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Abstract Soil organic carbon changes (ΔSOC) are regulated by climate and land use change. Here, we
analyze regional and global ΔSOC from 1861 to 2099 based on five terrestrial biosphere model (TBM)
simulations of the Inter‐Sectoral Impact Model Intercomparison Project Phase 2b. The TBMs were driven by
harmonized gridded land use change and bias‐adjusted climate forcing data from different general
circulation models (GCMs) for climate scenarios RCP 2.6 and RCP 6.0. Between 2005 and the end of this
century, we estimated an increase of SOC for two scenarios with large uncertainty, which is dominated by
differences between TBMs. We present a new emergent constraint approach to constrain future modeled
ΔSOC over natural vegetation from RCP 6.0 simulations using recent observed trends of net primary
productivity as a proxy of litter inputs to soil pools. Our results showed that the uncertainties in constrained
ΔSOC can be reduced in comparison with the original model ensemble, but constrained values of ΔSOC
depend on the choice of a GCM and climate regions. For the reduction of the SOC density in areas where
cropland expanded (Δsoccropland expansion) over natural vegetation as a result of land use change, the
constrained Δsoccropland expansion still features large uncertainties due to uncertain observed data. Our
proposed emergent constraint approach appears to be valuable to reduce uncertainty on SOC projections,
but it is limited here by the small number of models (five) and by the uncertainty in the observational data.
Applications to larger ensembles from Earth System Models should be tested for the future.

1. Introduction

Soil organic carbon (SOC) is the largest carbon pool in the terrestrial biosphere, containing 2.3–5.3 times
more carbon than the vegetation and the atmosphere (Ciais et al., 2014). Due to its large pool size and gross
exchange fluxes representing annually more than 10% of the mass of carbon in the atmosphere, soil carbon
plays a very important role in regulating the global carbon cycle. Soil organic carbon change (ΔSOC) is
controlled by input from plants (litter and exudates), by lateral fluxes (e.g., erosion of particulate organic
matter and dissolved organic matter runoff) and by the rate of soil organic matter decomposition
(Carvalhais et al., 2014; Todd‐Brown et al., 2013; Wu et al., 2018; Yan et al., 2014). These processes are
affected by climate and land use change (LUC). LUC over the last century was dominated by the conversion
of forests and natural grasslands to cropland and pasture. During this process, SOC inputs are reduced
because most of agricultural net primary productivity (NPP) is lower than that of natural systems (Kolby
Smith et al., 2014; Neumann & Smith, 2018) and because only the nonharvested fraction of agricultural
NPP is returned to SOC (Haberl et al., 2007; Krausmann et al., 2008). Climate change through temperature
and precipitation changes directly modifies both carbon input rates to SOC and decomposition rates.
Quantifying and separating the effects of climate change and LUC on SOC change at regional and global
scales to improve future ΔSOC projections is a key research challenge, which has implications for mitigation
solutions based on increasing soil organic matter stocks in soils.
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• The uncertainty in soil organic

carbon (SOC) change is dominated
by differences between model
structure rather than by climate
forcing

• Soil input changes explain most
variations in projected SOC change
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at global and region

• The effective reduction in
constrained SOC change depends on
climate forcing and region
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Observational data are valuable to quantify the global spatial distribution of SOC (Harmonized World Soil
Database [HWSD], FAO/IIASA/ISRIC/ISSCAS/JRC, 2012; the Northern Circumpolar Soil Carbon
Database [NCSCD], Tarnocai et al., 2009; the World Inventory of Soil Emission Potentials [WISE30sec],
Batjes, 2016; the Unified North American Soil Map [UNASM], Liu et al., 2013; and the SoilsGrids250 data-
base, Hengl et al., 2017). For evaluating historical changes of SOC, there are only few sites where long‐term
measurements are available, especially for natural ecosystems. Meta‐analysis of SOC changes after LUC
were reported by previous studies (Guo & Gifford, 2002; Li et al., 2017, 2018; Post & Kwon, 2000).
Observed regional changes of SOC from inventories are reported by some studies (Bellamy et al., 2005;
Doetterl et al., 2015; Hamdi et al., 2013).

Modeled estimates of global and regional SOC changes during the historical period have been reported by
terrestrial biosphere models (TBMs; e.g., Tian et al., 2015) and in some cased data‐driven models, for
example, Sanderman et al. (2017) for grasslands SOC losses due to past land use. For future projections,
estimations of SOC changes are based on TBMs coupled with general circulation models (GCMs) or
run offline with climate forcing from GCM simulations. Projections of SOC from coupled models are
particularly uncertain (Koven et al., 2015; Luo et al., 2016; Nishina et al., 2014; Todd‐Brown et al., 2014),
partly because models are not well calibrated and evaluated against observed data (Luo et al., 2016; Xiao
et al., 2014) and partly because carbon cycle coupled models have climate biases. Global SOC stocks were
found to vary from 510 to 3,040 Pg C in the period 1995–2005 among 11 models of the Coupled Model
Intercomparison Project 5 (CMIP5) (Todd‐Brown et al., 2013). This large range was attributed to
differences in model structure, parameter values, and climate input fields. To better understand the
different sources of model uncertainties, model‐to‐model variation in ΔSOC was decomposed into
uncertainties due to initial SOC stocks (the SOC stocks during 1997–2006), relative changes in soil inputs,
and decomposition rates/turnover times following ideas proposed by Koven et al. (2015) and Todd‐Brown
et al. (2014).

Compared to ensembles of SOC simulations from fully coupled GCMs that differ in their climate, ensem-
bles of SOC simulations from offline TBMs forced by bias‐adjusted climate forcing data allow us to focus
on structural errors of TBMs. Over the historical period (i.e., 2010) during which climate forcing can be
obtained from observations to drive TBMs, Tian, Lu, et al. (2015) analyzed SOC from 10 models of the
Multi‐scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). They found that (i) the
magnitude of SOC stocks ranged from 425 to 2,111 Pg C across models, slightly narrower the range
(510–3,040 Pg C during 1995–2005) of TBMs reported by Todd‐Brown et al. (2013), and (ii) cumulative
SOC changes during the historical period differed from −70 to 86 Pg C. This large spread suggests that
model structural errors are dominant in both initial SOC stock and SOC changes simulations. Up to
now, no study has linked systematic errors of modeled SOC change errors between the historical period
and future projections.

The emergent constraint approach allows using historical simulations and observed data to reduce uncer-
tainty in future projections of earth system variables (Hall et al., 2019). This approach relies on the assump-
tion that historical or present‐day differences between models and observed data are preserved in future
projections and reflect stationary differences explained by models' structure. Thus, if we can estimate an
effective emergent constraint using contemporary observations, it helps to downweigh less realistic models
and reduce the spread of the ensemble. This approach was applied to constrain for instance snow albedo
temperature sensitivities (Hall et al., 2019), tropical carbon cycle sensitivity to warming (Cox et al., 2013),
global ratio of plant transpiration to total terrestrial evapotranspiration (Lian et al., 2018), future yield
changes (Zhao et al., 2016), and CO2 fertilization of land photosynthesis (Wenzel et al., 2016). Such an
approach was also applied to reduce the uncertainty in projections of permissible emissions for climate sta-
bilization (Jones et al., 2005). In this study, we attempt to apply a new emergent constraint approach to
reduce uncertainties related to future SOC changes (ΔSOC) by an ensemble of offline terrestrial carbon cycle
models, hereafter called TBMs. Specifically, we aim to

1. Compare ΔSOC in past and future from five different ISIMIP2b TBMs (LPJ‐GUESS, LPJmL, VISIT,
ORCHIDEE‐MICT, and DLEM) forced by the same set of bias‐adjusted climate forcing from different cli-
mate models under two different greenhouse gas concentration pathways (RCP 2.6 and RCP 6.0) and cor-
responding land use scenarios.
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2. Quantify the contributions of initial soil carbon, changes in decomposition rate, and changes in soil
inputs to the model spread of ΔSOC in natural ecosystems, that is, ecosystems where the climate and
CO2 perturbation dominate SOC changes.

3. Reduce the model spread of ΔSOC in natural ecosystems caused by climate and CO2‐driven soil carbon
inputs changes, using observed input changes approximated by NPP trends, with an emergent constraint
approach.

4. Reduce the model spread of ΔSOC in ecosystems where land use conversion of natural ecosystems to
croplands has been driving SOC, using observations of SOC densities changes before and after land
use, with an emergent constraint approach.

2. Methods
2.1. ISIMIP2b Biome Models and Simulation Setup

The Inter‐Sectoral Impact Model Intercomparison Project Phase 2b (ISIMIP2b) provides simulations of
TBMs driven with several bias‐adjusted climate fields and LUC scenarios for the period from 1861 to 2099
(Frieler et al., 2017). The ISIMIP2bmodels were driven by gridded, daily bias‐adjusted climate from different
CMIP5 GCMs (Frieler et al., 2017; Lange, 2016), global annual atmospheric CO2 concentration, and harmo-
nized annual land use maps (Klein Goldewijk et al., 2017). Models performed a spin‐up to simulate land
carbon pools in 1860 as described in the protocol (https://www.isimip.org/protocol/#isimip2b). The use of
bias‐adjusted climate data ensures that TBMs are forced by climate that match observations in the last
40 years of the historical period and that there is no discontinuity of climate forcing between the past and
the future. Note however that decadal and interannual variations of the ISIMIP2b climate forcing do not
match observed climate variability since variability follows the one of each GCM. Decadal and interannual
climate variability as well as historical climate trends thus differ between bias‐adjusted GCMs. The key point
is that the use of common bias‐adjusted climate forcing for the historical period and the future in this study
reduces the spread in SOC projections from TBMs compared to using TBMs fully coupled with climate
models that have considerable climate differences. This makes it possible for us to focus on structural uncer-
tainties from TBMs and yet to examine the impact of different GCMs and scenarios for the future.

