(t)dt ≤
∫ θ

0

ηc(t)dt ≤
Mc(θ)∑
j=0

∫ g̃j+1(0)

g̃j(0)

ηc(t)dt.

Using Equation (11), we deduce that

Mc(θ)
c2
(
1 + ε4(θ, c)

)( ∫
T

dt√
s(t)

)2 ≤
c
(
1 + ε5(θ, c)

)∫
T

dt√
s(t)

∫ θ

0

dt√
s(t)

< (Mc(θ) + 1)
c2
(
1 + ε6(θ, c)

)( ∫
T

dt√
s(t)

)2 ,

and then

(12) Mc(θ) =

⌊
1

c

((∫
T

du√
s(u)

)(∫ θ

0

dt√
s(t)

)
+ ε7(θ, c)

)⌋
.

This implies that

(13) Nc = Mc(1) =

⌊
1

c

((∫
T

dt√
s(t)

)2

+ ε8(1, c)

)⌋
and by Equations (5), (9), (12) and (13).

(14) µc([0, θ]) =
Mc(θ)

Nc
+ ε9(θ, c) =

∫ θ
0

dt√
s(t)∫

T
dt√
s(t)

+ ε10(θ, c) = µ0([0, θ]) + ε11(θ, c).

As none of the measures µc has atoms, this implies that c 7→ µc and all the maps
c 7→ µc([0, θ]) = hc(θ) are continuous. As every map hc is non decreasing in the
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variable θ, we deduce from the Dini-Polyà Theorem [17, Exercise 13.b page 167]
that c 7→ hc is continuous for the C0 uniform topology. �

Remark. If ρ(A) = p
q , then we proved that ∂ηc(θ)∂c |c=A =

( ∫
T

dt√
sq

(
t, ηA(t)

))−1
1√

sq
(
θ, ηA(θ)

)
where

Dfq(x) =

(
aq(x) sq(x)
cq(x) dq(x)

)
.

Indeed, the term sq
(
t, ηc(t)

)
doesn’t change when we conjugate by the map GA

where GA(θ, r) =
(
θ, r + ηA(θ)

)
as we did in section 2.2.

This gives for the conjugacy

hA(θ) = µA([0, θ]) =

(∫
T

dt√
sq
(
t, ηA(t)

))−1 ∫ θ

0

1√
sq
(
t, ηA(t)

)dt.
Observe that this Ck depends on θ.
Observe too that Equation (6) can be rewritten as

(15) ηc(θ) = ηA(θ) + (c−A)

[(∫
T

dt√
sq
(
t, ηA(t)

))−1
1√

sq
(
θ, ηA(θ)

) + ε(θ, c)

]
,

where
uniformly for θ ∈ T, lim

c→A
ε(θ, c) = 0.

Observe that the formula doesn’t give any continuous dependence of hc or ∂ηc
∂c in

the c variable, because q can become very large when c changes.

2.3. Generating function and regularity. To finish the proof of Theorem 1.1,
we have to prove that u admits a derivative with respect to c everywhere and that

∀θ ∈ T,∀c ∈ R, hc(θ) = θ +
∂u

∂c
(θ, c).

Because we proved that (θ, c) 7→ hc(θ) is continuous, we will deduce that u is C1.
Observe that for every θ, the map c 7→ u(θ, c) + cθ is increasing because every

c 7→ ηc(θ) is increasing.

Theorem 2.2. The map u is C1. Moreover, in this case, we have

• the graph of c+ ∂u
∂θ (·, c) is a leaf of the invariant foliation;

• θ 7→ θ + ∂u
∂c (θ, c) is the semi-conjugacy hc between gc and Rρ(c) given in

Theorem 2.1. We have: hc ◦ gc = hc + ρ(c).

Proof. The first point is a consequence of the definition of u.
Then u(·, c) and ∂u

∂θ = ηc − c continuously depend on (θ, c).
Observe that with the notation (7), we have

Λc,c′
(
{(θ, r); θ ∈ [θ1, θ2], r ∈ [ηc(θ), ηc′(θ)]}

)
=

=
1

c′ − c

((
u(θ2, c

′)− u(θ1, c
′)
)
−
(
u(θ2, c)− u(θ1, c)

))
+ (θ2 − θ1).

Moreover, if ρ(c0) ∈ Q, we deduce from Lemma 2.1 that u(·, c) admits a derivative
with respect to c at c0

∂u

∂c
(θ, c0) = lim

c→c0

1

c− c0

((
u(θ, c)− u(0, c)

)
−
(
u(θ, c0)− u(0, c0)

))
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that is given by

∂u

∂c
(θ, c0) = µc0([0, θ])− θ = hc0(θ)− θ

and this derivative continuously depends on θ.
Assume now that ρ(c0) is irrational and let c tend to c0. Every limit point of
Λc,c0 when c tends to c0 is a Borel probability measure that is invariant by f
and supported on the graph of ηc0 . As there exists only one such measure, whose
projection was denoted by µc0 , we deduce that

π1∗

(
lim
c→c0

Λc,c0

)
= µc0 .

