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Integrating an Observer in Interactive Reinforcement Learning to
Learn Legible Trajectories

Manuel Bied1 and Mohamed Chetouani1

Abstract— An important aspect of Human-Robot-
cooperation is that the robot is capable of clearly
communicating its intentions to its human collaborator.
This communication of intentions often requires the generation
of legible motion trajectories. The concept of legible motion is
usually not studied together with machine learning. Studying
these fields together is an important step towards better
Human-Robot cooperation. In this paper, we investigate
interactive robot learning approaches with the aim of
developing models that are able to generate legible motions
by taking observer feedback into account. We explore how to
integrate the observer feedback into a Reinforcement Learning
(RL) framework. We do this by proposing three different
observer algorithms as observer strategies in an interactive RL
scheme and compare with one non-interactive RL algorithm as
baseline. For the observer strategies we vary the method how
the observer estimates how likely the agent is going for the
target goal. We evaluate our approach on five environments
and calculate the legibility of the learned trajectories. The
results show that the legibility of the learned trajectories is
significantly higher while integrating the feedback from the
observer compared with a standard Q-Learning algorithm not
using the observer feedback.

I. INTRODUCTION

Humans and robots working together - so called Human-
Robot cooperation - has recently become a popular area
of research. This cooperation can allow robots and humans
to accomplish more sophisticated tasks. When it comes to
cooperation, one crucial difference between humans and
other species is the capability to share goals and intentions
[1]. In order to mimic these capabilities in Human-Robot
collaboration, it is necessary to equip the robot with the
capability of shared goals and intentions. One important
aspect to achieve this intention sharing is that the robot
understands what the human is doing, for example to predict
human motions [2]. Another important aspect is to enrich the
robot with behavior that can be well understood by humans.
In general this problem requires the robot to behave more
transparently or with explainability [3]–[5]. Depending on
the task, this constraint on the robot’s behavior requires
the robot’s motion trajectories to be either predictable or
legible. While predictable and legible motion trajectories
can correlate, they are ”fundamentally different and often
contradictory properties of motion” [6]. While legibility
requires the knowledge of possible goals: ”Plan legibility re-
duces ambiguity over possible goals that might be achieved”
[5], predictability requires the knowledge of a goal/planning
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Fig. 1. Setup of the observer RL framework. As in a regular RL setting
the agent interacts with the environment and receives a reward after each
taken action. The observer gives an additional reward as feedback to the
agent based on how well the observer can infer which of multiple possible
goals the agent is targeting. This additional feedback results in the agent
learning more legible trajectories.

problem: Plan predictability reduces ambiguity over possible
plans, given a goal/planning problem [5]. Both concepts have
in common that some kind of observer of the actions of
the robot exists. This observer reasons about the possible
intentions, either possible goals or plans, of the robot.
Aforementioned concepts are rarely studied in combination
with machine learning. A suitable candidate to use machine
learning in this context is reinforcement learning (RL) [7].
The basic idea of RL is that the robot, or more generally an
agent, interacts with the environment and receives a reward
from the environment. The goal of the agent is to chose its
actions in a way that maximizes the received total reward. RL
offers a computational framework to learn how choose these
actions in an optimal way. The classical RL approach does
not offer the possibility to add a human to the loop, depriving
the framework of integrating valuable task knowledge from
the human. This gap has already been addressed in research
on interactive RL investigating different models of human-
feedback [8]–[12]. Usually these approaches have the goal
to speed up the learning process of the agent or enable it to



find better solutions. To the best of our knowledge, none of
the work on interactive RL explores the role of an observer
that reasons about the intent of the agent in an interactive
RL framework. However, integrating such an observer into
interactive RL is an important step towards using RL for
human-robot collaboration. In this paper we explore how
to integrate observer feedback into RL algorithms to learn
legible (motion) trajectories. We add an observer that gives
feedback to the agent to improve the legibility of the learned
policy. The interaction scheme of our proposed system is
illustrated in Fig. 1.