Five TBMs from the ISIMIP2b biome sector were used (supporting information Table S1): LPJ‐GUESS
(Smith et al., 2014), LPJmL (Bondeau et al., 2007), VISIT (Ito & Inatomi, 2012), DLEM (Tian et al., 2015),
and ORCHIDEE‐MICT (Guimberteau et al., 2018). These models differ in their biogeochemical parameter-
izations and thus in their simulated response of SOC to climate and LUC (Table S1), but they nevertheless
share the same philosophy for their soil carbon modules using first‐order kinetics equations applied to
one to three pools adjusted by soil temperature andmoisture. SOC stock at soil depth of 0–1mwas calculated
from carbonmass in soil pool (litter was not included) based on ISIMIP2b simulations. All models simulated
carbon cycling in terrestrial ecosystem with different discretization of vegetation into plant functional types
(PFTs). Three models (ORCHIDEE‐MICT, LPJmL, and DLEM) include permafrost. None of the models
includes wetlands (Table S1). We selected TBM output from simulations driven by bias‐adjusted daily
climate forcing of four different GCMs: GFDL‐ESM2M, HadGEM2‐ES, IPSL‐CM5A‐LR, and MIROC5
(Frieler et al., 2017) at a spatial resolution of 0.5 × 0.5° for the RCP 2.6 and RCP 6.0. An exception is
ORCHIDEE‐MICT, which used climate forcing at a resolution of 1.0 × 1.0°, and its results were downscaled
to 0.5 × 0.5°.

Historical LUC forcing for ISIMIP2b was derived from the LUH2 gridded reconstruction based on HYDE3.2
data (Klein Goldewijk et al., 2017). The LUH2 data were further disaggregated into annual land use maps
with major crop types, rainfed, and irrigated (Monfreda et al., 2008) for ISIMIP2b. Future LUC forcing
was based on projections from the MAgPIE land use model (Popp et al., 2014; Stevanović et al., 2016) assum-
ing population growth and economic development following the SSP2 storyline (Popp et al., 2017) and
including climate change impacts on crop yields estimated by the LPJmL crop model (Müller &
Robertson, 2014) for each RCP scenario (Frieler et al., 2017). To ensure continuity of spatially explicit
LUC forcing from historical to future period, the LUH2 harmonization method was applied (Frieler
et al., 2017). In addition to anthropogenic LUC, LPJmL and LPJ‐GUESS activated a dynamic vegetation
module across historical and future periods to simulate changes of natural vegetation in response to climate
and CO2. ORCHIDEE‐MICT used the reconstructed land cover maps (with historical LUC from LUH2) for
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the period 1860–2005 (Peng et al., 2017), and the trend of natural vegetation dynamics (prescribed from a run
of ORCHIDEE‐MICT with activated dynamic vegetation module) for the period 2006–2099, so that it
simulated natural vegetation changes for the future. VISIT and DLEM assumed static natural vegetation
by prescribing natural vegetation maps for 1860–2099.

Variable agricultural area (cropland and pasture) from LUH2was used as input to TBMs. Eachmodel started
from the same 1860 agricultural area from LUH2 and nonharmonized preindustrial natural vegetation
distributions and used different transition rules for converting a fraction of natural vegetation to LUH2 agri-
culture land (or vice versa) in each grid cell, each year. The models did not report SOC for each PFT in each
grid cell, which would have allowed a precise evaluation of SOC changes in all agricultural PFTs, that is,
cropland land use type, versus all natural PFTs, separately. To overcome this limitation, we calculated
“ΔSOC from cropland‐dominated areas” by selecting only grid cells where the cropland fraction is larger
than 30% in 2005 (Figure S1).

Three groups of simulations defined by the ISIMIP2b protocol were analyzed (Frieler et al., 2017; Table 1).
Group 1 contains simulations driven by historical climate and LUC during 1861–2005. Group 2 contains
simulations driven by future climate change with a fixed future land use map equal to that of year 2005.
Group 2 simulations are thus driven only by climate change and named after CC. Group 3 contains simula-
tions driven by both future climate and LUC (hereafter, CC + LUC). The difference of SOC between Group 2
and Group 3 simulations gives the effect of future LUC assuming drivers are additive.

We separated the analysis of ΔSOC between grid cells dominated by cropland (cropland fraction more than
30% in 2005) and grid cells with no or little cropland (cropland fraction less than 30% in 2005), defined as
“natural vegetation,” although it is an approximation since those grids still have SOC from croplands;
54.3% of these natural vegetation grids cells still include small cropland fractions (83.7% out of the 54.3%
have a cropland fraction lower than 15.0%; Figure S1f). Grid cells dominated by historical cropland summed
up to 10.0% of the global land grid cells (Figure S1f). For each of these two categories, a separate approach is
used to constrain ΔSOC with different types of observations.

2.2. Constraining ΔSOC in Areas Dominated by Cropland

Bookkeeping land use models, data‐driven models, and TBMs indicate that agricultural expansion caused a
net soil carbon loss in the past (Hansis et al., 2015; Houghton & Nassikas, 2017; Li et al., 2017; Sanderman
et al., 2017). Generally, after conversion to cropland, there is a SOC loss during the first years because culti-
vated land has a lower NPP than natural ecosystems (Kolby Smith et al., 2014; Neumann & Smith, 2018) and
because agricultural NPP is harvested and tillage accelerates SOC decomposition.

To constrain historical ΔSOC from cropland‐dominated grid cells (Figure 1a) by observations, we hypothe-
sized that there is a strong relationship between (i) ΔSOC per unit area over the grid cells dominated by his-
torical cropland expansion (Δsoccropland expansion, calculated as ΔSOC divided by the increased area of
cropland, the notations without capital letters meaning SOC per unit area) and (ii) the difference of SOC
per unit area between cropland and initial natural vegetation (Δsoccropland minus initial natveg). For example,
in the case of a grid cell that was 100% covered by natural vegetation in 1861 and is now 100% covered by
cropland, Δsoccropland expansion is strictly equal to Δsoccropland minus initial natveg. The idea is that Δsoccropland

Table 1
Description of Scenario Design Used From ISIMIP2b

ISIMIP2b simulations Driver Description

Group 1 Historical (1861–2005) Climate + land use The effects of historical climate change with varying
land use change

Group 2 Only CC (2006–2099) Climate + fixed land use Pure effect of future climate change assuming fixed year 2005 levels
of land use change under RCP 2.6 and 6.0 scenarios

Group 3 CC + LUC (2006–2099) Climate + land use The effects of future climate change and land use change from 2005 onwards
associated with RCP 2.6 and 6.0 scenarios

Group 3‐Group 2 Only LUC (2006–2099) Land use Pure effect of future land use change under RCP 2.6 and 6.0 scenarios

Note. You can find different climate and land use change impact simulation data (the simulation round, sectors, scenarios, variables, time period, etc.) online
(https://esg.pik‐potsdam.de/projects/isimip/).
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minus initial natveg can be obtained from observations of SOC density across different land use types in the same
region and then used to constrained modeled output of Δsoccropland expansion. The principle of this emergent
constraint is illustrated in Figure 1a. It should be noted that the Δsoccropland minus initial natveg will be affected
by transient climate, especially by transient CO2, which would lead to biases estimates of ΔSOC.

To verify the above hypothesis, we established regional regressions between Δsoccropland expansion and
Δsoccropland minus initial natveg for each model between 1861 and 2005. Eight regions were considered
(Eurasia, North America, South America, West Eurasia, Australia, South Asia, and East Asia; Figures S1c
and S1d). In each region, Δsoccropland minus initial natveg was calculated as the difference of soil carbon stocks
densities of grid cells dominated by cropland grid cells with a cropland fraction larger than 50% in 2005 and
grid cells with a natural vegetation fraction higher than 50% in 1861 in each region of Figures 1c and 1d,
based on historical simulations (Group 1). The choice of a 50% fraction threshold was made by considering
the trade‐off between a strong relationship between Δsoccropland expansion and Δsoccropland minus initial natveg

(Figure S2) and a sufficient number of dominated cropland grids number (Figure S1e). The results of these
regressions confirmed that Δsoccropland expansion and Δsoccropland minus initial natveg are indeed strongly posi-
tively correlated across different TBMs (see in section 3.3.3). Thus, it is justified to constrain modeled
Δsoccropland expansion by observations of Δsoccropland minus initial natveg using the emergent relationship illu-
strated in Figure 1a. We compiled field observations of the SOC density (Deng et al., 2016; Li et al., 2018;
Nyawira et al., 2016), hereafter referred to as soc, for natural vegetation and cropland in each region, and
calculated Δsoccropland minus initial natveg as their difference (Figure S3).

During the selection of field soc data, two criteria were considered: (1) studies must report cropland socmea-
surements and (2) socmeasurements must come from paired adjacent sites, one with natural vegetation type
and the other with cropland. Overall, 274 paired data were selected from 147 study sites (Figure S1c) to assess
Δsoccropland minus initial natveg. Those data were further classified into four transition types involving cropland
in different climate regions, including forest to cropland transitions in tropical region (F‐C, Trop; n = 78),
forest to cropland transitions in temperate region (F‐C, Temp; n = 49), grassland to cropland in tropical
region (G‐C, Trop; n = 15), and grassland to cropland in temperate region (G‐C, Temp; n = 132). In order
to constrain modeled Δsoccropland expansion by observed Δsoccropland minus initial natveg, we selected the domi-
nant type of transition to croplands in each region from the models (Figures S1b–S1d and Table 5) and

Figure 1. The framework of emergent constraint approach in areas dominated by land use change (a) and areas dominated by climate change (b).
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corresponded it with observed Δsoccropland minus initial natveg in the climate zone of each region
(Figures S1b–S1d).