As µc0 has no atom, we have for all θ0 ∈ [0, 1)

hc0(θ0) = µc0([0, θ0])

= lim
c→c0

Λc0,c({(θ, r); θ ∈ [0, θ0], r ∈ [ηc0(θ), ηc(θ)]})

= lim
c→c0

1

c− c0

((
u(θ0, c)− u(0, c)

)
−
(
u(θ0, c0)− u(0, c0)

))
+ θ0

=
∂u

∂c
(θ0, c0) + θ0,

hence u admits a derivative with respect to c and

hc0(θ) = µc0([0, θ]) = θ +
∂u

∂c
(θ, c0).

Because of Theorem 2.1, (θ, c) 7→ ∂u
∂c (θ, c) = hc(θ)− θ is continuous. As the two

partial derivatives ∂u
∂θ and ∂u

∂c are continuous in (θ, c), we conclude that u is C1.
�

3. Proof of Theorem 1.2

We assume that f : A → A is a C0 integrable symplectic twist diffeomorphism
with generating function u for its invariant foliation and use the notation ηc(θ) =
c+ ∂u

∂θ (θ, c). We also denote the projected Dynamics on the graph of ηc by g̃c(θ) =

π1 ◦ F
(
θ, ηc(θ)

)
where we fix a lift F : R2 → R2 of f . We work on some compact

set

K =
{(
θ, ηc(θ)

)
; θ ∈ T, c ∈ [c1, c2]

}
.

Replacing F by F + (0, p) for some integer p ∈ N, we can assume that the rotation
number R(x) of every x ∈ K is positive. We denote by U = {(θ, ηc(θ)); θ ∈ T, c ∈
(c1, c2)}. Being C1, u is C-Lipschitz on K for some constant C > 0. Using the
notations of Appendix B, we recall that

(16) ∀x ∈ A,∀n ∈ N, s−n(x) < s−(n+1) < s−(x) ≤ s+(x) < sn+1(x) < sn(x)

and that all the maps sk are continuous. Hence there exists b > a > 0 and r ∈ (0, 1)
such that

(17) ∀x, y ∈ K, d(x, y) < r ⇒ 0 < a ≤ s1(x)− s2(y) < s1(x)− s−1(y) ≤ b.

We deduce

∀x, y ∈ K, 0 < a ≤ s1(x)− s+(y) < s1(x)− s−(y) ≤ b.
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Working in R2, we consider for any c, c′ ∈ (c1, c2) such that c < c′ the domain
D(θ) whose boundary is the union of

• a small piece V of the vertical {θ} × R that is between ηc and ηc′ ;
• the arc F (V );
• pieces of ηc and ηc′ that are between V and F (V ).

D(  )

gc(  )

V F(V)

Using the same method as in subsection 2.2 for the case of rational curve (that
is the decomposition of Lebesgue measure into ergodic measures), we see that the
area of D(θ) doesn’t depend on θ.
We then cut D(θ) into three subsets.

• if p = bg̃c(θ) − θc, D1(θ) is the domain that is between V , V + p and
the graphs of ηc and ηc′ ; observe that p =

⌊
R
(
θ, ηc(θ)

)⌋
= bρ(c)c doesn’t

depend on θ11;
• D2(θ) is the domain between V + p, the vertical V ∗ at F

(
θ, ηc(θ)

)
and the

graphs of ηc and ηc′ ;
• D3(θ) is the triangular domain between V ∗ , F (V ) and ηc′ .

D1(  ) D3(  )D2(  )

+p gc(  )

V F(V)

Then the area of D1(θ) is p(c′ − c) and doesn’t depend on θ.
The area of D2(θ) is∫ g̃c(θ)

θ+p

(
(c′ +

∂u

∂θ
(t, c′)− (c+

∂u

∂θ
(t, c)

)
dt,

a positive number equal to

(c′ − c)(g̃c(θ)− θ − p) + u(g̃c(θ), c
′)− u(g̃c(θ), c) + u(θ + p, c)− u(θ + p, c′).

11recall that when restricted to the graph of ηc, either f is periodic and all points have the
same period, or f has no periodic orbit.
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We recall that u is C Lipschitz on K and that g̃c(θ) − θ − p ∈ (0, 1). We deduce
that the area of D2(θ) belongs to(

0, (2C + 1)(c′ − c)
)
.

We want now to estimate the area of the triangle D3(θ). This triangle has three
(curved) sides that are

• the vertical side V ∗ whose length is equal to ηc′
(
g̃c(θ)

)
− ηc

(
g̃c(θ)

)
;

• the side F (V ) with slope at x ∈ F (V ) equal to s1(x);
• the side H supported in ηc′ that is Lipschitz with tangent cone at x that

is contained in [s−(x), s+(x)] ⊂ [s−1(x), s2(x)].

