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FAST AND ROBUST STABILITY REGION ESTIMATION
FOR NONLINEAR DYNAMICAL SYSTEMS

ELOISE BERTHIER, JUSTIN CARPENTIER AND FRANCIS BACH

Inria - Ecole Normale Supérieure
PSL Research University, Paris, France

ABSTRACT. A linear quadratic regulator can stabilize a nonlinear dynamical system with a local feedback
controller around a linearization point, while minimizing a given performance criteria. An important practical
problem is to estimate the region of attraction of such a controller, that is, the region around this point where
the controller is certified to be valid. This is especially important in the context of highly nonlinear dynamical
systems. In this paper, we propose two stability certificates that are fast to compute and robust when the first, or
second derivatives of the system dynamics are bounded. Associated with an efficient oracle to compute these
bounds, this provides a simple stability region estimation algorithm compared to classic approaches of the state
of the art. We experimentally validate its application to both polynomial and non-polynomial systems of various
dimensions, including standard robotic systems, for estimating region of attractions around equilibrium points,
as well as for trajectory tracking.

1. INTRODUCTION

Controlling a robot typically involves a global motion planning to steer the system from an initial position
to a target goal, as well as some local feedback corrections to accurately track the planned trajectory. For
instance, the combination of rapidly-exploring random trees [LKO1]] and local trajectory stabilization led
to a fruitful feedback motion planning algorithm named LQR-trees [TMTR10]. In this algorithm, a locally
optimal trajectory is computed between sampled points of the state space. Each trajectory is then locally
stabilized with a linear quadratic regulator (LQR). The aim is to design a global controller by covering
the whole state space with overlapping funnels, i.e., regions of attraction (ROA) around trajectories. An
important subproblem is to estimate such an ROA: a set of initial states that the controlled dynamics brings
back to an equilibrium. Crucially, it must be performed efficiently, as it will be called repeatedly to cover
a potentially large dimensional state space. Ideally, the estimation must be fast to compute, but not overly
conservative.

A controlled dynamical system can be stabilized around an equilibrium point with an adequate closed-
loop controller. It is possible to synthesize an optimal feedback controller for some stability criterion [GSMO90],
but a simply available candidate is nothing more than the LQR. The stability of a region is commonly as-
sessed with a Lyapunov function, which again can be optimized [GH15| JohOO], or not. This paper fo-
cuses on finding the largest estimate of the ROA for a given controller and a given Lyapunov function,
both obtained from LQR. The gold standard technique for this problem is based on sum of squares (SOS)
programming and provides high quality estimates. Yet it is limited to polynomial dynamics, and grows
computationally heavy in large dimensions, hence limiting its applicability in practice, especially in the
context of robotics where fast methods are needed to accurately control and stabilize the motions of the
robot such as for legged locomotion [CM18b].

Another stake in robotics is robustness with respect to model misspecification or uncertainties. In par-
ticular, there can be a shift between the behavior of a simulated robotic system and its physical counter-
part [SCH™18|]. Robust ROA estimation methods [Che04] must account for the uncertainty on the pa-
rameters of the dynamics. In particular, we focus on the case where the Jacobian or the Hessian of the
dynamics is known to be bounded. This applies to robust control, but also to perfectly known dynamics
that are computationally hard to handle. Bounding the Jacobian or Hessian is possible analytically for some
simple low-order polynomial systems, or by sampling, taking advantage of automatic differentiation for
complicated robotic systems [GNS™17]. Interestingly, the bounds can be computed offline, in parallel, or
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experimentally with a real physical system. With such information on the dynamics, our goal is to design
fast, robust ROA estimation methods, practical in large state dimensions.

Our main contribution is to propose a general ROA estimation framework for non-polynomial systems,
which is faster and simpler than SOS-based methods. The paper is organized as follows. After introducing
the principle of LQR stabilization in Section[2} we adapt in Section[3]an existing robust stability certificate to
systems with entry-wise uncertainty bounds on their Jacobians. In Sectiond] we present stability certificates
for systems with entry-wise bounds on their Hessians, and in Section [5] we propose an algorithm adapting
robust certificates to systems with varying derivatives. In Section[6] we extend the methods to the trajectory
tracking problem. Finally in Section [7] we compare the robust certificates, as well as those provided by
SOS programming, on numerical examples of various dimensions. An implementation is available online.

