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Abstract

This paper provides an alternative proof of the characterization of multiply monotone
functions as integrals of simple polynomial-type applications with respect to a probability
measure. This constitutes an analogue of the Bernstein-Widder representation of com-
pletely monotone functions as Laplace transforms. The proof given here relies on the
abstract representation result of Choquet [8] rather than the analytic derivation origi-
nally given by Williamson [24]. To this end, we identify the extreme points in the convex
set of multiply monotone functions. Our result thus gives a geometric perspective to
Williamson’s representation.

Keywords: Multiply monotone functions, Choquet theorem, Extreme points

AMS Subject Classification(2020): 26A48, 26A51, 44A05, 46A55.

1 Introduction
Completely monotone functions (c.m. for simplicity), whose signs of successive derivatives
alternate, are a standard object of study in analysis and probability. Bernstein proved in [4]
that conveniently normalized completely monotone functions on R+ are Laplace transforms
of probability measures on R+: this is known as the Bernstein-Widder theorem (see Chapter
4, Theorem 12a in [23]). It is natural to weaken the definition of c.m. functions and ask that
the derivatives’ signs alternate only up to some fixed order d ≥ 1. Williamson [24] showed
that these functions, known as multiply monotone, or d-monotone, can also be expressed
as expectations of some simple functions with respect to a probability measure (see (3.1)),
the simple functions being scale mixtures of Beta distributions. The goal of this paper is
to provide an alternative proof for the representation (3.1), that sheds some new light on
the geometry of the set of d-monotone functions, in particular on the extreme points of this
convex set.
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Many known proofs of the Bernstein-Widder representation of c.m. functions use the fact
that if f is a c.m. function, then xkf (k)(x) converges to 0 when x goes to infinity ([4, 23,
15, 7]). In the same vein, Williamson [24] shows that for a multiply monotone function f ,
xkf (k)(x) also converges to 0 and performs a Taylor expansion to identify the density of the
representing measure in (3.1). These proofs are based on the fact that the definition of c.m.
or multiply monotone functions requires that these functions are differentiable enough. Note
that Bernstein [3] already introduces a definition only involving successive finite differences
(see Definition 2.1 in this paper) and that Widder ([23], Chapter 4, Theorem 7) shows that the
definitions involving derivatives and finite differences are equivalent. The alternative proof
presented here has the advantage of not making use of differentiability, since it is based on
abstract representation results of Choquet. The Bernstein-Widder representation result is
generalized in [8] (Chapter 7, Section 43) to c.m. functions which are defined on an ordered
semigroup (an ordered set with an associative operation), by identifying the extreme points
of such a set.

In his Bourbaki lecture notes [9], Choquet provides several examples of convex sets whose
elements can be represented by simpler preferred points (extreme points): among the exam-
ples, one finds c.m. functions on [0,+∞), or alternating capacities on a compact set. In the
first case, the preferred elements are (exp(−tx), t ≥ 0) and in the second case it is elementary
capacities, which are {0, 1}-valued. The proof given in [9] uses abstract representation re-
sults, extending the Krein-Milman theorem representing certain convex and compact subsets
of topological vector spaces as the convex hull of their extreme points. The proof given here
follows this line of reasoning. We first identify the extreme points in the set of d-monotone
functions, and then apply the representation theorem of Choquet [8, 21], which is recalled in
Appendix for completeness.

Williamson’s result, which is the counterpart for d-monotone functions of the Bernstein-
Widder representation, has several important applications in probability, statistics and ap-
proximation theory. In [19], it is proved that a function ϕ generates a valid d-dimensional
Archimedean copula if and only if ϕ is d-monotone. This allowed to provide new classes
of multivariate distributions [18] or new nonparametric statistical estimation procedures for
Archimedean copulas [13]. Building d-monotone functions by reassembling functions defined
on different intervals also allows to modify a copula so that it exhibits a specific tail dependence
behavior [10]. Independently of copula theory, there is an interest for the class of d-monotone
functions in statistics. Gao [12] has computed entropy estimates for d-monotone functions,
which is used to provide rates of convergence of density estimators, where the density is con-
strained to be d-monotone. Relying on Williamson’s representation, the authors of [2] obtain
a limit distribution for the maximum likelihood estimator of a d-monotone density, where the
limit distribution is characterized as a marginal of the lowest (2d)-convex process dominating
a given Brownian stochastic integral, a process Z being (2d)-convex if (−1)dZ(2d−2) exists and
is convex. Multiply monotone functions also have close links with radial functions [14] and
approximation theory [6, 5]: we refer the reader to these papers and the references therein for
more details.