Because of the continuity of the foliation, there exists ν > 0 such that if c1 ≤ c ≤
c′ ≤ c2 and c′ − c < ν, then the length of every piece of vertical V between ηc and
ηc′ is less than r12and the same is true for F (V ) because of the uniform continuity
of F on the strip between ηc1 and ηc2 . Using the fact that the tangent cone to
the graph of ηc′ is between the two Green bundles (see Appendix B) and Equation
(16), we deduce that if c′ − c ∈ [0, ν), D3(θ)

• is contained in a true triangle with vertical side equal to V ∗, upper side
with slope equal to max

x∈H
s2(x) and slope of lower side equal to min

x∈F (V )
s1(x);

• contains a true triangle with vertical side equal to V ∗, upper side with slope
equal to min

x∈H
s−1(x) and slope of lower side equal to max

x∈F (V )
s1(x);

Observe that when the triangle is a true triangle, its horizontal height has length
δ

S−T where δ is the length of the vertical side, T is the slope of the side coming
from the upper point of the vertical side and S is the slope of the side coming from

the lower point of the vertical side. The area is then δ2

2(S−T )

These remarks and Equation (17) imply that the area of D3(θ) belongs to the
interval 

(
ηc′
(
g̃c(θ)

)
− ηc

(
(g̃c(θ)

))2

2b
,

(
ηc′
(
(g̃c(θ)

)
− ηc

(
(g̃c(θ)

))2

2a

 .
Finally, the sum A(θ) of the area of D2(θ) and D3(θ) doesn’t depend on θ and

• at a point (that always exists because
∫
T(ηc − ηc′) = c − c′) such that

ηc′(θ)− ηc(θ) = c′ − c, we have

A(θ) ∈
[

(c′ − c)2

2b
,

(c′ − c)2

2a
+ (2C + 1)(c′ − c)

]

⊂
[

(c′ − c)2

2b
,

(
(2C + 1) +

1

2a

)
(c′ − c)

]
;

• at every point, we have

A(θ) ≥ area
(
D3(θ)

)
≥

(
ηc′
(
(g̃c(θ)

)
− ηc

(
(g̃c(θ)

))2

2b
;

12Recall that r was choosen to satisfy Formula (17).
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This implies that for c1 ≤ c ≤ c′ ≤ c2 such that c′ − c < ν, we have

∀θ ∈ R,
(
ηc′(θ)− ηc(θ)

)2
2b

≤
(

(2C + 1) +
1

2a

)
(c′ − c);

so

∀θ ∈ R, ηc′(θ)− ηc(θ) ≤

√
2b

(
(2C + 1) +

1

2a

)
(c′ − c).

Hence we obtain on the compact K a uniform local constant of Hölder, and this
implies that ηc is uniformly 1

2 -Hölder in the variable c on K.

4. Proof of Theorem 1.3

Let us consider a C0-foliation F of V = {(θ, r); θ ∈ (α, β) and ηc−(θ) < r <

ηc+(θ)} or V = T into graphs: (θ, c) ∈ W 7→
(
θ, ηc(θ)

)
, where 1

β−α
∫ β
α
ηc = c

(
when

V = A, W = A and in the other cases W = (α, β)× (c−, c+)
)
. Then there exists a

continuous function u :W → R that admits a continuous derivative with respect to
θ such that ηc(θ) = c+ ∂u

∂θ (θ, c) and u(0, c) = 0, function that we called generating
function of the foliation when V = A.

4.1. Proof of the first implication. We assume that this foliation is exact sym-
plectically homeomorphic to the standard horizontal foliation F0 = Φ−1(F) by
some exact symplectic homeomorphism Φ.

Observe that the foliation F is transverse to the “vertical” foliation G0 into
π−1

1 ({θ}) for θ ∈ π1(V). Hence the foliation G = Φ−1(G0) is a foliation of U that
is transverse to the standard (“horizontal”) foliation F0 = Φ−1(F). This exactly
means that the foliation G is a foliation into graphs of maps ζθ : I = π2(U)→ π1(U).
Hence there exists a continuous function v : W → R that admits a continuous
derivative with respect to r such that the foliation G is the foliation into graphs
Φ−1(π−1

2 ({θ})) of ζθ : r 7→ θ + ∂v
∂r (θ, r). Observe that by definition of ζθ, we have

Φ
(
ζθ(c), c

)
=
(
θ, ηc(θ)

)
. As a result, every map θ 7→ ζθ(c) is a homeomorphism

onto its image.

We now use the preservation of the area. We fix θ1 < θ2 in π1(V) and c1 < c2 in
π2(U) such that the domain D1 delimited by the horizontals π−1

2 ({c1}), π−1
2 ({c2}),

the graph of c ∈ [c1, c2] 7→ ζθ1(c) and the graph of c ∈ [c1, c2] 7→ ζθ2(c) is contained
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in U . Because Φ is a symplectic homeomorphism, Φ preserves the area and so D1

and Φ(D1) have the same area. Observe that Φ(D1) is the domain delimited by
the graphs of ηc1 , ηc2 and the verticals π−1

1 ({θ1}) and π−1
1 ({θ2}).

This can be written∫ c2

c1

((
θ2+

∂v

∂c
(θ2, c)

)
−
(
θ1+

∂v

∂c
(θ1, c)

))
dc =

∫ θ2

θ1

((
c2+

∂u

∂θ
(θ, c2)

)
−
(
c1+

∂u

∂θ
(θ, c1)

))
dθ.

It follows that

u(θ2, c2)− u(θ1, c2)− u(θ2, c1) + u(θ1, c1) =

= v(θ2, c2)− v(θ2, c1)− v(θ1, c2) + v(θ1, c1).

Evaluating for θ1 = 0 we find

u(θ2, c2)− u(θ2, c1) = v(θ2, c2)− v(θ2, c1)− v(0, c2) + v(0, c1).

