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Abstract
The salt spring exploitation from Hălăbutoaia - Ţolici (Neamț County, Romania) dates back to the Early Neolithic and lasted
throughout Chalcolithic. The deposit stratigraphy is estimated at 8 m and covers 2500 years of history (c. 6000–3500 BCE). In
order to document the possible use of plants, particularly of the grasses, in the salt production process, we realized a detailed study
of phytoliths preserved in several archaeological levels of Hălăbutoaia site. The most identified morphotypes come from grass
family. Analysis revealed an important representation of inflorescence bracts phytoliths (especially ELONGATE DENDRITIC) show-
ing the anthropogenic origin of the assemblages. BILOBATE are also well represented. These forms attest the presence of wild
panicoid grasses (e.g. wild millet) and/or cultivated millets in the area. In some very punctual assemblages, forms produced by
dicots are well represented. Considering the low phytoliths production by dicots plants, it involves a special accumulation of
these types of plants that could be related to woody plants used as fuel for salt production. It is very possible that grasses had a
very important role in pyrotechnology used to produce salt, either as the main fuel or as a mean for controlling the temperature or
even as a firelighter.
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Introduction

The sub-Carpathian area from Eastern Romania is character-
ized by a high density of saltwater springs: over 200 are

registered (Alexianu et al. 2007; Weller and Brigand 2017).
The exploitation of some of these dates back from the Early
Neolithic, during the Criș culture (Weller and Dumitroaia
2005), and represents one of the earliest evidences of salt
production in Europe. Moreover, contrarily to other prehistor-
ic salt springs in Europe (such as those from Germany or
France), those from Eastern Romania have been constantly
exploited through time, and the natural brine is still used by
locals nowadays (Alexianu et al. 1992, 2007). The
Hălăbutoaia - Ţolici (Petricani, Neamţ County) saltwater
spring, discovered in 2005 (Weller et al. 2007) and highly
concentrated in sodium chloride, presents direct and very ac-
curate evidence of salt exploitation during the Neolithic and
Chalcolithic periods (Brigand and Weller 2013, 2018;
Dumitroaia 1994; Weller and Brigand 2017; Weller and
Dumitroaia 2005; Weller et al. 2007, 2015). Its excavation
revealed that it was probably a seasonal salt exploitation point
(Dumitroaia et al. 2008; Monah 2008), extensively used
throughout the Neo-Eneolithic (Weller et al. 2015). Seasonal
or not, it is certain that natural brine and salt production was an
important aspect of prehistoric activities in this area. Two
techniques seem to have been practiced: pouring natural brine

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s12520-020-
01228-6.

* Mihaela Danu
danum2007@yahoo.com

Claire Delhon
claire.delhon@cepam.cnrs.fr

Olivier Weller
olivier.weller@cnrs.fr

1 Department of Biology, Faculty of Biology, Alexandru Ioan Cuza
University of Iaşi, Romania, Carol I Bvd., No. 20A,
700506 Iaşi, Romania

2 CNRS, CEPAM, UMR 7264, Université Côte d’Azur, Nice, France
3 CNRS, Trajectoires, UMR 8215, Université Paris 1

Panthéon-Sorbonne, Paris, France

Archaeological and Anthropological Sciences          (2020) 12:270 
https://doi.org/10.1007/s12520-020-01228-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s12520-020-01228-6&domain=pdf
http://orcid.org/0000-0003-1552-0589
https://doi.org/10.1007/s12520-020-01228-6
https://doi.org/10.1007/s12520-020-01228-6
mailto:danum2007@yahoo.com


onto combustion structures during the Early Neolithic and
evaporation in specific ceramic containers from the
Chalcolithic onwards (Sordoillet et al. 2018).

The whole salt extraction process involves the exploitation
not only of the brine itself but also of several other natural
resources, of which a major one is fuel. In order to elucidate
some traits of the prehistoric salt production process, several
analyses were run on two Early Neolithic salt working sites:
Poiana Slatinei in Lunca (Neamţ County) by archaebotany
and micromorphology (Dufraisse et al. 2010; Weller et al.
2008) and Hălăbutoaia near Ţolici by palynology (Danu
et al. 2010), micromorphology and SEM-EDS analysis
(Sordoillet et al. 2018).

