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ABSTRACT: A recently developed scheme to produce accurate high-dimensional
coupled diabatic potential energy surfaces (PESs) based on artificial neural
networks (ANNs) [J. Chem. Phys. 2018, 149, 204106 and J. Chem. Phys. 2019, 151,
164118] is modified to account for the proper complete nuclear permutation
inversion (CNPI) invariance. This new approach cures the problem intrinsic to the
highly flexible ANN representation of diabatic PESs to account for the proper
molecular symmetry accurately. It turns out that the use of CNPI invariants as
coordinates for the input layer of the ANN leads to a much more compact and
thus more efficient representation of the diabatic PES model without any loss of
accuracy. In connection with a properly symmetrized vibronic coupling reference
model, which is modified by the output neurons of the CNPI-ANN, the resulting adiabatic PESs show perfect symmetry and high
accuracy. In the present paper, the new approach will be described and thoroughly tested. The test case is the representation and
corresponding vibrational/vibronic nuclear dynamics of the low-lying electronic states of planar NO3 for which a large number of ab
initio data is available. Thus, the present results can be compared directly with the previous studies.

1. INTRODUCTION

The fundamental theoretical understanding of chemical
processes by quantum dynamics simulations depends critically
on the availability of accurate models for the molecular potential
energy, the so-called potential energy surfaces (PESs). The
development of single, uncoupled PESs for systems of more than
three atoms made impressive progress in the past couple of
decades.1−6 Particularly the use of artificial neural networks
(ANNs) seems to be a very promising approach to achieve high
accuracy even for high-dimensional problems.7−24 The decisive
advantage of ANNs may be that it can be shown mathematically
that they are capable of uniformly representing any continuous
real function of n dimensions up to arbitrary accuracy.25Thus, in
principle, ANNs should be capable of representing arbitrary
PESs up to the limitations of the underlying data. Besides the
potential accuracy, they also can be evaluated very efficiently
once trained, as their evaluation consists mostly of matrix-vector
multiplications. This is an invaluable advantage for the use with
quantum dynamics methods such as the multiconfiguration
time-dependent Hartree (MCTDH) method,26,27 especially
when using the correlated discrete variable representation
(CDVR)28 scheme for which the evaluation of the PES is the
most time-demanding part. Alternatively to the CDVR
approach, a sum of products form of the PES model must be
used, which is also possible in the ANN framework.16,24,29 A

further advantage is that the training of ANNs can be done very
efficiently and is much less demanding than other nonlinear
optimization approaches. Of course there are also problems of
which one of the most prominent is an issue commonly referred
to as “over-fitting”. This algorithmic problem, related to the
extremly high flexibility and nonlinearity of typical ANNs, limits
the accuracy of the function representation and has to be
accounted for in the training algorithm. However, the impressive
results already obtained by the ANN representation of single
molecular PESs based on high-level ab initio data demonstrate
the power of this approach.14,23,24,29−32

The situation is way more complicated in the case that
multiple and strongly interacting electronic states are involved in
the process. For such nonadiabatic processes, not only the PESs
corresponding to different states but also the interactions
between those states have to be represented by a PES model.
One fundamental problem is here that the Born−Oppenheimer
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approximation will break down in regions in nuclear
configuration space (NCS), where interactions among elec-
tronic states become significant or even singular as is the case for
conical intersections.33 It is well-established by now that the
solution in such cases is to use a quasi-diabatic representation of
the coupled electronic states and corresponding PES
model.33−49 For the sake of brevity, we will refer to quasi-
diabatic representations as “diabatic” representations from here
on. The diabatic representation removes singularities in the
nonadiabatic couplings and nondifferentiable points on the
PESs but is neither unique nor easily available. Many methods
have been developed to find the unitary basis transformation
between the adiabatic states and energies directly available from
ab initio calculations and diabatic states and PES matri-
ces.39,42,43,45,47−76 One particularly successful and straightfor-
ward approach is the multimode linear vibronic coupling
method by Köppel, Domcke, and Cederbaum50 and similar
approaches.70,72,77,78 These models are sufficient to treat many
ultrafast nonadiabatic processes but are not accurate enough for
many problems that are more complicated and depend critically
on more extended regions in the NCS. Thus, the vibronic
coupling approach has been extended to higher coupling orders
as well.64−66,68,69,74 However, the use of higher-order Taylor
expansions for the representation of the diabatic PES matrices is
quite cumbersome, and therefore alternative representations
have been developed as well.57,79−86

The latest development in the persuit of finding better
diabatic PES models is the use of ANNs.87−97 Different
strategies have been followed of which some are based on the
use of complete nuclear permutation inversion (CNPI)
invariant polynomials of the input coordinates.89,91,92 Our
recently developed approach presented in ref 90 and thoroughly
analyzed in ref 95 is based on a different strategy and uses all
symmetry-adapted valence coordinates of the molecule rather
than CNPI invariants. The reason for this is that the approach
combines the basic, simple structure of a low-order vibronic
coupling ansatz, which is tuned by an ANN so that very accurate
results are obtained. The high flexibility of the ANN introduces
slight symmetry contaminations, which are removed by an a
posteriori symmetrization. The new method presented here
circumvents the problem of the symmetry contamination by
using CNPI invariants as an input layer of the ANN in
combination with a standard low-order vibronic coupling
reference model.
To stay consistent with our previous studies,90,95 the

performance of the new approach was tested using planar
(5D) NO3, for which plenty of data and experience are available
in the group.64,65,74,98 A 5 × 5 diabatic model for the ground and
first two excited electronic states of 2A2′,

2E″, and 2E′ symmetry
is trained, and vibrational/vibronic eigenstates are computed.
The latter can be compared to previous theoretical69,74,95,99−105

and experimental results.106,107

2. THEORY

2.1. Adiabatic and Diabatic Representation. At the
center of any diabatization approach is the adiabatic-to-diabatic
transformation that connects an adiabatic and a diabatic basis of
electronic states. There aremany established ways to do this, and
for a deeper discussion we refer to the literature, for example, ref
33. The necessary information for this basis transformation
usually is obtained from adiabatic energies only (“diabatization
by ansatz”), by using the adiabatic wave function representation
alone (“block diagonalization”), or by a combination of both

(“hybrid diabatization”).76 The method presented here is
designed for the hybrid diabatization approach, though in the
example calculations, the wave function information is not used.
The fundamental requirement utilized in this method is that the
adiabatic and diabatic PES matrices are related by the unitary
transformation U that diagonalizes the diabatic matrix, and the
eigenvalues reproduce the adiabatic energies

= =† WU W U W diag( )j
d a a

(1)

The eigenvectors are related to the adiabatic electronic wave
functions and can also be used to determine the matrix elements
of the diabatic PES matrix Wd.