2. PRELIMINARIES

We consider a nonlinear time-invariant control system:

x = f(‘x7 M)7
where x € R?, u € R”, with d,m > 1. Assume there exists an equilibrium, without loss of generality at
(x0,up) = (0,0), that is £(0,0) = 0, and that f is differentiable at the origin:

flxu) = % 0)0x—|— % Oﬁou—l—o(x)—l—o(u). (1)
A B

We assume that the pair (A,B) is controllable. For Q = 0, R > 0 symmetric matrices respectively of size
d x d and m x m, we define the infinite-horizon LQR cost [Lib11]:

~+oo
J(x) = / (" () @x(t) +u ())Ruz) ) dt, with x(0) = x. 2
0
The cost-minimizing controller is known to be:
u(x) = —R'B"Sx =: —Kx, 3)

where S is the symmetric positive definite solution of the algebraic Riccati equation (ARE), which exists
because (A, B) is controllable:

A'S+SA—SBR'B's=—0. 4)
Under the closed-loop controller u(f) = —Kx(t), the system is autonomous with closed-loop dynamics:
i = f(x,—Kx) =: g(x). &)

In addition, the optimal cost-to-go V (x) := x " Sx is used as a Lyapunov function of the nonlinear system.
V is a Lyapunov function over a region R C R? around 0, if V(0) =0, V(x) > 0 in R\ {0}, and V(x) < 0
in R [SLI1]. This certifies that the sublevel sets of V that are included in R belong to the ROA of the
equilibrium point: every trajectory beginning in this set will asymptotically stabilize to 0. In practice, it is
convenient to choose R as a sublevel set of V.

If the dynamics were exactly linear, then one would have:

V(x)=VV(x)-g(x) =2x"Sg(x) =x" (SA+A"S—2SBK)x
=x'(—Q—SBR'BTS)x <0, Vx #0.

Hence in the linear case, the ROA is the whole state space. In this work we will consider variations of this
situation, and see how defects of linearity will affect this statement.

3. FIRST-ORDER ROBUSTNESS

In this section, we present a robust stability certificate that holds for the class of systems whose Jacobian
matrix is bounded by a known quantity.
A linear differential inclusion (LDI) [AC84] is the following set-valued control problem:

x€Qx, x(0)=xo,

where Q is a convex subset of R?*?, and Qx := {Ax,A € Q}. The asymptotic stability of any dynami-
cal system belonging to the LDI can be expressed as a linear matrix inequality (LMI) for some specific
choices of Q [BEGFB94]. In particular, for Q = {Ap} we get a linear system, for Q = Conv(Aj,...,AL) a
polytopic LDI (PLDI). Let C, A and E be matrices of compatible dimensions and ||.|| a matrix norm, then



Q= {Ao+CAE | ||A|| < 1} represents a norm-bound LDI (NLDI); if in addition A must be diagonal, we
get a diagonal NLDI (DNLDI).

The asymptotic stability of an LDI around 0, i.e., all initial conditions converge to 0, can be certified by
a Lyapunov function of the form V (x) = x ' Px. This amounts to finding:

P>0Osuchthat ATP+PA <0, VA€ Q.

This problem reduces to an LMI and is classically solved by interior-point methods [NN94] for general
choices of Q. For example, in a PLDI, it reduces to a finitely constrained LMI, with one constraint at each
of the vertices of the polytope Q.

LDIs are used to model uncertainty in linear systems. Any differentiable dynamical system with an
equilibrium at the origin and with bounded Jacobian (including the closed loop system in equation (3)
belongs to a suitable LDI, written as an uncertain linear system:

x=Ax)x, A(x)€Q.

Q is a convex set of matrices that accounts for nonlinearities, uncertainties or time-variations of the dynam-
ics. In particular, Q can bound the deviation of a nonlinear system x = g(x) from its linearization x = J,(0)x.
This is similar to the problem considered in [TPO7], except that the perturbations lie in a closed convex set
instead of a semialgebraic set.

Fori,j € {1,...d}, x € R?, let §;(x) := |A(x);; — (Ao)i;, the entrywise deviations of the Jacobian of the
dynamics from a given matrix Ag. Suppose we are given individual upper bounds on each deviation:

Vi,jE{l,...,d}, Vjj 1= sup ‘6,'j()€)|, (6)

x€Rd

such bounds can be computed in closed form in some simple cases, or estimated by sampling, as will be
discussed in Section Stability is readily studied [BEGFB94] if Q is a convex hull (PLDI) or a matrix
ball (NLDI), which we now specify for our problem. Entrywise bounds can be fitted in both settings. Yet
the description of the corresponding PLDI is intractable in large dimension: the number of vertices required
to describe Q scales as 2¢.

