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Abstract

Symmetric positive definite (SPD) matrices permeates numerous scientific disciplines, in-
cluding machine learning, optimization, and signal processing. Equipped with a Rieman-
nian geometry, the space of SPD matrices benefits from compelling properties and its de-
rived Riemannian mean is now the gold standard in some applications, e.g. brain-computer
interfaces (BCI). This paper addresses the problem of averaging covariance matrices with
missing variables. This situation often occurs with inexpensive or unreliable sensors, or
when artifact-suppression techniques remove corrupted sensors leading to rank deficient
matrices, hindering the use of the Riemannian geometry in covariance-based approaches.
An alternate but questionable method consists in removing the matrices with missing vari-
ables, thus reducing the training set size. We address those limitations and propose a
new formulation grounded in geodesic convexity. Our approach is evaluated on generated
datasets with a controlled number of missing variables and a known baseline, demonstrat-
ing the robustness of the proposed estimator. The practical interest of this approach is
assessed on real BCI datasets. Our results show that the proposed average is more robust
and better suited for classification than classical data imputation methods.

Keywords: SPD matrices, average, missing data, data imputation.

1. Introduction

With from the pioneering work of Candès and Recht (2009), a new light was shed on the
matrix completion problem and the imputation of missing data. It demonstrated that data
imputation could be formulated as an optimization problem benefiting from the underly-
ing structure of the data. Such method has been successfully applied to recommendation
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systems (Rennie and Srebro, 2005), multitask learning (Obozinski et al., 2010) or manifold
learning (Weinberger and Saul, 2006). The bound of the number of entries for an optimal
reconstruction of a low-rank matrix are provided in Candès and Recht (2009) and improved
in Recht (2011), with only minimal assumptions on the coherence of the matrix to recover.

Several problems connected to low-rank matrix completion have been considered, includ-
ing recovering spectrally sparse objects from missing time-domain samples (Chen and Chi,
2013), or in graph data (Narang et al., 2013). Positive definite and positive semi-definite
matrices are indeed good candidates for matrix completion approaches as those matrices
lives in a low-dimensional space, and have been the subject of early works in matrix com-
pletion (Johnson, 1990; Johnson and Tarazaga, 1995). Symmetric positive-definite (SPD)
matrices are commonly found in covariance-based approaches, such as financial time series
processing (Bingham, 2014), radar detection (Arnaudon et al., 2013), computer vision (Ha-
randi et al., 2017) or medical imaging (Pennec et al., 2006).

In this contribution, we focus on yet another application of positive-definite matrices:
the brain-computer interfaces (BCI). Since the seminal work of Barachant et al. (2012)
that introduced a new approach for BCI, the covariance matrices are directly handled on
the manifold of positive-definite matrices. This implied to reformulate common machine
learning algorithms and processing pipelines for this specific geometry. These approaches
became the new gold standard for BCI (Yger et al., 2017; Congedo et al., 2017) with high
accuracy on various kinds of brain signals, such as motor imagery (Jayaram and Barachant,
2018), evoked potentials (Korczowski et al., 2015) or steady-state visually-evoked poten-
tial (Chevallier et al., 2020), and won several Kaggle competitions.

In all these applications, from BCI to financial time series, machine learning models
rely on average centers of SPD matrices. The estimation of average (or center of gravity) is
the key to obtain reliable results for the target application, and must be robust to missing
variables. However, in BCI for example, unreliable sensors or artifact-suppression techniques
removing corrupted sensors leading to rank deficient matrices, hindering the use of the usual
Riemannian averaging. To our knowledge, there is no systematic review of the processing of
SPD matrices with missing data in the literature. This is the main objective of this paper,
by confronting the existing approaches and by introducing a new framework.

Our contributions are the following:

i) a sound framework for SPD matrices averaging with missing variables, and a theoret-
ical analysis of the geodesic convexity of this optimization,

ii) an evaluation of the convergence of the proposed approach on a synthetic dataset,

iii) a comparison with Euclidean mean and common imputation methods in machine
learning,

iv) a validation on a real dataset for BCI application.