2.3. Constraining ΔSOC in Areas of Natural Vegetation Where SOC Change Is Dominated by
Climate Change

In grid cells dominantly covered by natural vegetation with a cropland fraction less than 30% in 2005, we
assumed that ΔSOC can be mainly explained by climate‐ and CO2‐induced shifts in the balance between
litter input and decomposition rates (Todd‐Brown et al., 2013). Todd‐Brown et al. (2014) showed that
model‐to‐model variation in ΔSOC across the CMIP5 models could be explained (R2 = 0.89, p < 0.01) by
differences in initial soil carbon stocks combined with relative changes in soil inputs and decomposition
rates. We used the same attribution method to quantify the impact of the three key variables on ΔSOC from
ISIMIP2b models, based on Group 2 simulations (CC). Todd‐Brown et al. (2014) assumed that ΔSOC from
transient ESM model runs is equal to the difference of their equilibrium SOC pools between the end and
the start of each run, so that ΔSOC can be written as

ΔSOC ¼ Cend − Cstart ¼ Iend
kend

−
Istart
kstart

; (1)

where I is the soil carbon input approximated by NPP; k is the decomposition rate and calculated
from global heterotrophic respiration divided by soil carbon stocks; and subscripts end and start are for
the initial and final state of a simulation. Here we consider the period of 2040–2049 for RCP 2.6 and
2090–2099 for RCP 6.0 as the final state and the period of 1995–2005 as the initial state. The choice of
2040–2049 as the final state for RCP 2.6 is because in this scenario, atmospheric CO2 concentration that
drives the positive trend of NPP and soil C inputs through the CO2 fertilization effect present in all
TBMs peaks by 2050s and decreases thereafter (Meinshausen et al., 2011). After that date, decreasing
CO2 may cause a decrease of NPP and soil C input, inducing a decrease of SOC with a time delay, which
complicates the use of Equation 1. Equation 1 can be rearranged into

ΔSOC ¼ Cend − Cstart ¼
1þ ΔI

Istart

1þ Δk
kstart

− 1

0
BB@

1
CCA × Cstart: (2)

Using regression analysis of modeled ΔSOCwith the terms on the right‐hand side of Equation 2, we assessed

the relative contributions of changes in soil inputs 1þ ΔI
Istart

� �
, changes in decomposition rate 1þ Δk

kstart

� �
,

and initial soil carbon stocks (Cstart) to the modeled ΔSOC. The regression is executed across different TBMs
for each GCM (i.e., one regression for each GCM) averaging all variables over grid cells with natural
vegetation.

BecauseΔI is the difference between NPP in the future and historical period, we could not derive the ΔI from
observed NPP data sets. As a result, we used two‐step emergent constraint method to constraint future
ΔSOC, that is, constrain future minus present ΔI from the current derivative of NPP in the past 15 years

(Figure 1b). The first step is to constrain future
ΔI
Istart

from past NPP trends, if there is a strong enough linear

relationship between these two variables across TBMs. To test for such a relationship, we established linear

regressions between future
ΔI
Istart

and past NPP trends during 2001–2015 from the different models, and then

we used the observed NPP trends to constrain
ΔI
Istart

. In the second step, we established linear regressions

between future ΔSOC and 1þ ΔI
Istart

from models from Equation 2 and then used the constrained future

ΔI
Istart

from the first step to constrain future ΔSOC. This strategy is summarized in Figure 1b. We constrain

ΔSOC for global natural vegetation and each climate region using the same emergent constraint than above.
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The hypothesis behind this two‐step emergent constraint is that future carbon input changes can be con-
strained from observation‐based trends of past NPP. The trends of observed NPP were derived from trends
of observation‐based photosynthesis (GPP) from gridded data sets assuming a constant ratio of NPP to
GPP equal to 0.45 (He et al., 2018). GPP trends were estimated from two data‐driven models that include
both the effect of rising CO2 on photosynthesis and satellite‐observed trends of leaf area (Jiang &
Ryu, 2016; Wang et al., 2017). Note that we did not to use trends of satellite based NPP models based on
AVHRR greenness data and light‐use efficiency (LUE) models (Kolby Smith et al., 2015) and on MODIS
(Zhao & Running, 2010) because their LUE formulation ignores the fertilization effect of increasing CO2

and thus likely underestimates NPP trends in this approach (De Kauwe et al., 2016).

The two GPP data‐driven models are the P model (Stocker et al., 2019; Wang et al., 2017) and the Breathing
Earth System Simulator (BESS) model simulations (Jiang & Ryu, 2016; Ryu et al., 2011) during the period of
2001–2015. The P model is an LUE model in which LUE depends on environmental condition (air tempera-
ture, vapor pressure deficit, and elevation) and CO2 concentrations, with an optimality principle that
predicts stomatal conductance and foliar photosynthetic traits based on a standard model for C3 leaf photo-
synthesis. The bias of the P model for global GPP is 3.81% (Wang et al., 2017). BESS is a process‐based GPP
model that uses remotely sensed data of land surface and air temperature, leaf area index (LAI), CO2 concen-
trations, and canopy information. The bias of BESS for global GPP is 1.92% (Jiang & Ryu, 2016). Significant
increase in NPP is produced by those two data‐driven approaches. Models in natural ecosystem during the
period of 2001–2015, with a trend of 0.11 Pg C yr−2 in BESS and a trend of 0.21 Pg C yr−2 in P model. Larger
increase in NPP was found in P model for tropical, temperate, and boreal regions (Table S2).

In the two‐step emergent constraint approach illustrated in Figure 1b, uncertainties in constrained ΔSOC
are a function of uncertainties in litter carbon input trend constrained by the observed trend of NPP, and

in the linear regression slopes of regressions between
ΔI
Istart

and past input changes, and between ΔSOC

and 1þ ΔI
Istart

� �
are considered. The uncertainty in constrained ΔSOC is calculated as in Stegehuis

et al. (2013) by

σΔSOC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2σ2ΔI

Istart

þ σ2
res ΔSOC

vuut ; (3)

σ ΔI
Istart

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2σ2obs þ σ2res obs

q
; (4)

where sΔSOC, σ ΔI
Istart

, and σobs are the uncertainties in constrained ΔSOC, the uncertainties in
ΔI
Istart

, and

uncertainties in the past NPP trend based on two data sets. β and σres_ΔSOC indicate the slope and standard

deviation of the residuals from linear regression between ΔSOC and 1þ ΔI
Istart

. Similarly, α and σres_obs

present the linear regression between
ΔI
Istart

and past NPP trend.

Last, in the attribution of ΔSOC differences for natural vegetation between models given by Equation 2, the
term related to initial SOC stocks differences across models can also be constrained from observations. Three
global SOC data sets were used for this purpose, the HWSD (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), the
NCSCD (Tarnocai et al., 2009), and the WISE30sec (Batjes, 2016).

3. Results
3.1. Changes in the Modeled Global Soil Carbon

We found large differences in simulated global ΔSOC for the historical period (1861–2005; Group 1 simula-
tions), ranging from −81.3 Pg C (LPJmL driven by IPSL‐CM5‐LR climate) to 88.8 Pg C (VISIT driven by
HadGEM2‐ES climate; Figure 2 and Table 2). For the future period of 2006–2099 in Group 2 simulations
with CC + LUC effects, model differences of global ΔSOC are also large, going from −9.4 Pg C (LPJmL

10.1029/2020GB006589Global Biogeochemical Cycles

XU ET AL. 7 of 25



driven by HadGEM2‐ES climate forcing) to 114.7 Pg C (VISIT driven by GFDL‐ESM2M climate) for RCP 2.6
and from −30.1 Pg C (LPJmL driven by IPSL‐CM5‐LR climate) to 176.5 Pg C (VISIT driven by MIROC5
climate) for RCP 6.0 (Figure 2 and Table 2).

The interquartile range (IQR, the difference between 75th and 25th percentile of the data) of future ΔSOC
across all GCMs forcing data and TBMs is larger for RCP 6.0 (81.9 Pg C) than that for RCP 2.6 (73.9 Pg C;
Figure 3a and Table S3). The larger IQR of ΔSOC for RCP 6.0 is partly explained by diverging model
responses to climate change alone, with an IQR of 69.6 Pg C from the effects of climate change alone in
RCP 6.0 compared to a climate change induced IQR of 19.9 Pg C in RCP 2.6 (Figure 3b and Table S3).
The difference in IQR of ΔSOC between RCP 6.0 (IQR = 14.2) and RCP 2.6 (IQR = 25.5) was reduced when
considering the effects of LUC alone, even though a larger IQR was found in RCP 2.6. The IQR of ΔSOC
caused by different GCMs forcing, obtained by averaging all TBMs outputs for the same GCM, is smaller
than the IQR across TBMs, with an IQR across GCMs of 15.2 Pg C in RCP 2.6 and 30.6 Pg C in RCP 6.0
(Figure 3a). The spread of ΔSOC is thus mainly due to structural differences in TBMs, with an IQR of
56.8 Pg C across TBMs for RCP 2.6 and 73.7 Pg C for RCP 6.0 (fourth column of Figure 3a). The relative
shares of both GCM versus TBM‐related uncertainties are similar for both scenarios (Figures 3a–3c).

Under effects of CC + LUC, the change of SOC during 2006–2099 is a net increase of 41.8 ± 43.9 Pg C
(3.2 ± 3.4%) for RCP 2.6 and of 48.5 ± 63.3 Pg C (3.8 ± 4.8%) for RCP 6.0 across all TBMs and GCMs

Figure 2. Changes of global soil organic carbon (ΔSOC) compared to the historical (1861–1870) under both the effects of
climate change and land use change (CC + LUC), the effect of climate change (only CC), and the effect of land use
change (only LUC) based on RCP 2.6 and 6.0 during the period of 1871–2099.
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(Figure 2 and Table 2). Climate change alone caused larger SOC changes of 46.8 ± 58.2 Pg C (3.4 ± 4.3%)
under RCP 6.0 than 15.3 ± 20.8 Pg C (1.2 ± 1.3%) under RCP 2.6 (Table 2). In addition, LUC alone after
2005 caused a SOC increase of 28.2 ± 31.4 Pg C under RCP 2.6 and 2.7 ± 5.9 Pg C under RCP 6.0. The
LUC forcing alone impacted future ΔSOC in LPJmL, ORCHIDEE‐MICT, DLEM, and VISIT but had no
obvious effect in LPJ‐GUESS (Figures S4a and S4b).