The following description of Q with a DNLDI has polynomial length. Let 1 := (1 ... 1), 0,4 := (0 ... 0),

6 6 ) 1)
A := Diag <”,...,1d, ,dl,...,dd> ERdedz,
v Vid Vdl Vdd
1; 04
Ci=lg, " = [;®1; € R4
14
E = [El Ed]—r € Rdzx‘l, with E; = Diag(vj1,...,vig). Hence ||A]l2 = v/ Amax(ATA) = Omax(A) < 1,

and the system belongs to the DNLDI defined by

Q={Ao+CAE | |A]| <1, A diagonal}.
Checking the asymptotic stability of a DNLDI is an LMI feasibility problem derived by applying the S-
procedure [BEGEB94]:

Proposition 1. Let x = A(x)x an uncertain linear system with entrywise bounded Jacobian. A sufficient
condition for its global asymptotic stability at 0 is the feasibility of the following LMI, for Ay,C,E defined
as above:

FindP=0eR™ A=0¢€ R&xd? diagonal such that:

AJP+PA)+ETAE PC

c'p a0 @

One may optimize both P and A to obtain a Lyapunov function, or use a fixed predefined value of P, e.g.,
S from the LQR, to check if V(x) = x " Px is a valid Lyapunov function.
4. SECOND-ORDER ROBUSTNESS

Let us derive robust stability certificates like in the previous section, except that now, they hold for a
class of systems whose Hessian tensor is bounded by a known quantity.



4.1. Condition on the Sublevel Sets. Let ¢ : RY — R, such that each ¢y is twice continuously differen-
tiable with bounded Hessian on a closed ball B centered around 0. Then, using Taylor’s formula, for any
x € R?, there exists a symmetric matrix H*(x) such that for all k € {1,...,d}:

or(x) = @ (0) + V(pk(O)Ter %XTHk(x)x,

k _
with Hj( 2/ (1 tﬁx,axj( x)dr.

Hence Vi, j, k,Vx € B, |Hl]j(x)| < maxyes
0. This applies to the function g of Eq. (3):

:Tg;j (y) ‘ Note that this is also true if B is an ellipsoid around

gr(x) = fr(x,—Kx) = (A —BK).x+ %xTHk(x)x,

where X denotes the k-th row-vector of a matrix X. The time derivative of the candidate Lyapunov function
is:

d
=x"(~0—SBR'BTS+ Y (Sp.x)H (x))x.
k=1

Let B, := {x | x"Sx < p} for p > 0, a sublevel set of V. A sufficient condition for B, to be an ROA
around 0 is that —Q — SBR™'BTS + ¥ (Sx.x)H* (x) < 0 for all x € Bp. Let M := Q+SBR'BTS > 0, the

condition is equivalent to:
d

Vxe By, Y (Skx)BN(x) <1y, (8)
k=1
where A¥(x) := M~'/2H*(x)M~'/2. We denote by H(x) the tensor composed of the matrices H*(x), for

ke{l,...d}.

The goal is to find the largest p such that condition holds, which will in turn prove that B, is an
ROA around 0. To simplify this problem, we will decouple the two dependencies in x. On the one hand, the
contribution of Sy.x will be bounded by two different bounds that we present below. On the other hand, the
tensor H(x) is bounded globally, independently from p. Of course, this is not always possible in general,
and a tighter analysis of the Hessian with local bounds depending on p will be discussed in Section[5} For
now, assume that we are given an oracle on the magnitude e, H*(x)e; (e; being the i-th unit vector) of H(x)
along d? directions for each matrix A*(x), of the form:

Vx, A (x) € = {T € R Vi, j, &, | T < uly, (TH)T = T%}, )

for some d x d x d tensor U of nonnegative real numbers u*,, with (UX)T = U forall k € {1,...,d}.

A relaxation of condition (8) is then:

d
sup  sup Amax (Z(Sk,x)Tk> < 1.

xTsx<p TEE k=1

lj’

With a simple change of variable and rescaling, the largest p fulfilling the above condition is then given by:

yll2<1T€E k=1

1 4 1n
p= 2 where A := sup sup Amax (Z(Sk/ y)Tk ) (10)
4.2. Two Upper Bounds on A. The first bound is based on the following fact:
sl
wp sup | TS0 2 < sup 3187 sup [
¥ll2<1 TEE k=1 I¥ll2<1k=1 Tkezk
where ZF is the projection of Z onto its k-th coordinate subspace. Let Z be a matrix with rows Z. :=

(supreze [IT¥]12) Si/°%,

A< sup || Zyli < Vd sup |2yl =Vd|Z]2,
Iblb<1 Iylb<1



where ||.||> denotes both the Euclidean norm and the corresponding matrix induced norm. With equation
1i this guarantees that B, is an ROA for

withD:Diag(( sup ||TkH2)k). (11

Tkezk

1
P = DS

The following lemma explains how to compute the entries of D.