II. RELATED WORK

Terms like explicability [13], [14], legibility [6], trans-
parency [15] and predictability [16] have become popular
in recent research on artificial agents. These terms describe,
depending on their definition, similar or contradicting con-
cepts. A comprehensive overview of the different concepts
is presented in [5]. All concepts have in common that they
assume some kind of observer that tries to infer the intentions
of the agent. This idea goes along with the concept of
Theory of Mind [17], [18]. Theory of Mind is the capacity of
attributing a mental state to other people i.e. to infer unob-
servable beliefs, desires and intentions and interpret actions
in relations to these mind state. Research on Theory of Mind
[19]–[22] suggests that humans interpret observed behaviors
as goal-directed actions. Csibra and Gergeley [21] identify
two types of inference: ”action-to-goal” and ”goal-to-action”.
Based on this idea Dragan et al. [6] present a framework
to quantify predictability (”goal-to-action” inference) and
legibility (”action-to-goal” inference) of trajectories. In [23]
they extend the work and use it to generate legible (motion)
trajectories by introducing constrained legibility optimiza-
tion. This framework is used in [24] to create legible pointing
trajectories. As we use this legibility metric in our model, we
will present it in III-B. Similar to the concept of legibility is
the work on sensorimotor communication (SMC) [25], [26].
SMC uses the same channel as the to-be-executed action for
communication. [25] proposes to use a signaling distribution
of a trajectory in order to facilitate its recognition by another
person. However, no other work uses an interactive RL
scheme to learn more legible behavior. Some similar ideas
can be found in [27], where the agents in a multi-agent
RL setting integrate the intent of the other agents when
calculating the optimal action, but do not express their intent
themselves. [28] employs different approximate-inference
Inverse Reinforcement Learning (IRL) variations to model
how humans infer an agent’s objective function and use an
algorithmic teaching approach [29]–[31] to generate a set
of environments to increase the probability of inferring the
correct objective function. For each environment the optimal
trajectory according to the objective function is shown,
therefore it’s not about comparing different trajectories in
one environment like in our approach. The work of Ho et
al. [32], [33] combine the idea of IRL and communication
via the means of pedagogical reasoning [34]. [35] shows
similar to this idea that there is a difference between people

solving and teaching a sensorimotor task, furthermore that
people perceive a significant higher portion of negative than
positive demonstrations as informative. [36] uses the data
of Ho et al. [33] and find that it’s safer to assume a literal
human even when people try to be pedagogic.

While no other work investigates the integration of legi-
bility with classical RL algorithms, there exists a substantial
amount of research on how to put a human in the loop of
RL. Integrating evaluative feedback from humans into RL is
sometimes called human-centered RL. A survey on human-
centered RL topic is provided by [37]. One important model
to mention is TAMER [38], [39]. TAMER directly models
the human rewards and myopically learns from this model.
TAMER itself is not a RL technique, however further work
TAMER+RL [9], [40], [41] integrates TAMER with RL.
Furthermore, other models that integrate human feedback
into RL use concepts borrowed from TAMER (e.g. COACH
[12], [42]) or extend it (e.g. ACTAMER [43]).

III. INTEGRATING OBSERVER FEEDBACK ON LEGIBILITY
INTO INTERACTIVE RL

In this work we are interested in the combination of a RL
system with an observer that reasons about the goals of the
learner to increase the legibility of the learned trajectories.
In order to achieve this we use a Markov Decision Process
(MDP) in combination with Reward Shaping to model the
learning problem. We add the observer to the equation by
modeling the observer with different strategies to estimate
how likely the agent is going for the target goal.