2.2. Artificial Neural Networks. The diabatization
approach presented here utilizes a multilayer perceptron feed-
forward neutral network. The input layer η(1) consists of the
molecular coordinates (cf. Section 2.3), which are connected to
the hidden layers η(k) according toikjjjjjj y{zzzzzz∑η β ω η= +

χ

−f
j
k k

j
k

l

jl
k

l
k

f

( ) ( ) ( ) ( ) ( 1)

( )k
j
k( ) ( )
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(2)

The activation functions f(k) used in the present version depend
on the layer k. While the output layer (k = 3) uses the identity Id,
the activation function for the hidden layer reads

χ χ= · ·f A( ) 3 tanh( )(2)
(3)

with = ( )A artanh
1

3
. This choice of factors rescales the

sigmoid activation function in such a way that its “linear domain”
resides in the interval [−1,1], approximating the identity, while
the exponential plateaus reside outside of this interval. The
output layer is used to parametrize the diabatic PES matrix (cf.
Section 2.4). A simplified version of the neural network utilized
(with a reduced number of neurons in each layer) can be found
in Figure 1.
The ANN is trained by a modified Marquardt−Levenberg

back-propagation method described in ref 90. The modification
is necessary, because the output layer cannot be compared
directly to the reference data. Only the eigenvalues (and
eigenvectors) of the matrix parametrized by the output neurons

Figure 1. A neural network with one hidden layer. Arrows correspond
to weighted contributions. Bias terms and activation functions are not
visualized.
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can be used to determine the root-mean-square error (RMSE),
which is minimized by the method. Therefore, an additional
numerical differentiation of the eigenvalues (and eigenvectors)
with respect to the output neurons is required.
One notorious problem with the ANN training commonly is

called overfitting and is related to the very high flexibility of the
ANN. Since the training data are limited, an optimal
representation of this reference data might result in a poor
representation of data not contained in the reference set. This
can be avoided, at least to some degree, by amethod called “early
stopping”. For this, the complete available data set is partitioned
into a reference and a validation set. Only the reference set is
used for the actual training to minimize the reference RMSE. In
each step also the validation RMSE is computed, and if the latter
rises, the training is stopped. The details of how the early
stopping is implemented in the present method has been
described in ref 90.
While overfitting is a crucial aspect, it is naturally not the only

limitation to consider. ANNs are generally rather sensitive
toward the data set with which they are trained. A simple, yet
important example of this sensitivity lies in the sheer amount of
data required, as neural networks tend to extrapolate data rather
poorly. However, the use of a robust low-level reference model
tuned by an ANN as presented here at least ensures that the
extrapolated regions behave reasonably without showing
pathologies. Another, more subtle problem related to the
input data and the ANN training arises from the range of the
input data. Since the present training method relies on
derivatives of the activation function with respect to (wrt) its
argument, initial convergence will be slowed tremendously if the
derivatives are very small. Given the present activation eq 3, this
means that χ should, on average, reside in the interval [−1,1].
For this purpose, the molecular coordinates η(1) are scaled and
shifted in such a manner that all ηj

(1) have a mean of 0 and a
standard deviation of 1 across the presented data set. This is
achieved by first computing the mean η̅j and standard deviation
σ(ηj) of the coordinates ηj

(1) over the training data; in other
words

∑η η̅ =
=

N
Q

1
( )

j
D k

N

j k
1

(1)
D

(4a)

∑σ η η η= − ̅
=

N
Q( )

1
( ( ) )

j
k

N

j k j
D 1

(1) 2
D

(4b)

where ND is the number of ab initio data points, and ηj
(1)(Qk) is

the explicit value of ηj
(1) at the given data point. The normalized

input coordinates η̃j actually used in the training process are then
obtained by

η
η η

σ η
̃ =

− ̅

( )j

j j

j

(1)

(5)

which by definition has an average of 0 and a standard deviation
of 1 over the given set of ab initio data. Once the training is
completed, the optimized parameters corresponding toωjl

(2) and
βj
(2) from Equation 2 are modified to obtain an equivalent neural

network depending on the original coordinates ηj
(1), eliminating

the need to compute the means and variances when evaluating
the PES model during dynamics calculations. The equivalent
parameters ω̃jl

(2) and β̃j
(2) follow from Equation 2 for k = 2 by

substituting ηl
(1) with its normalized version of Equation 5 and

read

ω
ω

σ η
̃ =

( )jl

jl
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(2)
(2)
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∑

∑

β β
ω η

σ η

β ω η
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̅
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( )j j
l

jl l

l

j
l

jl l

(2) (2)
(2)

(2) (2)

(6b)

In the present work this preconditioning is combined with an
appropriate choice of random initial weights and biases to ensure
better convergence.

2.3. Coordinates and CNPI Invariants. The ansatz
diabatic PES matrix has to fulfill strict symmetry requirements
for the matrix elements, because the represented Hamiltonian
must be invariant under all symmetry transformations. However,
the off-diagonal elements are not necessarily totally symmetric,
which has to be taken into account. In standard vibronic
coupling approaches the matrix elements are usually expressed
as polynomials in terms of symmetry-adapted coordinates Q
according to

∑ ∏=
α

α
αW Q p Q( )kj

kj

l
l
nd l

(7)

The expansion coefficients p are strictly related by symmetry,
and the coordinates transform according to different irreducible
representations of the molecular point group. Alternatively, the
diabatic matrix can be constructed from CNPI invariants of the
actual CNPI group and the invariants of its permutation
subgroups.91,108

The present approach is illustrated for theD3h symmetric NO3

radical in the following. In this case it is convenient to use
symmetry-adapted coordinates for the representation of the
vibronic coupling model, because the groupsD3h and S3 × Ci are
isomorphic. The five symmetry-adapted coordinates excluding
the umbrella motion read

= + +a m m m
1

3
( )1 2 3

(8a)

= − −x m m m
1

6
(2 )s 1 2 3

(8b)

= −y m m
1

2
( )

s 2 3 (8c)

α α α= ′ − ′ − ′x
1

6
(2 )b 1 2 3

(8d)

α α= ′ − ′y
1

2
( )

b 2 3 (8e)

in which the transformed distances mi and angles αi′ are

γ= − − −m r r1 exp( ( ))i i 0 (9a)

α
α α

′ =
−

≠ ≠
r r

i j k,i
i

j k

0

(9b)
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The coordinate a transforms totally symmetric as a1′, and the
vectors (xl,yl) transform as e′. The resulting invariants are
determined as64,65,74,109,110

=v 1(0) (10a)

=v 0(1) (10b)

= +v x y( )(2) 2 2
(10c)

= −v x xy(2 6 )(3) 3 2
(10d)

= + +v x x y y( 2 )(4) 4 2 2 4

∂ (10e)

for the first few orders, and the mixed terms of two different e′
modes read

= +v x x y y2( )ee
(2,1)

1 2 1 2 (11a)

= − −v x x x y x y y2( 2 )ee
(3,1)

1 2
2

1 2
2

2 1 2 (11b)

= − −v x x x y x y y2( 2 )ee
(3,2)

1
2

2 2 1
2

1 1 2 (11c)

= − − + +v x x x y x y y y x x y y2( 4 )ee
(4,1)

1
2

2
2

1
2

2
2

2
2

1
2

1
2

2
2

1 2 1 2

(11d)

= + + +v x x x y y x x y y y2( )ee
(4,2)

1
3

2 1
2

1 2 1 2 1
2

1
3

2 (11e)

= + + +v x x x x y x y y y y2( )ee
(4,3)

2
3

1 1 2 2
2

2
2

1 2 2
3

1 (11f)

= + + +v x x x y x y y yee
(4,4)
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2
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2
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2

2
2

2
2

1
2

1
2

2
2

∂ (11g)

