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Abstract In the quadri–dimensional space–time, the variation of Hamilton’s
action is a powerful tool to study the process equations for conservative fluid
media. In this framework, Hamilton’s principle allows to obtain equation of
motions, equation of energy but also Rankine-Hugoniot conditions. The varia-
tional method may be a versatile key to obtain the shock-wave conditions for
complex media when the equations of processes are not expressed by linear or
quasi-linear differential equations.

Keywords Hamilton’s action in space–time · Hamilton’s principle · Moving
surfaces of discontinuity · Rankine–Hugoniot conditions

Mathematics Subject Classification (2000) 70H25 · 76L05 · 76M30

1 Introduction

In the literature, an ideal shock wave is mainly associated with hyperbolic
systems of conservation laws and represented by a moving surface dividing
space in two parts where a continuous solution exists, with a jump across this
surface [1]. The main problem of shocks for hyperbolic systems was proposed
by Riemann but only in the case of one spatial dimension and shock solutions
are weak solutions that must satisfy the conditions of Rankine–Hugoniot [2].
Although shock waves are an important research topic for many years, the
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importance of the Riemann problem is not so clear in multidimensional situa-
tions. In case of complex medium, the Rankine–Hugoniot conditions are often
the subject of discussions [3].

The paper is destined to didactically present the tool associated with vari-
ations of Hamilton’s action in the physical quadri–dimensional space–time
(4-D space–time) to obtain the Rankine–Hugoniot conditions of shock waves
for conservative (i.e non dissipative) media.
The variation of Hamiton’s action is related to the theory of distributions
where a decomposition theorem is associated with a linear functional of virtual
displacements [4]. The virtual displacements, which are well-known in varia-
tional methods, are considered as test functions whose supports are compact
manifolds [5]. The variation of Hamilton’s action can be written in a unique
canonical zero order form with respect both to the test functions and their
transverse (normal) derivatives to sub–manifolds corresponding to successive
boundaries and edges [6].
The equations of motion and energy, and boundary conditions of continuous
media are deduced from Hamilton’s principle : the motion is such that the
action is zero for any virtual displacement [7]. When the Lagrangian depends
on the strain tensor, Hamilton’s action depends on the gradient of the vir-
tual displacement and leads to existence of the Cauchy stress–tensor. When
the Lagrangian also depends on over–strain tensor, then the Hamilton action
depends on second gradient of the virtual displacement and we obtain second–
gradient media model like for van der Waals fluids [8,9].
To understand the proposed tool, we simply present the case of conservative
fluids (as elastic media) and we prove that Hamilton’s principle is able to
determine shock conditions when the variations of Hamilton’s action are asso-
ciated with virtual displacements in the 4-D space–time. The method is able
to determine the Rankine–Hugoniot conditions as it was already performed
for mixtures of fluids [10].
Generally applied in relativity, the Hamilton method – as commented in con-
clusion – will be used for more complex media, when the equations of motions
are not linear or quasi-linear, in a forthcoming article [11] ; they are cases
when the Rankine–Hugoniot conditions cannot be obtained by classical meth-
ods associated with problems of hyperbolic equations of motions as in [12].

The paper is presented as follows :
In Section 2, Hamilton’s action and Hamilton’s principle are developed in the
4-D space–time.
In section 3, fluids (and more generally elastic media) are considered, and two
forms of virtual displacements associated with variations of Hamilton’s action
in 4-D space–time and 4-D reference–space are analyzed and compared. The
form of virtual displacements in space–time allows to obtain the equations of
motion and energy; the form in reference–space allows to obtain the equation
of motion in thermodynamic form and the specific entropy conservation along
trajectories.
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Section 4 introduces the moving surfaces of discontinuity.
In Section 5, the virtual displacements in the 4-D space–time yield the com-
plete set of Rankine–Hugoniot conditions; it is not the same for virtual dis-
placements in the 4-D reference–space.
In conclusion, the virtual displacements in the 4-D space–time are highlighted.