A. Interactive RL

The standard way of formalizing reinforcement learning
problems is the use of a MDP. A MDP is defined as tuple
(S,A, T , R, γ). S is the set of states (state-space), A is the set
of actions (action-space), T : S ×A× S → P (s′ | s, a) de-
fines the state-transition probability function, with P (s′|s, a)
representing the probability that the agent transitions to state
s′ when taking the action a, R : S×A×S → R defines the
reward r(s, a, s′) that the agent receives when transitioning
from state s to the new state s′ while taking action a. γ →
[0, 1] is the discount factor describing how much rewards
for the recent decision are taking into account. The agent’s
objective is to maximize the cumulative received reward.
A policy is a mapping from state to action π : S → A.
The value of taking an action a while being in state s and
following the policy π can be described with the action-value
function for policy π denoted as Qπ . A standard approach
to solve problems formulated like this is Q-Learning. Q-
Learning will also serve us as baseline to compare to. For
Q-Learning we use a simple one-step Q-learning defined by:

(1)Q(st, at)← Q(st, at)

+α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]

The step size α with 0 < α < 1 defines how strongly to
move towards the new estimate at each iteration, the larger
α, the larger the step towards the new estimate. The discount
factor γ with 0 ≤ γ ≤ 1 determines how strongly to take



future rewards into account. When γ is 0 the agent will only
consider current rewards and with increasing γ the agent
takes future rewards more strongly into account. For action
taking we use the exploration rate ε, i.e. with a probability of
ε the agent takes a random agent and the reward maximizing
action of the current policy otherwise.

We add the observer to the system by using Reward
Shaping [44]. The original MDP reward is replaced by
R′(s, a) by adding the weighted reward from the observer
Ô to it.

R′(s, a) = R(s, a) + β · Ô(s, a) (2)

The reward from the environment and the reward from the
observer are of different nature and can, in general, differ in
scale. The weighting factor β can be used to accommodate
for this fact. We will compare different algorithms for Ô to
model different observer strategies. These algorithms will be
presented in III-C. While other (more sophisticated) methods
like Policy Shaping and Value Shaping [9], [10], [40], [45] to
integrate Human feedback into the classical RL formulation
exist, Reward Shaping will suffice as proof of concept for
the feasibility of our approach. Ng et al. [44] describe the
necessary requirements for Reward Shaping to preserve the
optimal policy, if these requirements are not met positive-
reward cycles can occur. Note that the way we are employing
reward shaping does not meet these requirements.

B. Legibility

In order to formally evaluate the legibility λ(ξ) of a
trajectory ξ, we use the legibility metric proposed by [6].
Following this line of work the observer needs to be able to
confidently infer the correct (=the target) goal g∗ after only
observing a part of the whole trajectory to the goal ξs0→st
starting at s0 and ending at the intermediate point st. The
trajectory is more legible the faster this confident inference
happens. Imagine an observer watching an agent acting in
the environment shown in Fig. 1 in the observer model part.
The observer tries now to infer as fast as possible for which
goal the agent is going for. The right trajectory (solid blue
line) is more legible than the left trajectory (dashed grey
line), because for the right trajectory it seems more likely
that the agent is going for the target goal on the right. For
the left trajectory it is still not clear for which goal the agent
is going for, the next step could either be to the left or
to the right. Fig. 2 illustrates the concept of legibility in
a discrete environment. The agent is aiming for the goal to
the right (blue circle). There is an alternative goal on the
left side (orange square). The more the trajectories go to
the right side the higher is the resulting legibility. We will
use this environment in our first experiment and refer to it
as environment 1. The described properties of legibility are
captured by the following equation [6]:

λ(ξ) =

∫
P (g∗|ξs0→st)f(t)dt∫

f(t)dt
(3)

We integrate over the probability to infer the target goal
given the current trajectory P (g∗|ξs0→st). Therefore, higher

Fig. 2. Different example trajectories with corresponding legibility (λ)
in environment 1. The start position is marked with ’S’, the target goal is
marked with a blue circle and the alternative goal is marked with an orange
square.