2. Review of related works

There are several types of missing data that could be encompassed in the literature. In an
attempt to make a summary of the studies on the subject, we could describe the different
cases that are illustrated on Fig. 1. Our approach comes from practical concerns occurring
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G-convex averaging of partially observed covariance matrices

Figure 1: Illustration of the different types of missing data: (a) missing samples / observa-
tions in matrix X, (b) missing variables in matrices X and Σ, (c) missing elements
in the matrix Σ.

when considering multivariate data. We call X ∈ Rc×n a matrix composed of c input
variables (sensors, or components, shown in rows) and of n samples (observations, visible in
columns). We call Σ ∈ Rc×c its covariance matrix, which is SPD1. As discussed hereafter,
the data can be corrupted and missing data can occur with particular patterns.

The first case one occurs when some multivariate samples have not been acquired by
the system, resulting in missing columns in the matrix X. Missing values in this case is
often interpolated or imputed from average or median values. In the second case, some
sensors have a trouble during acquisition. Consequently, some variables/rows are missing
in X, and these rows are thus missing in Σ, but also their corresponding columns due to
the symmetry.

In Fukuda et al. (2001), the authors rely on matrix completion techniques to propose
a solver in semi-definite programming that is able to cope with partial information in the
constraint space of the primal-dual interior-point methods. Tsuda et al. (2003) propose to
complete missing variables for SVM kernel estimation in genetic applications, relying on an
auxiliary kernel matrix that integrates another source of information.

Some works consider the case where some elements of the matrix are missing (Bishop
and Byron, 2014; Choi et al., 2019), but without a particular link between these elements,
excepted symmetry. The work of Johnson and Tarazaga (1995) is on matrix completion
for graph data with positive semi-definite constraint, for missing entries outside the diag-
onal. Another approach by Laurent (2001), using the same setup, try to estimate missing
information on the diagonal.

Several problems can be stated when processing incomplete matrices, i.e. matrices with
missing data. The first one concerns the estimation of covariance from an incomplete matrix
X, with the objective to build a robust estimator (Little, 1998; Schneider, 2001; Lounici,
2014). The second category of problems is the covariance completion. From an incomplete
covariance matrix Σ, the goal is to find the best way to complete its missing values (Johnson
and Tarazaga, 1995; Bishop and Byron, 2014).

A two-step approach is presented in (Rodrigues et al., 2019): firstly, covariance matrices
are imputed on the manifold (performing on the matrix a whitening, a scaling, completing it

1. In theory, covariance matrices belong to the set of symmetric semi-definite matrices but making the
realistic assumption that X is corrupted by a Gaussian noise leads to Σ ∈ Pc.
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Missing samples
in X

Missing variables
in X and Σ

Missing elements
in Σ

Covariance
estimation

Little (1998)
Schneider (2001)
Lounici (2014)

Vinci et al. (2019) ×

Covariance
completion

× Rodrigues et al. (2019)

Johnson and Tarazaga (1995)
Fukuda et al. (2001)

Laurent (2001)
Tsuda et al. (2003)

Bishop and Byron (2014)
Covariance
averaging

× Our work Choi et al. (2019) for m = 2

Table 1: Summary of the state-of-the-art classified along two criteria: the type of missing
data (horizontally) and the type of problems (vertically). Symbols × means that
this problem cannot be considered.

by adding 1s on the diagonal where variables are missing, and then de-whitening), secondly
a classical covariance averaging is applied on completed matrices. From several incomplete
covariance matrices, the goal is to estimate the best average covariance matrices. In the
work of Choi et al. (2019), the mean is limited to 2 covariance matrices, having identical
missing elements. To sum up this state-of-the-art, all these works are classified in Table 1
along two criteria: the type of missing data (horizontal) and the type of problems (vertical).