Lemma 1. Let V be a nonnegative symmetric d x d matrix with entries (v;). Let & be the set of symmetric
d x d matrices A such that for all i, j € {1,...,d}, |Aij| < vij. Then:

max [[Al2 = [[V]]2.
A

Proof. Since € is centered around 0, we only look for the largest eigenvalue:

sup x Ax = sup sup Zaiix%+22aijxixj.
l[xll2<1, A€& xll2<1 A€& i i<j

Maximizing with respect to A, we get a;; = v;;, and

Vi< i a— Vij if xix; >0
o dij —v;; else.
And then, x" Ax = ¥, viix? +2 Y, vij|xix;| = x| TV|x|. The full problem becomes:

sup x'Vax.
[l¥ll2<1, x=0
The Perron-Frobenius theorem ensures that for any nonnegative square matrix, there exists a nonnegative
real eigenvalue with at least one nonnegative eigenvector. Any other eigenvalue’s modulus is smaller than
this eigenvalue. V being symmetric, all its eigenvalues are real, hence the result. ]

Remark: If the bounds on the entries of A are not centered around 0, it is possible to write A = A’ +A,
where the entries of A are symmetrically bounded, and ||A||> < [|A’||2 +||A]|2.
The lemma leads to another boundon A. If T € E:

.. 1/2 1/2 T
Vi, gk, (XS0 TE < YISl < YIS - o
k k k

Applying the previous result to the matrix whose entries are the middle term in the inequality above yields:

A < Amax S, .SlST.Uk> =: L. (12)
(£ s

The following theorem states the two stability certificates derived above.

Theorem 1. Consider the control system and the matrices S, K and M defined in Sections[2|and{| Assume
that the closed-loop system x — g(x) = f(x,—Kx) is twice continuously differentiable and the following
condition holds:

<uk

Vx e RY Vi, j ke {1,....d}, [M_l/szgk(x)M_l/z} <,

tj

where for each k, the matrix U* with entries (ufj) ij is symmetric and nonnegative. Then B, and B, are

two ROAs of the closed-loop system, for p, = 1/A2, pp =1/ Abz and

Ae = Amax S .SlsTUk>,
(g

Ay =/d||\DS™'?||, with D = Diag (||Uk||2)k.

This theorem provides certified ROAs from a given Lyapunov function V (x) = x ' Sx, which comes from
the LQR. The elliptical shape of the ROAs is fixed, as opposed to Proposition |1, where the Lyapunov
function x " Px can be optimized. In the rest of the paper, we will consider P to be fixed in the LMI .
There does not seem to be a straightforward extension of our second-order certificates with an optimized
Lyapunov function.



5. ITERATIVE ALGORITHM

5.1. Stability Certificates. The bounds introduced in Sections [3]and ] readily give robust stability certifi-
cates that hold for a whole class of dynamics with suitably bounded derivatives. It is also possible to apply
the same methods to a single known dynamics, if its derivatives can be bounded efficiently. In general the
bounds on the derivatives depend on where they are computed: the larger the region, the larger the bounds.
But such bounds must be computed on a sufficiently large region containing the sublevel set where the
system stability is asserted.

With the notations of the two previous sections, and given equations (7|TT|[T2), we define three stability
certificates:

C1 2 (S, Pups ) = Puplimi @ is feasivle
637}} : (S7pl/tp73) — min(ptl,b7pl,tp>7

meaning that {x ' Sx < € (S, pup, )} is an ROA if the derivatives of the dynamics are bounded by Q (resp.
E) and if p,, is an upper bound on p used to compute L (resp. E).