inference probability of the right goal will result in a higher
legibility. The second requirement is that this inference
should happen as fast as possible. f(t) provides a simple
function to give higher weights to earlier parts of the
trajectory. We use f(t) = T − t with T as duration of the
trajectory as suggested in [6]. Now we need to calculate the
probability P (g|ξs0→q) starting of with Bayes’s Rule:

P (g|ξs0→q) ∝ P (ξs0→q|g)P (g) (4)

P (g|ξs0→q) is the probability that the agent follows ξs0→q
when the agent targets a possible goal g ∈ G. q can be any
intermediate point. The prior probability of a goal P (g) is
assumed to be known, otherwise a uniform prior can be used.
P (ξs0→q|g) can be computed as the ratio of all trajectories
from s0 to g that pass through ξs0→q to all trajectories from
s0 to g [6]:

P (ξs0→q|g) =

∫
ξq→g

P (ξs0→q→g)∫
ξs0→g

P (ξs0→g)
(5)

Following the assumption that trajectories are separable [46],
i.e. P (ξs0→q→g) = P (ξs0→q)P (ξq→g), leads to:

P (ξs0→q|g) =
P (ξs0→q)

∫
ξq→g

P (ξq→g)∫
ξs0→g

P (ξs0→g)
(6)

At this point, a model is required to express the probability of
a trajectory in the eyes of an observer P (g|ξs0→q). The prin-
ciple of maximum entropy as suggested by [46] is adopted
to model this probability as P (ξ) ∝ exp(−C(ξ)). C(ξ) is
the cost associated with trajectory ξ, therefore the probability
of a trajectory decreases exponentially with increasing costs,
leading to [6]:

P (ξs0→q|g) ∝
exp(−C(ξs0→q)

∫
ξq→g

exp(−C(ξ∗q→g))∫
ξs0→g

exp(−C(ξ∗S→G))

(7)



These integrals are computationally challenging and [47]
derive an approximation with the assumptions that C
is quadratic and its Hessian is constant. Under these
assumptions according to Laplace’s method we have∫

exp(−C(ξs0→q))) ≈ k exp(−C(ξ∗s0→q)), with the con-
stant k and ξ∗s0→q as the optimal trajectory from s to
q w.r.t. C. Plugging this expression into (7) and using
z =

∑
G P (g|ξs0→q) to normalize the probability leads to

[6]:

P (g|ξs0→q) =
1

z

exp(−C(ξs0→q)− C(ξ∗q→g))

exp(−C(ξ∗s0→g))
P (g) (8)

Approximating the cost C with the quadratic trajectory
length in workspace punishes the agent from unnecessarily
long paths [6]: C =

∑
t‖ξs0→st+1 − ξs0→st‖2. For the

discrete case with step size of one, C is equivalent to the
Manhattan distance. In situations with multiple goals, an
agent can make trajectories more and more legible and never
reaching a score of one while increasing the cost w.r.t to C
more and more. In order to prevent the agent to go to far
away from the observer’s expectation, [6] propose to use a
regularizer: L(ξ) = λ(ξ) − µC(ξ). We did not apply this
regularizer, because the agent is already being punished by
the environment for longer trajectories. [6] show furthermore
in an experiment with real humans that for legible trajectories
the participants were faster able to infer the target goal with
higher probability correctly.

C. Modeling the Observer

We compare four algorithms: Q-Learning (Q-L),
Q-OBS-D, Q-OBS-P and Q-OBS-L. These algorithms differ
in the strategy the observer Ô implements. An overview of
the ideas for the used functions for Ô is shown in Table I.
The algorithms only differ in the choice of Ô inserted in (2).
The main difference is between Q-Learning as baseline
algorithm which we consider non-interactive and the other
three algorithms which we consider interactive. The main
purpose of implementing different versions of the interactive
methods is to explore how to integrate an observer that
reasons about the possible goals of the agent in interactive
RL. In the following we explain the proposed algorithms.