In order to better document the use of plants in the salt
production process, in particular for the heating of the saltwa-
ter and the management of vegetal resources, we carried out a
detailed study of phytoliths from the levels linked with salt
extraction atHălăbutoaia site. These microremains were very
well-preserved in several archaeological levels assigned from
Criș to Cucuteni Cultures (c. 6000–3500 BCE). The underly-
ing issues concerned the influence of the environment on the
salt extraction process and more specifically the impact of the
local vegetation on the salt extraction techniques. As they are
a link of the operational chain, the availability of the plants
used as fuel may have influenced the whole process, and it
may be one of the reasons why this activity could have been
seasonal. Moreover, the recourse to phytolith analysis allows
tracing non-wood plants, which are often underestimated
when the question of fuel is considered.

Phytoliths, amorphous silica (SiO2) bodies which are
formed both within and between the living plant cells
(Currie and Perry 2007; Madella and Lancelotti 2012;
Piperno 1988) , may provide impor tant da ta for
palaeoenvironmental reconstruction (Borba-Roschel et al.
2006; Carter and Lian 2000; Rovner 1971), and they can be
successfully used in palaeoecology (Fredlund and Tieszen
1997; Li et al. 2017; Lu et al. 2007; Murungi et al. 2017;
Piperno 1989) and archaeology (Albert et al. 1999; Delhon
et al. 2008; Messager et al. 2011; Ollendorf 1987; Piperno
1988). Due to the physico-chemical properties of opal, these
bio-indicators are preserved very well in many sedimentary
contexts, being undoubtedly the most sustainable plant fossils
known so far (Piperno 2001). Although their taxonomic value
is generally inferior to other botanical indicators, the
phytoliths analysis presents the huge advantage that these
proxies allow the determination of grass subfamilies (which
is impossible with fossil pollen). Their use in archaeological
context becomes more important as the signal given by these
indicators is local: phytoliths are released into sediments or
soil and are considered to be mainly the subject of an in situ
deposition, as aerial dispersion is most of the times nearly
absent, contrarily to what happens with pollen (Lebreton
et al. 2017). Phytoliths dispersal can be influenced by strong

winds, but their in situ deposition, which is aided by gravity,
remains dominant (An et al. 2015; Garnier et al. 2012; Piperno
2006).

We also tried to correlate the information obtained from
phytoliths analysis with palynological research results (Danu
et al. 2010), as well as other archaeobotanical data (Dufraisse
2011), in order to interpret it taking into account the ancient
environmental conditions from Hălăbutoaia - Ţolici.
Phytoliths found at the site are derived from the
palaeoenvironment, although they reflect only specific part
of it because the phytolith assemblages results from anthropic
activities.

The Hălăbutoaia - Țolici site and its setting

Situated to the East of the Eastern Carpathians, in the contact
area between Moldova Valley and the Neamţ Subcarpathian
Depression, the Târpeşti - Ţolici - Petricani micro-region is
rich in saltwater springs, one of them being Hălăbutoaia -
Ţolici. Except for a few archaeological surveys, the exploita-
tion of salt in this micro-region received little attention and
was therefore poorly understood. Regarding archaeological
science, only a few ancient palaeoecological studies have been
carried out at the Neolithic settlement of Râpa lui Bodai in
Târpeşti, located 6 km north of the salt spring (Marinescu-
Bîlcu et al. 1981). Discovered during our archaeological sur-
vey in 2005 (Weller et al. 2007) and then excavated in 2007–
2010 (Weller et al. 2015), the Hălăbutoaia - Ţolici salt spring
is situated in a relatively narrow and deep valley, in the south-
west of Ţolici village, Petricani, Neamţ County (Fig. 1).

The main archaeological deposit is at the base of the east
slope of Hălăbutoaia hill, 40 m away from a saltwater well.
The anthropic deposit has the form of an ovoid mound with
diameters of approximatively 30 × 20m; the general slope and
the south side of the deposit are affected by an advanced
erosion process revealing large quantities of fragmentary ce-
ramics. Through a large trench in the middle part (SI, 15.5 ×
1.5 m), this salt working site occurs as thick archaeological
sedimentary accumulations, which are several metres high
and comprise numerous lenticular layers of clay, ash and char-
coal (Fig. 2).

The Neo-Eneolithic deposits represent a 8-m accumulation
of combustion features and ceramics, with 1.30 m below the
actual stream Pârâul Slatina. The whole sequence indicates
the exploitation of the salt spring with typical combustion
features and specific ceramic moulds usually known as
briquetage (Weller 2015). At this salt workshop, only an arti-
ficial evaporation process would have been used in order to
concentrate, until crystallization was reached, the natural high-
ly concentrated saltwater spring using fire (ignigenous salt).