5.2. Oracle on the Derivatives. Suppose we have an oracle O computing, on a domain D, a bound O(D)
on the derivatives, corresponding to sets Q or = above. Our methods compute p = C(S,py,,0(D)).
Then B, is an ROA if the whole trajectory to O stays inside D (else the assumptions on the derivatives
would be violated). A simple way to ensure that is to choose D as a sublevel set of V containing B, i.e.,
Bp,, Tor pup > p-

For a quadratic dynamical system, each entry of the Hessian is constant and each entry of the Jacobian
is an affine function. For any ¢ € R?, the supremum of a linear function x — ¢ ' x on an ellipsoid can be
computed in closed-form, as follows:

sup ¢ x= \/%HS_UZCHQ. (13)
xTngpup
For a third-order polynomial system, the entries of its Hessian are affine, hence the previous formula can
be applied, and those of the Jacobian are polynomials of degree two. The following formula gives an exact
upper bound for a quadratic monomial over an ellipsoid and naturally extends to polynomials of degree two
after an affine change of variable:
sup  x " Jx = Pup Amax (STV/20S7Y2). (14)
xTSx<pup
In large dimension, manually identifying each coefficient of the derivatives of a second or third order
polynomial dynamics might be tedious: the Hessian tensor indeed contains d> entries. One solution is to
define the polynomial dynamics f with symbolic expressions and to obtain the derivatives with a com-
puted algebra system. Another one is to sample derivatives at a few but different points with automatic
differentiation [PGM™19], to fit a low order polynomial model, and then to maximize it in closed form.
For generic dynamics, one can sample derivatives, e.g., by automatic differentiation, using analyti-
cal derivatives [CM18a] for rigid body dynamics, or from direct physical measurements on the system.
Of course, bounding the samples only provides lower-estimates of the oracle, possibly resulting in over-
optimistic stability certificates. Hence extra caution must be taken to ensure sufficient precision of the
oracles. In particular, samples can be collected offline or in parallel in order to mitigate the computation
times. Besides, maximization by sampling suffers from the curse of dimensionality, yet efficiency improve-
ments can be expected with Bayesian optimization [Moc12] or other global optimization tools.

5.3. Algorithm. A simple ROA estimation algorithm (see Algorithm [I]) consists in iteratively bounding
the derivatives and producing stability certificates, i.e., alternating calls of O and C. py is an initial upper
bound on the size of the ROA. Each step of the loop provides a certificate that B, is an ROA, and this
region grows at each iteration, the sequence of ps being nondecreasing. The number of iterations before the
algorithm stops depends on both the initial guess pg and the step size 1. In our experiments, we typically
require from 10 up to 20 iterations.

6. TRAJECTORY TRACKING

The certificates and the algorithm presented in the previous sections are applied around the equilibrium
point of a dynamical system. They can be extended to the more general problem of trajectory tracking, as
described hereafter.



Algorithm 1 Adaptive stability certificates

Input: S, €(), O(), pp >0,n € (0,1)
Output: An ROA certificate on {x | x' Sx < p}
© Pup < Po
repeat
U« 0(Bp,)
p < C(S,pup,U)
Pup < NPup
until p > p,,,
return p

AN G > e

Let (X() (t) uo

,up(t)), for t € [0,t7] be a reference trajectory with final state x; := xo(ty). For a nearby
trajectory (x(r),u(t

), let ©(¢) :=x(t) —xo(¢), 4(t) := u(t) — up(¢). The linearized dynamics reads:
x(t) = A()x(t) + B(1)a(r) + o(x(2)) +o(a(r)).

Let B a target region {x | (x —xy) " Sy(x —xy) < 1}, for some Sy = 0. We define the finite-horizon LQR
problem [Lib11]] with the following tracking cost:

[ 0 0xte) o) Ra(0)ar + 57 1)57)

For ¢ € [0,t/], the optimal cost-to-go is V (x,) = ' S(t)x, S(¢) being the solution of the Riccati differential
algebraic equation (RDE):

S=—-Q+SBR'B'S—SA-A"S, S(ty) =S5y, (15)
with controller i(t) = —K(t)%(t) :== —R~'B" (t)S(¢)x(¢).

We want to estimate the time-varying region (also called “funnel” [TMTRI0]) B(r) := {x | F(x,t) € By},
where F (x,) is the integrated closed-loop dynamics with control u(.) from to 7. In particular, B(r;) = By.
B(t) is a region where applying u(t) = uo(r) + i(t) will make the trajectory reach B(z;) after time 7. If in
addition B(ty) is included in an ROA around 0, the trajectory will finally reach 0 in finite time.