1) Q-L: Using the trivial equation for Ô:

Ô = 0 (9)

is equivalent to plain Q-Learning. Q-Learning does not use
any information from the observer and is therefore not
interactive. Since Q-Learning only takes the rewards from the
environment into account, it has no information on legibility.
However, this does not mean that the learned trajectories can
not be legible, we can expect that some trajectories more
legible than others. Therefore, Q-Learning will serve us as
comparison to have a baseline how legible the trajectories
are just by chance.

2) Q-OBS-D:

Ô(s, a, s′) =
1

z
exp(−σd(s′, g∗)) (10)

TABLE I
THE DIFFERENT USED OBSERVER FUNCTIONS.

alg. observer function idea

Q-L Non-interactive baseline algorithm
using no observer function

Q-OBS-D Interactive algorithm using softmax
of goal distance as observer function

Q-OBS-P

Interactive algorithm using the cost
of the observed trajectory in comparison

with the cost of the optimal trajectory
as observer function

Q-OBS-L
Interactive algorithm using the

legibility of the observed trajectory
as observer function

d is the distance from s’ to the goal using the Manhattan
distance. z is partition function of the softmax distribution in
order to normalize the probability to one. σ is the temperature
parameter to adjust how ’sharp’ the distribution peaks around
the maximum. (10) only depends on the current state s′

and not on the observed trajectory snippet. We consider this
approach as a naive approach to estimate goal probability
and expect it to work in some cases, as it gives an incentive
to reduce the distance to the target goal early on, however
in more complex configurations, e.g. when the target goal is
behind another goal, this approach might not work. Therefor
we expect it to work at least as good as Q-L, and in some
cases even better.

3) Q-OBS-P: For Q-OBS-P we use the probability to
reach a goal given a snippet of trajectory given with (8):

Ô(ξs0→q) = P (g∗|ξs0→q) (11)

Since this method uses a goal probability that has success-
fully been employed in previous research [6], [23], [24] it
seems like a more suitable candidate to estimate the goal
probability than Q-OBS-D and we expect it to perform better.
For Q-OBS-L we directly use the legibility as feedback from
the observer. For the discrete case with K as the number of
steps for reaching q and sk as the state after k steps (3)
becomes:

Ô(ξs0→q) =
ΣKk=0P (g|ξs0→sk)f(k)

ΣKk f(k)
(12)

Using directly the legibility is not a goal probability, since it
does not sum up to one for all goals, nevertheless it contains
by definition information on how confident the observer is
that the agent is going for the target goal. Therefore we also
expect this method to also perform better than Q-OBS-D.

IV. EXPERIMENTS

The goal of the experiments is to evaluate the ability of
the algorithms presented in Section III-C to increase the
legibility of the learned trajectories. Q-Learning will serve as
non-interactive baseline to compare to. Q-OBS-D, Q-OBS-P
and Q-OBS-L integrate information information on the goal
probability into the model and are expected to perform better.
We evaluated the approach on five different environments.
For the first environment there are only two possible goals,



and we use it to illustrate the approach. For the environments
2 – 5 we use three goals and changed the configuration of
these goals relative to each other.
The parameters were set intuitively. First we set the pa-
rameters that Q-Learning performed reasonable well and
kept these parameters for the interactive algorithms. The
parameters specific to the interactive algorithms were then
set to perform reasonable well, but not tweaked to achieve
the best possible performance. The parameters were kept
for all environments. For the rewards from the environment
we used: reaching the target goal rg = 0, penalty for
unvisited state different from the target goal rp = −0.1,
penalty for already visited state different from the target
goal rp2 = −0.2. For the Q-Learning relevant parameters
we used: α = 0.9, γ = 0.9 and ε = 0.1. The q-table
was initialized with random values from 0 to 2. For Q-
OBS-D we set σ = 0.3 For implementation reasons, to
address the problem of positive loops we use β = β1β2,
with β1 = −rp and β2 = 2. By setting the parameters like
this, we assure that agent does not achieve a net gain larger
than 0 by cycling back and forth. However, the possible
looping behavior drastically limits the choice to set β. Each
algorithm was trained in 100 sessions for 120 episodes on
each environment.