The trench allowed the study of the 7-m-thick visible strat-
ified accumulation. The main litho-stratigraphic characteristics
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of the 29 recorded strata (from A to Z4) reveal abundant com-
bustion structures, as shown by the superposition of ashy-

charcoal residues on reddened clay (Sordoillet et al. 2018).
Radiocarbon dating (Table 1) and abundant typical ceramic

Fig. 2 Archaeological deposit and section at Hălăbutoaia - Ţolici (SI)

Fig. 1 Location of the archaeological site Hălăbutoaia at Ţolici (Petricani, Neamţ). Aerial photography with the salt spring in the middle (above);
extension of the archaeological deposit indicated by white dotted ellipse (bottom). Map: R. Brigand & O. Weller; Photos O. Weller
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material place the beginning of exploitation at around
5700 BCE and the end toward 3500 BCE. The well-
preserved combustion structures with an elongated trough
shape characterize the Early Neolithic exploitation (Criş cul-
ture), whereas the horizontal detritus layers with abundant pot-
tery sherds characterize the Chalcolithic ones (Precucuteni and
Cucuteni cultures). This remarkable deposit seems to illustrate
almost all cultures and chronological stages known inMoldova,
starting with Criş and until the end of the Cucuteni culture with
Early Bronze Age elements, which makes this site exceptional
(Dumitroaia et al. 2008; Weller et al. 2015).

Material and method

Twenty-six samples from several stratigraphic units (US)
were collected for phytolith analysis (Fig. 3; Supplementary
material 1, available online). For each US (or combustion
structure, all described in Sordoillet et al. 2018 - appendix
B), the samples were homogeneous and grouped (see Fig.
3), the maximum distance between the samples being 12 m.
Seventeen samples were directly obtained from micromor-
phological blocks, which insured a twofold interpretation
and allowed to consider diverse stratigraphic contexts (mostly
ash features with hearths, but also secondary deposits with
maintenance and waste). The chronological distribution is as
follows: 8 for the Early Neolithic deposits (Criș cultural peri-
od), 1 for the Final Neolithic/Early Chalcolithic (Precucuteni)
and 17 for the Chalcolithic (Cucuteni, with 11 for Cucuteni A
and A-B, and 6 for Cucuteni B).

Phytoliths extraction was carried out in UMR 7264
CEPAM Université Côte d’Azur - CNRS, starting from a
sample of sediment of between 1 and 3 g. For chemical prep-
aration, we followed the standard protocol of the laboratory:

– Clay deflocculation with distilled water under magnetic
stirring, 200 μm tumbling for coarse particles removal,
centrifugation 2000 t. min−1 for clay elimination

– Decarbonation with concentrated hydrochloric acid
(33%) by heat and using the ultrasonic bath

– Organic matter oxidation under hot and ultrasonic action:
KOH (10%), nitric acid (30%) and hydrogen peroxide
(30%)

– Phytoliths densimetric separation with sodium
polytungstate, density = 2.35

Then, the rinsed and dry extract was poured into ethanol,
after which few drops were fixed on a microscopic slide using
immersion oil. Observation was made at optical transmission
microscope, with magnification from × 400 to × 1000. For
each sample, at least 200 phytoliths with an identified mor-
phology were counted. Phytoliths were named following the
International Code for Phytolith Nomenclature 2.0 (ICPT
2019).

Results and discussion

The samples from Ţolici were found to be rich in phytoliths,
except for few ones: Tol08.11, where phytoliths were less
concentrated; Tol08.1 and Tol10.7 in which low concentra-
tion of phytoliths did not allow analysis to be done (although
two extraction tests were performed for the first one); and
Tol10.12 in which no phytoliths were observed.