We consider regions B(¢) := {x |0 <V(x,t) < p(t)}. A sufficient condition for B(z) to be a funnel
is [TMTL1]:

V(x,t) >0, Vx € B(t) and V(x,1) < p(1), Vx € dB(¢).
We drop some occurrences of the time variable ¢ to simplify the notations. S(¢) being a positive definite
matrix [Lib11] for any 7 € [0,#/], the first condition holds, the second one is:

V(x,t)=2% Si+x'Si<p, Vxe {x | %' S% = p} :
If the closed-loop system is an LDI % = A(,x)% in {x | ¥' S = p}, with A € Q(p), a sufficient condition
is:

VA € Q(p), ATS+SA+S'—%Sjo. (16)

This can be fit into the LDI framework presented in Section 3] just by shifting the set Q(p) to the set
~ . T T -
sxmpw:{A+isls—§§w|Aeﬂu»}

Now if the closed-loop system is known up to order two in {x | ' S¥ = p}, say ¥ = (A — BK)¥ +
3% H(t,x)x, with H(t,x) € Z(p). Using that S(.) is a solution of equation , we obtain the following
sufficient condition: Vy such that ||y|, = 1, VH € E(p),

5 d
—Q-SBR'BTS— %S+ VP Y (/%) HE <0,
k=1

If N(p,p) = Q+SBR™'B"S+£5 - 0, let E(p, p) the shifted set {N~"/2HN~'/2 | H € Z(p)}, we must
check that:

d
Wyst |yl =1, VA € E(p,p), vp Y (S W H* < 1. (17)
k=1



Under such conditions, p(.) is built backwards in time through backward integration, beginning with
p(tr) = 1. At each time step, given p, a greedy strategy is to choose p as the smallest possible value
such that the sufficient condition is enforced. Since p(.) is computed backwards, this maximizes p (r — dt),
hence locally the funnel’s volume. Also, for both first and second order cases, the sufficient condition is
monotonically more restrictive as p decreases. A simple algorithm is to start with a large positive p, com-
pute the set Q(p,p) or Z(p, p), check that the sufficient condition holds, and progressively decrease p until
it no longer does (possibly with p < 0 if N > 0 is still enforced, when applicable).

7. NUMERICAL EXPERIMENTS

7.1. Definition of the Systems and Implementation Details. The code to reproduce the experiments is
available onlineﬂ The first two systems, an electrical oscillator and a floating satellite with commanded
torques, are taken from the Matlab material of [TMT11]]. The third one is an underactuated double pen-
dulum, with the actuated joint between the two arms (also called “acrobot” in [Sut96]). The last one
corresponds to the URS5 robotic arm from Universal Robohﬂ with 6 actuated joints. The dynamics of these
dynamical systems are described hereafter.

Vanderpol. d =2, m = 0 (unactuated), xo = 0;— , O = I,. The dynamics is a polynomial of degree 3:

Vx = (x1,x2) € R?, F(x) = (=x2, x1 —l—xz(x% — 1))T.

Satellite. d = 6, m =3, (xo,up) = (06T, 03T), Q = Is, R = 10 X I3, the dynamics is a polynomial of degree 3.
LetJ = Diag(5,3,2). Forx= (0",6") T € RS, with w,0 € R?, f(x,u) = (&T,67)T,

O=J"u—oxJo)

1 0 03 O
6= (1—|lo|)+2066" 2|03 0 o | .
Oy O] 0

Pendulum. d =4, m =1, up = 0, xo = 0, (bottom) or xo = (7,7,0,0) " (top), 0 =1Is, R=1. Let g = 9.8,
¢=0.5and u = 1. For x = (01,62, p1,p2) ", f(x,u) is defined by:
6 2p —3cos(6; — 6)p

= P 16 9c0s2(6,— 0)
6 — 6 8py—3cos(61 —6:)pi
w2 16 —9cos(6; — 6,)
e 3
p1= *“T (91 stin(el — 92) + égsin91>
P (—9 6> 5in(6; — 6,) + S sin @ )+u
2 5 16, 1= 02)+ 7 sin6, .

Robotic arm. Here d = 12, m=6,x0 = (g ,06) ', qo is the initial configuration go = (0, —7/5,—37/5,0,0,0),
O = 13, R=1Is. ug is such that f(xp,up) = 0 and is computed by the recursive Newton-Euler algorithm
(RNEA) implemented in the C++ library Pinocchio [CSB™19]. The forward dynamics f(x,u) is computed
via the articulated body algorithm (ABA).