Finally, as v admits a continuous partial derivative with respect to c, we conclude
that ∂u

∂c (θ, c) = ∂v
∂c (θ, c) − ∂v

∂c (0, c) exists and is continuous. Hence u is C1. More-

over, every map θ 7→ θ + ∂u
∂c (θ, c) = ζc(θ) − ∂v

∂c (0, c) is a homeomorphism onto its
image and we have established the first implication.

4.2. Proof of the second implication. We assume that there exists a C1 map
u :W → R such that

• u(0, c) = 0 for all c ∈ I where I = (c−, c+) or I = R,
• ηc(θ) = c+ ∂u

∂θ (θ, c) for all (θ, c) ∈ W,

• for all c ∈ I, the map θ 7→ θ + ∂u
∂c (θ, c) is a injective.

Then we can define a unique homeomorphism Φ by

Φ
(
θ +

∂u

∂c
(θ, c), c

)
=
(
θ, c+

∂u

∂θ
(θ, c)

)
.

Let v : R2 → R+ be the C∞ function with support in B(0, 1) defined by v(θ, c) =
a exp

(
(1 − ‖(θ, c)‖)−2

)
for (θ, c) ∈ B(0, 1) and where a is such that

∫
v = 1. We

denote by vε the function vε(x) = 1
ε2 v(xε ). Then we define for every ε > 0.

Uε(θ, c) = (u ∗ vε)(θ, c),

where we recall the formula for the convolution

u ∗ v(x) =

∫
u(x− y)v(y)dy.

Note that if we fix a compact into W, Uε is well defined on it for ε small enough.
Then when ε tends to 0, the functions Uε tend to U in the C1 compact-open
topology. Moreover, when U = A, Uε is 1-periodic in θ and smooth.
Observe that for every θ, the function c 7→ c + ∂u

∂θ (θ, c) is increasing. We deduce

that the convolution c 7→ c + ∂Uε
∂θ (θ, c) is a C∞ diffeomorphism as it is a mean

of C∞ diffeomorphisms thanks to Lemma 4.1. Finally, the maps Fε : (θ, c) 7→(
θ, c + ∂Uε

∂θ (θ, c)
)

define C∞ foliations that converge to the initial foliation F0 :

(θ, c) 7→
(
θ, c+ ∂u

∂θ (θ, c)
)

for the C0 compact-open topology when ε tends to 0.
Observe that the hc’s are assumed to be increasing. We deduce that the maps
Gε : (θ, c) 7→ (θ + ∂Uε

∂c (θ, c), c) are C∞ diffeomorphisms of A that converge for the

C0 compact-open topology to G0 : (θ, c) 7→ (θ + ∂u
∂c (θ, c), c).
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Finally, the Hε = Fε ◦G−1
ε are C∞ diffeomorphisms of A that converge for the C0

compact-open topology to F0 ◦G−1
0 = Φ.

This exactly means that Φ is a symplectic homeomorphism.

Lemma 4.1. Let f : R→ R be a non-negative, non-trivial, smooth, integrable and
even function such that f ′ ≤ 0 on [0,+∞). Then if g : R → R is increasing, f ∗ g
is an increasing C∞ diffeomorphism.

Proof. As f is even, f ′ is odd. Just notice that

(f ∗ g)′(x) =

∫
R
f ′(y)g(x− y)dy =

∫ +∞

0

f ′(y)
(
g(x− y)− g(x+ y)

)
dy.

The result follows as g(x − y) − g(x + y) < 0 and f ′(y) ≤ 0 and does not vanish
everywhere. �

5. Proof of Proposition 1.1 and Corollary 1.3

5.1. Proof of Proposition 1.1: biLipschitz foliations with C1 generating
functions are straightenable. Let u : A → R be the C1 generating function of
a continuous foliation of A into graphs.

We recall the following result that is due to Minguzzi, [15].

Theorem (Minguzzi). Let Ω be an open subset of R2 and let f ∈ C1(Ω,R). Then
the following conditions are equivalent:

(1) for every x, the partial derivative ∂f
∂x (x, ·) is locally Lipschitz, locally uni-

formly with respect to x;
(2) for every y, the partial derivative ∂f

∂y (·, y) is locally Lipschitz, locally uni-

formly with respect to y.

If they hold true, then on a subset E ⊂ Ω with full Lebesgue measure in Ω, ∂2f
∂x∂y

and ∂2f
∂y∂x exist and are equal.

5.1.1. Proof of the first implication. We assume that the invariant foliation is K-
Lipschitz on a compact K = {(θ, ηc(θ)); θ ∈ T, c ∈ [a, b]}, which means

(18) ∀θ ∈ T,∀c1, c2 ∈ [a, b],
|c1 − c2|

K
≤ |ηc1(θ)− ηc2(θ)| ≤ K|c1 − c2|.

As ηc(θ) = c+ ∂u
∂θ (θ, c), this means that ∂u

∂θ (θ, .) is locally Lipschitz, locally uniformly

with respect to Θ. Hence, by Minguzzi theorem, for every c ∈ (a, b), ∂u
∂c (·, c) is

locally Lipschitz, locally uniformly with respect to c and at almost (θ, c) ∈ T×(a, b),

we have ∂2u
∂c∂θ and ∂2u

∂θ∂c exist and are equal and uniformly bounded.