In the next section, we identify the extreme points of the set of d-monotone functions and in
Section 3, we prove Williamson’s representation.
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2 Extreme points in the set of d-monotone functions
Let X be the space of real valued functions on R+. For a > 0, the difference operator
Da : X → X is defined by

Daf(t) = f(t+ a)− f(t), t ∈ R+.

For positive integers a1, . . . , an, the product
n∏

j=1
Daj denotes the sequential application of the

operators Da1 , . . . , Dan .

Definition 2.1 Let d ≥ 1 be an integer. A function f ∈ X is called d-monotone on (0,+∞)
if

(−1)n

 n∏
j=1

Daj

 f(t) ≥ 0, ∀t ∈ (0,+∞), (2.1)

for all aj > 0 and all n = 0, . . . , d, where by convention n = 0 corresponds to f ≥ 0.

If d = 1, the previous definition says that f is 1-monotone on (0,+∞) if it is nonnegative and
nonincreasing there, while 2-monotone functions are nonnegative, nonincreasing and convex.

Remark 2.1 Note that unlike the definition given in the previous literature ([24, 2, 12, 19]),
we do not require here that d-monotone functions are differentiable. We will nonetheless prove,
via Theorem 3.1, that for d ≥ 2, d-monotone functions are differentiable up to the order d−2.
Note that this can also be obtained directly, independently of (3.1), by a reformulation of
Theorem 4 in [23] (Chapter 4).

For d ≥ 2, let Kd denote the space of functions defined on [0,+∞), which are d-monotone on
(0,+∞) and let K0

d ⊂ Kd be the functions in Kd satisfying

f(0) ∈ [0, 1] and lim
x→+∞

f(x) = 0. (2.2)

Define K1 as the set of nonnegative, nonincreasing functions on [0,+∞) which are right-
continuous, and K0

1 the functions in K1 satisfying (2.2).

Kd is a convex cone, and K0
d is a convex set, for which we want to identify the extreme points.

To do so, we just start from the extreme points in the set K1, which are well known, and we
show that we can retrieve the extreme points in Kd by successive integrations. This is the
purpose of the next two lemmas.

Since any f ∈ K0
d is convex, it is in particular continuous and the set of points where f is

not differentiable has Lebesgue measure zero. Moreover, also because of the convexity of f ,
we can define its right-hand derivative f ′+(t) for every t ∈ (0,+∞), which of course coincides
with the derivative f ′(t) where f is differentiable.

Lemma 2.1 Let d ≥ 2. If e ∈ K0
d is an extreme point, then −e′+ is an extreme point in

Kd−1.
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Proof.
Step 1: We first show that if e ∈ Kd, then −e′+ ∈ Kd−1. For any a > 0, −Dae ∈ Kd−1: indeed,
in (2.1), we can take n = d and a1 = a and write

(−1)d−1

d−1∏
j=1

Daj

 (−Daf) ≥ 0.

We can use (2.1) this way for any n = 1, . . . , d and get that −Dae ∈ Kd−1. This implies that
−e′+ ∈ Kd−1 since

e′+(t) = lim
a→0+

e(t+ a)− e(t)
a

= lim
a→0+

Dae(t)
a

and for b1, . . . , bn positive,

(−1)n

 n∏
j=1

Dbj

 (−e′+(t)) = (−1)n+1 lim
a→0+

1
a

 n∏
j=1

Dbj

Dae(t) ≥ 0.