The contribution of this paper belongs to covariance averaging, providing a way to
average several SPD matrices with missing variables. It is important to note that missing
variables can change for each matrix to average. The resulting matrix is defined on the
union (and not the intersection) of variables of input matrices.

3. Estimating Riemannian mean with missing variables

After a brief recall of the Riemannian geometry to process SPD matrices, this section
presents the problem of estimating an average matrix from a set of SPD matrices with
missing variables, introducing masks to tackle missing variables. The cost function is shown
to be geodesically convex under some restricted cases.

3.1. Preliminaries

We consider the set Pc of symmetric positive definite (SPD) of size c× c. Formally, this set
is defined as:

Pc =
{

Σ ∈ Rc×c | Σ = Σ>, ∀x ∈ Rc
? x>Σx > 0

}
, (1)

and it is endowed with the Löwner partial order, defined between Σ1,Σ2 ∈ Pc as:

Σ1 < Σ2 ⇔ Σ1 − Σ2 ∈ Pc .
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The most straightforward way to handle Pc is to consider it as a subspace of Sc, the space
of symmetric matrices. As such, it is a Euclidean space and the tools of conic geometry
and semi-definite programming could apply. However, this Euclidean geometry comes at
the cost of dramatic drawbacks, like the swelling effect2 (Fletcher et al., 2004; Horev et al.,
2015). Non-Euclidean alternatives have been successfully applied in some applications (Yger
et al., 2017; Congedo et al., 2017; Harandi et al., 2017).

The most common estimator of the covariance matrix Σ is the sample covariance matrix,
defined as:

Σ =
1

n− 1
XX> . (2)

More robust estimators have been proposed (Daniels and Kass, 2001) and have been evalu-
ated in the context of EEG-based BCI (Chevallier et al., 2018). The most common are the
shrinkage estimator that combines the sample covariance matrix with a target covariance
matrix, that could be similar to the identity matrix, to ensure that the estimated matrices
avoid any ill-conditioning problem.

Due to the curvature of the space of SPD matrices, an adequate metric could rely on
Σ1]tΣ2, the geodesic between Σ1,Σ2 ∈ Pc and defined as:

Σ1]tΣ2 = Σ
1
2
1

(
Σ
− 1

2
1 Σ2Σ

− 1
2

1

)t

Σ
1
2
1 = Σ

1
2
1 Exp

(
tLog

(
Σ
− 1

2
1 Σ2Σ

− 1
2

1

))
Σ

1
2
1 , t ∈ [0, 1] . (3)

For clarity reason, when t is omitted Σ1]Σ2 = Σ1]0.5Σ2, the geometric center of Σ1 and
Σ2. We will consider hereafter the affine-invariant Riemannian (AIR) distance, that derived
from the geodesic and that is widely used for its geometric properties.

Definition 1 Affine-invariant Riemannian distance (Förstner and Moonen, 1999). For
Σ1,Σ2 ∈ Pc, two SPD matrices, the Riemannian distance is defined as

δR(Σ1,Σ2) =

∥∥∥∥Log(Σ
− 1

2
1 Σ2Σ

− 1
2

1 )

∥∥∥∥
F

=

(
c∑

k=1

log2 λk

) 1
2

, (4)

where ‖·‖F is the Frobenius norm, and λk, k = 1, . . . , c, are the eigenvalues of Σ
− 1

2
1 Σ2Σ

− 1
2

1 .

Among the numerous properties of the affine-invariant Riemannian distance (Bhatia, 2009),
the congruence-invariance3 states that, for any invertible matrix W ∈ Rc×c:

δR(Σ1,Σ2) = δR(W>Σ1W,W
>Σ2W ) . (5)

We now want to estimate the mean of a set of m SPD matrices {Σi}mi=1. It may actually
be helpful to estimate a weighted mean, where the weights {wi}mi=1 are non-negative and
sum up to a constant (in practice, 1 or m). These weights can be fixed to encode prior
knowledge, or tuned by cross-validation to optimize some given criterion.