Identified morphotypes

In this study, 13 morphotypes have been distinguished: RONDEL,
BILOBATE, CRENATE, SADDLE, PAPILLATE, ELONGATE DENDRITIC,
ELONGATE ENTIRE, ELONGATE SINUATE, ACUTE BULBOSUS,

Table 1 Radiocarbon dates from
Hălăbutoaia - Ţolici Stratigraphic unit (section SI)

and core depth (cm)
Laboratory ID Material 14C age (BP) Calibrated age (BC)

95.4% probability

SI (C-D) Poz-30826 Charcoal 4660 ± 35 3620–3600; 3530–3360

SI (O) Poz-30828 Charcoal 5320 ± 40 4320–4290; 4270–4040

SI (U) Poz-30829 Charcoal 5300 ± 40 4260–3990

SI (V) Poz-18749 Charcoal 5520 ± 40 4460–4320; 4290–4270

SI (W) Poz-30830 Charcoal 5480 ± 40 4450–4410; 4400–4240

SI (W-FA4) Poz-18753 Charcoal 5650 ± 40 4560–4360

SI (Z3) Poz-41438 Charcoal 6280 ± 40 5360–5207; 5162–5138;
5129–5120; 5094–5080

SI (Z4) Poz-18751 Charcoal 6630 ± 50 5630–5480

SI (Z4) Poz-18752 Charcoal 6660 ± 40 5660–5510

35 (Z4) Poz-18754 Charcoal 6750 ± 40 5730–5610; 5590–5570

70 (Z4) Poz-24385 Charcoal 6760 ± 40 5730–5610

152 (Z4) Poz-24424 Charcoal 6840 ± 50 5840–5630
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SPHEROID, BULLIFORM FLABELLATE and BLOCKY, including
Phragmites-type, tabular polygonal Cyperaceae-type and

TRACHEARY (Fig. 4, Table 2). Articulated phytoliths, also known
as silica skeleton, were observed.

Fig. 3 Stratigraphic section, radiocarbon dating and sampling. (a) First samples from the elongated hollow at the base of the archaeological mound at
Ţolici, when it was discovered; (b) Sampling from the different chronological levels of the main stratigraphic section (SI, profil SW)

Fig. 4 Examples of phytolith morphotypes identified in Hălăbutoaia -
Ţolici samples: a RONDEL, b ELONGATE DENDRITIC, c BULLIFORM

FLABELLATE, d BULLIFORM FLABELLATE (Phragmites-type), e ACUTE

BULBOSUS, f SADDLE, g GLOBULAR, PSILATE, h BILOBATE and i silica
skeleton made of several ELONGATE DENDRITIC

Archaeol Anthropol Sci          (2020) 12:270 Page 5 of 14   270 
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Most of identified morphotypes are assigned to grasses. A
characteristic feature of Cyperaceae family has been identified
only once, but it should be emphasized that this morphotype is
considered fragile and it could be affected by low preservation
(Borba-Roschel et al. 2006). Also, rarely and only in certain
levels, SPHEROID, which are considered as characteristic of the
dicotyledonous plants (Albert et al. 1999; Alexandre et al.
1997; Bozarth 1992; Delhon et al. 2003; Runge 1999), were
registered. These forms do not allow a more accurate identi-
fication. Despite being often attributed to dicots, TRACHEARY
phytoliths have an uncertain origin (primary, secondary, xy-
lem or phloem?), and it seems that they could be produced by
a wide range of plants (ICPT 2019).

Among the grass silica short-cell phytoliths, several mor-
phological features can be distinguished. The main type of
silica short cell varies between the grass subfamilies (Rovner
1971, Twiss et al. 1969). The most abundant morphotype is
RONDEL. It is widespread in several subfamilies, but in temper-
ate areas it characterizes the Pooideae, which produces it in
large amount. The plants from that subfamily exhibit a C3
metabolism and mainly develop in temperate environments.
Most of the old-world cereals belong to that subfamily. Even
if they were less abundant, BILOBATE short cells were constant-
ly present in variable amounts. They are common in the plants
from the Panicoideae subfamily. These species are adapted to a
warmer climate and often present a C4 metabolism. They
spread over the intertropical areas, with some exceptions, in
particular certain wild or cultivated millets which spread over
temperate areas. Several C4 spontaneous panicoids (e.g.
Bothriochloa ischaemum, Cenchrus incertus, Chrysopogon
gryllus, Digitaria ischaemum, Echinochloa colona, E. crus-
galli, Eriochloa villosa, Panicum dichotomiflorum,
P. capillare, Setaria pumila, Sorghum halepense) are present
on the territory of Romania, most of them being weeds
(Ciocârlan 2000; Sârbu et al. 2001; Sîrbu and Oprea 2011;
Table 3).

Some domesticated panicoids are also currently grown in
Romania: Panicum miliaceum, Setaria italica, Sorghum
bicolor, S. cernuum, S. dochna and S. sudanese (Table 3).
Although the Panicoideae subfamily produces abundant
BILOBATE phytoliths, these forms can also occur in few
festucoid grasses and some chloridoid grasses (Metcalfe
1960).