Each of the above invariants may be multiplied by an arbitrary
power of the amode and still remain an invariant. Similarly, if we
were to include the umbrella motion θ, we could also multiply
each term with arbitrary powers of θ2. Since for NO3 the CNPI
group and the D3h point group are isomorphic, the above point
group invariants can be used for convenience. In cases in which
point group invariants are not sufficient, the CNPI invariants
may be constructed following the techniques developed by
Braams and Bowman.6 Finally, it may be worth noting that, in
the present planar case, the CNPI and CNP symmetries are
equivalent.
2.4. Diabatic Model (Ansatz). The new approach will be

demonstrated using a 5 × 5 diabatic PES model to represent the
electronic Hamiltonian corresponding to the first few electronic
states of planar NO3, namely, X̃ 2A2′, Ã

2E″, and B̃ 2E′. The
diabatic PES model is based on a simple vibronic reference
model to simulate the basic physics of the problem, which then is
tuned by the ANN to achieve high accuracy. This reference
model is expressed in terms of a set of coupling matrices
depending on the symmetry-adapted coordinates Q para-
metrized by expansion coefficients λ and reads

i
k
jjjjjjjjjjjjj

y
{
zzzzzzzzzzzzzi

k
jjjjjjjjjjjj

y
{
zzzzzzzzzzzzi

k
jjjjjjjjjjjj

y
{
zzzzzzzzzzzz

ε ε

ε ε

ρ ρ

ρ ρ

λ

λ

λ

λ λ

λ λ

λ λ

λ λ
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+ +

+

+

+

+

W Q W Q 1

1

( ) ( )

0 0

0 0

0 0

0 0 0

0 0

0 0

0 0

0 0 0

0 0

T T

T T

T T T

d
diag
d

1

2

3

4 s 5 b

6 s 7 b

8 s 9 b

8 s 9 b (12)

1 in the above supermatrix is a 2 × 2 unit matrix, the matrix
blocks εs,b are the well-known linear Jahn−Teller coupling
matrices, and the vectors ρs,b represent the linear pseudo-Jahn−
Teller couplings, which are given explicitly asikjjjjjj y{zzzzzz ikjjjjj y{zzzzzε ρ=

−
=

x y

y x

y

x
ands,b

s,b s,b

s,b s,b
s,b

s,b

s,b (13)

The symmetry-adapted coordinates corresponding to the
degenerate asymmetric bending and stretching modes are
labeled xs,b, ys,b, respectively. The diabatic PES matrix eq 12
can be recast in a more compact form as

∑ λ= ·vW Q M Q( ) ( ) ( )
L

L L
d

(14)

utilizing explicit coupling matrices ML. The ANN is introduced
into this model through the expansion coefficientslmoooonoooλ

λ

λ η
=

· +
v

v

( )
for uncorrected terms

(1 ( )) otherwise
L

L

L L
f

0

0 ( )
(15)

The constants λL
0, obtained from standard nonlinear fitting

procedures, are tuned by the outputs ηL
( f)(v) of a trained ANN.

Note that, in our previous studies, the ANN was fed with all
symmetry-adapted coordinatesQ, while in the present approach
the invariants v are used. This turns out to make a significant
difference. Though the vibronic coupling model with all output
neurons ηL

( f) set to zero fulfills the symmetry transformation
invariance exactly, this is not the case anymore when the output
neurons depend on the symmetry-adapted coordinates Q. One
could say that the ANN simply does not know about the
symmetry of the problem except for what it can “learn” from the
reference data. The errors are very small (∼1 cm−1) and have
been removed by an a posteriori resymmetrization in our
previous studies. However, the new approach presented here
deletes this issue intrinsically by feeding the ANN with
invariants rather than symmetry-adapted coordinates. Thus,
on the one hand, regardless of the various equivalent realizations
of a molecular geometry related by symmetry transformations,
the values of the invariants are the same and thus enforce the
proper symmetry of the model. On the other hand, it is not
obvious whether or not the invariants contain all the coordinate
information represented by the symmetry-adapted coordinates.
The lowest-order invariants are a, v(2)(xs,ys), v

(2)(xb,yb), and
vee
(2,1)(xs,ys,xb,yb). This means that there are only four instead of
five coordinates available. Furthermore, these invariants do only
represent information about the radial displacement of the

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://dx.doi.org/10.1021/acs.jpca.0c05991
J. Phys. Chem. A 2020, 124, 7608−7621

7611



molecular geometry with respect to the conical intersection but
none about the tangential displacement with respect to the three
equivalent positions around the conical intersection.110 The
missing information can be retrieved by utilizing the next higher
order of invariants as will be demonstrated by numerical tests. It
turns out that adding the four third-order invariants provides
sufficient input information for an accurate representation of the
full diabatic PES model.
Finally, the cubic terms in the invariants on the input layer of

the ANN cause small numerical errors, which only show in the
detailed results of the quantum dynamics calculations for the
vibrational/vibronic levels of the system. This is avoided by
damping the invariants according to

′ =v Q c d v Q( ) tanh( ( ))k k k k (16)

where ck and dk are empirical scaling factors chosen according to
the physical problem to be treated. A reasonable choice for this
scaling appears to be ck = dk

−1 = 10, and this assumption is tested
numerically in Section 4.3.
This diabatic PESmodel is designed such that the stability and

basic qualitative description of a low-order vibronic coupling
expansion is combined with the flexibility of the ANN to achieve
excellent accuracy. We found in previous studies that the basic
reference model should be restricted to the lowest reasonable
orders to avoid numerical problems in the ANN training. This
also ensures that themodel is free of pathologies. The accuracy is
not limited by this reference model but by the ANN tuning the
corresponding coupling parameters according to eq 15. What
remains is to fit the reference parameters λL

0 and to train the
ANN with respect to ab initio reference data.

3. COMPUTATIONAL DETAILS

The present method is tested by representing the 5 × 5 diabatic
Hamiltonian for the NO3 radical. The training of the ANN is
based on an extensive set of ab initio reference energies
computed byMulticonfiguration Reference Singles andDoubles
Configuration Interaction (MR-SDCI) calculations based on
Complete Active Space Self-Consistent Field (CASSCF)
reference wave functions using a slightly adapted correlation
consistent aug-cc-pVTZ standard basis.111 All details of the ab
initio computations can be found in refs 74, 98, 111, and 112.
The sampling approach for the data points is based on the
method described in refs 113 and 90.

These reference data are used first to fit the 21 free parameters
λj
0 of the reference model using a Marquardt−Levenberg
algorithm incorporated into a genetic algorithm with a resulting
RMSE of∼1700 cm−1. This is the same reference model as used
before. Then the reference data set is partitioned into a training
set of 85% of the data and an external validation set of the
remaining 15% of the energies. The training set is used to train
CNPI-ANNs with a single hidden layer of various sizes. The
validation set is used in the early stopping mechanism to prevent
overfitting as suggested in ref 114. The specific way how early
stopping is used here has been described in ref 90. All data are
energy weighted as described before in order to get the best
accuracy of the PES model in the region of the NCS most
relevant for the nuclear dynamics.
The resulting PES models were tested by computing

vibrational/vibronic energy levels on the adiabatic ground
state as well as the first electronically excited state, which is
separable for planar geometries. The second excited state of 2E′
symmetry cannot be tested easily by the dynamics calculations,
because it is coupled to the 2A2′ ground state by pseudo-JT
coupling, and thus vibronic eigenstates would not be accessible
easily and therefore are not computed in the present study. The
computation of the vibrational/vibronic energy levels was
performed using a time-independent Hermite discrete variable
representation (Hermite-DVR) method,115 in which the
corresponding Hamiltonian was diagonalized by an exact short
iterative Lanczosmethod. Further details can be found in refs 74,
90, 98, and 105.