A. Environment 1

1) Description: The first environment was used to check
the feasibility of the approach and includes only two goals:
the target goal and one alternative goal. The size of the
grid of the first environment is 9x9 and is visualized in
Fig. 2 alongside with four example trajectories and the
corresponding legibility. The first trajectory (from left to
right) is sup-optimal in terms of steps towards the target
goal and the legibility is low, the second and the third
trajectory are both optimal, however the third trajectory
yields a higher legibility because one can infer earlier for
which goal the agent is aiming. The fourth trajectory is
sup-optimal but the legibility is the highest of the shown
trajectories. There are multiple optimal trajectories, when
using Q-Learning, there is no reason for the agent to prefer
one optimal trajectory over another optimal trajectory. Since
the learning is stochastic, we expect the agent to sometimes
learn an optimal trajectory with a higher legibility and other
times with a lower legibility. We do not expect to learn with
Q-Learning trajectories with a even higher legibility. When
integrating the observer feedback, we expect the learned
trajectories to be more legible and sometimes to even learn
trajectories that are sub-optimal, but more legible than the
most legible optimal trajectory. While we show only two
possible optimal trajectories to the goal, there are more
possible optimal trajectories to the goal than these two. These
trajectories only differ in the legibility. Since the Q-table
is randomly initialized and an ε-greedy exploration strategy
is used the learning process is stochastic. Technically, we
are not learning trajectories, but policies - once a policy is
learned the trajectory generated by that policy are determin-
istic. When speaking about the learned trajectories, we are

strictly speaking about the trajectories that are generated by
the learned policies.

2) Results: As aforementioned even when only consid-
ering only the optimal trajectories there is a large number
of possible trajectories. During the training processes of the
different algorithms a large number of different trajecto-
ries have been learned. It is not possible to visualize the
differences of the different algorithms in only one graph.
Therefore we will use different methods to illustrate the
occurred differences. First, we will have a look into the
five best and five worst trajectories w.r.t. the legibility as
illustrated in Fig. 3. If we now have a look at the legibility

Fig. 3. The five best (solid blue lines) and five worst (dashed grey lines)
learned trajectories w.r.t. λ for the different algorithms of environment 1.

of the best and worst trajectories (w.r.t. λ) learned by Q-
Learning, we see that these values are lower than legibility
of the best and worst trajectories learned by the interactive
algorithms. From Fig. 2 we know that the more legible
trajectories tend to go to the right earlier on and are more
on the right side of the grid in general. We can see that
the trajectories of the interactive algorithms also tend to lie
more on the right side of the grid world. The legibility of the
different algorithms averaged over 100 runs for environment
1 is reported in Fig. 4. All algorithms that integrate a non-
zero observer reward perform significantly better than plain
Q-Learning. Q-OBS-P performs best regarding the legibility
of the learned trajectories.

B. Environments 2 – 5

While we showed in environment 1 that all interactive
algorithms perform better than Q-Learning, we tested the
approach on four additional environments to test the limits of
our approach. This time we included an additional alternative
goal. The grid size for tasks 2 – 5 is 9x9 as in environment
1. All tasks have three goals, the target goal and two
alternative goals. The different environments can be seen in
Fig. 5. We varied the relative configuration of the goals to
evaluate the influence on the performance of the algorithms.
In environment 2 – 4 the position of the alternative goals



Fig. 4. Mean of the legibility for the different algorithms in environment
1. The significance level was calculated using the Mann-Whitney U test.

stays the same, we only vary the position of the target goal. In
environment 5 there is no obvious more legible trajectory, so
we do not expect including the observer feedback to perform
better.