2. In the Euclidean geometry of definite positive matrices, the determinant of Σ1+Σ2
2

can be greater than
the determinants of Σ1 or Σ2. Hence, the Euclidean interpolation can bring some spurious information,
contrary to the Riemannian geometry.

3. Using this transformation as a whitening, this invariance could be used in a transfer learning setup as
in Yger and Sugiyama (2015).
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Definition 2 Riemannian mean (Moakher, 2005; Fletcher et al., 2004). The Riemannian
mean Σ̄ ∈ Pc of a set of m SPD matrices {Σi}mi=1, associated to non-negative weights
{wi}mi=1, is defined as

Σ̄ = arg min
Σ∈Pc

fR(Σ) = arg min
Σ∈Pc

1

2

m∑
i=1

wi δ
2
R(Σi,Σ) . (6)

This mean, also known as geometric mean, has no closed form and therefore has to be
computed iteratively, for example through a gradient descent algorithm. The gradient of
the cost function fR is defined as (Fletcher et al., 2004):

∇fR(Σ) = −
m∑
i=1

wi Σ
1
2 Log(Σ−

1
2 ΣiΣ

− 1
2 )Σ

1
2 = −

m∑
i=1

wi LogΣ(Σi) , (7)

where LogΣ(Σi) is the logarithmic map, projecting the matrix Σi from manifold to tangent
space at point Σ. The geometric mean is the unique matrix Σ̄ of the manifold Pc nullifying
the sum of the m tangent vectors.

As defined in Zadeh et al. (2016) and explained in Boumal (2020, Chap 11), the geometric
mean is a geodesically convex function. Even if it is not convex in the Euclidean sense,
geodesic convexity ensures that functions are convex along the manifold and enjoying similar
properties to convex functions.

Definition 3 Geodesically convex function (Sra and Hosseini, 2015). Let P be a Rie-
mannian manifold and Q ⊂ P a geodesically convex set. A function f : Q → R is said
geodesically convex, if for all points Σ1 and Σ2 of this set, it satisfies

f(Σ1]tΣ2) ≤ tf(Σ1) + (1− t)f(Σ2) , t ∈ [0, 1] . (8)

3.2. Masked Riemannian mean

A mask M ∈ Rc×(c−p) is defined as the identity matrix, but with the columns of the p
missing variables removed, with 0 ≤ p < c. In our problem, the mask is not constrained to be
identical for all input matrices, ie. each input matrix can be associated to a particular mask.
If an input X ∈ Rc×n is incomplete, with p missing variables, the available (non-missing)
variables can be extracted thanks to the product by a mask M ∈ Rc×(c−p). The resulting
complete submatrix is X̌ = M>X ∈ R(c−p)×n. Thus, its covariance matrix Σ̌ ∈ Pc−p
estimated with Eq. (2) is:

Σ̌ =
1

n− 1
X̌X̌> =

1

n− 1
M>XX>M =

1

n− 1
M>ΣM , (9)

where Σ = XX> is an incomplete covariance matrix. Incomplete matrices X and Σ are
illustrated in Fig. 1(b). Consequently, a mask is a full column-rank matrix such that the
submatrix M>ΣM is SPD, of size (c− p)× (c− p)4.