Hence hc = IdT + ∂u
∂c (·, c) is locally uniformly Lipschitz and because of Equation

(18), we have Lebesgue almost everywhere

(19)
∂2u

∂θ∂c
(θ, c) =

∂2u

∂c∂θ
(θ, c) =

∂η

∂c
(θ0, c0)− 1 ∈

[
− 1 +

1

K
,−1 +K

]
= [k−, k+].

This implies that hc(θ) = θ + ∂u
∂c (θ, c) defines a (k−, k+)-biLipschitz homeomor-

phism of T for almost every c ∈ [a, b] and then for all c ∈ [a, b] by continuity. By
Theorem 1.3, we deduce that u is the generating function of an exact symplectic
homeomorphism Φ : A → A that maps the invariant foliation onto the standard
one.
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5.1.2. Proof of the second implication. We assume that the map u is C1 with
∂u
∂θ locally Lipschitz continuous and ∂u

∂c uniformly Lipschitz in the variable θ on
any compact set of c’s and there exists two constants k+ > k− > −1 such that
∂2u
∂θ∂c (θ, c) ∈ [k−, k+] almost everywhere. Because ∂u

∂c is uniformly Lipschitz in the
variable θ on any compact set of c’s, we can apply Minguzzi theorem and write
another time Equation (19) which implies that the foliation is biLipschitz.

5.2. Proof of Corollary 1.3. Let k ≥ 1 and r 7→ fr be a Ck-foliation in graphs
and let u be its generating function. As k ≥ 1, the foliation is Lipschitz when
restricted to every compact set. Hence we can use Proposition 1.1. In this case, u
is the generating function of an exact symplectic homeomorphism Φ : A→ A that
maps the standard foliation onto the invariant one and we have

Φ
(
θ +

∂u

∂c
(θ, c), c

)
=
(
θ, c+

∂u

∂θ
(θ, c)

)
.

Moreover, u is Ck hence F0(θ, c) =
(
θ, c+ ∂u

∂θ (θ, c)
)

defines a Ck−1 homeomorphism

that is locally biLipschitz, hence a Ck−1 diffeomorphism.
Also hc(θ) = θ + ∂u

∂c (θ, c) is Ck−1 in (θ, c). Observe that every hc is a biLipschiz

homeomorphism that is Ck−1, hence G0 : (θ, c) 7→ (hc(θ), c) is also a Ck−1 diffeo-
morphism and then Φ = F0 ◦ G−1

0 is a Ck−1 symplectic diffeomorphism (where a
C0- diffeomorphism is an homeomorphism).

6. More results on symplectic homeomorphisms that are
C0-integrable

6.1. Proof of Proposition 1.2. Let f : A→ A be an exact symplectic homeomor-
phism. We assume that f has an invariant foliation F into C0 graphs that is sym-
plectically homeomorphic (by Φ−1 : A→ A) to the standard foliation F0 = Φ−1(F).
Then the standard foliation is invariant by the exact symplectic homeomorphism
g = Φ−1 ◦ f ◦ Φ. Hence we have

g(θ, r) = (g1(θ, r), r).

As g is area preserving, for every θ ∈ [0, 1] and every r1 < r2, the area of [0, θ] ×
[r1, r2] is equal to the area of g

(
[0, θ]× [r1, r2]

)
, i.e.

θ(r2 − r1) =

∫ r2

r1

(
g1(θ, r)− g1(0, r)

)
dr.

Dividing by r2 − r1 and taking the limit when r2 tends to r1, we obtain

g1(θ, r1) = θ + g(0, r1).

This proves the proposition for ρ = g1(0, ·).

6.2. Proof of Corollary 1.4. The if part is obvious by Proposition 1.2.
Let us prove the only if part, that is we assume f is C0-integrable with the

Dynamics on each leaf conjugated to a rotation. We denote by u : A → R the
map given by theorem 1.1 and that enjoys the properties of Theorem 2.1. Hence
hc : θ 7→ θ + ∂u

∂c (θ, c) is a semi-conjugation between the projected Dynamics gc :

θ 7→ π1 ◦ f
(
θ, c + ∂u

∂θ (θ, c)
)

and the rotation Rρ(c) of T and even is a conjugation
when ρ(c) is rational.
If ρ(c) is irrational, it follows from the hypothesis that gc is conjugated to a rotation.
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As the Dynamics is minimal, there is up to constants a unique (semi)-conjugacy
and and then hc is a true conjugation. We then conclude by using Theorem 1.3.

6.3. Proof of Corollary 1.5.

6.3.1. Arnold-Liouville coordinates for f . Let f : A→ A be a symplectic twist dif-
feomorphism that is Lipschitz-integrable with generating function u of its invariant
foliation.
By Theorem 1.1 and Proposition 1.1, u is the generating function of an exact
symplectic homeomorphism Φ : A → A that maps the standard foliation onto
the invariant one and for every compact subset K ⊂ A, there exists two constant

k+ > k− > −1 such that ∂2u
∂θ∂c ∈ [k−, k+] Lebesgue almost everywhere in K.