2 The Hamilton principle

2.1 The Hamilton action

In the 4-D space–time W , we consider a continuous medium of position

variables z =

(

t

x

)

≡
{

zi
}

, (i = 0, 1, 2, 3), where t is the time and x ≡
{

xi
}

, (i = 1, 2, 3) denote the Euler variables; we also write :

z⋆ =
(

z0, z1, z2, z3
)

where z0 = t and z1 = x1, z2 = x2, z3 = x3

We also consider the most general 4-D reference–space W0 of position vari-

ables Z =

(

λ

X

)

≡
{

Zi
}

, (i = 0, 1, 2, 3), where λ is a real scalar parameter

and X ≡
{

X i
}

, (i = 1, 2, 3) denote the Lagrange variables; we also write :

Z⋆ =
(

Z1, Z2, Z3, Z4
)

where Z0 = λ and Z1 = X1, Z2 = X2, Z3 = X3

A continous–medium motion is represented by the mapping :

z = Φ(Z) (1)

The Hamilton action a of an elastic medium is expressed as [7,13] :

a =

∫

W

Ldw with L = L

(

z,Z,
∂z

∂Z

)

where dw = dv × dt is the volume-time measure in the 4-D space–time W , L
is the Lagrangian, and

B =
∂z

∂Z
≡

∂Φ (Z)

∂Z
where

∂z

∂Z
≡

{

∂zi

∂Zj

}

with i, j ∈ {0, 1, 2, 3} (2)

denotes the tangent linear application of motion Φ in the 4-D space–time (1).

1 We notice that L has the dimension of an energy per unit volume and consequently,
a =

∫

W
Ldw has the dimension of an action.
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2.2 Variation of the Hamilton action

To vary a motion of the medium, we consider a family Ψ associated with a
real parameter ε belonging to the vicinity of 0 [4,7,14] :

z = Ψ(Z, ε) such that Ψ(Z , 0) = Φ(Z) (3)

Then,

a = f(ε) and the variation δa is defined by δa = f ′(0),

where for a variation, the differential is denoted δ in place of d. Two possibilities
can be considered to obtain the variation of action a. From

δz =
∂Ψ

∂Z
δZ +

∂Ψ

∂ε
δε with δε = 1, we deduce : (4)

• A first variation :

δz = ζ̃ when δZ = 0

• A second variation :

δZ = ζ̂ when δz = 0

where symbols tilde and hat respectively denote the first and second variations
associated with (3).

Remark 1 : The two variations respectively denoted by δ̃ and δ̂ are not inde-
pendent. In fact (3) and (4) imply :

∂Ψ(Z, 0)

∂ε
+

∂Ψ(Z, 0)

∂Z
ζ̂ = 0

which can be written :

ζ̃ + B ζ̂ = 0 (5)

We use the notations (2) :

Operators div and Div, ∇ = grad =

(

∂

∂x

)⋆

and Grad =

(

∂

∂z

)⋆

, are the

divergence and gradient in the 3-D and 4-D physical spaces, respectively.
The divergence of a second order tensor A is a covector (i.e. a form) defined
as :

Div (Ah0) = Div (A)h0

2 For vectors a and b, a⋆b, where superscript ⋆ denotes the transposition, is the scalar
product (line vector a⋆ is multiplied by column vector b); for the sake of simplicity, we also
denote a⋆a = a2. Tensor a b⋆ (or a ⊗ b) is the product of column vector a by line vector
b⋆. Tensor 1 is the identity. In the physical 3-D space, we denote the zero matrix by O and
the zero vector by 0, respectively.
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where h0 is a constant vector field in the 4-D space-time. In particular, for
any linear transformation A and any vector field h, we get :

Div(Ah) = (Div A)h+ Tr

(

A
∂h

∂z

)

where Tr denotes the trace operator. If f(A) is any scalar function of A, we
denote :

∇Af =

(

∂f

∂A

)⋆

with

(

∂f

∂A

)i

j

=

(

∂f

∂Aj
i

)

where i is the line index and j the column index of A and we denote :

df(A) = ∇Af : dA ≡

(

∂f

∂A

)i

j

dAj
i

where repeated indices correspond to the summation.
The notations are similar for 4-D reference space W0; in this case, we simply
add the subscript 0.