Phragmites sp. (a C3 plant of the grass subfamily
Arundinoideae) may be responsible for the sporadic occur-
rence of SADDLE short cells phytoliths (Ollendorf et al.
1988), which may alternatively come from few species of
the Chloridoideae subfamily, which is almost entirely distrib-
uted over tropical areas. In the inflorescences bracts (glumes,
lemma and palea), these short-cell phytoliths are replaced by
PAPILLATE (Delhon 2008).

Long cells gather epidermal cells (ELONGATE ENTIRE, E.
DENDRITIC, E. SINUATE), hairs and other epidermal

excrescences (ACUTE BULBOSUS). Bulliform cells, located in
the leaves, along the nervures, provide BULLIFORM

FLABELLATE and BLOCKY morphotypes. Among BULLIFORM

FLABELLATE, the Phragmites-type was distinguished (see
Gao et al. 2017; Li et al. 2014; Liu et al. 2013; Zhang et al.
2010).

The epidermal cells present morphological variations in
vegetative parts (leaves and stems) and at inflorescences level
(glumes, lemma and palea). Dendritic forms (ELONGATE

DENDRITIC) are produced in the inflorescence bracts, while
sinuous forms (ELONGATE SINUATE) are produced rather at
the leaves level. Smooth shapes (ELONGATE ENTIRE) are more
widespread, and they are the only ones represented in stems.

In some cases, silica skeletons could be observed. These
multi-cells phytoliths correspond to silicified epidermal cells
in connection (Rosen 1992). In all cases, they originated from
grassy epidermis which are either from vegetative parts
(ELONGATE ENTIRE morphotypes and short-cells) or from in-
florescences bracts (ELONGATE DENDRITIC morphotypes and
PAPILLATE). These forms are rarely observed in samples from
natural (non-archaeological) contexts because of preservation
(bioturbations) or statistical (low concentration) hazard. Their
presence is often taken as an evidence of in situ accumulation
and decomposition of plants or material of plant origin, in a
context of low disturbance (in particular in pastoral sites, in
the form of dung or bedding for the livestock: Cabanes et al.
2009; Portillo et al. 2014).

Phytolith assemblages

Generally, except for the sample Tol10.8, phytoliths derived
from grasses dominate all the spectra (Fig. 5, Table 2). High
representation of this family is explained by its very high
phytolith production. Even so, only an anthropogenic accu-
mulation of grasses in the analysed levels can explain the
relative and absolute abundances of grassland phytoliths. In
addition, we note a punctual presence of silica skeletons and a
good representation of inflorescence bracts phytoliths (espe-
cially ELONGATE DENDRITIC forms). Furthermore, the presence
of well-preserved elongate dendritic, at exceptionally high
ratios, seems to indicate a very good preservation of phytoliths
(cf. Cabanes et al. 2009, 2011). In natural contexts, the pro-
portion of DENDRITIC phytoliths remains usually low (Novello
and Barboni 2015), while it sometimes reaches higher values
in archaeological context (Berlin et al. 2003; Portillo and
Albert 2011). DENDRITIC phytolith abundance is often
interpreted as an in situ presence of grass spikelets (Dal
Corso et al. 2018; Danu et al. 2019; Delhon et al. 2008). All
these observations contribute to suggest that most of the stud-
ied samples are derived from an important accumulation of
various parts of grasses, which could be linked with human
activities.
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Several samples (Tol08.8, 08.9, 08.11, 10.11, 10.13, 10.3,
10.5 and 10.2) are characterized by a low content (each circa.
2%) of phytoliths possibly derived from dicots. Only two
other samples contain very high amounts of SPHEROID from
dicots (Tol10.8: 22.6% and Tol10.14: 48.8%). Thewood from
broadleaved trees and conifers, and therefore its ash, contains
only few phytoliths (Delhon 2010), which seem to be mainly
produced by the green parts (leaves, young branches). Based
on low phytoliths production from dicots compared to that of
grasses, relatively modest percentages of these morphotypes
can be interpreted as meaningful. Low phytoliths production
from dicotyledonous plants involves a specific accumulation
of these plants in the levels of Tol10.8 and Tol10.14, which
could be related to some aspects concerning the use of woody
plants as fuel for salt production. Among short cells, RONDEL