Given the fact that differences in the projected ΔSOC are partly driven by different trends in NPP
(see Equation 2), we further examined the simulated evolution of NPP with time (Figures 3, S4, and S5 for
each model). All models simulated increased NPP in the future, of 7.3 ± 3.2 Pg C yr−1 (11.9 ± 5.2%) under
RCP 2.6 and of 18.3 ± 4.9 Pg C yr−1 (29.7 ± 7.9%) under RCP 6.0 driven by CC + LUC (Figure 3d and
Table S4). Similar to the uncertainty of ΔSOC (here, expressed as IQR), the uncertainty of ΔNPP mainly
come from differences of TBMs and from the two RCP scenarios rather than from differences of GCM
forcing, a result consistent with the dominant attribution of uncertainties on ΔSOC to differences of
TBMs (Figure 3d).

An accelerated decomposition rate (increase of k; positive Δk) of global SOC was simulated by all models,
with a mean increase of 2.8 ± 1.0 × 10−3 yr−1 (8.0 ± 3.9%) under RCP 2.6 and 7.7 ± 1.8 × 10−3 yr−1

(21.0 ± 4.5%) under RCP 6.0, respectively (Figure 3g and Table S5). Similar to the variations in the simulated
global ΔSOC and global ΔNPP, the spread of global decomposition rate (Δk) among simulations were mostly
attributed to differences in TBMs and RCPs rather than to differences of GCMs (Figure 3g).

3.2. Contribution of Initial Soil Carbon, Decomposition Rate, and Soil Inputs to Soil Carbon
Changes of Natural Ecosystems

For the RCP 6.0 scenario, we decomposed model differences of ΔSOC into differences explained by soil
inputs, decomposition rates, and initial soil carbon stocks using Equation 2. We found that these three vari-
ables altogether explain 84–91% of the variation in global ΔSOC across TBMs, this range being from the

Table 2
Modeled Global Soil Carbon Changes (ΔSOC) During Historical Period (1861–2005) and During Future Period (2006–2099) Under Both the Effects of Climate
Change and Land Use Change (CC + LUC), the Effect of Only Climate Change (CC), and the Effect of Only Land Use Change (LUC) Based on RCP 2.6 and 6.0

ΔSOC (Pg C)
History

Future (2099–2005)

RCP 2.6 RCP 6.0

TBMs GCM 2005–1861 CC + LUC CC LUC CC + LUC CC LUC

LPJ‐GUESS GFDL‐ESM2M 16.5 14.9 15.1 −0.2 18.3 18.4 −0.1
HadGEM2‐ES 26.0 −0.5 −0.6 0.1 −11.3 −11.4 0.1
IPSL‐CM5A‐LR 9.3 1.9 1.8 0.1 −1.9 −1.8 −0.1
MIROC5 23.4 5.6 5.8 −0.2 13.2 13.4 −0.2

LPJmL GFDL‐ESM2M −52.1 31.9 11.7 20.2 10.0 12.1 −2.1
HadGEM2‐ES −38.6 −9.4 −28.2 18.8 −22.9 −19.4 −3.5
IPSL‐CM5A‐LR −81.3 −8.0 −25.5 17.4 −30.1 −25.3 −4.8
MIROC5 −45.0 28.0 5.9 22.1 31.4 36.3 −4.9

VISIT GFDL‐ESM2M 71.4 114.7 38.5 76.3 154.9 148.9 6.0
HadGEM2‐ES 88.8 109.9 22.8 87.1 118.4 109.4 8.9
IPSL‐CM5A‐LR 46.1 112.7 28.4 84.3 141.0 132.5 8.5
MIROC5 72.5 103.9 25.5 78.4 176.5 171.5 5.0

ORCHIDEE‐MICT GFDL‐ESM2M 22.6 71.7 55.1 16.6 80.9 80.6 0.3
HadGEM2‐ES 18.0 — 11.3 — — 21.4 —
IPSL‐CM5A‐LR −17.4 33.3 17.9 15.4 35.0 36.9 −1.9
MIROC5 34.2 — 47.8 — — 89.9 —

DLEM GFDL‐ESM2M 7.2 34.5 20.1 14.4 38.6 26.8 11.8
IPSL‐CM5A‐LR 4.3 30.3 15.2 15.0 30.8 19.7 11.0
MIROC5 9.7 36.0 21.8 14.2 40.9 29.2 11.7

Model range −81.3 to 88.8 −9.4 to 114.7 −28.2 to 55.1 −0.2 to 87.1 −30.1 to 176.5 −25.3 to 171.5 −4.9 to 11.8
Model mean 11.4 41.8 15.3 28.2 48.5 46.8 2.7
Model median 16.51 31.91 15.22 16.61 31.40 26.83 0.14

Note. The bold and bold‐italic indicate the largest and smallest values, respectively. The ΔSOC is the difference in SOC compared to the means of 1861–1870.
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different GCMs (all p < 0.1; Figure 4). The initial soil carbon stocks and change in decomposition rate do not
show significant correlation with global ΔSOC among TBMs, for any GCM. Instead, most of the ΔSOC
differences between TBMs can be explained by their different changes in soil inputs (Figures 4d, 4i, 4n,
and 4s). Different changes in soil inputs explain 52–89% of the global ΔSOC across the five TBMs,
depending on the GCM considered (Figure 4). Regression slopes (between original modeled ΔSOC and
predicted values from Equation 2) are similar between GCMs (ranging from 0.63 to 0.76; Figures 4a, 4f,
4k, and 4p). For the RCP 2.6 scenario, no significant relationship between simulated ΔSOC and predicted
values from Equation 2 was found across the different TBMs (Figure S6). This is because in RCP 2.6,
climate change is small and CO2 concentration increases much less (63.9 ppm from 2005–2050) compared
to RCP 6.0 (287.6 ppm from 2005–2099) and does not produce a change of SOC large enough to be
attributed to the factors considered in Equation 2.

Using Equation 2, we further separated ΔSOC for tropical, temperate, and boreal regions (Figures 5–7). The
relative changes in soil input, decomposition rates, and initial soil carbon stocks altogether explain 81–96% of
tropicalΔSOC (slopes from 0.58 to 0.83), 81–96% of temperateΔSOC (slopes from 0.47 to 0.71), and 75–95% of
boreal ΔSOC (slopes range from 0.26 to 0.45) (Figures 5–7). In the tropical region, most of ΔSOC differences
between TBMs can be attributed to differences in changes of soil inputs (R2 = 0.43–0.92) and initial soil
carbon (R2 = 0.44–0.90). For simulations driven by HadGEM2‐ES GCM in the tropical region, initial soil
carbon can explain more of the ΔSOC differences between TBMs than change in soil inputs (Figure 5). In
both temperate and boreal regions, differences in changes in soil inputs explain most of the differences in
ΔSOC across TBMs (Figures 6 and 7).

Figure 3. The interquartile range (IQR, the difference between 75th and 25th percentile of the data) change in global
soil carbon (ΔSOC), net primarily productivity (ΔNPP), and decomposition rate (Δk) according the effects of all data,
RCPs (i.e., RCP 2.6 and RCP 6.0), GCMs (i.e., four climate forcing, including GFDL‐ESM2M, HadGEM2‐ES, IPSL‐CM5A‐
LR, and MIROC5), and TBMs (i.e., LPJ‐GUESS, LPJmL, VISIT, and ORCHIDEE‐MICT) under both effects of climate
change and land use change (CC + LUC), the effect of climate change (only CC), and the effect of land use change
(only LUC) over the period of 2090–2099 compared to the means of 1996–2005. “All” indicates the range obtained by
averaging all data; “RCPs” indicates the range obtained by averaging all TBMs and GCMs outputs; “GCMs” indicates the
range obtained by averaging all TBMs outputs for each GCM; and “TBMs” indicates the range obtained by averaging all
GCMs outputs for each TBM.
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3.3. Constraining Future ΔSOC by Observations
3.3.1. Constrained Global ΔSOC for Natural Vegetation
As explained in section 2.3, we used observed NPP trends to constrain ΔSOC over grid cells dominated by
natural vegetation (Figure 1b) for simulations driven by RCP 6.0. We recall here that the results of RCP
2.6 are not shown because they produced small ΔNPP and ΔSOC except for MIROC5 climate forcing in
the tropical region (Figures S6–S9) and thus are not suitable for applying our emergent constraint approach

(see section 2). We found significant linear relationships between modeled
ΔI
Istart

and modeled NPP trend dur-

ing 2001–2015 across TBMs (R2 ranging from 0.85 to 0.95) for three out of four GCM forcing (GFDL‐ESM2M,
HadGEM2‐ES, and IPSL‐CM5A‐LR). This is shown in Figure 4, the last column of plots. For MIROC5, the

Figure 4. Change in global soil carbon stocks in area dominated by natural ecosystems between start time (1995–2005) and end time (2090–2099) global means as

a function of Equation 2 (a, f, k, p), the initial soil carbon stocks (Cstart; b, g, l, q), the inverse of the relative change in decomposition rate (
1

1þ Δk
kstart

; c, h, m, r),

and the relative change in soil inputs (1þ ΔI
Istart

; d, i, n, s), and the relationship between future input change (
Iend − Istart

Istart
Þ and NPP trend during the period of 2001–

2015 across the ISIMIP2b TBMs (e, j, o, t). All results shown here are from simulations driven by different GCMs' climate forcing under RCP 6.0 scenario. Group 2
simulations with climate change effect only are used. The different colors indicate different TBMs. The black lines indicate the linear regression across
TBMs for each GCMs climate forcing. The dotted gray lines and gray areas indicate the observation‐based NPP trend for the period 2001–2015. The dotted purple

lines and purple areas indicate the constrained
ΔI
Istart

and 1þ ΔI
Istart

. The dotted green lines and green areas indicate the constrained ΔSOC.
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relationship between modeled
ΔI
Istart

and modeled NPP trend was not significant (p = 0.20; R2 = 0.47;

Figure 4t). Here, we use observed NPP trends (gray areas) and the linear relationships above to constrain

future input changes
ΔI
Istart

(purple areas in Figures 4e, 4j, 4o, and 4t). Then, the constrained
ΔI
Istart

(purple

areas in the fourth column of Figure 4) was used to constrain ΔSOC (green areas in Figures 4d, 4i, 4n,
and 4s), according to the principle illustrated in Figure 1b.