By Proposition 1.2, we have

∀(x, c) ∈ A, Φ−1 ◦ f ◦ Φ(x, c) = (x+ ρ(c), c);

where ρ : R → R is continuous. Moreover, because of the twist condition, ρ is an
increasing homeomorphism of R.

6.3.2. Proof that ρ : R→ R is a biLipschitz homeomorphism.

Proposition 6.1. Assume that the C1 symplectic twist diffeomorphism f : A→ A
has an invariant locally Lipschitz continuous foliation into graphs c ∈ R 7→ ηc ∈
C0(T,R). Then the map ρ : c ∈ R 7→ ρ(c) is a locally biLipschitz homeomorphism.

We will use the following

Lemma 6.1. Let f, g : R → R be lifts of homeomorphisms of T that preserve
orientation (implying f(·+ 1) = f(·) + 1 and g(·+ 1) = g(·) + 1). Assume that

• either f or g is conjugated to a translation tα : x 7→ x+α by a homeomor-
phism h that is a lift of a homeomorphism of T that preserves orientation;
• h and h−1 are K-Lipschitz.

Then

(1) If there exists d > 0 such that f < g + d, then ρ(f) ≤ ρ(g) +Kd.
(2) If there exists d > 0 such that f + d < g then ρ(f) + d

K ≤ ρ(g).

Proof. Let us say that h ◦ g ◦ h−1 = tα, hence ρ(g) = α (the proof when f is
conjugated to a translation is the same).

(1) By hypothesis, f ◦ h−1 < g ◦ h−1 + d. Using that h is increasing and
K-Lipschitz, it follows that for all x ∈ R,

h ◦ f ◦ h−1(x) < h(g ◦ h−1(x) + d) < h ◦ g ◦ h−1(x) +Kd = x+ α+Kd.

Finally, as ρ(f) = ρ(h ◦ f ◦ h−1), we conclude that

ρ(f) ≤ α+Kd = ρ(g) +Kd.

(2) By hypothesis, f ◦ h−1 + d < g ◦ h−1. Using that h is increasing, it follows
that

∀x ∈ R, h(f ◦ h−1(x) + d) < h ◦ g ◦ h−1(x) = x+ α.

Because h−1 is K-Lipschitz and increasing, observe that

d = h−1(h(f ◦ h−1(x) + d))− h−1(h ◦ f ◦ h−1(x))

≤ K
(
h(f ◦ h−1(x) + d)− h ◦ f ◦ h−1(x)

)
.
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Then

h ◦ f ◦ h−1(x) ≤ h(f ◦ h−1(x) + d)− d

K
< x+ α− d

K
;

hence ρ(f) + d
K ≤ ρ(g).

�

Proof of Proposition 6.1. The proof is now a direct application of the previous
Lemma. Indeed, we have seen that when the foliation is K-Lipschitz, if c varies in a
compact set K, the Dynamics gc are all conjugated to rotations. We have moreover

proven there exists a constant K̃ such that the conjugating functions hc may be
chosen equi-biLipschitz (for c ∈ K).

We denote the minimum and maximum torsions on K by

bmin = min
x∈K

∂f1

∂θ
(x) and bmax = max

x∈K

∂f1

∂θ
(x).

For c1 < c2 in [a, b], we have

g̃c2(θ)− g̃c1(θ) = F1

(
θ, ηc2(θ)

)
− F1

(
θ, ηc1(θ)

)
and so

g̃c2(θ)− g̃c1(θ) ∈
[
bmin

(
ηc2(θ)− ηc1(θ)

)
, bmax

(
ηc2(θ)− ηc1(θ)

)]
and

g̃c2(θ)− g̃c1(θ) ∈
[bmin

K
(c2 − c1),K.bmax.(c2 − c1)

]
.

We deduce from Lemma 6.1 that

K.K̃.bmax(c2 − c1) ≥ ρ(gc2)− ρ(gc1) ≥ bmin

K.K̃
(c2 − c1).

�

6.3.3. Proof of the C1 regularity. Here we prove that Φ : A → A is C1 in the θ
variable, that the invariant foliation is a C1 lamination and that the Dynamics
restricted to every leaf is C1 conjugated to a rotation.

Let us fix c. Then hc = IdT + ∂u
∂c (., c) is a biLipschitz homeomorphism of T by

Proposition 1.1. Then Corollary 4 of [1] tells us that ηc is in fact C1 (and the two
Green bundles coincide along its graphs) and that hc is a C1 diffeomorphism.
Hence all the points of A are recurrent. Moreover, as the two Green bundles are
equal everywhere, they are continuous. Because they coincide with the tangent
space to the foliation, the foliation is a C1 lamination. This is equivalent to the

continuity (in the two variables) of ∂2u
∂θ2 .

As Φ(Θ, c) =
(
h−1
c (Θ), ηc ◦ h−1

c (Θ)
)
, we deduce that Φ is C1 in the θ-direction.

Remark. we don’t know if ∂2u
∂θ∂c is continuous, and then if c 7→ hc is continuous for

the C1 topology.