Equation (1) allows to write the variations of Hamilton’s action a as well
in variable Z than in variable z:

δz = ζ̃, δZ = 0 =⇒ δ̃B =
∂ζ̃

∂z
B δZ = ζ̂, δz = 0 =⇒ δ̂B = −B

∂ζ̂

∂Z

a =

∫

W0

L detB dw0 a =

∫

W

L dw

δa =

∫

W0

{

∂L

∂z
detB ζ̃ +Tr

(

∂(L detB)

∂B
δ̃B

)}

dw0 δa =

∫

W

{

∂L

∂Z
ζ̂ +Tr

(

∂L

∂B
δ̂B

)}

dw

=⇒ δa =

∫

W

{F⋆ ζ̃ +Tr

(

T
∂ζ̃

∂z

)

dw = =⇒ δa =

∫

W0

{F⋆
0 ζ̂ +Tr

(

T0

∂ζ̂

∂Z

)

dw0 =

∫

W

{F⋆ −Div T } ζ̃ dw +

∫

∂W

N⋆T ζ̃ dσ

∫

W0

{F⋆
0 −Div0 T0} ζ̂ dw0 +

∫

∂W0

N⋆
0T0 ζ̂ dσ0

with F⋆ =
∂L

∂z
and T = L 1+ B

∂L

∂B
with F⋆

0 = detB
∂L

∂Z
and T0 = −detB

∂L

∂B
B

In relativity, T is called energy-impulsion tensor (see [15]) and F is the ex-
tended force; Div T is a form of W ; det denotes the determinant. The bound-
ary of W is denoted ∂W with measure dσ; N⋆ denotes the linear form such



6 Henri Gouin

that N⋆ζ̃ dσ = det
(

ζ̃, d1z, d2z, d3z
)

, where d1z, d2z, d3z are the differentials

associated with coordinate lines of ∂W in the 4-D space–time. Similar nota-
tions are used for W0 and its boundary ∂W0 with the additional subscript 0,
but T0 and F0 don’t have any names.

Thanks to the Stokes formula, integrals

∫

∂W

N⋆T ζ̃ dσ and

∫

∂W0

N⋆
0T0 ζ̂ dσ0

correspond to the integration of Div (T ζ̃) and Div0 (T0 ζ̂) on boundaries ∂W
and ∂W0, respectively.

3 Motions of fluid media

From (2), we note that B can be written :

B =

(

µ w⋆

r B

)

corresponding to the relations







dt = µ dλ+w⋆dX

dx = r dλ+B dX

(6)

where µ is a scalar, w⋆ a form, r a vector and B is a 3-D linear application.
Eliminating dλ between the two relations of system (6), we obtain :

v ≡
∂x(X, t)

∂t
≡

r

µ
and F ≡

∂x(X, t)

∂X
= B −

r

µ
w⋆ = B − vw⋆ (7)

where v is the fluid velocity and F denotes the tangent linear deformation of
the medium.
In the particular case when we choose λ = t, we obtain :

A ≡
∂z

∂Z0

=

(

1 0⋆

v F

)

where Z0 =

(

t

X

)

and we denote W ′
0 the associated 4-D reference space of coordinates (t,X).

Second order tensors A and B are connected by the relation:

B = AΛ where Λ ≡
∂Z0

∂Z
=

(

µ w⋆

0 1

)

with dt(λ,X) = µ dλ+w⋆dX and dX(λ,X) = 0 dλ + 1 dX, which implies:

µ =
∂t(λ,X)

∂λ
and w⋆ =

∂t(λ,X)

∂X

3.1 The Lagrangian of a fluid and its consequences

If we denote V =

(

1
v

)

the 4-D velocity field in space–time associated with

the material derivative of z =

(

t

x

)

, conservative fluids are elastic media with
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Lagrangian. The Lagrangian is a function of z, Z and B such that [16,17] (3):

L =
1

2
ρV2 − ρα(ρ, s)− ρΩ(z)

where :

• The volume kinetic energy is
1

2
ρv2, ρ being the mass density.