and CRENATE forms mainly produced by Pooideae are

dominant, but we mention a very good representation of
BILOBATE (up to 25.8%), especially at the top of diagram
(starting from the Tol10.11 sample). It may suggest the pres-
ence of wild panicoids but also of cultivated millets.
Concerning the spontaneous species from Panicoideae, we
assume that the adventive ones (see Table 3) are less likely
and therefore only a few spontaneous species could be in-
volved in the phytolith record of Hălăbutoaia: Chrysopogon
gryllus, Dichanthium ischaemum, Digitaria sanguinalis,
Echinochloa crus-galli, Setaria pumila, S. verticillata and
S. viridis. Regarding the domesticated millets, the study of
plant macroremains confirms the presence of Panicum sp.
and P. miliaceum in Neolithic sites on the Romanian territory
(Cârciumaru et al. 2004; Comşa 1996) but also in Cucuteni-
Trypillian sites from Moldavia (Janushevich 1976), Slovakia
(where Setaria viridis was also mentioned) or Ukraine (Hunt

Table 3 List of C4 Panicoideae
species in Romania Panicoideae species Indigenous* Cultivated* Adventive* C4**

Bothriochloa ischaemum (L.) Keng ● (a)

Cenchrus incertus M. A. Curtis ● (b)

Chrysopogon gryllus (L.) Trin ● (b)

Digitaria ischaemum Schreb. ex Mühl. ● (c)

Digitaria sanguinalis (L.) Scop. ● (b)

Echinochloa colona (L.) Link ● (b)

Echinochloa crus-galli (L.) Beauv. ● (b)

Echinochloa frumentacea (Roxb.) Link ● (d)

Echinochloa oryzicola (Vasing.) Vasing. ● (e)

Echinochloa oryzoides (Ard.) Frisch ● (f)

Echinochloa phyllopogon (Stapf) Koss. ● (g)

Eriochloa villosa (Thunb.) Kunth ● (h)

Panicum capillare L. ● (b)

Panicum dichotomiflorum Michx. ● (b)

Panicum miliaceum L. ● (b)

Paspalum paspalodes (Michx.) Scribner ● (i)

Panicum schinzii Hack. ● (j)

Setaria faberi J. Herrm ● (k)

Setaria italica (L.) Beauv. ● (b)

Setaria pumila (Poir) Roem. et Schult. ● (l)

Setaria verticillata (L.) Beauv. ● (c)

Setaria viridis (L.) Beauv. ● (c)

Sorghum bicolor (L.) Moench ● (c)

Sorghum cernuum (Ard.) Host. ● (m)

Sorghum dochna (Forssk.) Snowden ● (n)

Sorghum halepense (L.) Pers. ● (c)

Sorghum sudanese (Piper) Stapf ● (c)

Tripidium ravennae (L.) Scholz ● (o)

*cf.: Ciocârlan 2000; Sârbu et al. 2001; Sîrbu and Oprea 2011

**References for C4 photosynthetic pathway: (a) Waller and Lewis 1979; (b) Downton 1975; (c) Rhagavendra
and Das 1978; (d) Voznesenskaya et al. 2006; (e) Ueno and Takeda 1992; (f) Mitchell and Sheehy 2000; (g)
Gibson et al. 1999; (h) Follak et al. 2020; (i) James et al. 2013; (j) Brown and Brown 1975; (k) Bazzaz 1996; (l)
Tuba et al. 2003; (m) Mall 2019; (n) Erdei et al. 2009; (o) Shimomae et al. 2015)
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et al. 2008). Morphotypes typical of panicoid grasses are also
attested in other Romanian Cucutenian site from Neamț
County, Răucești, but in lower amounts (11% BILOBATE in
cultural layer, cf. Danu et al. 2016). At Hălăbutoaia - Ţolici,
BILOBATE showed varied forms. Beside the so-called “dumb-
bell” form (Madella et al. 2005), very elongated morphotypes
were observed with bulging extremities connected through a
long and thin axis (these forms are often fragmented, broken
in the form of half-dumbbells). Also, much more contracted
forms, almost square-shaped with a less evidenced central
constriction, were noticed. Many intermediate forms also oc-
curred. The identification of millet phytolith has been ques-
tionable over time. Some studies showed that there is no valid
method for separating Setaria italica and Panicum miliaceum
based on inflorescence phytolith analysis (Harvey and Fuller
2005; Parry and Hodson 1982), but new characters of phyto-
lith identification for husks and leaves of these two species
have been developed and evaluated as a reliable way of
distinguishing foxtail millet from common millet (Lu et al.
2009; Out and Madella 2016). The possibility of
distinguishing panicoid grasses in a fossil phytolith assem-
blage has been shown in the records of grass short-cell
phytoliths (BILOBATE, POLYLOBATE and CROSS) and silica

skeletons from sediments of a Bronze Age settlement situated
in northern Italy (Dal Corso et al. 2017). Numerous cut silica
skeletons, from grass culms or culms and from grass inflores-
cences, are derived from panicoid, but also pooid were present
in phytolith record, indicating crop processing activities near
the site of Fondo Paviani (Italy).