FOLIATIONS BY CURVES 25

7. A strange foliation

We consider the foliation of A by the graphs of ηc(θ) = c + ε(c) cos(2πθ) where
ε is a contraction (k-Lipschitz with k < 1) that is not everywhere differentiable. It
is a biLipschitz foliation with smooth leaves. Observe that the generating function
of this foliation is given by

u(θ, c) =
ε(c)

2π
sin(2πθ).

7.1. Proof of Corollaries 1.1 and 1.2. As u is not C1, we deduce from The-
orems 1.1 and 1.3 that this foliation cannot be globally straightenable by a sym-
plectic homeomorphism and also that it cannot be invariant by a symplectic twist
diffeomorphism.

Let us prove the local part of Corollary 1.2. Then we work in W = [α, β] × I
and we define U by

U(θ, c) = u(θ, c)− u(β, c)− u(α, c)

β − α
.

Then U is not C1 and we deduce from Theorem 1.3 that the local foliation is not
straightenable via a symplectic homeomorphism.

7.2. An exact symplectic twist map that leaves the strange foliation in-
variant. Let us prove however that this foliation, for a simple choice of ε, can be
invariant by a certain C1 exact symplectic twist map.

Definition. An exact symplectic homeomorphism f : A→ A has the weak twist
property if when F = (F1, F2) : R2 → R2 is any lift of f , for any θ̃ ∈ R, the map

r ∈ R 7→ F1(θ̃, r) ∈ R is an increasing homeomorphism from R onto R.

Let us now assume that ε is a C2 function away from c = 0 and that at 0 it has
a left and a right derivatives up to order 2. For the sake of simplicity, let us assume
also that ε(0) = 0 so that T× {0} is a leaf of the foliation and that ε restricted to
[0,+∞) (resp. (−∞, 0]) is the restriction of a C2 periodic function.

The proof of Theorem 1.3 gives us two C1 functions

Φ± : (θ, r) 7→
(
h±(θ, r), η(h±(θ, r), r)

)
where Φ+ is a C1 exact symplectic diffeomorphism of A+ = T × [0,+∞) to itself
(up to the boundary) and Φ− is a C1 exact symplectic diffeomorphism of A− =
T × (−∞, 0] to itself (up to the boundary). Note that here Φ+ and Φ− do not
coincide on T× {0} explaining why the foliation is not straightenable.

Let ρ : R→ R be an increasing, C1 homeomorphism such that ρ(0) = ρ′(0) = 0.
We denote by fρ : (θ, r) 7→ (θ + ρ(r), r). The function f = Φ± ◦ fρ ◦ (Φ±)−1 is
well defined on A, it is the identity on T × {0}. It is clearly an area preserving
homeomorphism that is C1 away from T× {0}.

If r > 0 and θ ∈ T, let us set (Θ, R) = Φ+(θ, r). Then one finds that

Df(Θ, R) = DΦ+(θ + ρ(r), r) ·Dfρ(θ, r) ·DΦ+(θ, r)−1

= DΦ+(θ + ρ(r), r) ·
(

1 ρ′(r)
0 1

)
·DΦ+(θ, r)−1
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It follows from the properties on Φ+ and ρ(0) = ρ′(0) = 0 that as R → 0,
Df(Θ, R) uniformly converges to the identity. As the same holds for R < 0, we
deduce that f is in fact C1 with a differential on T× {0} being identity.

It is left to chose ρ in such a way that the obtained map is a twist map. We
construct it on [0,+∞). The twist condition we aim at is: for every Θ ∈ R, the

map r 7→ h+
(

(h+
r )
−1

(Θ) + ρ(r), r
)

is an increasing homeomorphism of R.
After computation, if we denote h+(θr, r) = Θ, the derivative of the above

function is the following for r > 0 (the inequality is our goal):

∂h+

∂r
(θr + ρ(r), r)−

(
∂h+

∂θ
(θr, r)

)−1
∂h+

∂θ
(θr + ρ(r), r)

∂h+

∂r
(θr, r)

+
∂h+

∂θ
(θr + ρ(r), r)ρ′(r) > 0.

The first line above is smaller in absolute value than M1ρ(r) where (recall that by
hypothesis, all the functions at play are continuous periodic hence bounded)

M1 =

∥∥∥∥∂2h+

∂r∂θ

∥∥∥∥
∞

+

∥∥∥∥∥
(
∂h+

∂θ

)−1
∥∥∥∥∥
∞

.

∥∥∥∥∂2h+

∂θ2

∥∥∥∥
∞

∥∥∥∥∂h+

∂r

∥∥∥∥
∞
.

On the other hand, the second line is greater than M2ρ
′(r) where we set M2 =

min ∂h+

∂θ > 0. If ρ(t) = t2eMt with M = 2M1/M2, then we have ρ(0) = ρ′(0) = 0

and ρ′(t) > M1

M2
ρ(t) that implies the twist condition.

Appendix A. A foliation by graphs that is the inverse image of the
standard foliation by a symplectic map but not by a

symplectic homeomorphism

We will use two special functions

• γ : T→ R a C∞ function such that γ′
[ 12−ε,

1
2 +ε]

= −1 and γ′T\[ 12−ε,
1
2 +ε]

> −1;

• ζ : R → R a C∞ function that is increasing, such that ζ ′(0) = 1 and

ζ ′R\{0} < 1 with lim
±∞

ζ ′ =
1

2
.