In fact,
1

2
V2 ≡

1

2

I⋆B⋆B I

µ2
where I =

(

1
0

)

and µ = I⋆B I (8)

• The specific internal energy α(ρ, s) is function of the mass density ρ and
the specific entropy s. Due to the mass conservation, the image of the density
in the reference space W0 is conserved. For conservative motions, the entropy
s is attached to the reference space. Then :

ρ detB

µ
= f(X) and s = g(Z)

where f and g are two real scalar functions defined in Lagrange variables.

• The specific potential energy Ω due to body forces is defined in W :

Ω = Ω(z)

We obtain :

∂L

∂ρ
=

1

2
V2 − h−Ω ≡ m,

∂L

∂s
= −ρ θ and

∂L

∂

(

1

2
V2

) = ρ

where h = α + ρ
∂α(ρ, s)

∂ρ
is the specific enthalpy, θ the Kelvin temperature

and p = ρ2
∂α

∂ρ
the pressure of the fluid.

Let us calculate
∂L

∂B
or firstly

∂ρ

∂B
and

∂

(

1

2
V2

)

∂B
.

From d(detB) = detB Tr
(

B−1dB
)

, dµ = I⋆dB I = Tr (I I⋆dB) and (8), we
obtain the three relations :

∂ρ

∂B
= f(X)µ

∂

∂B

(

1

detB

)

+ f(X)
1

detB

∂µ

∂B
= −

f(X)µ

detB
B−1 + f(X)

I I⋆

detB

3 Let us note that
1

2
ρV2 =

1

2
ρ
(

1 + v2
)

. Because potential energy Ω is only defined to

within an arbitrary additive constant, the term
1

2
ρ × 1 where 1 has the physical dimen-

sion of a velocity square can be added to ρΩ(z), without changing the Hamilton action.

Consequently, the Lagrangian can also be written L =
1

2
ρ v2 − ρα(ρ, s)− ρΩ(z).
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detB
∂ρ

∂B
B = −f(X)µ

(

1 0⋆

0 1

)

+ f(X)

(

µ w⋆

0 O

)

= f(X)

(

0 w⋆

0 −µ1

)

B
∂ρ

∂B
= −ρ (1− VI⋆) ,

∂

(

1

2
V2

)

∂B
=

I I⋆

µ

(

B⋆

µ
−

1

2
V2 1

)

Moreover, from (7), we obtain the three relations :

I I⋆ =

(

1 0⋆

0 O

)

=⇒ det B

∂

(

1

2
V2

)

∂B
B =

detB

µ

(

0 v⋆F

0 O

)

B

∂

(

1

2
V2

)

∂B
=

(

−v2 v⋆

−(v2)v vv⋆

)

= VV⋆ (1− VI⋆)

∂L

∂Z
=

(

1

2
V2 − α− ρ

∂α

∂ρ
−Ω

)

∂ρ

∂Z
− ρ

∂α

∂s

∂s

∂Z

Additively, we obtain :

∂L

∂B
= ρ

∂

(

1

2
V2

)

∂B
+

(

1

2
V2 − α− ρ

∂α

∂ρ
−Ω

)

∂ρ

∂B
=⇒

T0 = − detB









ρ

∂

(

1

2
V2

)

∂B
+m

∂ρ

∂B









B

3.2 The Hamilton principle

Principle [7,14]: For all virtual displacements which are null on the boundary
∂W, (respectively on the boundary ∂W0), the variations of Hamilton’s action
are zero.

From Hamilton’s principle and calculations in Section 3.1, we obtain :
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F⋆ = −ρ
∂Ω

∂z
, T =

(

−e ρv⋆

− (e + p)v ρvv⋆ + p1

)

F⋆
0 = −µ f(X) θ

∂s

∂Z
+ µm

(

0,
∂f

∂X

)

e = ρ

(

1

2
v2 + α+Ω

)

, p = ρ2
∂α(ρ, s)

∂ρ
T0 = f(X)

(

0 −v⋆F −mw⋆

0 mµ 1

)

We obtain: F⋆ −Div T = 0⋆ ⇐⇒ We obtain: F⋆
0 −Div0 T0 = 0⋆ ⇐⇒

∂e

∂t
+ div((e + p)v)− ρ

∂Ω

∂t
= 0, µ f(X) θ

∂s

∂λ
= 0,

∂ρv⋆

∂t
+ div (ρvv⋆ + p1) + ρ

∂Ω

∂x
= 0⋆ ∂

∂λ
(v⋆F +mw⋆) = µ θ

∂s

∂X
+

∂(µm)