4. RESULTS AND DISCUSSION

The new scheme is tested and compared to its predecessor laid
out in refs 90 and 95. First, both are compared in terms of fitting
performance and convergence with respect to the number of
parameters needed. In a second step, both models are compared
in terms of the dynamics results for both 2A2′ ground and 2E″
excited states, respectively. Finally, the new approach will be
assessed by its capability of reproducing the available
experimental data,106,107 in comparison to previous efforts.
While various ANN parametrizations will be used to provide

deeper insights regarding the stability of the produced results
(wrt the initial guess), each scheme will be primarily represented
by one specific parametrization as a reference case, which turned
out to be particularly suitable for the present case. The previous

Figure 2.Weighted RMSE of the best neural network of a given set as a function of the hidden-layer size. Purple line represents the fitting set error;
green line represents the validation set error. (left) Previous model. (right) New model.
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method will be represented by an ANN model with a single
hidden layer of 75 neurons (corresponding to 1134 formal
parameters), and the new model has a single hidden layer of 30
neurons (corresponding to 549 formal parameters).
4.1. Fitting Performance. The first and somewhat

surprising observation is that the new ANN setup outperforms
the previous efforts significantly in terms of compactness and
overall fitting results. Various neural network sizes between 5
and 120 hidden-layer neurons have been tested. The
convergence behavior of the best obtained RMS error (as well
as the corresponding validation error) is presented in Figure 2,
together with the analogous graph from ref 90. Not only does the
new scheme converge to roughly half of the previous fitting
error, convergence itself occurs significantly faster with respect
to the ANN size. As in previous work, a sudden increase of the
difference between fitting error and validation error is observed
at a certain number of hidden-layer neurons. This is a sign for
overfitting, and ANN models with a larger hidden layer are
considered less reliable. This point is reached for 50 hidden-layer
neurons with the new approach compared to 80 neurons for the
initial method. In the present study we will focus on the best
fitted 30 neuron network, with a fitting RMS of 21.4 cm−1 and a
validation error of 23.6 cm−1, respectively. This was chosen
instead of the 40 neuron network, because both result in almost
indistinguishable results, and the smaller ANN is more efficient
to test thoroughly. It also should be pointed out that the
reference data are obtained from very intricate ab initio
calculations rather than an analytic test model, and thus the
remaining errors not only reflect possible shortcomings of the
present model but also the errors intrinsic to the multireference
configuration interaction (MRCI) calculations. We are inclined
to estimate that an RMSE on the order of 10−20 cm−1might be
the lower limit of what is possible to achieve with the present
data set.
While the total root-mean-square error provides a measure for

how well the given ab initio data are reproduced overall, it
provides no information regarding how deviations are
distributed. For this purpose, unweighted RMS errors were
computed for each adiabatic energy separately below a certain
threshold. This threshold was chosen the same way it was in
previous work,90 1 eV above the reference point energies, to
obtain a measure of how well the model performs in the

physically relevant regions of the individual sheets. A
comparison between the convergence behavior of both present
and previous models can be found in Figure 3. Apart from
inheriting the same smoother, more well-behaved manner of
convergence, state-specific errors produced by the new method
are significantly closer together, meaning the overall error is far
more evenly distributed across the individual electronic states.
This is in stark contrast to the previous model, where the error
seems largely dominated by the error of the lower 2E″ sheet. A
reasonable explanation for this is that, while its intricate triple-
well structure remains the topographically most demanding to
reproduce, the inherent symmetry of the modified input
coordinates greatly reduces the overall strain on the network.
This also explains the significant reduction of required
parameters (less than half of the previous reference ANN
surface).

4.2. Impact of the Hidden-Layer Size on Dynamics.
While representing ab initio data reliably is a central aspect and
strong point of the presented method, it is equally essential for
the resulting models to behave consistently in dynamics
calculations. To this end, in a first step, fits of neural networks
are considered, which differ only in which particular (randomly
generated) initial guess was used in the training for the neural
network parameters. As mentioned above, these tests are
performed with 30 as the number of hidden-layer neurons for
this particular study. The resulting surfaces can vary significantly,
as the highly nonlinear nature of themodel allows for a great deal
of different realizations of nearly identical fitting errors. The
study itself is performed in analogy to that of ref 95, taking the 10
best-fitted networks (in terms of the RMS error) from a set of
100. These networks only differ marginally in terms of the fitting
error, ranging from 21.4 to 22.2 cm−1, meaning they can be
considered roughly identical in terms of quality. They are
enumerated by their numerical “rank” (starting at 1 for the best
network) for the sake of convenience in the following. Figure 4
shows an excerpt of the data resulting from computing
vibrational transition energies for the X̃ 2A2′ state, together
with the obtained average transition energies as well as
respective standard deviations σi. The latter are of particular
interest, as they provide a simple measure for how dynamics
results “spread” among samples of very similar networks. In
other words, these σi values are a measure for what kind of

Figure 3. State-resolved convergence behavior of unweighted RMSE for ab initio data points up to 1 eV above respective reference point energy. States
are enumerated from the ground state to the energetically highest lying state. Gray: weighted fitting set error. (left) Previous model. (right) Current
model.
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deviations are a priori indistinguishable from competing
networks of the same architecture as our reference, which is
why excitation energies will be denoted with a ±σi when
appropriate.
Overall, the dynamics results obtained from the new 30

neuron model closely resemble those from the previous 75
hidden-layer neuron model both with respect to the average
energies produced as well as with respect to the corresponding
standard deviations. Standard deviations are close to 2 cm−1 for
all 18 states considered in the present work. This more than
likely confirms the previous conclusions that the previous model
already exhausted the limits of what accuracy can be achieved
within the confines of the ab initio data presently available. This
indicates that the new approach inherits one of the most
favorable aspects of its predecessor, in particular, the consistency
of the dynamics results produced and thus the overall tendency
of the method to produce robust results of excellent quality.
With the standard deviations σi as a measure for significant

deviations from the reference network at hand, the findings
presented in Table 1 can be contextualized.
The 20 neuron network, with its significantly smaller number

of formal parameters, results in vibrational level energies
deviating significantly for all states known to be affected by
insufficiently flexible ANNmodels in the past (in particular, 4/5,
11, and 12), suggesting that these states are particularly sensitive
regardless of the specifics of themodel used. States 9/10, 13, and
14/15 are additionally affected, further suggesting that this
network size is insufficient to reproduce the lowest adiabatic
sheet accurately. The 25 neuron network, while being more
consistent with the reference network overall, still shows
significant deviations for states 12 and 13 as well as 6/7, 16/
17, and 18, in particular, which were previously indistinguishable
from the reference. Most interestingly, the 40 neuron network
(corresponding to an increase of formal parameters by ∼30%)

shows little to no significant change when compared to the
reference network. This was the reason why the less flexible 30
neuron ANN was chosen as reference model, because it is the
more rigorous test for the efficiency of the new model. It turns
out that network sizes depending on more than twice the
number of formal parameters than the reference network (such
as 60 and 80 hidden-layer neurons) show very few significant
deviations, with state 18 featuring the largest deviation overall.
This is surprising, as overfitting effects were much more
apparent in the previous model scheme, where the molecule’s
symmetry was not directly taken into account by construction.
This change in behavior suggests that, at least for the sample of
states considered, reproducing the adiabatic ground-state PES
accurately is less indicative of the model’s overall performance.
Apparently, the new CNPI-ANN approach greatly reduces the
strain on the network to reproduce the comparably simple,
highly symmetric structure of this PES.
Moving on to the significantly more sensitive dynamics of the