Step 2: Let us prove that e ∈ K0
d is an absolutely continuous function. Since e is convex,

it is also continuous and by monotony, e is of finite variation. By convexity, e has left and
right derivatives for every t ∈ (0,+∞): Lemma 7.25 in [22] (page 153) implies that e satisfies
Luzin’s (N) property, i.e. the image by e of every Lebesgue negligible subset of (0,+∞) is null.
By the Banach-Zarecki theorem [20, 11], we can conclude that e is absolutely continuous. In
particular

e(t) = e(0)−
∫ t

0
e′+(u)du.

Step 3: Assume now that −e′+ = λg + (1− λ)h with g, h ∈ Kd−1 and λ ∈ (0, 1). By absolute
continuity of e, we have

e(t) = λ

(
e(0)−

∫ t

0
g(v)dv

)
+ (1− λ)

(
e(0)−

∫ t

0
h(v)dv

)
=: λ (g̃(t)) + (1− λ)

(
h̃(t)

)
.

It can be checked directly that h̃ and g̃ belong to K0
d . By extremality of e, we get e(t) =

g̃(t) = h̃(t), for t ∈ (0,+∞), and by differentiation, which is authorized since g and h are
continuous, we get −e′+ = g = h.

2

Lemma 2.2 Let d ≥ 1, fd be an extreme point in K0
d and define

fd+1(t) = 1−
∫ t

0
fd(v)dv.

Then fd+1 is an extreme point in K0
d+1.

4



Proof. Assume that fd+1 = λg + (1− λ)h, with g, h ∈ K0
d+1 and λ ∈ (0, 1). By Lemma 2.1,

−g′+ ∈ Kd and −h′+ ∈ Kd. By continuity of fd, we have

fd(t) = λ(−g′+(t)) + (1− λ)(−h′+(t)).

From the inequalities 0 ≤ fd(0) ≤ 1 and the fact that −g′+(0) and h′+(0) are both nonnegative,
we get −g′+(0) ≤ 1 and h′+(0) ≤ 1. Since limt→∞ fd(t) = 0 and that both functions −g′+ and
−h′+ are nonnegative, we get that −h′+ and −g′+ are in K0

d . fd being an extreme point in K0
d ,

we have −g′+ = −h′+ = fd, which in turn implies that fd+1 = g = h, by definition of fd+1 and
by absolute continuity of g and h (see step 2 of the proof of Lemma 2.1).

2

For u > 0, we define the following sequence of functions

eu
1(t) =

{
1 if 0 ≤ t < 1

u
0 otherwise, (2.3)

eu
d+1(t) =

{
1− u d

∫ t
0 ed(v)dv if 0 ≤ t < 1

u
0 otherwise, d ≥ 2, (2.4)

for t ∈ [0,+∞).
We have of course the explicit expression

ed(t) =
{

(1− ut)d−1 if 0 ≤ t < 1
u

0 if t ≥ 1
u .

(2.5)

These functions are scale mixtures of Beta distributions. The result below says that these are
the extreme points in the set of d-monotone functions.

Theorem 2.1 The extreme points of the set K0
d are given by

Ext(Kd) = {eu
d , u > 0} .

Proof. The functions in K0
1 , which are right-continuous by definition, are distribution func-

tions of probability measures on R+, whose extreme points are unit masses concentrated on
a single point (see Theorem 15.9 in [1]). Said differently, we have Ext(K0

1 ) = {eu
1 , u > 0}.

Using Lemma 2.2 by induction, we get that

{eu
d , u > 0} ⊂ Ext(K0

d),

since the multiplication by a positive constant do not alter d-monotony.
Assume now that there exists f ∈ Ext(K0

d) with f /∈ {eu
d , u > 0}. Using Lemma 2.1 by

induction, we would have (−1)d−1f
(d−1)
+ ∈ Ext(K1). The set of extreme points of K1 is equal

to the set of distribution functions of positive point masses, not necessarily equal to one,
concentrated on one point: this is exactly the set of right-derivatives of order d−1 of functions
in {eu

d , u > 0}. So f /∈ {eu
d , u > 0} is not possible and we have Ext(K0

d) ⊂ {eu
d , u > 0}. 2
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3 Integral representation result
We are now in a position to provide an alternative proof of Williamson’s representation result.