∂X

In the first column, e is the total volume energy of the fluid ; we firstly obtain
the classical equation of energy and secondly the equation of motions.
In the second column, although it is not necessary, we can choose the parameter
λ = t and we obtain µ = 1, w = 0. Consequently in Lagrange variables, we
get :

∂s(t,X)

∂t
= 0 ⇐⇒ ṡ = 0 and

∂v⋆F

∂t
= θ

∂s

∂X
+

∂m

∂X
(9)

The first equation (9)1 is the conservation of the specific entropy along fluid
trajectories. Due to

∂v⋆F

∂t
= a⋆F +

1

2

∂v2

∂x
F

where a is the acceleration vector, the second equation (9)2 writes in variables
(t,X) :

(

a⋆ +
∂ (h+Ω)

∂x
− θ

∂s

∂x

)

F = 0⋆

and finally :
a+ grad (h+Ω)− θ grad s = 0

This equation is a thermodynamic form of the equation of motion [4].

4 Moving surface

4.1 Generality [18]

In (1), one can choose the representation t = ℓ(λ,X), and consequently its
derivatives

µ =
∂ℓ(λ,X)

∂λ
and w⋆ =

∂ℓ(λ,X)

∂X
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such that the image by application Φ−1 of a moving surface Σ (which is a 3-D
manifold of 4-D space–time W) is the hyperplan Σ0 of equation λ = 0. The
surface Σ0 can be considered as a 3-D material–manifold of W ′

0 with equation
t = ℓ(0,X). Along Σ0 we obtain :

dt = w⋆dX

and we can write :

N⋆
0 dZ0 = 0 with N⋆

0 = π (−1,w⋆) (10)

where π is a coefficient of proportionality. Along Σ, we also have:

N⋆dz = 0 with N⋆ = (−Dn ,n
⋆) (11)

where n is the unit normal vector to St section of Σ at time t and Dn is the
velocity of St. From (11), we deduce N⋆A dZ0 = 0. Then, from (10)

N⋆A = κN⋆
0 with N⋆A = (u,n⋆F ) (12)

where u = n⋆v−Dn is the medium velocity with respect to the moving surface
Σ and κ is a Lagrange multiplier. By similarity with N , we can write :

N⋆
0 = (−Dn0

,n⋆
0) and consequently w⋆ =

n⋆
0

Dn0

where Dn0
is the velocity of S0 image of St in the 3-D reference–space of

variables X and u0 = −Dn0
denotes the material velocity with respect to S0.

From (12), we deduce :

u

(

1,
n⋆F

u

)

= k (1,n′⋆
0 ) with n′⋆

0 =
n⋆

0

u0

where k is a coefficient of proportionality (k = u). Consequently,

n⋆F

u
=

n⋆
0

u0

= n′⋆
0 = −w⋆ (13)

Expression (13) yields u and n as function of w⋆ and F . From the knowledge
of v we deduce n⋆v and consequently Dn = n⋆v − u.

4.2 Surfaces of discontinuity

We assume that motion Φ is a continuous function but with discontinuous
derivatives on the moving surface Σ represented in W0 by its image Σ0 of
equation λ = 0. This hypothesis implies :

N⋆
0 dZ = 0 =⇒

[

∂z

∂Z

]

dZ = 0
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where brackets [ ] indicate the discontinuity jump across Σ. Consequently
on the surface of discontinuity Σ0 of equation λ = 0 in W0,

{dλ ≡ I⋆ dZ = 0 =⇒ [B] dZ = 0 } =⇒ {∀ dX, [w⋆] dX = 0 and [B] dX = 0}

Then, [w⋆] = 0⋆ and [B] = O. Consequently :

[B] =

(

[µ] 0⋆

[µv] O

)

From (6) and (7),

[w⋆] = 0⋆ and [v]w⋆ + [F ] = O (14)

From (13),

n⋆F 1

u1

=
n⋆F 2

u2

=
n⋆

0

u0

,

[

n⋆F

u

]