The function u(θ, c) = ζ(c)γ(θ) defines the foliation in graphs of

ηc = c+
∂u

∂θ
= c+ ζ(c)γ′.

The derivative with respect to c of ηc(θ) is then ∂ηc
∂c (θ) = 1 + ζ ′(c)γ′(θ) that is non

negative, vanishes only for (θ, c) ∈ [ 1
2 − ε,

1
2 + ε] × {0} and is larger that 1

3 close
to ±∞. Hence every map c ∈ R 7→ ηc(θ) ∈ R is a homeomorphism and we have
indeed a C0 foliation.
Let us introduce hc(θ) = θ + ∂u

∂c (θ) = θ + γ(θ)ζ ′(c). Its derivative is 1 + ζ ′(c)γ′(θ)

that is non negative and vanishes only if (θ, c) ∈ [ 1
2 − ε,

1
2 + ε] × {0}. Hence h0 is

not a homeomorphism but all the other hc are homeomorphisms.
We deduce from Theorem 1.3 that this foliation is not symplectically homeomorphic
to the standard one.

We will now prove that the map defined by H
(
θ, ηc(θ)

)
= (hc(θ), c) is a sym-

plectic map, i.e. the limit (for the C0 topology) of a sequence of symplectic diffeo-
morphisms.
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Let γn : T → R be a sequence of C∞ maps that converges to γ in C1 topology
and satisfies γ′n > −1. Let (ζn) be a sequence of C∞ diffeomorphisms of R that
C1 converges to ζ and satisfies ζ ′n < 1. We introduce un(θ, c) = γn(θ)ζn(c). Then
ηc,n(θ) = c + ζn(c)γ′n(θ) defines a smooth foliation, hc,n(θ) = θ + γn(θ)ζ ′n(c) is a
smooth diffeomorphism of T and

Kn(θ, c) =
(

(hc,n)
−1

(θ), ηc,n
((
hc,n

)−1
(θ)
))

is a symplectic smooth diffeomorphism that maps the standard foliation to the
foliations by the graphs of (ηc,n)c∈R.

If Hn = K−1
n , observe that Hn = Gn ◦ F−1

n where

• Fn(θ, c) =
(
θ, c+∂un

∂θ (θ, c)
)

converges uniformly to F (θ, c) =
(
θ, c+∂u

∂θ (θ, c)
)
;

• Gn(θ, c) = (θ+∂un
∂c (θ, c), c) converges uniformly toG(θ, c) = (θ+∂u

∂c (θ, c), c).

Finally, Hn = Gn ◦ F−1
n converges uniformly to H = G ◦ F−1

Appendix B. Green bundles

Here we recall the theory of Green bundles. More details or proofs can be found
in [2, 1]. We fix a lift F of an symplectic twist diffeomorphism f .

Notations.

• V (x) = {0}×R ⊂ TxR2 and for k 6= 0, we haveGk(x) = DF k(F−kx)V (f−kx);
• the slope of Gk (when defined) is denoted by sk:

Gk(x) = {(δθ, sk(x)δθ); δθ ∈ R};

• if γ is a real Lipschitz function defined on T or R, then

γ′+(x) = lim sup
y,z→x
y 6=z

γ(y)− γ(z)

y − z
and γ′−(t) = lim inf

y,z→x
y 6=z

γ(y)− γ(z)

y − z
.

Then

(1) if the orbit of x ∈ R2 is minimizing, we have

∀n ≥ 1, s−n(x) < s−n−1(x) < sn+1(x) < sn(x);

(2) in this case, the two Green bundles at x are G+(x), G−(x) ⊂ Tx(R2) with
slopes s−, s+ where s+(x) = lim

n→+∞
sn(x) and s−(x) = lim

n→+∞
s−n(x);

(3) the two Green bundles are invariant under Df : Df(G±) = G± ◦ f ;
(4) we have s+ ≥ s−;
(5) the map s− is lower semi-continuous and the map s+ is upper semi-continuous;
(6) hence {G− = G+} is a Gδ subset of the set of points whose orbit is min-

imizing (this last set is a closed set) and s− = s+ is continuous at every
point of this set.

Let us focus on the case of an invariant curve that is the graph of γ. Then we
have

Proposition B.1. Assume that the graph of γ ∈ C0(T,R) is invariant by F . Then
the orbit of any point contained in the graph of γ is minimizing and we have

∀θ ∈ T, s−
(
θ, γ(θ)

)
≤ γ′−(θ) ≤ γ′+(θ) ≤ s+

(
θ, γ(θ)

)
.
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Proposition B.2. (Dynamical criterion) Assume that x has its orbit that is
minimizing and that is contained in some strip R × [−K,K] (for example x is in
some invariant graph) and that v ∈ TxR2\{0}. Then

• if lim inf
n→+∞

|D(π ◦ Fn)(x)v| < +∞, then v ∈ G−(x);

• if lim inf
n→+∞

|D(π ◦ F−n)(x)v| < +∞, then v ∈ G+(x).

In particular, if the Dynamics restricted to some invariant graph is totally pe-
riodic, then along this graph we have G− = G+ and the graph is C1. The C1

property can also be proved by using the implicit functions theorem.
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