Therefore, several species are probably involved in the
abundance of BILOBATE at Hălăbutoaia site, but the absence
of local references samples from plants prevented further iden-
tification. More research should be carried out in the future on
local wild and cultivated Panicoideae.

Phytolith ratios

It must be noted that the combustion process leaves no easily
visible and unequivocal tracks on phytoliths (Parr 2006; Evett
and Cuthrell 2017), despite some changes in their refractive
index whose observation remains technically difficult
(Elbaum et al. 2003). According to Cabanes and Shahack-
Gross (2015), pitting and melting become common after the
combustion. We did not notice such traces, but considering
the archaeological context (large amount of ash and charcoal,
cf. Dufraisse 2011; Sordoillet et al. 2018), it is very likely that

Fig. 5 Phytolith diagram from Hălăbutoaia - Ţolici
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these microscopic remains come mainly from plant used as
fuel or at least were related to fire purposes. To go further in
the interpretation of the phytoliths spectra, we used two ratios
developed in order to give a better illustration of the relative
variations between selected morphotypes. The ratio of
BILOBATE vs. RONDEL and CRENATE (BIL/RON + CRE) is a
proxy for the contribution of panicoid grasses vs. pooid
grasses in the phytolith record, and the ratio of ELONGATE

DENDRITIC vs. ELONGATE ENTIRE and SINUATE (ELO_DEN/
ELO_ENT + ELO_SIN) quantifies the proportion of
phytoliths from inflorescences bracts vs. phytoliths from veg-
etative parts.

The BIL/RON + CRE ratio is a simplification of Ic index
(“climatic Index”, in which SADDLES also contribute to the
divisor) used in tropical regions as a climatic indicator
(Twiss 1987, 1992). It draws the proportion of C3
(temperate) grasses against C4 (thermophilic) grasses. It is
used here in an unusual way, since variations of the abundance
of the forms that characterize the Panicoideae appear to be
more related to the selection of certain spontaneous grasses
(e.g. wild millets) or cultivated panicoid taxa (cultivated mil-
let) rather than to variations in their abundance in the natural
grasslands around the site.

The ELO_DEN/ELO_ENT+ELO_SIN ratio varies either
according to season of harvest (presence or absence of spike-
lets) or to the plant parts selected. The use of straws, of the
whole plant, or of residues from spikelets processing can thus
be traced. According to Regev et al. (2015), a ratio of leaf-
stem to inflorescence which is lower than 1 indicates a ten-
dency toward having more inflorescence (chaff), and a ratio
lower than 0.5 indicates predominance of inflorescence
phytoliths (most probably an intentional selection of chaff).
A ratio higher than 1 indicates a tendency toward having more
leaves and stems (e.g. straw, hay), and a ratio above 1.5 indi-
cates predominance of leaves/stems (e.g. straw, hay).
Phytolith assemblages from Hălăbutoaia - Ţolici site show
that the ratio ELO_DEN/ELO_ENT+ ELO_SIN is lower than
0.5; thus, we assume that may indicate the intentional use of
chaff as fuel. Moreover, this ratio may also indicate if wild
grasses or cereals are preferentially used. High amounts of
grass inflorescence bracts phytoliths are often considered
more likely related to cultivated grasses than to spontaneous
ones, due to the facts that grains produce bigger spikelets and
are normally harvested during seasons when inflorescences
are fully developed.

The BIL/RON + CRE ratio shows a curve made of two
steps. The first one corresponds to low values (nearly always
< 0.2) and stretches from the bottom of the sequence to
Tol10.11 sample. The second one corresponds to the increase
of the index (nearly always > 0.2 and reaching 0.6 in Tol08.4)
in the upper part of the sequence. Thus, the use of panicoid
grasses remains as fuel seems to increase in the second part of
the sequence. Considering the recurrence of high proportion

of grass inflorescences bracts phytoliths, the recourse to culti-
vated grasses (or their by-products) seems highly possible.
These two observations argue for an agricultural origin of
the Panicoideae grasses involved in the record and thus to an
increase of the use of their by-products as fuel in the second
part of the sequence. Despite they may enhance the main traits
perceived through the phytolith diagram, these indices remain
complex and their variations potentially linked to several dif-
ferent anthropic or natural phenomena. It is not so simple to
decipher all the information they contain; in that purpose, we
finally correlated them with data obtained from other
domains.