Using the two‐step emergent constraint with all uncertainties propagated (Equations 3 and 4), we con-
strained global ΔSOC values of 25.2 ± 42.4 Pg C with GFDL‐ESM2M, −36.9 ± 67.3 Pg C with HadGEM2‐
ES, 1.4 ± 42.6 Pg C with IPSL‐CM5A‐LR, and 38.8 ± 54.1 Pg C with MIROC5 (Table 3 and Figure 4).
These constrained global ΔSOC values were all lower than the original ensemble means of ΔSOC
(Figure 4 and Table 3). For HadGEM2‐ES, the constrained global ΔSOC was even constrained to be a net

Figure 5. Change in global soil carbon stocks in tropical region dominated by natural ecosystems between start time (1995–2005) and end time (2090–2099) global

means as a function of Equation 2 (a, f, k, p), the initial soil carbon stocks (Cstart; b, g, l, q), the inverse of the relative change in decomposition rate (
1

1þ Δk
kstart

; c, h,

m, r), and the relative change in soil inputs (1þ ΔI
Istart

; d, i, n, s), and the relationship between future input change (
Iend − Istart

Istart
Þ and NPP trend during the period of

2001–2015 across the ISIMIP2b models (e, j, o, t). Detailed symbol and line information are in Figure 4.
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loss, whereas it was simulated as a gain in the original ensemble mean of the TBMs (19.0 ± 53.9 Pg C). We
acknowledged that uncertainties of observed NPP trends combined with uncertainties in the regressions led
to only a marginal uncertainty reduction of constrained versus original ΔSOC, given the small set of TBMs
examined in this study. The linear relationships shown in Figure 4 were based only on five TBMs, and a
larger ensemble of models should make the emergent constraint more effective, with more expected
model outliers. Here, we found that 15 out of 19 of the original ΔSOC simulations were within 1‐sigma
uncertainty of constrained ΔSOC, one outlier being the VISIT model (Figure 4 and Table 3).
3.3.2. Constrained Regional ΔSOC for Natural Vegetation

Significant linear relationships between modeled
ΔI
Istart

and modeled NPP trends during 2001–2015 were

found in all GCMs in the temperate region for natural vegetation (Figures 6e, 6j, 6o, and 6t) and in one
GCM (i.e., HadGEM2‐ES) forcing in the boreal region (Figure 7j), but not in the tropical region
(Figures 5e, 5j, 5o, and 5t). Constrained temperate ΔSOC showed large differences between different
GCMs (Table 3 and Figure 6), ranging from −96.5 ± 61.7 Pg C for HadGEM2‐ES to 65.5 ± 44.2 Pg C for

Figure 6. Change in global soil carbon stocks in temperate region dominated by natural ecosystems between start time (1995–2005) and end time (2090–2099)
global means as a function of Equation 2 (a, f, k, p), the initial soil carbon stocks (Cstart; b, g, l, q), the inverse of the relative change in decomposition rate

(
1

1þ Δk
kstart

; c, h, m, r), and the relative change in soil inputs (1þ ΔI
Istart

; d, i, n, s), and the relationship between future input change (
Iend − Istart

Istart
Þand NPP trend during

the period of 2001–2015 across the ISIMIP2b models (e, j, o, t). Detailed symbol and line information are in Figure 4.
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GFDL‐ESM2M. Constrained ΔSOC in the temperate region can be either higher than (driven by GFDL‐
ESM2M and MIROC5 climate) or lower than (driven by HadGEM2‐ES and IPSL‐CM5A‐LR climate) the
original model ensemble mean (Table 3). The uncertainty range of constrained temperate ΔSOC is slightly
reduced with GFDL‐ESM2M, IPSL‐CM5A‐LR, and MIROC5 climate (by 3.6–13.2 Pg C). With
HadGEM2‐ES climate, the uncertainty range of constrained ΔSOC was not reduced, because observed
NPP trends are much smaller than in the model ensemble forced by this GCM, and constrained ΔSOC is
extrapolated outside the range of TBMs in Table 3. For temperate region only 10 out of 19 constrained
ΔSOC values were within the 1‐sigma uncertainty of the original ΔSOC ensemble, which indicates that
observed NPP trends imply a strong change of constrained versus original SOC changes and thus that the
quality of observational data is critical.

The lower constrained ΔSOC values obtained for HadGEM2‐ES climate compared to other GCMs, globally
and for the temperate and boreal regions, are due to the much higher regression slope and lower intercept

between
ΔI
Istart

and observed NPP trend for this GCM, which caused lower constrained 1þ ΔI
Istart

and thus

Figure 7. Change in global soil carbon stocks in boreal region dominated by natural ecosystems between start time (1995–2005) and end time (2090–2099) global
means as a function of Equation 2 (a, f, k, p), the initial soil carbon stocks (Cstart; b, g, l, q), the inverse of the relative change in decomposition rate

(
1

1þ Δk
kstart

; c, h, m, r), and the relative change in soil inputs (1þ ΔI
Istart

; d, i, n, s), and the relationship between future input change (
Iend − Istart

Istart
Þand NPP trend during

the period of 2001–2015 across the ISIMIP2b models (e, j, o, t). Detailed symbol and line information are in Figure 4.
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lower constrained ΔSOC. In the tropical region, however, the constrained ΔSOC for HadGEM2‐ES is
significantly higher than under the other GCMs because less TBMs used this GCM; DLEM did not
provide HadGEM2‐ES GCM output, and Figure S10 shows the results after excluding DLEM. In addition,
the uncertainty of the constrained ΔSOC from HadGEM2‐ES is larger than those from other GCMs, due

to the high regression slope between ΔSOC and 1þ ΔI
Istart

(simulations driven by HadGEM2‐ES have the

highest slopes globally and in tropical and temperate regions), and the uncertainty of constrained
ΔI
Istart

is

determined by the regression slope between
ΔI
Istart

and modeled NPP trend.

We found no strong relationships between ΔSOC and initial soil carbon across TBMs at global scale
(Figure 4) unlike what could be theoretically expected from section 2.3, which prevents us from using
observed global initial SOC stocks to constrain future ΔSOC. However, there are positive relationships in
the tropics but significant only for the HadGEM2‐ES GCM (R2 = 0.90, p = 0.05; Figure 5g). A lower con-
strained ΔSOC was found from HadGEM2‐ES (−4.8 ± 2.3 Pg C) than in the original ensembles
(4.7 ± 21.1 Pg C) using initial SOC stocks as a constraint. Such constrained ΔSOCwas smaller than that con-
strained by NPP trend (14.4 ± 21.6 Pg C; Figure 5 and Table 3). It should be noted that none of the con-
strained ΔSOC values were within a 1‐sigma uncertainty of the original ΔSOC ensemble in such
constrained ΔSOC (Figure S11).
3.3.3. Constrained Future ΔSOC From Cropland Expansion
We found a significant positive relationship between the simulated SOC density changes across grid cells
with cropland expansion Δsoccropland expansion and the soil carbon density difference between cropland in
2005 and initial natural vegetation in 1861, Δsoccropland minus initial natveg in all LUC regions except for East
Asia (Figure 8). The coefficient of determination (R2) of those relationships is high in all regions (ranging
from 0.79 to 0.97 across regions) except for South Asia (R2 = 0.49). That means the ΔSOC due to LUC
outweighs ΔSOC due to climate change over grid cells with cropland expansion. The slopes of the
relationships between Δsoccropland expansion and Δsoccropland minus initial natveg are different in each region,
ranging from 0.90 kg C m−2 (kg C m−2)−1 in South Asia to 3.15 kg C m−2 (kg C m−2)−1 in West Eurasia.

Table 3
Modeled ΔSOC (Unit, Pg C), Constrained ΔSOC by NPP Trends Over the Period of 2001–2015 and Constrained ΔSOC by Initial SOC (1995–2005) Under RCP 6.0
Scenario in Natural Vegetation Grid Cells (Exclude the Cropland) and Its Different Climate Region Across Different GCMs

Classification

Modeled ΔSOC Constrained ΔSOC by NPP Constrained ΔSOC by initial SOC

Mean 1σ Mean 1σ Within 1σ uncertainty Mean 1σ Within 1σ uncertainty

Global Natural vegetation
GFDL‐ESM2M 47.9 49.4 25.2 42.2 4.0 49.0 0.6 0
HadGEM2‐ES 19.0 53.9 −36.9 67.3 3.0 45.6 6.8 0
IPSL‐CM5A‐LR 26.1 54.6 1.4 42.6 4.0 33.1 3.4 0
MIROC5 54.9 53.1 38.8 54.1 4.0 54.8 0.1 0

Climate Tropical region
Region GFDL‐ESM2M 14.4 10.4 4.9 9.0 3.0 16.1 0.6 0

HadGEM2‐ES 4.7 21.1 14.4 21.6 3.0 −4.8 2.3 0
IPSL‐CM5A‐LR 9.3 14.1 6.2 13.3 4.0 10.3 0.8 0
MIROC5 20.3 15.2 9.2 13.0 3.0 20.5 0.7 0

Temperate region
GFDL‐ESM2M 31.3 46.2 65.5 44.2 2.0 36.3 2.0 0
HadGEM2‐ES 12.7 56.8 −96.5 61.7 1.0 48.1 8.0 0
IPSL‐CM5A‐LR 14.8 57.0 −11.6 49.5 4.0 27.6 4.6 0
MIROC5 32.9 48.8 37.2 47.0 3.0 37.0 1.8 0

Boreal region
GFDL‐ESM2M 2.2 7.1 2.5 7.1 3.0 3.1 1.1 0
HadGEM2‐ES 1.6 19.3 −20.6 5.2 1.0 9.2 4.7 0
IPSL‐CM5A‐LR 2.0 11.8 0.9 11.4 3.0 3.7 2.1 0
MIROC5 1.6 9.7 2.1 7.4 3.0 2.6 1.5 2

Note. The number indicates the number of TBMs with modeled ΔSOCwithin 1‐sigma uncertainty of the constrained ΔSOC. Bold values indicate the constrained
ΔSOC based on a significant relationship between ΔSOC and NPP or initial SOC, respectively. A p value ≤0.1 was considered significant.
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Following the emergent constraint principle described in section 2, we constrain Δsoccropland expansion from
observed values of Δsoccropland minus initial natveg.