2E″ first excited state, again first the 10 best networks are
considered for the reference hidden-layer size (30 neurons) to
estimate the size of a “significant deviation”. A visualization of
the first 15 states is again provided in Figure 5. Despite the
overall improvement of the new model in terms of reproducing
ab initio data for this particular electronic state, no change in the
overall sensitivity of the resulting transition energies could be
observed. However, while the standard deviations σi remain
rather similar to those produced by the analogous study using
the previous model and 75 neuron network for each state
considered, even the average energies of the first few states (such
as 3/4, 6, and 8) deviate up to 30 cm−1. On the one hand, the
latter is to be expected, as the changes in fit performance were
the most significant for the coupled surfaces of the 2E″ state. The
former, on the other hand, can easily be interpreted as the
sensitivity of these states being intrinsic to the complexity of the
particular system, combined with the limited availability of ab
initio data. This interpretation is consistent with our findings in
ref 95.

Figure 4. Comparison of the computed transition energies for the X̃
2A2′ state of

14NO3 (in cm−1) for the 10 best (in terms of the fitting
error) ANNs from a set of 100 fitted neural networks, including the
reference ANN. Level distances, not to scale, correspond to a deviation
of 20 cm−1 from average. Gray: Standard deviations σi around average
energies. Average energies are provided on the right-hand side together
with the deviation σi in inverse centimeters.

Table 1. Comparison of Computed Vibrational Transition
Energiesa

30 20 25 40 60 80

state Ei − E0 ± σi

δ(Ei −

E0)
δ(Ei −
E0)

δ(Ei −

E0)
δ(Ei −

E0)
δ(Ei −
E0)

1/2 365.8 ± 1.0 −0.9 0.2 ⋮ 0.5 1.4 1.2

3 754.6 ± 1.3 −1.5 −0.5 ⋮ −0.2 −0.2 0.9

4/5 772.5 ± 1.7 −3.2 −0.8 ⋮ −0.5 1.2 1.5

6/7 1035.5 ± 1.7 0.4 2.6 ⋮ 1.9 2.1 2.2

8 1055.6 ± 0.7 −1.7 −1.0 ⋮ −1.2 −1.2 −1.1

9/10 1176.6 ± 1.5 −2.8 −1.1 ⋮ −1.9 −1.8 −0.4

11 1186.6 ± 1.9 −2.7 0.4 ⋮ −0.8 1.8 1.3

12 1212.3 ± 2.5 −6.1 −3.1 ⋮ −2.3 0.6 1.7

13 1342.7 ± 1.5 −2.3 2.5 ⋮ 0.5 1.2 1.9

14/15 1417.6 ± 1.0 −2.5 −0.7 ⋮ −0.7 −0.2 0.0

16/17 1488.1 ± 0.8 0.1 1.8 ⋮ −1.1 −0.1 0.0

18 1489.8 ± 2.1 0.0 3.6 ⋮ 0.2 2.8 2.8
aComparison of the computed vibrational transition energies for the
X̃ 2A2′ state of

14NO3 (in cm−1) for different hidden-layer sizes. The
vibrational excitation energies of the reference (30) surface are
reported together with the deviation σi as defined before (see text).
For the five hidden-layer sizes tested, δ(Ei − E0) provides level shifts
compared to reference network (30). The dotted vertical line
indicates the separation between increased and decreased hidden-
layer sizes with respect to the reference.
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The obtained standard deviations again provide a context in
which the resulting vibronic excitation energies of different
network sizes, summarized in Table 2, can be compared. In
addition to the energies, this table also provides D3h labels and
state assignments based on symmetry information and projected
wave function densities. As in the previous work,95 state
assignments in the degenerate stretch and bend coordinates are
given in terms of radial rs,b

n and tangential excitations ts,b
n .110

Excitations in the totally symmetric mode are denoted with an.
While deviations are largely well below 40 cm−1, the 80 neuron

network showed such immense overfitting artifacts that
comparison was not deemed feasible, which is why it was
omitted. Overall, deviations observed are rather large for
different neural network sizes, in particular, for states
corresponding to radial stretch excitations rs. The fact that the
radial stretch excitations remain sensitive despite the new model
representing the related ab initio data significantly better than
before further confirms the previous conclusions that this may
be a limitation of the underlying data itself being insufficiently
sampled in the dissociative domain of the nuclear configuration
space. Apart from that, the overall size of the deviations is
consistent with findings from the previous modeling scheme.
On the one hand, considering again the smaller networks first,

the 20 hidden-layer neuron network exhibits themost significant
deviations for the rb fundamental and the tb

2 a1″ state (state 20),
with most other states showing deviations close to their
respective σi. The 25 neuron network, on the other hand,
shows expectedly fewer deviations than the 20 neuron network,
as the flexibility of the network increases. Both networks remain
comparably more similar to the reference ANN overall, at least
relative to the deviations found for the same ANN sizes and the
corresponding dynamics results for the ground-state calcula-
tions.
Intriguingly, this pattern was also observed in the previous

model. A plausible explanation for this is that the adiabatic
ground state is more sensitive to underfitting, requiring a
minimal flexibility to be reproduced though having a simple
overall structure. Conversely, the Ã state appears to be more
sensitive to overfitting, having the most complicated structure.
This sensitivity toward overfitting can be observed when looking
at the 60 neuron network. In this case, deviations are again
larger, reaching up to 40 cm−1, with state 20 again deviating the
most, relative to the standard deviation. The 40 neuron network,
while significantly deviating for a few states (state 20, in
particular), is overall very similar to the reference network and
can be seen as an overall equivalent choice.
In conclusion, our findings show that the new modeling

scheme is overall very similar to its predecessor in terms of how

Figure 5. Comparison of the computed transition energies for 14NO3

(in cm−1) on the Ã state for the 10 best (in terms of fitting error) ANNs
in analogy to Figure 4. Level distances, not to scale, correspond to a
deviation of 100 cm−1 from average. Gray: Standard deviation σi around
average energies. Excitation energies together with the deviation σi are
given at the right-hand side.