Correlations with other achaeobotanical data

Palynological analysis of a sediment core taken in a swamp
nearby the salt spring and the archaeological site (Danu et al.
2010) made it possible to highlight, during the Cucutenian
period, a relatively open vegetation, marked by presence of
anthropogenic activities: agriculture, animal farming and salt
exploitation. This pollen record (cf. Danu et al. 2010) is dom-
inated by non-arboreal pollen, such as Poaceae (up to 40%)
and from herbaceous plants from grassland pasture
(Cichorioideae, Anthemideae, Apiaceae, etc.). Within this
open environment appear numerous anthropogenic indicators:
pollen grains of Cerealia, pollen of weeds (Polygonum
aviculare) and plants of trampled and grazed areas
(Plantaginaceae, Rumex) . Among the non-pollen
palynomorphs, coprophilous fungi (Sordariaceae, HdV 55)
have been identified suggesting a pastoral presence nearby
the site. In this open plant landscape, anthracological data
(Dufraisse 2011) highlights opportunistic exploitation, appar-
ently without any selection of particular woody species, of
formations such as riverine forests and mixed oak forests as
wood fuel supplies. Symmetrically, phytoliths analysis could
complete the range of the opportunistic harvest of fuel by also
considering the available non-wood materials. The use of
Poales herbs as fuel (and maybe for temperature control) is
also presumed in other fire-related contexts (Esteban et al.
2018). The high representation of grass phytoliths at
Hălăbutoaia and their, at least partly, agricultural origin re-
veals that herbaceous plants have been used as fuel or at least
had a potentially important role in operational salt exploitation
chain.

Moreover, it appears that this material is not subject to
strong selection as various species from various subfamilies
are involved and as it could, at a certain extent, be derived
from agricultural by-products.

Although the analysis of non-pollen palynomorphs indicat-
ed the animal presence in the past landscape of Hălăbutoaia -
Ţolici site (Danu et al. 2010), the presumption of using animal
dung as fuel cannot be taken into account because dung has
not been observed either macroscopically during the field
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excavation or microscopically in the micromorphological
analyses (Sordoillet et al. 2018). Furthermore, compared to
plant resources (wood and/or grasses), dung is a bad fuel that,
in addition, introduces into the ash more phosphates and ni-
trogen, which is probably not required if it gets mixed with
salt.

This complementarity between agro-pastoral systems and
salt extraction activities is supported by results of palynolog-
ical analysis (Danu et al. 2010) which highlight the presence
of agro-pastoral markers (anthropogenic pollen indicators and
non-pollen palynomorphs like coprophilous fungal spores
which strongly suggest the pastoral/breeding activity), as well
as the presence of forest exploitation indicators (deforestation,
erosion) in close connection with salt exploitation.

Conclusion

The phytoliths analysis from Hălăbutoaia - Ţolici saltwater
spring made it possible to highlight assemblages with anthro-
pogenic origin in which grasses have a major role, excepting
few cases in which dicots are well represented. Phytoliths
mostly derived from the subfamily Panicoideae are well rep-
resented. Their absolute abundance tends to increase along the
sequence, to detriment of those massively produced by plants
from the Pooideae subfamily. Given the high sedimentation
rate, this increase cannot be due to pollution caused by current
vegetation. The abundance of BILOBATE phytoliths and
glumes phytoliths emphasizes the possible involvement of
cultivated Panicoideae, but more evidences are needed to
draw a definitive conclusion. Plant phytoliths were introduced
into the site via anthropogenic input, but microscopic obser-
vation of phytoliths does not allow the determination of the
purpose in which plants were brought. Despite the fact that it
is not possible to determine whether phytoliths are burnt or not
(burned phytoliths have the same aspect as those that are not
burned) their abundance in an archaeological context marked
by fire-related activities makes it very likely that their pres-
encemay be related to fire purpose. It is thus very possible that
grasses have played a role in the salt-making pyrotechnology,
whether for ignition, combustion or temperature control.
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