Theorem 3.1 f ∈ K0
d if and only if there exists a probability measure µ on R+ such that

f(t) =
∫ +∞

0
eu

d(t)µ(du). (3.1)

The representation (3.1) is given in Theorem 1 in [24]. The main argument used there is a
control of the rate at which xkf (k)(x) goes to 0 when x goes to infinity (k ≤ d − 2). These
analytic arguments are very similar to the ones used later by Lévy in [17], where the derivatives
are just assumed to be monotone. Here, we do not assume differentiability, but obtain it as a
consequence of Theorem 3.1. The second part of next proof follows the lines of the proof of
Theorem 3 (Section 14.3) in [16].

Proof. of Theorem 3.1. First, to prove that f given by (3.1) is d-monotone, just write

(−1)n

 n∏
j=1

Daj

 f(t) =
∫
R+

(−1)n

 n∏
j=1

Daj

 eu
d(t)µ(du) ≥ 0.

Secondly, to prove that a d-monotone function takes the form given in (3.1), we introduce the
topology on X, which is the coarsest for which all the linear functionals `t:

`t(f) := f(t), t ≥ 0

are continuous. This makes X a locally convex topological linear space. K0
d is a convex subset

of X. Since the values of f ∈ K0
d lie between 0 and 1, K0

d is a subset of
∏
0≤t

[0, 1], the set of

functions from (0,∞) to [0, 1], which is compact by Tychonov’s theorem. So to prove that K0
d

is compact, it suffices to prove that it is closed. For a fixed integer n, fixed a(n) = (a1, . . . , an)
and t ≥ 0, the set Ka(n),t

d of functions satisfying (2.1) and the normalization f(0) ∈ [0, 1] and
limt→∞ f(t) = 0 is closed. Hence the set

K0
d =

d⋂
n=1

⋂
a(n)>0, t≥0

Ka(n),t
d

is also closed. By Theorem 2.1, Ext(Kd) = {eu
d , u > 0}. Let us prove that {eu

d , u > 0} is
closed. Note that this set contains the function e∞d (t), equal to 1 if t = 0 and equal to 0
otherwise. Take a sequence e(n)

d ∈ Ext(K0
d) such that for every t ≥ 0, e(n)

d (t) converges to
some e(t), when n goes to infinity. By (2.5), there is some sequence (un) of positive numbers
such that e(n)

d (t) = (1 − unt)d−1
+ . Since e(n)

d converges pointwise, then (un) has a limit. We
claim that this limit is different from 0. Indeed,

(1− unt)d−1
+ = γ ((unt,+∞)) ,

where γ is a Beta(1, d) distribution. Since for every t ≥ 0, γ ((unt,+∞)) converges to e(t), the
map t 7→ e(t) is the survival function of some probability distribution. Hence limn→∞ un = 0
is not possible, since it would imply e(t) ≡ 1, which is not an admissible survival function. So
limn→∞ un = u, with 0 < u ≤ +∞ and e(t) ∈ {eu

d , u > 0}.
It remains to apply Theorem A.1, with K = K0

d and `t(f) = f(t). 2
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Corollary 3.1 For d ≥ 1, the functions in K0
d are right-continuous at 0 and differentiable

on (0,+∞) up to the order d− 2.

Proof. From representation (3.1), right-continuity at 0 and derivability result from standard
applications of the dominated convergence theorem and the rule for derivation under the
integral sign (see for instance [24]). 2

Appendices
A Choquet’s integral representation result
The following theorem of Choquet, that we recall here for completeness, generalizes the Krein-
Milman theorem. Informally, it gives sufficient conditions for a point in a convex set to be
represented as a barycenter of extreme points.

Theorem A.1 (Choquet [8]) Let X be a locally convex topological linear space, K ⊂ X a
convex and compact subset of X, Ke = Ext(K) and Ke the closure of Ke. For all x ∈ K,
there exists a probability measure µx on Ke such that

x =
∫

Ke

edµx(e), in the weak sense.

In Theorem A.1 above, the weak sense means that for every continuous linear functional ` on
X,

`(u) =
∫

Ke

`(e)dµx(e).
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