The software used for the SOS based certificates is adapted from the Matlab material of [TMT11]. The
oracles on the derivatives are computed either in closed form, for Vanderpol and the Hessian of Satel-
lite, using formulas and (T4), or by sampling p derivatives. Using automatic differentiation in Py-
Torch [PGM™19], we sample p = 10* Jacobians for Satellite, p= 10? Jacobians and Hessians for Pendu-
Ium. For Robot, p =5 x 10* and the Jacobians of the dynamics are computed analytically [CM18al], and
we use finite differences on the first partial derivatives to approximate the Hessians. It is important to notice
at this stage that more advanced methods to efficiently compute these Hessians could improve the whole
computation time of our methods, for instance by code-generating the second-order derivatives computed
by automatic differentiation. Yet, the proposed solution already provides competitive timings.

7.2. Results. The performances of the certificates are compared in Table I} both in terms of radius of B,

and volume v o< p?/2 /+/|S|, the latter exacerbating differences in large dimensions. The volume, divided
by the volume of the state space, is roughly the inverse of the number of ROAs that would have covered

1www.github.com/eloiseberthier/}:‘astfRobustfROA
“www.universal-robots.com/products/ur5-robot


www.github.com/eloiseberthier/Fast-Robust-ROA
www.universal-robots.com/products/ur5-robot

TABLE 1. Radius and volume of the certified ROA for the different methods, relative to
the values obtained by sampling for reference.

Dynamics Ci c3 (3‘2’ SOS sampling
p/ps | vive | ples | vivs | ples | vivs | opies | vive | op/es | ov/vs
Vanderpol 0.20 0.20 0.14 0.14 0.10 0.10 1 1 1 1
Satellite 2.9x1072 | 2.6x107 | 9.3x1072 | 9.4x107* | 7.9x1072 | 5.7x107* 0.93 0.82 1 1
Pend. (bot.) | 3.2x1072 | 1.1x1073 | 3.5x10°2 | 1.2x1073 | 4.2x10°2 | 1.9x103 | 1.4x102 | 2.0x10°* 1 1
Pend. (top) | 5.1x1073 | 2.6x1075 | 4.5x1072 | 2.0x107% | 4.7x10°2 | 2.2x1073 N.A. N.A. 1 1
Robot 2.4x107% | 1.8x107'° | 7.1x107* | 1.5x107"% | 1.5x1072 | 1.2x10° ! N.A. N.A. 1 1

TABLE 2. CPU time (s) per iteration, except for SOS (total time).

Dynamics | 0+¢; | 0+¢3 | 0+¢b [ SOS |

Vanderpol 1.8x1073 | 1.1x10* | 1.6x10~* | 0.05
Satellite 1.2 0.17 0.17 32
Pend. (bot.) 2.3 15 15 132
Robot 2.3 32 33 N.A.
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FIGURE 1. Results of €, €4, and cpu time on Satellite, depending on p.

it. All the values in the table are divided by the ground truth py, the maximal p such that ¥x'Sx < p,
V(x) < 0, estimated by sampling a very large number of points. Apart from SOS on the first two problems,
all methods are very far from estimating the true maximal ROA.

For the SOS method on Pendulum, because the dynamics is non polynomial, we substitute the odd
function f by its Taylor expansion around the equilibrium, truncated at order n = 7. The result is sensitive
to the order: for n =2, f is linear hence p = +o0, whereas p decreases for higher orders. It is unclear which
one to choose, and the results are no longer certified. At the top position, an utterly unstable position, SOS
fails to provide a positive p, regardless of n > 3.

Table [2] reports the corresponding CPU running times on a standard laptop. The code, in Python, is
not optimized, except the SOS method and the LMI solver for C; which are in Matlab. Our methods are
much lighter than SOS, yet one must keep in mind that Algorithm [I] typically calls the oracle and the
certificate 10 times. Nonetheless, this allows to tackle systems of larger dimensions, like Robot. If the
oracle uses sampling, this dominates the running time. Figure [T] compares the running times of bounding
the derivatives for €| and €4, depending on the number of samples p, on Satellite. At fixed p, it is of course
longer to sample Hessians than Jacobians. The sampling oracle overestimates p, but this tends to stabilize
for reasonable values of p, as seen for p5 which can also be computed using a closed-form oracle.

We also experiment trajectory tracking of a given reference trajectory of Vanderpol, withx; = (-1, — nrt,
ty = 2. The target region By = {x | xS X < 1} is the largest ellipsoid included in R, an ROA around 0
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FIGURE 2. p(¢) with different certificates, around a trajectory of Vanderpol. The total
CPU time is 7s for two iterations of SOS, roughly 1s for €, €Y.