4. Hence, mask M is a semi-orthogonal matrix, i.e. M>M = I(c−p), and our setup could be generalized to
missing subspaces in a compressive sensing manner using orthogonal matrices.
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Now, we consider the set {Σi}mi=1 of incomplete SPD matrices, ie. each matrix Σi has
pi missing variables, with 0 ≤ pi < c. Consequently, their associated masks {Mi}mi=1 are
potentially all different. The masked Riemannian mean Σ̄ ∈ Pc is defined as:

Σ̄ = arg min
Σ∈Pc

fRM
(Σ) = arg min

Σ∈Pc

1

2

m∑
i=1

wi δ
2
R(M>i ΣiMi,M

>
i ΣMi) . (10)

Note that, each matrix M>i ΣiMi being SPD, the distance δR can be applied and the cost
function is well defined. As explained in Absil et al. (2009) and Boumal (2020, Chap 4), the
Riemannian gradient can be deduced from the Euclidean gradient and then plugged into
a Riemannian gradient descent. Combining the chain rule of derivatives with the gradient
formula given in Eq. (7), the Euclidean gradient of the cost function fRM

(Σ) can be written
as:

∇fRM
(Σ) = −

m∑
i=1

wiMi LogM>i ΣMi

(
M>i ΣiMi

)
M>i . (11)

The cost being computed on subparts of the matrix Σ, the gradient is null for the elements
not involved on the compressed matrix M>i ΣMi. Hence, the Euclidean gradient of δ2

R,
although computed on a subpart of Σ can be broadcast to the whole space using Mi(·)M>i
operator. Remark that Eq. (11) falls back to Eq. (7) when there is no missing variables,
i.e. when all masks Mi = Ic.

The illustration of the averaging of two masked matrices is displayed in Fig. 2.

3.3. Link with the NaN-mean

If we replace the Riemannian distance δR by the Euclidean distance δE(Σ1,Σ2) = ‖Σ1 − Σ2‖F
into Eq. (10), the gradient of the masked Euclidean mean would have been:

∇fEM
(Σ) = −

m∑
i=1

wiMi

(
M>i ΣiMi −M>i ΣMi

)
M>i = −

m∑
i=1

wiMiM
>
i (Σi − Σ)MiM

>
i ,

(12)
where the operator MiM

>
i (·)MiM

>
i extracts only the non-missing values of Σi.

Defining Iu,v as the set containing the indices of matrices without missing values for
entry (u, v), the gradient can be expressed element-wise:

∇fEM
(Σ)(u, v) = −

∑
i∈Iu,v

wi (Σi(u, v)− Σ(u, v)) . (13)

This gradient is nullified by the matrix:

Σ̄(u, v) =

∑
i∈Iu,v wi Σi(u, v)∑

i∈Iu,v wi
. (14)

When all weights are equal, this masked Euclidean mean is commonly called NaN-mean
and is written as:

Σ̄(u, v) =
1

|Iu,v|
∑

i∈Iu,v

Σi(u, v) , (15)

where |Iu,v| denotes the cardinality of Iu,v.
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Σ̄old

Σ̄new

Pc

Pc−p1

M>1 (·)M1

M1(·)M>1

M>1 Σ̄oldM1

M>1 Σ1M
>
1

LogM>1 Σ̄oldM1
(M>1 Σ1M

>
1 )

Pc−p2

M>2 (·)M2

M2(·)M>2

Figure 2: Illustration of the masked Riemannian mean Σ̄ ∈ Pc of two matrices, Σ1 (resp.
Σ2) containing p1 (resp. p2) missing variables encoded by mask M1 (resp. M2).

3.4. Geodesic convexity

In practice, we noticed that a simple Riemannian gradient descent always converged to the
same minimum (independently of its initialization) on our experiments and we tested it
numerically in Pymanopt (Townsend et al., 2016). This lead us to formulate a conjecture
on the geodesic convexity of the problem. Unfortunately, we could generate some counter-
examples to this conjecture in simplistic cases, but we also found some restricted cases
where the geodesic convexity holds.