In LUC‐dominated areas, the constrained global Δsoccropland expansion was −0.29 ± 5.56 kg C m−2, which is a
smaller loss than the original modeled range of−0.61 ± 2.15 kg Cm−2, but this constrained value has a large
uncertainty (Figures 8 and S3 and Table 4). However, larger constrained carbon loss (Δsoccropland expansion)
than from the unconstrained simulations was found in Eurasia, North America, South America, Africa,
West Eurasia, and Australia (Table 4). For example, constrained Δsoccropland expansion is of
−2.78 ± 9.92 kg C m−2 in North America compared to the original mean value of −1.43 ± 2.85 kg C m−2

for that region. Constrained Δsoccropland expansion is a loss of −3.45 ± 12.84 kg C m−2 in Australia compared
to the original ensemble mean of 0.45 ± 2.53 kg C m−2. In addition, large differences in constrained
Δsoccropland expansion also can be found in regions characterized by carbon losses, ranging from
−5.94 ± 17.68 kg C m−2 (West Eurasia) to −1.66 ± 2.27 kg C m−2 (Africa).We found that all simulated
Δsoccropland expansion is within 1‐sigma uncertainty of the constrained values in LUC region (Figure 8 and
Table 4), but the spread of constrained Δsoc is always larger than that in the original model ensemble.

By multiplying these constrained changes of SOC densities by the area of historical cropland expansion, we
constrained a carbon loss induced by cropland expansion of −1.03 ± 19.94 Pg C during 1861–2005 (Table 5).
There are differences between regions of historical cropland expansion, with a maximum loss in North
America (−2.79 ± 9.96 Pg C), a minimum loss in South America (−0.36 ± 1.92 Pg C), and a neutral carbon
change in East Asia (0.05 ± 0.01 Pg C) and South Asia (0.42 ± 1.53 Pg C).

Future regional SOC changes associated with cropland expansion were constrained by multiplying future
cropland expansion areas (Figure S12) by constrained estimates of Δsoccropland expansion (Table 5). We
inferred small future carbon losses from future cropland expansion for RCP 2.6 and RCP 6.0 in Eurasia,

Figure 8. Relationship between modeled SOC density changes across cropland expansion area (Δsoccropland expansion)
during the period of 1861–2005 and the soil carbon density difference (Δsoccropland minus initial natveg) between
current cropland (in 2005) and initial natural vegetation (in 1861). Group 1 simulations were used in this analysis. The
bottom center panel shows the results at global land use‐dominated areas. The different colors and symbols indicate
different climate forcing and models, respectively. The black lines indicate the linear regression across all TBMs and all
GCMs. The dotted gray lines and gray areas indicate the observation‐based meta‐analysis data. The dotted purple
lines and purple areas indicate the constrained Δsoccropland expansion.
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North America, South America, Africa, West Eurasia, and Australia and small carbon gains in South Asia
and East Asia (Table 5). In North America, no cropland expansion occurs under RCP 6.0. Overall, there is
no large cropland expansion. Global constrained carbon losses from future cropland expansion are
−0.19 ± 3.72 Pg C for RCP 2.6 and −0.18 ± 3.52 Pg C for RCP 6.0, respectively.

3.4. Comparison of Initial SOC Stocks for Natural Vegetation

We compared initial soil carbon stocks between modeled and observed data sets for grid cells with natural
vegetation. The mean global soil carbon stock over the period of 1995–2005 across all GCMs and TBMs
was 1,421.6 Pg C with a range of 702.6–2,008.3 Pg C (Table 6). The mean value was higher than that from
three data sets of 1,202.4 Pg C, but the observed range of 1,094.8–1,283.9 Pg C was much smaller than the
spread of models, indicating that even with the same climate forcing, models are inconsistent with the
observed SOC stocks (Table 6). Yet there was a slightly smaller spread between ISIMIP2b TBMs than the
CMIP5 ESMs, which gave a mean value of 1,520 Pg C and a range of 510–3,040 Pg C (Todd‐Brown et
al., 2013). DLEM forced by MIROC5 has the lowest SOC (702.6 Pg C), and ORCHIDEE‐MICT forced by
IPSL‐CM5A‐LR has the highest value (2,008.3 Pg C). In temperate region, SOC from all GCMs and TBMs
had a median value of 762.8 Pg C with an IQR of 708.5 Pg C, slightly higher but comparable to the observed
value (mean 717.3 Pg C with a range of 645.9–758.0 Pg C across data sets). Modeled SOC in the tropical
region had a median value of 381.6 Pg C with an IQR of 231.6 Pg C, consistent with observed data sets (mean

Table 4
The Global and Regional Soil Carbon Changes Across Cropland Expansion Area (Δsoccropland expansion, Calculated as ΔSOC Divided by the Increased Area of
Cropland; Unit, kg C m−2) and the Soil Carbon Density Changes (Δsoccropland minus initial natveg; Unit, kg C m−2) Between Initial Natural Vegetation (in 1861)
and Current Cropland (in 2005) From Original ISIMIP2b Models and From the Estimate Constrained by Meta‐Analysis Data (Δsoccropland minus initial natveg;
Unit, kg C m−2) in Land Use‐Dominated Areas

Region LUC type

Δsoccropland minus initial natveg Δsoccropland expansion

Meta‐analysis ISMIP2b Constrained ISMIP2b Number

Eurasia G‐C (temp) −1.51 ± 5.61 −0.39 ± 1.32 −2.46 ± 12.22 −0.15 ± 2.95 19
North America G‐C (temp) −1.51 ± 5.61 −0.76 ± 1.57 −2.78 ± 9.92 −1.43 ± 2.85 19
South America G‐C (temp) −1.51 ± 5.61 −0.50 ± 1.62 −1.89 ± 10.08 −0.22 ± 3.09 19
Africa G‐C (trop) −1.62 ± 1.76 −0.42 ± 1.16 −1.66 ± 2.27 −0.18 ± 1.67 14
West Eurasia G‐C (temp) −1.51 ± 5.61 −0.27 ± 0.99 −5.94 ± 17.68 −1.82 ± 3.35 19
Australia G‐C (temp) −1.51 ± 5.61 0.20 ± 1.09 −3.45 ± 12.84 0.45 ± 2.53 19
South Asia F‐C (trop) −2.14 ± 2.72 −2.25 ± 1.45 0.67 ± 2.45 0.12 ± 1.28 18
East Asia G‐C (temp) −1.51 ± 5.61 −4.52 ± 3.85 0.27 ± 0.03 0.20 ± 1.81 0
LUC region — −1.74 ± 4.61 −1.74 ± 1.66 −0.29 ± 5.56 −0.61 ± 2.15 19

Note. The number indicates the total model number with modeled Δsoccropland expansion within 1‐sigma uncertainty of the constrained Δsoccropland expansion.

Table 5
The Estimated Regional Soil Carbon Change (ΔSOC, Pg C) Due to Land Use Change in Historical (1861–2005) and Future Period (2005–2099)

Region

Modeled
Estimated ΔSOC

Historical
Historical RCP 2.6 RCP 6.0

ΔSOC Area ΔSOC Area ΔSOC Area ΔSOC

Eurasia −0.08 ± 1.32 0.406 −1.00 ± 4.96 0.020 −0.05 ± 0.24 0.011 −0.03 ± 0.14
North America −1.74 ± 3.08 1.004 −2.79 ± 9.96 0.039 −0.11 ± 0.38 0.000 0
South America −0.05 ± 0.65 0.190 −0.36 ± 1.92 0.179 −0.34 ± 1.80 0.152 −0.29 ± 1.53
Africa −0.09 ± 0.75 0.408 −0.68 ± 0.93 0.251 −0.42 ± 0.57 0.120 −0.20 ± 0.27
West Eurasia −0.10 ± 1.62 0.452 −2.69 ± 8.00 0.009 −0.05 ± 0.15 0.001 −0.01 ± 0.03
Australia 0.18 ± 0.93 0.334 −1.15 ± 4.28 0.001 −0.003 ± 0.002 0.001 −0.002 ± 0.007
South Asia 0.09 ± 0.88 0.623 0.42 ± 1.53 0.163 0.11 ± 0.40 0.348 0.23 ± 0.85
East Asia 0.04 ± 0.34 0.171 0.05 ± 0.01 0.009 0.002 ± 0.001 <0.0001 <0.0001
LUC region −2.64 ± 8.43 3.588 −1.03 ± 19.94 0.670 −0.19 ± 3.72 0.633 −0.18 ± 3.52

Note. The estimated ΔSOC of each region was equal to the constrainted Δsoccropland expansion (kg C m−2) mutiply by its crop expansion area (1012 m2). There is
no crop expansion under RCP 6.0 in North America.

10.1029/2020GB006589Global Biogeochemical Cycles

XU ET AL. 17 of 25



of 371.8 Pg C with a range of 362.4–376.5 Pg C). Modeled SOC in the boreal region took a median value of
110.8 Pg C with an IQR of 238.6 Pg C, consistent with observed data sets (mean of 113.3 Pg C with a range
of 72.6–159.3 Pg C). Largest IQR of SOC in temperate region rather than in tropical and boreal regions was
found, which indicate that large uncertainties in SOC of TBMs come from the temperate region.