Table 2. Comparison of Computed Vibronic Transition Energiesa

30 20 25 40 60

state assignment Ei − E0 ± σi δ(Ei − E0) δ(Ei − E0) δ(Ei − E0) δ(Ei − E0)

2 0 a1″ 58.1 ± 2.0 2.2 −2.5 ⋮ 2.8 1.7

3/4 rs
1 e″ 536.7 ± 10.5 12.3 15.3 ⋮ 13.1 16.6

5 tb
1 a2″ 539.5 ± 2.1 2.4 3.5 ⋮ −1.6 −0.1

6 rs
1 a1″ 595.0 ± 9.9 13.4 17.0 ⋮ 14.8 19.6

7/8 tb
1 e″ 614.3 ± 6.5 11.6 7.3 ⋮ 10.0 12.5

9/10 rb
1 (*) e″ 787.3 ± 11.6 19.5 −0.3 ⋮ 3.3 16.9

11 rb
1 (*) a1″ 859.4 ± 28.7 36.5 17.2 ⋮ 25.7 40.0

12 rs
1tb
1 a2″ 1047.7 ± 14.7 20.4 23.9 ⋮ 17.1 25.0

13/14 rs
2 e″ 1056.4 ± 24.8 25.0 29.2 ⋮ 22.7 27.8

15 rs
2 a1″ 1117.3 ± 17.4 26.2 20.7 ⋮ 19.3 25.4

16/17 tb
2 (*) e″ 1121.9 ± 18.5 29.6 30.1 ⋮ 28.9 34.9

18/19 rs
1tb
1 (*) e″ 1168.8 ± 5.9 5.3 13.5 ⋮ 3.5 9.8

20 tb
2 (*) a1″ 1176.2 ± 13.6 25.0 19.9 ⋮ 20.2 27.2

21/22 a1 e″ 1176.3 ± 10.3 18.2 16.3 ⋮ 12.9 20.5

23 ts
1 a2″ 1271.4 ± 6.7 5.7 8.3 ⋮ −2.6 5.0

aComparison of computed transition energies for 14NO3 (in cm−1) on the Ã state for different hidden-layer sizes. δ(Ei − E0) provides level shifts
compared to the reference network (30). All states are given labels in terms of excitations in the breathing mode (a) as well as radial and tangential
excitations in the degenerate stretch and bend modes (rs,b, ts,b). Assignments marked with (*) display visible contamination of other rs excitation(s).
The dotted vertical line indicates the separation between increased and decreased hidden-layer sizes with respect to the reference.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://dx.doi.org/10.1021/acs.jpca.0c05991
J. Phys. Chem. A 2020, 124, 7608−7621

7615



it reacts to varying the hidden-layer size and overfitting, while
being capable of reproducing ab initio reference data both more
accurately and with less than half as many parameters. The
primary difference to previous findings (in terms of behavior) is
that the model shows a more clear-cut change in behavior as
overfitting effects become dominant. However, it is important to
note that this does not relevantly affect the stability of the
method itself, as these effects occur only for more than twice the
number of parameters needed to accurately reproduce the given
data, and resides far beyond any suitable model choice. As a
consequence, the 30 neuron model remains the focal point of
this work, with the 40 neuron model yielding largely equivalent
data at the cost of needing significantly more parameters.
4.3. Invariant Input Coordinates and Numerical

Stability. So far, only the model’s behavior with respect to
the hidden-layer size of the neural network has been
investigated. However, this is of course not the only free
parameter related to the neural network that could be adapted.
Most of these parameters, such as the number of hidden layers or
particularities regarding the distribution of the data set into the
reference and validation set already have been discussed at
length in ref 90.What remains is to analyze the impact of the new
parameters introduced in Equation 16. In the present case, these
parameters were set in such a way that ck = dk

−1 = 10. What this
means is that vk′(Q) approximates vk(Q) for all values of |vk| less
than ck while approaching ±ck as vk → ±∞. In other words, vk′
serves as an asymptotically damped version of vk.
One of the great advantages of neural networks, as we have

stressed before, is the homogeneous, bounded nature of the
sigmoid functions they are ultimately composed of. This is in
stark contrast to the terms of a polynomial expansion, which
increase more rapidly in size for increasing polynomial orders,
which can cause artifacts caused by rapid oscillations in the
undersampled domains of a fit. However, some of this
disadvantage is reintroduced by the use of higher-order
invariants as input coordinates, which means that small changes
in the primitive coordinates translate into large changes in the
third-order coordinates. This appears to cause unnecessary
numerical noise to the neural network, thus hindering (or even
impeding) convergence. The above damping scheme was
introduced to remove this problem and make the resulting
ANN model more robust numerically. What remains is to
address the question of how to choose the resulting parameters
ck. Since the goal of the damping scheme is to avoid artifacts
caused by ill-behaved coordinates rapidly increasing in size, the
present scheme aims to minimize the risk of numerical issues by
keeping vk′ as limited as possible. This means that the
dynamically relevant region of the surface must be represented
perfectly and that the damping does not interfere with that
region.
Table 3 provides a summary of how the computed Ã state

transitions change for the reference network size (30) for various
choices of ck. Again, labels and deviations wrt the reference
network are provided in the same format as that of Table 2,
including standard deviations σi as a measure for the expected
deviations from the reference for equivalent networks (see
Section 4.2). No significant impact on the X̃ state could be
observed. For this reason the present study will focus solely on
the Ã state. Choosing a significantly smaller value of ck than 10
causes the resulting network to become incapable of
reproducing ab initio reference data, as small ck begin to
dampen vk for smaller and smaller displacements from the
reference geometry. On the one hand, this loss of quality is so

significant that obtained dynamics results would fail to provide
relevant insight, as the resulting dynamics change too drastically
to allow a proper comparison. On the other hand, the behavior
of the network changes only marginally when increasing ck from
10 to 15. This suggests that ck = 10 is indeed large enough to
cover the dynamically relevant region, while minimizing the risk
of artifacts. Networks with thresholds of 50 or greater
(essentially meaning that vk′ → vk) have been found to cause
significant artifacts in the surface, rendering further comparisons
unfeasible. One way in which these artifacts become noticeable
is that dynamics results of formally degenerate level energies
begin to show deviations of ∼1 cm−1 due to numerical
instability. As the damping threshold ck becomes higher and
higher, the computed level energies change increasingly, with
deviations from the reference calculation values exceeding σi,
until a “tipping point” (close to ck = 50) is reached, rendering the
obtained dynamics calculations unusable.
In summary, tuning the damping threshold ck one observes a

significant change in the dynamics results obtained, with one
limiting case on either side. Each limiting case is accompanied by
an abrupt change into pathological behavior. Our interpretation
of the data presented in Table 3 is that very large values of the vk
outside the dynamically relevant region cause the numerical
artifacts and thus need to be damped as quickly as possible. This
means that the proper values of ck can be estimated
approximately by the inspection of the reference data and
should be chosen reasonably small. For this reason, all further
results are obtained with a value of ck = 10 ∀k.

4.4. Comparison with Experimental and Previous
Theoretical Data.Up to this point it was investigated primarily
how the ANN choices like hidden-layer size affects the fit
performance as well as quantum dynamics result in comparison
with a reference ANNmodel and how these observations fit into
the conclusions drawn from previous efforts. The comparisons
aim at estimating errors intrinsic to themodel with respect to the
differences in excitation energies produced by the ANNs of (in
terms of fitting error) indistinguishable quality. These estimates