= 0⋆ and [F ] = [v]
n⋆

0

u0
(15)

where subscripts 1 and 2 indicate the upstream and downstream values of the
discontinuity surface Σ. It is possible to calculate the discontinuities of each
tensor, image in W of a tensor defined on W0.
We can interpret (15): applying dX to (15)1, we obtain :

n⋆dx1

u1

=
n⋆dx2

u2

The projections on n of vectors dx1 = F 1 dX and dx2 = F 2 dX are propor-
tional to u1 and u2, respectively.
Equation(14)2 yields [F ] = −[v]w⋆; then d2x − d1x = −[v]w⋆dX and the
direction of vector d2x− d1x corresponds to the direction of [v].
Let us notice that [v] is not necessary normal to the surface of discontinuity.

5 Shock waves

When u 6= 0, surfaces of discontinuity are shock waves [18,19].

5.1 Mass conservation

The reference mass density being given in W ′
0 and the mass conservation cor-

responding to ρ detF = f(X), we get across a shock wave in W ′
0 :

[f(X)] = 0
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By using (4), one deduces :

[ρ] = f(X)

[

1

detF

]

= −f(X)
[detF ]

detF 1 detF 2

= −f(X)
[u]

u2 detF 1

Then, [ρ] = −
[u]

u2

ρ1, which implies the geometrical property (which is not

related with Hamilton’s principle) :

[ρ u] = 0 (16)

5.2 Hamilton’s principle

When F⋆−Div T = 0⋆ and F⋆
0 −Div0 T0 = 0⋆ corresponding to conservative

motion equations (see Section 3.2), the variation of Hamilton’s action writes :

δa =

∫

Σ

N⋆ [T ] ζ̃ dσ =

∫

Σ0

N⋆
0 [T0] ζ̂ dσ0

5.2.1 First variation

From Hamilton’s principle, we obtain :

N⋆ [T ] = 0⋆

[Dn p+ (e+ p)u] = 0 and [ρu v + pn] = 0 (17)

Equation (17)2 corresponds to the conservation of impulsion across the shock
wave. We can write :

[ρu v + pn ] = 0 ⇐⇒







[p+ ρ u2] = 0

[vtg] = 0

where vtg is the tangential velocity component at the shock wave. Equivalently,
we obtain :

[v] = [u]n

From (14)2 we additively obtain :

[F ] = −[u]nw⋆ =
[u]

u0

nn⋆
0 (18)

4 From Relation (15), we get :

[F ] = [v]
n⋆

0

u0

=⇒ F 2F
−1

1
= 1+ [v]

n⋆

0

u0

F−1

1
=⇒ F 2F

−1

1
= 1+ [v]

n⋆

u1

.

From det(1+KL⋆) = 1 + L⋆ K, where L and K are two 3-D vectors, we get :

det F 2

det F 1

= 1 +
[u]

u1

=
u2

u1

=⇒
det F i

ui

=
[det F ]

[u]
, i ∈ {1, 2}.
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From (16) and [p + ρ u2] = 0, (17)1 is equivalent to

[

1

2
v2 + h−Dn u

]

= 0

and [vtg] = 0 implies
[

v2
]

=
[

u2 + 2Dn u
]

. Consequently,

[

1

2
u2 + h

]

= 0

which corresponds to the conservation of energy. We can resume the conditions
associated with the first variation corresponding to ζ̃ :

[ρ u] = 0, [p+ ρ u2] = 0, [v] = [u]n,

[

1

2
u2 + h

]

= 0 (19)

Equations (19) represent the Rankine-Hugoniot conditions for fluid shock–
waves in the space–time W , where we can add geometrical condition (18).