4. Discussion
4.1. Large Modeled Differences of Projected Future ΔSOC

Previous studies reported that a large range of initial or present‐day SOC stocks were simulated by TBMs
when they are coupled to climate model or run offline with the same climate forcing, going from 510 to
3,040 Pg C for 11 TBMs part of the CMIP5 ESMs (Todd‐Brown et al., 2014) and from 425 to 2,111 Pg C among
10 offline TBMs in MsTMIP (Tian, Lu, et al., 2015). The CMIP5 models have biases in climate causing a bias
of SOC, whereas the MsTMIP models only covered the historical period. In this study, historical and future
projections of SOC with bias‐adjusted climate and harmonized LUC forcing make it possible to examine
ΔSOC driven by climate and LUC continuously for the historical period and the future.

We found that simulated global ΔSOC during the historical period (1861–2005) is a small increase, with a
median value of 16.51 Pg C and a large range going from −81.3 to 88.8 Pg C (Table 2). This result from
ISIMIP2b models is higher but comparable to MsTMIP that gave a median change of 3.39 Pg C from 1901
to 2010, with a range of−70.2 to 85.9 Pg C (Tian, Lu, et al., 2015). Besides, our results show that most models
project a future global SOC increase under the RCP 2.6 scenario (2005–2099; median value of 31.91 Pg C) and
under RCP 6.0 scenario (2005–2099; median value of 31.40 Pg C). The global ΔSOC reported here is slightly

Table 6
Global and Natural Ecosystem Initial Soil Carbon Stocks From Different Database (Without Permafrost C) and GCMs During the Period of 1995–2005 at Soil Depth
of 0–1 m

Database/TBMs Data/GCMs
Global

Natural ecosystem (Pg C)

(Pg C) Tropical Temperate Boreal Total

Database HWSD 1,265.8 376.4 645.9 72.6 1,094.9
WISE30sec 1,419.8 362.4 758.0 108.1 1,228.5
HWSD + NCSCD 1,454.4 376.5 748.1 159.3 1,283.9
Mean 1,380.0 371.8 717.3 113.3 1,202.4

LPJ‐GUESS GFDL‐ESM2M 1,340.0 356.4 748.7 61.0 1,166.1
HadGEM2‐ES 1,380.5 381.6 762.8 65.3 1,209.7
IPSL‐CM5A‐LR 1,357.4 367.0 746.2 52.3 1,165.5
MIROC5 1,380.9 401.1 755.1 46.4 1,202.6

LPJmL GFDL‐ESM2M 2,024.9 414.5 1,210.3 271.6 1,896.3
HadGEM2‐ES 2,055.3 450.6 1,195.5 285.3 1,931.4
IPSL‐CM5A‐LR 2,074.2 432.3 1,235.5 273.7 1,941.5
MIROC5 2,012.5 457.5 1,168.7 259.7 1,885.9

VISIT GFDL‐ESM2M 1,287.6 308.6 745.8 110.8 1,165.2
HadGEM2‐ES 1,334.8 317.0 782.4 112.7 1,212.1
IPSL‐CM5A‐LR 1,271.5 307.8 729.6 106.9 1,144.3
MIROC5 1,302.4 317.6 751.1 109.1 1,177.8

ORCHIDEE‐MICT GFDL‐ESM2M 2,164.6 459.8 1,187.9 276.6 1,924.4
HadGEM2‐ES 2,207.6 472.4 1,227.5 269.6 1,969.5
IPSL‐CM5A‐LR 2,269.9 472.8 1,250.9 284.7 2,008.3
MIROC5 2,099.1 469.4 1,136.0 252.9 1,858.2

DLEM GFDL‐ESM2M 790.3 211.0 469.9 30.8 711.7
IPSL‐CM5A‐LR 817.2 224.4 483.5 29.1 737.0
MIROC5 780.3 204.0 468.8 29.7 702.6

Model mean 1,576.4 369.8 897.7 154.1 1,421.6
Model median 1,380.5 381.6 762.8 110.8 1,209.7
Model IQR 1,250.7 231.6 708.5 238.6 1,175.7

Note. The bold and bold‐italic indicate the largest and smallest values, respectively. The total indicates the total soil carbon in grid cells dominated by natural
vegetation where the cropland fraction is less than 30% in 2005.
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higher but narrower than estimates from 11 ESMs presented in Todd‐Brown et al. (2014) for the RCP 8.5
scenario, with a median increase of 15 Pg C and a range of −72 to 253 Pg C.

Our results showed that uncertainties inΔSOCwere more attributed to structural differences between TBMs
rather than to differences in GCMs (Figure 3). The ISMIP2b TBMs used the same protocol for spin‐up, the
same input data, LUC data, and climate forcing (Frieler et al., 2017; Tian, Lu, et al., 2015). Yet even if
GCM bias adjustment was applied to match observed mean climate period 1960–1990 (Hempel et al., 2013)
the different GCM forcing data have distinct climate variability for the historical period, and differences in
future climate as well (Table S6) due to different GCMs climate sensitivities. Furthermore, the vegetation
distribution was not harmonized between models, which introduced inconsistencies in the simulation of
SOC between models.

4.2. Uncertainties in Constrained ΔSOC for Dominated Area by Natural Vegetation

It is known that future ΔSOC is sensitive to climate via both changes in soil input and decomposition
(Carvalhais et al., 2014; Jones et al., 2005; Todd‐Brown et al., 2013; Yan et al., 2014). Our results showed that
soil input changes explain most of the simulated ΔSOC across the ISIMIP2b TBMs at global scale and also in
different regions, the rest of variation being explained by the interaction between initial soil carbon stocks,
decomposition rate, and changes in soil inputs for RCP 6.0 (Figures 4–7). Such results are consistent with
previous study with 11 ESMs from CMIP5 (Todd‐Brown et al., 2014).

We showed that the success of using observed recent NPP trend as a constraint for future ΔSOC over natural
vegetation depends on the choice of the GCM. Our proposed emergent constrained worked well with the
HadGEM2‐ES in the boreal region and with all GCMs in the temperate region. It also works for constraining
global ΔSOC, with a given GCM, but provides diverging results between different GCMs. This is because
GCMs differ in their regional patterns of climate change, with possible compensating effects of climate
change on ΔSOC between different regions, for instance, decreased rainfall reducing input and increased
temperature increasing them. The failure to reliably constrain ΔSOC at the regional scale for the tropical
and boreal regions with most GCMs may be attributed to the uncertainties in observed NPP trends and
the weak relationships established for the emergent constraint when it is applied at regional scale. The
NPP trend in the P model is stronger than in the BESS model (Table S2), possibly because nutrient limita-
tions are not included in the P model (Jiang & Ryu, 2016; Wang et al., 2017). Previous studies indicated that
NPP is strongly limited byN availability inmany ecosystems, especially in boreal forests (Hickler et al., 2015).
In addition, observed NPP trend based on satellite observation includes implicitly the management of forest
and pasture, which is ignored in ISIMIP2b models. Due to the small number of TBMs used to establish
emergent constraint relationships, the R2 of linear regressions between NPP trend and future input change
(0.27–0.51) was low in the tropical region (Figure 5). It should be noted that the effective constrained on
ΔSOC is based on a significant relationship between ΔSOC and changes in soil input. We expect that
applying the same approach to larger ensembles of models is likely a larger spread and a better‐defined rela-
tionship to constrain SOC changes.

4.3. Uncertainties in Constrained Δsoc for Dominated Area by Cropland

We showed that soil carbon losses in LUC‐dominated regions are mostly caused by conversion of natural
vegetation to cropland, consistent with previous studies (Deng et al., 2016; Don et al., 2011; Guo &
Gifford, 2002; Li et al., 2018; Poeplau et al., 2011; Wei et al., 2014). For example, the meta‐analysis by Guo
and Gifford (2002) found a SOC decline of 42% and 59% after LUC from forest to cropland and pasture to
cropland. Models that do not reduce soil C input from harvested cropland NPP tend to underestimate
SOC reductions from cropland expansion (−2.64 ± 8.43 vs. −1.03 ± 19.94 Pg C for modeled vs. estimated
Δsoccropland expansion; Table 5). In addition, we found that the simulated Δsoccropland expansion is generally
within 1‐sigma uncertainty of the constrained Δsoccropland expansion. Such large uncertainties in constrained
Δsoccropland expansion reflect uncertainties of Δsoccropland minus initial natveg from meta‐analysis data (Table 4).

Anthropogenic LUCs have resulted into about 50 × 106 km2 being used for cropland (about 12% of the total
ice‐free land area) and pasture (about 26% of the total ice‐free land area) (Foley et al., 2007, 2011). In the
ISIMIP2b simulations, the harmonized area of cropland and pasture used as a forcing for past simulations
increases by 8.7 and 20.0 × 106 km2 in the historical run (1861–2005) (Figures S12 and S13 and Table S7).
For future RCP 2.6 and RCP 6.0 simulations (2005–2099), the harmonized area of cropland increases by
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4.3 and 0.7 × 106 km2, while the harmonized area of pasture decreases by 7.3 and 1.1 × 106 km2

(see Table S7).

Based on constrained Δsoccropland expansion and future cropland expansion area, we tentatively suggest that
future cropland expansion will result in carbon losses in most of regions (Table 5 and Figures S12 and
S13). These results are consistent with previous studies reporting that land use will be an important driver
of SOC in the future (Lozano‐García et al., 2017; Molotoks et al., 2018). The degree of cropland expansion
results in SOC change partially dependent upon the land management practices (i.e., harvest), soil condition
(e.g., soil properties and soil type), and climate condition. Crop harvest for bioenergy production can reduce
inputs to the soil and diminish soil fertility (Powlson et al., 2012). In general, SOC decreases when land use
conversion is from forest to cropland but varies with forest type and cultivation stage (Wei et al., 2014). The
conversion from natural vegetation to cropland breaks down the aggregate structure that physically protects
SOC from microbial decomposition (Wei et al., 2013), leading to more available SOC for microbial attacks.
Future increased temperature will result in greater SOC losses by increasing decomposition rate but also
cause a positive feedback between SOC mineralization and global warming.