Table 3. Comparison of Computed Transition Energiesa

Ei − E0 ± σi

δ(Ei −

E0)
δ(Ei −

E0)
δ(Ei −

E0)
δ(Ei −

E0)

state assignment ck = 10 ck = 15 ck = 20 ck = 30 ck = 40

2 0 a1″ 58.1 ± 2.0 −0.9 −1.9 1.0 1.5

3/4 rs
1 e″ 536.7 ± 10.5 −0.7 8.1 7.6 16.2

5 tb
1 a2″ 539.5 ± 2.1 −1.4 4.5 2.8 4.6

6 rs
1 a1″ 595.0 ± 9.9 2.3 12.5 10.4 17.6

7/8 tb
1 e″ 614.3 ± 6.5 −3.0 6.1 6.9 13.6

9/10 rb
1 (*) e″ 787.3 ± 11.6 5.8 −6.0 −2.1 −2.3

11 rb
1 (*) a1″ 859.4 ± 28.7 1.4 2.0 7.3 17.7

12 rs
1tb
1 a2″ 1047.7 ± 14.7 −3.5 13.9 11.3 23.4

13/14 rs
2 e″ 1056.4 ± 24.8 −0.8 22.8 15.1 29.5

15 rs
2 a1″ 1117.3 ± 17.4 1.9 19.2 14.2 25.6

16/17 tb
2 (*) e″ 1121.9 ± 18.5 −0.6 26.3 15.8 35.7

18/19 rs
1tb
1 (*) e″ 1168.8 ± 5.9 −1.8 7.6 2.3 8.8

20 tb
2 (*) a1″ 1176.2 ± 13.6 2.4 14.5 11.0 21.5

21/22 a1 e″ 1176.3 ± 10.3 −3.1 19.6 12.8 27.7

23 ts
1 a2″ 1271.4 ± 6.7 1.6 6.1 −2.0 −0.2

aComparison of the computed transition energies for 14NO3 (in
cm−1) on the Ã state for different damping thresholds ck = dk

−1 used in
Equation 16. Columns for ck values larger than 10 provide level shifts
compared to reference network (30 hidden-layer neurons, ck = 10).
Labels and standard deviations σi taken from Table 2.
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in return allow to judge different networks in terms of their
internal consistency among one another, without the need for an
external reference. In this section, the focus will be on the quality
of the surfaces based on external consistency with experimental
data, considering X̃ and Ã state vibrational/vibronic transition
energies.
4.4.1. Vibrational Eigenstates in the X̃ 2A2′ Electronic State.

The results of the vibrational eigenstates of the X̃ state are given
in Table 4. The experimental frequencies are compared to the

computed transitions for both the novel and previous ANN
model. As becomes apparent quickly from the fifth and sixth
columns of Table 4, deviations from experiment remain largely
similar, with all but one change in deviation being most likely
just coincidental and due to the model-intrinsic fluctuations
discussed in Section 4.2. The only state to which a noteworthy
change can be attributed is the 3141 a1′ state. However, this
deviation by itself does not allow for any meaningful
interpretation and still resides well within the limits of what
can be expected of themodel under present conditions. The new
model also reconfirms the long-debated 31 fundamental, which
can be assigned confidently to a state computed at 1036 cm−1

(previously 1040 cm−1), agreeing well with other theoretical
treatments102−104,116 and recent experimental assign-
ments.106,117,118 Similarly, the new model also provides further
evidence that the measured energy level of 1492.4 cm−1 does not
correspond to the 31 fundamental but to the combination band
3141 e′. Finally, the large deviation found for the 3141 a2′ state
can only be explained by a misassignment of the experiment as a
disagreement of almost 150 cm−1, for a single state appears more
than unlikely, especially with excitations even higher in energy
not reaching one-tenth of that.
4.4.2. Vibronic Eigenstates in the Ã 2E″ Electronic State.

The available data for the electronically excited 2E″ state are
restricted to three experimentally measured transitions, as was
the case with the previous model. While a greater deal of
experimentally observed transitions is indeed available, they all
involve umbrella excitations, which cannot be reproduced with
the present model being restricted to planar geometries. A
comparison of how both old and new ANN models reproduce

available experimental data is provided in Table 5. The two
adiabatic PES sheets corresponding to the 2E″ state show a

particularly strong Jahn−Teller coupling resulting in a
pronounced triple-well structure on the lower adiabatic sheet.
As a result, the assignment of the D3h labels based on normal
mode excitations are not straightforward. The intricacies of how
tunneling and the geometric phase effect affect the resulting
spectra as well as the structure of the vibronic eigenstates have
been analyzed in detail in refs 105 and 110.
Of the three experimentally known excitations, two have

already been reproduced within the intrinsic limitations of the
previous model. This continues to be the case for the present
method, excellently reproducing experimental data for the 40

1

(tb
1) and the 30

1 (ts
1) level. In addition, the previously far less well

reproduced rs
1tb
1 state now is computed with unprecedented

agreement with experimental data by the new CNPI-ANN
model. While it is impossible to extrapolate too far from such a
small data set, it may be concluded that it is a fair assumption
that this improvement is indicative of the overall improved
quality of the new model, in particular, with respect to the Ã
state.

5. CONCLUSIONS AND OUTLOOK

The recently developed diabatization method based on a
combination of a simple vibronic coupling model and an ANN
that tunes the coupling parameters has been improved and
thoroughly tested in the present study. The use of symmetry
transformation invariants as input coordinates for the ANN
intrinsically removes symmetry contaminations. Apparently, the
proper symmetry handling by the invariants reduces the stress
on the ANN and leads to reduced RMS errors of the represented
ab initio data. Furthermore, these improved results are obtained
with significantly smaller ANNs. While with the original method
an optimal ANN with 75 hidden-layer neurons was determined,
the present CNPI-ANNmethod needs only 30 neurons to yield
a PES model with noticeably improved RMSE. Thus, the new
method not only is capable of reaching better accuracy but also is
considerably more efficient. This can reduce the numerical effort
in demanding quantum dynamics calculations considerably and
thus can be of tremendous advantage.
The performance of the diabatic PESmodel obtained with the

CNPI-ANN method has been tested by representing an
extensive set of ab initio data for the few lowest electronic
states 2A2′,

2E″, and 2E′ of planar NO3. The same data set has
been used as in our previous studies, and thus the results can be
compared directly. In addition to the residual errors in the
representation of the ab initio data, vibrational- and vibronic-

Table 4. Summary of the Comparisona

assignment Eexp Etheo
ANN,old Etheo

ANN,new δEexp
ANN,old δEexp

ANN

41 e′ 365.5 366.8 365.8 −1.3 −0.3

42 a1′ 752.4 756.3 754.6 −3.9 −2.2

42 e′ 771.8 774.6 772.5 −2.8 −0.7

11 a1′ 1051.2 1054.9 1055.6 −3.7 −4.4

31 e′ 1055.3 1039.7 1035.5 15.6 19.8

43 e′ 1173.6 1179.3 1176.6 −5.7 −3.

43 a1′ 1214 1215.1 1212.3 −1.1 1.7

1141 e′ 1413.6 1417.7 1417.6 −4.1 −4.

3141 a2′ 1491 1344.9 1342.7 146.1 148.3

3141 e′ 1492.4 1490.0 1488.1 2.4 4.3

3141 a1′ 1499.8 1498.2 1489.8 1.6 10.
aSummary of the comparison between the experimental and
computed transition energies on the X̃ 2A2′ state of 14NO3 (in
cm−1). The “assignment” column provides the corresponding D3h

labels as well as state assignments including dominant state
contributions. Etheo

ANN,old provides excitation energies using the previous
(ANN-based) model,90,95 and Etheo

ANN,new relates to the ones obtained
for the present model. The remaining two columns provide respective
differences from the experimental data as listed under Eexp, reported
from ref 106.