Applying the congruence-invariance of Eq. (5) with W = (M>i ΣiMi)
− 1

2 ∈ R(c−pi)×(c−pi),
we can express the cost function fRM

, defined in Eq. (10), as follows:

fRM
(Σ) =

1

2

m∑
i=1

wi δ
2
R

(
I(c−pi), ((M

>
i ΣiMi)

− 1
2 )>M>i ΣMi(M

>
i ΣiMi)

− 1
2

)
=

1

2

m∑
i=1

wi δ
2
R

(
I(c−pi), M̃

>
i ΣM̃i

)
, (16)

where M̃i = Mi(M
>
i ΣiMi)

− 1
2 ∈ Rc×(c−pi) is a full column-rank matrix.
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In the case where we have M̃>M̃ < I(c−p), then, for any Σ1,Σ2 < Ic:

I(c−p) 4 M̃>M̃ 4 M̃>(Σ1]Σ2)M̃ 4 (M̃>Σ1M̃)](M̃>Σ2M̃) , (17)

and because ‖Log(·)‖2F = δ2
R(I, ·) is monotonically increasing above I, we have:

δ2
R

(
I(c−p), M̃

>(Σ1]Σ2)M̃
)
≤ δ2

R

(
I(c−p), (M̃

>Σ1M̃)](M̃>Σ2M̃)
)
. (18)

From this, g-convexity follows upon using g-convexity of δR (Sra and Hosseini, 2015) in the
usual way for the very last occurrence of δR. This proof is detailed in the supplementary
material of this article.

In the case where we have M̃>i M̃i < I(c−pi), ∀i, then, each element of the sum in fRM
(Σ)

is g-convex on Σ on the set of SPD matrices such that Σi < Ic, where matrices Σi ∈ Pc
ideally exist but are only partially observed.

4. Experimental analysis

The first experiment evaluates the proposed approach on an artificial dataset and compares
it with an Euclidean approach. The second experiment demonstrates the advantage of
averaging incomplete matrices over the classical methods of data imputation, that are the
matrix deletion and channel (or variable) deletion. The third experiment, provided in the
supplementary material of this article, evaluates the convergence rate of the new algorithm.
The last experiment is conducted on a real dataset, acquired for a motor imagery experiment
in BCI. For all experiments, we used uniform weights wi for the matrices (hence leading
to un-weighted averages). Experiments are made using pyRiemann 0.2.6 and Pymanopt
0.2.5 (Townsend et al., 2016).

4.1. Evaluation of convergence on synthetic dataset

For the first experiment, the dataset is defined such that the training samples are generated
according to a distribution parametrized by dispersion σ and reference G. To this end,
the reference matrix is generated as G = U>DU , where the diagonal matrix D ∈ Rc×c

has strictly positive values drawn from a triangular distribution and where the orthogonal
matrix U is obtained as the eigenvectors of a random matrix A ∈ Rc×2c. The sample
matrices of the dataset {Σi}mi=1 are built as Σi = U>(D + εi)U , where εi is an additive
white noise drawn from a Gaussian distributionN (0, σ2). This perturbation is introduced to
control the dispersion of matrices on the manifold during generation. Indeed, if limm→∞ Ḡ =
G, where Ḡ is the geometric mean of {Σi}mi=1, in practice it is equal to Ḡ = U>(D + ε̄)U ,
with ε̄ = 1

m

∑
i εi.

Then, the masks {Mi}mi=1 are generated with p missing variables. In these experiments,
m = 1000, c = 10, and p = 1, 2, 3. The masked Riemannian mean R̄M of incomplete
matrices is computed by solving the optimization problem Eq. (10). The masked Euclidean
mean ĒM is computed using Eq. (14). Visualisations of this dataset are displayed in the
supplementary material of this article.

To evaluate of convergence of the masked Riemannian mean R̄M , we compute its distance
to the groundtruth mean Ḡ. This distance is compared to the distance between the masked
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Figure 3: Convergence error for the masked Riemannian mean R̄M (in dark blue) and the
masked Euclidean mean ĒM (light green). Distances to groundtruth Ḡ are evalu-
ated with 10 repetitions, for p = {1, 2, 3}missing variables and for σ ∈ [0.05, 0.75].