FIGURE 3. A funnel B(¢) around a trajectory of Vanderpol, obtained with C;. The state-
space is in green, R in light gray is an ROA around 0, and B/ in red is the target region.
The reference trajectory is displayed with arrows.

computed by SOS. In Figure the state-space is in green, R in light gray and B in red. The funnel B(r),
in gray, is computed backwards, with one or two iterations of the SOS-based algorithm of [TMTI11], and
with the methods of Section@ Figure shows our certificates lead to competitive values of p(¢), with faster
computations.

8. CONCLUSION

The stability certificates presented in this paper are both fast to compute, and robust over a class of
bounded-derivatives dynamics. They readily extend to the trajectory tracking problem, with a linear com-
plexity in the number of time steps. Such certificates can be easily implemented and enable handling
non-polynomial, large dimensional control systems that were previously out of reach. The complexity is
transferred from the certificate to a derivative-bounding oracle, which can be estimated efficiently in some
cases, including rigid body dynamic systems in robotics. The certificates for trajectory tracking can in turn
be integrated into the LQR-trees framework for global motion planning. They are more conservative than
competing methods, yet faster, hence repeating calls to these certificates around numerous different trajec-
tories, as done in the LQR-trees algorithm, could be more efficient overall. Providing empirical evidence
or counter-evidence for this trade-off phenomenon in real-world control systems would be an interesting
avenue for future research.
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APPENDIX A. IMPLEMENTATION SUMMARY

The complete ROA estimation and trajectory tracking frameworks are summarized respectively in Fig-
ure @ and 5] Each building block used in the diagrams is detailed below. The first one computes the LQR
as in Section[2l

o Static LQR:  (Q,R,xo,ug, f) — (S,K).

A= %(xo, up), B= %(xo, up), S is the positive definite solution of A" S+SA —SBR'BTS = —Q, and K =
R'B'S.

The following block computes the LQR for one time step of trajectory tracking and is detailed in Sec-
tion

e Dynamic LQR:

(S(t + T),Q,R7XO(I),M()(I),f) - (S(t)vK(t))
Let § = S(r+7), then S(1) = § — 7S, with A = %L (xo(¢),u0(1)), B = %L (xo(t),uo (1)),

S=—-Q—-SA—A"S+SBR'B'S, and K(r) =R 'B"S(¢).
The next two blocks compute bounds on the derivatives of the dynamics. They can be implemented
arbitrarily.
o First-order oracle: (p,,,S,K,xo,uo, f) = (Ao,V).

Viji=sup |Jij(x) — (Ao)ijl,

xTSxSp,,p
where J is the Jacobian of x — f(xo +x,up — Kx). A default choice for Ag is J(0) =A — BK.
e Second-order oracle: (p,,,S,K,M,xy,up, f) = U.
k. —1/2 gk ~1/2
Ubi= sup  [MPHAM ]
XTSXSPM]) Y

where H is the Hessian of x — f(xp +x,up — Kx).
The next two blocks compute stability certificates, as detailed in Sections [3]and [

repeat with decreasing py

ixo,uo,f lM:Q—i-SBK

Static S, K styopnd A(),V st Hnd P1
) ) 134/2"%rd. N 1 /2. ord.
LQR Oracle U Certificate | Pa,b

Q,RT pupT p”PT

FIGURE 4. ROA estimation algorithm. Elements specific to the 1% order method are in
red, to the 2" order in blue. Framed steps are repeated until p > Pup-

repeat with decreasing p

p¢ ¢M:Q+SBK

nd AO,V st .
S(I+T) 2 ' ord. 1 ‘(‘)I’d. p
Shift Shift
lxo,umf ‘M va
Dynamic| 5K} 1st/20dorg. 12 ord. lmalx@
LQR Oracle U Certificate

0.x} $oc+

FIGURE 5. Trajectory tracking algorithm for one time-step. Framed steps are repeated
while equations for the 1% order, or (17) for the 2" order, hold.




o First-order certificate:
(Pup:S,A0,V) = p1 = Puplimiis feasible-
Let C, E defined as in section The LMI feasibility problem is to find A = 0 € Rd*xd? diagonal such that:
AjS+SAg+ETAE SC
[ c's —A] <0

e Second-order certificate: (p,,,S,U) — pa» = l%
a,b

A = Aumax S .s—lsTUk>,
(g

A= VDS ™2 |, with D = Diag (V"2 -

The last two blocks are used in Section
o First-order shift: (Ao, p,p(t+1),5(t),5(t)) — Ay.

Ay =Ag+ %S_IS — %gld, where S is given by the RDE (equation ).
e Second-order shift:

(M, p.,p(t+7),5(t)) »M:M+gs.
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