Table 5. Summary of the Comparisona

assignment Eexp Etheo
ANN,old Etheo

ANN,new δEexp
ANN,old δEexp

ANN,new

40
1 (tb

1) 539.5 539.3 539.5 0.2 0.0

40
2 (rs

1tb
1) 1056.6 1024.8 1047.7 31.8 8.9

30
1 (ts

1) 1270.5 1276.1 1271.4 −5.6 −0.9
aSummary of the comparison between the experimental and
computed transition energies on the Ã 2E″ state of NO3 (in cm−1).
Assignments in the first column correspond to those of Table VI of ref
107, with assignments from Table 2 given in parentheses. Etheo

ANN,old

provides excitation energies using the previous (ANN-based)
model,90,95 and Etheo

ANN,new relates to the ones obtained for the present
ANN-based model. The remaining two columns provide the
respective differences from the experimental data.
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level energies have been computed. This allows to assess the
sensitivity of the nuclear dynamics results on the various
parametrizations of the CNPI-ANNPESmodel. It turns out that
the new CNPI-ANN model behaves very similarly to the
previous plain ANNmodel. In particular, the onset of overfitting
can be assessed from the development of the validation error
compared to the reference error when increasing the hidden-
layer size. For each ANN, many different parametrizations are
obtained, which are very similar in terms of RMSE. The
corresponding quantum dynamics calculations yield a certain
scattering of values for each vibrational/vibronic level that is
indicative of the sensitivity of the results on the minute details of
the PES model. The observed standard deviations are only on
the order of a couple of inverse centimeters for the 2A2′ ground-
state vibrational levels. The standard deviations computed for
the vibronic levels of the excited 2E″ state, having a much more
complicated PES topography, are approximately an order of
magnitude larger. Comparison of these dynamics results with
the available experimental values shows overall excellent
agreement, and most level energies are reproduced more or
less within the computed standard deviations. The agreement
with experiment is slightly improved over the plain ANNmodel,
which already yielded excellent results. The most noticeable
improvements are observed for the 2E″ state both in fitting
RMSE and quantum dynamics results.
The present model limited to 5D planar NO3will be extended

to full 6D in the near future to be able to investigate the nuclear
quantum dynamics and spectroscopy of this intriguing radical in
full detail. Of course, the CNPI-ANN diabatization model can
be applied also to other vibronic coupling problems. The present
results seem quite encouraging that accurate and reliable
diabatic PES models can be obtained by the present method
in an efficient way.
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Supporting Information

Table S1: Comparison of computed transition energies for X̃ 2A′

2
state of 14NO3

(in cm−1) for the 10 best (in terms of fitting error) ANNs from a set of 100 fitted
neural networks, including the reference ANN. Standard deviation is provided
w.r.t. average energy levels µi.

best 2nd 3rd 4th 5th 6th 7th 8th 9th 10th µi σi

state Ei − E0 deviations from best network mean std. dev.

1/2 365.8 0.5 1.1 1.7 -0.8 -0.5 -0.5 -1.7 0.1 0.8 365.9 1.0

3 754.6 -0.4 1.1 -0.6 -2.1 -1.7 -0.6 -1.9 -0.1 2.0 754.2 1.3

4/5 772.5 -0.8 0.8 2.3 -0.8 -1.0 -2.0 -3.8 -1.7 0.2 771.9 1.7

6/7 1035.5 2.0 1.1 2.7 4.2 2.0 1.9 6.2 1.5 3.0 1038.0 1.7

8 1055.6 -1.7 -0.2 0.0 -0.2 0.3 -1.1 0.7 -0.6 0.4 1055.3 0.7

9/10 1176.6 -1.8 1.0 -2.4 -2.7 -2.4 -1.4 -3.7 -2.2 0.6 1175.1 1.5

11 1186.6 -0.8 0.4 2.5 -0.4 -0.8 -1.7 -4.2 -1.2 1.8 1186.2 1.9

12 1212.3 -3.3 0.1 2.9 -0.6 -2.0 -3.5 -5.5 -4.3 -1.0 1210.6 2.5

13 1342.7 1.4 1.3 4.1 4.2 1.5 0.6 3.1 0.3 1.5 1344.5 1.5

14/15 1417.6 -1.6 0.6 1.6 -0.5 0.3 -1.3 -0.5 -0.5 1.3 1417.6 1.0

16/17 1488.1 0.4 0.4 0.9 1.2 0.3 0.1 1.5 -0.4 2.2 1488.8 0.8

18 1489.8 0.7 -0.2 4.0 6.3 1.8 1.3 3.7 0.2 2.5 1491.9 2.1
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Table S2: Comparison of computed transition energies for 14NO3 (in cm−1) on the Ã state for the 10 best (in
terms of fitting error) ANNs in analogy to Table S1. All states are given labels in terms of excitations in the
breathing mode (a) as well as radial and tangential excitations in the degenerate stretch and bend modes (rs,b,
ts,b). Assignments marked with (∗) display visible contamination of other rs excitation(s).

best 2nd 3rd 4th 5th 6th 7th 8th 9th 10th µi σi

state assignment Ei − E0 deviations from best network mean std. dev.

2 0 a′′
1

58.1 1.0 -0.6 -0.6 -3.2 2.6 -4.2 0.8 -2.0 -0.9 57.4 2.0

3 / 4 r1s e′′ 536.7 16.4 16.3 14.9 -9.5 18.5 -9.9 4.3 8.3 9.0 543.5 10.5

5 t1b a′′
2

539.5 1.6 6.7 3.3 4.9 1.6 4.7 0.7 2.2 4.6 542.5 2.1

6 r1s a′′
1

595.0 17.0 14.4 18.6 -4.8 20.9 -7.6 5.6 9.8 8.7 603.2 9.9

7 / 8 t1b e′′ 614.3 11.6 13.1 9.9 -1.6 14.9 -4.2 3.2 4.3 6.5 620.1 6.5

9 / 10 r1b (∗) e′′ 787.3 20.8 -0.1 0.1 -12.6 14.7 -14.2 10.3 7.7 -8.4 789.1 11.6

11 r1b (∗) a′′
1

859.4 44.8 20.9 18.4 -36.4 40.7 -40.3 17.4 23.4 1.3 868.4 28.7

12 r1st
1

b a′′
2

1047.7 26.3 29.2 23.5 -8.2 28.2 -8.5 4.6 13.1 16.1 1060.2 14.7

13 / 14 r2s e′′ 1056.4 29.1 32.0 29.7 -28.7 29.8 -36.0 10.0 21.0 19.2 1067.1 24.8

15 r2s a′′
1

1117.3 26.0 25.5 23.6 -12.0 27.8 -23.0 11.2 16.2 14.2 1128.3 17.4

16 / 17 t2b (∗) e′′ 1121.9 34.5 32.6 32.8 -8.1 38.5 -11.6 10.4 22.3 18.1 1138.8 18.5

18 / 19 r1st
1

b (∗) e′′ 1168.8 8.9 9.8 12.0 -0.3 12.8 -4.4 0.1 5.7 6.6 1173.9 5.9

20 t2b (∗) a′′
1

1176.2 26.2 26.8 26.4 -2.1 30.6 -6.4 6.5 14.0 13.9 1189.9 13.6

21 / 22 a1 e′′ 1176.3 18.4 22.9 20.4 -2.0 23.2 -2.2 3.4 9.0 11.7 1186.8 10.3

23 t1s a′′
2

1271.4 5.7 7.0 3.8 -10.0 3.0 -12.7 1.4 6.0 3.2 1272.2 6.7
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