Euclidean mean ĒM and the groundtruth. To have a good overview, the comparison is
repeated 10 times, computing the mean and standard deviations of distances. Moreover,
increasing the standard deviation σ of additive noises εj allows to control the dispersion of
matrices. Different number of missing variables p are also tested in this experiment.

Figure 3 compares the distances δ2
R(R̄M , Ḡ) and δ2

R(ĒM , Ḡ) when varying parameters
σ and p. We observe that all distances increase with dispersion of matrices. Moreover,
the masked Riemannian mean is always closer to the groundtruth than the Euclidean one.
This result is extremely consistent across all tested parameters, showing that the masked
Riemannian mean captures more information allowing to converge to the groundtruth faster
than masked Euclidean one. This difference tends to decrease when p increases. We can
conclude that the masked mean is more robust to missing data than its Euclidean coun-
terpart, and that the convergence is effective even in case where only a fraction of the
information is available.

4.2. Comparison with other strategies on synthetic dataset

When some variables are missing or have been removed after a trimming step (outlier rejec-
tion of very noisy variables), several methods of machine learning exist for data imputation.
Notably, the matrix deletion consists of removing a matrix if any single variable is miss-
ing (Allison, 2001). Another common approach is to remove each variable that is missing
in some of the matrices, called variable deletion.

Indeed, when the number of matrices with missing variables is small, matrix deletion is
a good choice, that could even act as some sort of regularization. When the proportion of
matrices with missing variables increases, the variable deletion may be a good strategy as it
ensures all matrices are considered (even if it is with less information in each). The objective
of this experiment is to compare the Riemannian masked mean R̄M to the Riemannian mean
applied after a matrix deletion strategy, denoted R̄md, and after a variable deletion strategy,
denoted R̄vd.

We use the same data generation as previous experiment, using m = 1000, c = 10
and σ = 0.5. However, in this experiment only a given proportion of matrices (from 10

426



G-convex averaging of partially observed covariance matrices

Figure 4: Riemannian mean estimation with different strategies: masked Riemannian mean
R̄M , Riemannian mean computed after matrix deletion R̄md, and Riemannian
mean after variable deletion R̄vd. Distances to groundtruth Ḡ are evaluated with
10 repetitions, for p = {1, 2, 3} missing variables and for different proportions of
matrices with missing variables (10 to 60 %).

to 60 %) have missing variables and are associated with a mask. Distances between the
groundtruth and the different means are computed, and the comparison is repeated 10
times. As previously, different values of missing variables are tested.

Figure 4 compares the distances δ2
R(R̄M , Ḡ), δ2

R(R̄md, Ḡ) and δ2
R(R̄vd, Ḡ) when varying

the number of missing variables p and the proportion of masked matrices. This experiment
shows that the Riemannian masked mean is close to the groundtruth and better than the
other strategies, matrix deletion and variable deletion. This indicates that masked mean
captures more information than other strategies, and that this information helps to converge
to the groundtruth. As observed before, this difference tends to decrease when p increases.

We can conclude that masked mean is a good alternative to the deletion strategies,
allowing to keep more statistical power in analysis (Olinsky et al., 2003) and avoiding to
introduce a bias like the matrix deletion when missing variables are not random.

4.3. Validation on BCI dataset

This BCI experiment is conducted on a motor imagery dataset, acquired by Yi et al. (2014),
where 10 subjects are performing a left hand/right hand movement and that should be de-
tected using only their brain waves recorded with EEG. There are m = 160 trials, 80 for left
hand movement and 80 for right hand, recorded for each subject on c = 60 channels/sensors.