5.2.2 Second variation

We assume the shock wave Σ0 is represented by equation λ = 0 in W0. The
mapping Φ being continuous along the shock wave, we obtain again (14).
The principle of Hamilton implies :

N⋆
0 [T0] ≡ I⋆[T0] = 0⋆

From the value of T0 obtained in Section 3.2, we obtain :

[v⋆F +mw⋆] = 0⋆ (20)

which is the only shock condition associated with the virtual displacement ζ̂.
Equation (20) corresponds to three scalar equations through the shock wave
Σ0. From (14)2, (15)2 and (20), we respectively deduce :

w⋆ dX = 0 =⇒ [F ] dX = 0 and [v⋆F ] dX = 0

or
w⋆ dX = 0 =⇒ d1x = d2x and v⋆

1 d1x = v⋆
2 d2x

From (13),
w⋆ dX = 0 ⇐⇒ n⋆ dx = 0

Consequently,
n⋆ dx = 0 =⇒ [v⋆] dx = 0

and there exists a Lagrange multiplier α such that [v] = αn; consequently the
discontinuity of v is normal to the shock wave.
Due to α = [n⋆ v] = [u], we deduce :

[v] = [u]n and [vtg] = 0 (21)

and we obtain again (18).

From [Ω] = 0, we get [mw⋆] =

[

1

2
v2 − h

]

w⋆. Moreover, [v⋆ F ] = v⋆
1 [F ] +
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[v⋆]F2 = v⋆
1 [F ] + [u]n⋆F2 .

From n⋆ v1 = u1 +Dn and because (15)2 and (21), [F ] = [v]n′⋆
0 = [u]nn′⋆

0

and from (15)1, we obtain n⋆F2 = u2 n
′⋆
0 . We deduce :

[v⋆F ] = [u]v⋆
1 nn′⋆

0 + [u] u2 n
′⋆
0 = [u] (u1 +Dn + u2)n

′⋆
0 = −

[

u2 +Dn u
]

w⋆

Consequently, [v⋆F +mw⋆] = −

[

u2 +Dn u+ h−
1

2
v2

]

w⋆ = 0⋆ and finally,

[

1

2
u2 + h

]

w⋆ = 0⋆ ⇐⇒

[

1

2
u2 + h

]

= 0

We can resume the conditions associated with the second variation :

[ρ u] = 0, [v] = [u]n,

[

1

2
u2 + h

]

= 0 (22)

Equations (22) represent the Rankine–Hugoniot conditions for fluid shock wave
in W0.

6 Conclusion

Only the first variation of Hamilton’s action yields the well–known Rankine–
Hugoniot conditions for fluids. The second variation yields only a part of the
Rankine–Hugoniot conditions by missing the condition [p+ ρ u2] = 0.
This difference of results can be explained : in the 4-D space-time, along sur-
face Σ, the test function (or virtual displacement) ζ̃ is a continuous function.
But B is discontinuous through the shock wave and due to (5) the virtual dis-
placement ζ̂ is discontinuous; consequently we cannot apply the fundamental
lemma of variation calculus which must be used with continuous test func-
tions. Then, only the first variation associated with ζ̃ in the 4-D space-time
is able to get the whole Rankine–Hugoniot conditions on shock waves.
It is noticeable that the variation δ̃ gives the conservation of energy, while the
variation δ̂ does not give the conservation of entropy. This fact was the subject
of strong discussions in the shock waves’ studies and Hamilton’s principle di-
rectly yields the result without any ambiguity. The problem of Lax’s condition
for entropy is a different problem relevant of the second law of thermodynam-
ics [12,20,21].
To conclude, the Hamilton action in the 4-D space–time is a powerful tool
to obtain shock conditions in multi-dimensional spaces. It unambiguously al-
lows us to obtain the equations already known and to consider the study
of more complex cases not yet considered in the literature [11]. The forth-
coming article [11] also uses Hamilton’s principle and obtain complementary
relations to Rankine–Hugoniot conditions for second–gradient or bubbly flu-
ids. In this paper devoted to classical fluids, we can nevertheless observe the
importance of the virtual displacements in the 4-D space–time to obtain the
correct Rankine–Hugoniot conditions; this is an important difference with the
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virtual displacements in the 4-D reference–space associated with Lagrange
variables. Another important observation is that the virtual displacements in
the 4-D space–time naturally yield the conservation of energy through a shock
wave. However, the Hamilton action cannot be directly used for hyperbolic dis-
sipative systems; in such cases, the principle of virtual power in space–time
may be a useful extension of the Hamilton principle as it was considered in [9].
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