1) Results: The legibility of the different algorithms av-
eraged over 100 runs for environment 2 – 5 is reported in
Fig. 6. While Q-OBS-D significantly improved the legibility
of the learned trajectory for environment 1, there is no signifi-
cant difference for environment 2 and 4. As for environment
1, Q-OBS-P is the best performing algorithm for all envi-
ronments with a significant higher legibility in comparison
to Q-Learning. Q-OBS-P performs significantly better than
Q-Learning for environments 2 – 4, but not for environment
5. For environment 5, from a human perspective, there is
no more legible trajectory than the (only) optimal trajectory
i.e. just going straight from start to the target goal. The only
optimal trajectory has a legibility of λ = 0.388. In Fig. 7 we
see the five best and five worst trajectories for environment
5. We see that in terms of the metric that all algorithms
generated some trajectories with λ > 0.388.

V. DISCUSSION

The results show that the interactive algorithms perform
better than Q-Learning. Our main focus is on showing that
the interactive approaches are useful in comparison to the
non-interactive approaches. In order to support our main
message it is not really important which of the interactive
algorithm performs best. A major limitation is the use of
Reward Shaping and a next step will be to replace it with
a better suited method like Policy Shaping. Therefore it is
not useful to put effort into analyzing differences in the

Fig. 5. Environment 2 – 5, for the environments 2 – 4 only the position
of the target goal was varied, for environment 5 there is no legible path
from a human point of view.The target goal is marked as a blue circle, the
alternative goals as orange squares and the start with ’S’.

approaches based on Policy Shaping, especially since the
parameters were not tuned for every algorithm to perform
to its best. In our approach we simulated the observer
giving additional rewards to the agent. One possible idea
is to employ a real human in the loop giving the observer
feedback. Research on human feedback in RL (e.g. [8],
[48]–[50]) suggests that probably real humans will behave
differently than our models, therefore the framework might
not work. However, our model might be useful even when
no observer giving feedback is present. Since the agent has
all the information the observer has, we could integrate the
observer model internally into the agent. The agent could
improve it’s behavior by expecting to being watched. An
approach like this would go into the direction of theory of
mind. One downside of our approach is that the observe
needs to know all the present goals in the setting to infer the
goal probability. In robotics this is a strong assumption. An
interesting problematic arises in this context: the robustness
of the legibility if the observer has only partial knowledge
of the goals. Also interesting is that in environment 5 there
are more legible trajectories than the trajectory that goes
directly from start to the target goal. From a human point of
view there are arguably no more legible trajectories. For the
legibility metric this happens, because for example going to
the right after passing the level of the two alternative goals,
drastically decreases the probability of the left goal and
increases the probability of the right goal, therefore the target
goal probability also increases. Simultaneously the length of
the trajectory increases leading to a change of the weights for



Fig. 6. Mean of the legibilities for Task 2 – 5 for the different algorithms.
The significance level was calculated using the Mann-Whitney U test.

each part of the distribution. These two changes together can
lead to an increase in legibility. It is not clear, if this will be
a relevant problem, for longer continuous trajectories. That’s
another limitation we did not address in this work - scaling
the approach up to a more complex task than just a grid
world, possibly also using a robot with multiple degrees of
freedom instead of just a point robot.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we were interested in integrating observer
feedback into RL to increase the legibility of the learned
trajectories. We proposed three interactive RL algorithms
by integrating observer feedback and compared them to the
non-interactive Q-Learning. We showed that the interactive
RL approaches learn trajectories with a significantly higher
legibility and that even a simple approach can perform at
least as good as Q-Learning. From that, we conclude that
when it comes to Human-Robot cooperation it is useful to
integrate reasoning about the goal probabilities in order to
increase the legibility of the trajectories. While we used
Reward Shaping as a simple mechanism to integrate the
feedback, the problem of positive-reward cycle is limiting
the power of the approach. In future work we will consider
other shaping mechanisms as Policy Shaping, as it will
probably work better in experiments with real humans, which
is another direction we are aiming for. Furthermore, we plan
to extend the experiment to a more complex environment.
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