Following the previous experiments, we generate random masks Mi to simulate missing
channels, and apply them to covariance matrices Σi computed from EEG trials Xi. Then,
we compare different means: a masked Riemannian mean R̄M trained on all matrices of
the training set, a Riemannian mean R̄md trained only on the complete matrices (i.e. after
applying a matrix deletion strategy on the raw training set), and a masked Euclidean mean
ĒM . We rely on minimum-distance-to-mean (MDM) (Barachant et al., 2012) to embed
these different means on a same classifier. This is a simple, robust, and online classifier that
is part of the state-of-the-art for motor imagery BCI (Jayaram and Barachant, 2018). In
this experiment, the gold standard is defined as the MDM trained on non-masked training
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Figure 5: Comparison of MDM computed on non-masked matrices (gold standard, or
R̄+MDM), MDM based on masked Riemannian mean (R̄M+MDM), MDM based
on Riemannian mean after matrix deletion (R̄md+MDM), and MDM based on
masked Euclidean mean (ĒM+MDM). Left: Accuracy averaged for the 10 sub-
jects, with 0 to 60% of matrices having 40% of masked channels (missing vari-
ables). Right: Same for 60% of masked channels.

set (with access to all information, with no masked or deleted variables). This gold standard
thus indicates the results that could be obtained in optimal condition, without missing data.

We compare the classification accuracies obtained with a 5-fold cross-validation for each
subject, while varying the proportion of masked matrices, from 0 to 60% of matrices with
missing variables. The classifiers are evaluated in the two cases: when p = 24 out of the
c = 60 EEG channels are masked (thus 40% of the channels) and when p = 36 channels are
masked (60% of channels). These numerical experiments encompass the different situations
where there is a moderate corruption in few trials to the case where the majority of the
dataset is corrupted. The MDM classifier that relies on masked Riemannian mean R̄M

is called “R̄M+MDM”. It is compared to MDM based on matrix deletion strategy, called
“R̄md+MDM”, and to MDM based on masked Euclidean mean, called “ĒM+MDM”.

Accuracies are displayed on Fig. 5, with mean and standard deviation computed across
subjects. The results clearly show that R̄M+MDM outperforms other classifiers. ĒM+MDM
is not performing well, even while using a nan-mean is a common strategy during pre-
processing. Euclidean MDM is known to perform poorly when compared to Riemannian
MDM (Kalunga et al., 2015), as it is subject to the swelling effect. The matrix deletion
strategy R̄md+MDM, as it uses only a subpart of the available information, achieves a bet-
ter accuracy than ĒM+MDM, but is lower than R̄M+MDM. R̄M+MDM yields results that
are almost at the level of the gold standard, and seems not sensitive to the proportion of
matrices with missing channels.

5. Conclusion

This paper describes a method for the robust estimation of an average matrix from a set
of SPD matrices with missing variables. This masked mean method could cope with any
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number and distribution of missing variables on the considered set. The proposed method
solves an optimization problem formulated as a matrix factorization, where the missing
variables are discarded to estimate the solution on a collection of embedded Riemannian
submanifold. While the convergence of this method is attested in practice, we have proved
the geodesic convexity of the problem on a restricted class of SPD matrices. The experiments
on synthetic and real datasets exhibit the practical interest of this method. The applications
target covariance matrices, but without loss of generality this method could be applied on
any set of SPD matrices.

The applicative contributions of the proposed method are multiple: (i) it is a true
alternative to data imputation, avoiding to exclude data from analysis or to complete data
with mean or median values (Experiments 4.1 and 4.2), (ii) it gives a more robust calibration
of Riemannian classifiers, to obtain better classification scores (Experiment 4.3), and (iii)
it provides a more robust covariance average for spatial filters estimation (Yger et al.,
2015), allowing a supervised dimension reduction for high-dimensional signals enhancing
the separation of classes (Barachant, 2014).

This method is flexible and paves the way to the extension of several other Riemannian
approaches. For example, it could be used as a basis for extending SPD networks (Huang
and Van Gool, 2017; Brooks et al., 2019) or dictionary of SPD matrices (Cherian and Sra,
2017) with missing data. Moreover, using a similar matrix decomposition, the proposed
approach could go beyond missing variables as we are currently investigating the case of
missing subspaces. A following work could address the data imputation problem with a
compressive sensing flavor for SPD matrices.
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