Models handled in different ways the harvest of crop biomass, a process that reduces litter C inputs to soils
over cropland grid cells, with only four models (i.e., LPJmL, VISIT, ORCHIDEE‐MICT, and DLEM) exclud-
ing harvested carbon from inputs (Table S1) as it is the case in the real world. In LPJmL crop harvested car-
bon is added to a “harvest flux” variable at the time of harvest, and this flux is assumed to be lost as CO2 to
the atmosphere. In ORCHIDEE‐MICT, crop harvest is modeled as a daily removal of litter and reported as a
separate annual emission to the atmosphere. In addition, ORCHIDEE‐MICT takes into account the effect of
tillage by increasing decomposition rate in cropland to mimic the fact that tillage increases soil oxygenation
and thus accelerates the decomposition of SOC (Ciais et al., 2011; Gervois et al., 2008). In VISIT, a residual
fraction of crop harvest returns to the soil as litter. In DLEM, harvested crop carbon enters a 1 year product
pool that decomposes at a prescribed rate into atmospheric CO2 and does not return to soil. Part of the crop
residue is further removed from the field due to management (e.g., fire; the value is set as 30%), and the
remaining 70% is allocated to litter pools (Zhang et al., 2018). Pasture grazing is also an important compo-
nent of LUC affecting SOC. Only LPJmL includes pasture grazing management (Table 1) through 75% of leaf
biomass being grazed when leaf biomass reaches threshold of 100 g C m−2 and emitted as CO2 to the atmo-
sphere (Bondeau et al., 2007; Waha et al., 2012).

Previous studies have highlighted the importance of accounting for agricultural land and management
(e.g., harvest, grazing, tillage, and residue management) in model simulations (Pugh et al., 2015). In this
study, modeled SOC from cropland expansion showed large difference between models, which are related
to different cropland management schemes and implies large uncertainty in future projections.
Theoretically, crop harvest reduces carbon input into soil. However, Figures S5e and S5f show that the
LUCmay have limited effects on NPP simulations. The reduced SOC in agricultural land may be mainly dri-
ven by decreased litter return to the soil because of harvest and accelerated SOC decomposition because of
tillage, rather than reduced NPP. In this study, four models (i.e., VISIT, LPJmL, ORCHIDEE‐MICT, and
DLEM) include cropland harvest in their parameterization. LPJmL, ORCHIDEE‐MICT, and DLEM actually
consider that harvested carbon is released as CO2 to the atmosphere. As a result, negative Δsoccropland minus

initial natveg was observed from those three models that do not allocate crop harvest to soil pools (Figure S3).
However, the residual part of the harvest NPP of cropland from VISIT returns to field as litter, which
explains positive Δsoccropland minus initial natveg values in most regions. The LPJ‐GUESS version used in
ISIMIP2b did not consider crop harvest. Therefore, how to treat crop harvest and the management of crop
residue is a key source of uncertainty for modeling SOC changes from cropland expansion in the
ISIMIP2b models. We recommend a better treatment of harvested crop carbon in TBMs, accounting for
the harvest flux to leave the system rather than allocating harvests to SOC pools.

In addition, it is important to note that not all models have taken into account tillage process except for
ORCHIDEE‐MICT. ORCHIDEE‐MICT considers the effect of tillage by increasing decomposition rate in
cropland to mimic increased soil oxygenation and accelerated decomposition of SOC after tillage (Gervois
et al., 2008). In general, tillage can improve the decomposition of crop residues by facilitating contact
between plant tissue and soil aggregate surface (Bronick & Lal, 2005) and increases the availability of nutri-
ents for plant growth through distributing organic matter. In conjunction with this, the effectiveness of
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tillage on SOC in comparison to no tillage is controversial (Angers & Eriksen‐Hamel, 2008; Virto et al., 2012).
Several studies observed an increase of soil organic matter and carbon with no tillage or conservation tillage
(minimum tillage) in the top soil layer (Pinheiro et al., 2015; Powlson et al., 2012; Vogeler et al., 2009).
However, such effect is partly or completely offset by greater SOC content in the deeper soil layers under
conventional tillage (complete inversion of soil through plowing; Álvaro‐Fuentes et al., 2013). These discre-
pancies are not surprising since tillage effects integrate a complex set of biological and environmental
factors, such as the management practices (e.g., fertilization; Gregorich et al., 2005), crop performance
(e.g., cropping intensity and crop types; VandenBygaart et al., 2003), and climate conditions (e.g., soil tem-
perature and soil moisture; Snyder et al., 2009). In the TBMs used here, the effect of tillage is either repre-
sented as a scaling factor increasing the SOC decomposition rate in ORCHIDEE‐MICT (Gervois
et al., 2008) or ignored in other models. A newer version of LPJmL now incorporates two processes directly
affected by tillage, including surface litter reduction from tillage management and decreased bulk soil den-
sity affecting soil hydrology (Lutz et al., 2019).

4.4. How to Improve Emergent Constraints on Soil Carbon Changes

The use of an emergent constraint to constrain an ensemble of model results requires (i) a strong regression
relationship between the target variable to be constrained and the variable used to predict this target (e.g.,
NPP trends and Δsoccropland minus initial natveg) and (ii) available observed data. If a strong enough emergent
relationship can be established, then it can be confidently combined with observation to produce a
constrained target variable. In our study, the hypothesis behind this two‐step emergent constraint for
SOC changes of natural vegetation is that future carbon input changes can be constrained from
observation‐based trends of past NPP. This hypothesis was verified, but observed trends of NPP were differ-
ent between the two products considered. The hypothesis to constrain Δsoccropland expansion is that this target
variable is related to mean soc differences between cropland and historical natural vegetation. This hypoth-
esis was verified, but observed Δsoccropland minus initial natveg shows a large spread from current meta‐analysis,
limiting the success of this approach. We recommend to pursue this approach but select meta‐analysis data
and use PFT‐specific SOC output from models, instead of grid cell averages with cropland fraction above a
threshold as it was done here because ISIMIP models did not report PFT‐specific carbon variables.

4.5. Limitations

Despite developments in some models to incorporate agricultural management practices (Ciais et al., 2011;
Ito & Inatomi, 2012; Lutz et al., 2019; Pugh et al., 2015; Tian et al., 2010; Wu et al., 2016), some limitations
still remain for projection of SOC relative to this driver in our set of ISIMIP model. Carbon storage in crop-
land is heavily dependent on management practices. Practices such as tillage, crop rotation, crop residue,
and management are very important to soil carbon decomposition but are not included in all models.
Moreover, the inclusion of nitrogen fertilizers was found to be a limiting factor in the amount of carbon
stored (Drewniak et al., 2015). In this study, nitrogen effects on SOC are not considered in all the models
(Table S1). In addition, the use of new varieties affecting the harvest index, productivity, and growing season
duration with consequences on SOC inputs is not considered in the ISIMIP models. Further research is
needed to management practices in models and their regional/historical changes to better model cropland
soil carbon.

5. Conclusion

SOC changes have been significantly influenced by climate and LUC over the past century. Even though an
increasing number of data sets are available to constrain future simulations, large differences between cli-
mate scenarios and TBMs remain, which implies large uncertainty of future projections. We show that
uncertainties in future ΔSOC can be primarily attributed to the structural differences between TBMs rather
than difference in GCMs. For RCP 2.6 LUC is the dominant driver of future ΔSOC, while for RCP 6.0, the
climate change effect dominates. Soil input changes explain most of variations in projected ΔSOC across
the TBMs globally and in different climate regions. Applying an emergent constraint for ΔSOC to climate
change under RCP 6.0, our results showed a reduction in constrained ΔSOC compared to original modeled
ensembles for all GCMs in the temperate region and one GCM (i.e., HadGEM2‐ES) globally and in the boreal
region. In cropland‐dominated areas, SOC will continue to diminish under RCP 2.6 (−0.19 ± 3.72 Pg C) and
RCP 6.0 (−0.18 ± 3.52 Pg C) due to cropland expansion but with gains and losses compensating between
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regions. In cropland‐dominated areas, the large spread in constrained Δsoccropland expansioncomes from
uncertainties of observations. The idea of an emergent constraint approach purposefully reduced uncertain-
ties in future projections of SOC. Although the uncertainties in constrain ΔSOC are still relatively high, as
more accurate observation data and more model simulations become available, applying an emergent con-
straint approach to improve the accuracy of future ΔSOC projections is a promising research avenue. More
importantly, understanding how SOC could be impacted by future climate change and LUCs can effectively
help land managers and policymakers to develop appropriate land planning strategies.

Data Availability Statement

Model data from ISIMIP2b are publicly available online (https://esg.pik‐potsdam.de/projects/isimip/). GPP
products from P model are available from Stocker et al. (2019) (https://zenodo.org/record/1423484#.
XKNO8pj7Q2x). GPP products from BESS are publicly available from Jiang and Ryu (2016) (http://environ-
ment.snu.ac.kr/bess_flux/). The soil organic carbon density data frommeta‐analysis are available fromDeng
et al. (2016), Li et al. (2018), and Nyawira et al. (2016). HWSD data are available from FAO/IIASA/ISRIC/
ISSCAS/JRC (2012) (http://www.fao.org/soils‐portal/soil‐survey/soil‐maps‐and‐databases/harmonized‐
world‐soil‐database‐v12/zh/), the NCSCD are available from Tarnocai et al. (2009) (https://bolin.su.se/
data/ncscd/), and the WISE30sec are available from Batjes (2016) (https://www.isric.org/explore/wise‐
databases).
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