
HAL Id: hal-02984348
https://hal.science/hal-02984348v1

Preprint submitted on 30 Oct 2020 (v1), last revised 2 Sep 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and Robust Stability Region Estimation for
Nonlinear Dynamical Systems

Eloïse Berthier, Justin Carpentier, Francis Bach

To cite this version:
Eloïse Berthier, Justin Carpentier, Francis Bach. Fast and Robust Stability Region Estimation for
Nonlinear Dynamical Systems. 2020. �hal-02984348v1�

https://hal.science/hal-02984348v1
https://hal.archives-ouvertes.fr

FAST AND ROBUST STABILITY REGION ESTIMATION
FOR NONLINEAR DYNAMICAL SYSTEMS

ELOÏSE BERTHIER, JUSTIN CARPENTIER AND FRANCIS BACH

Inria - Ecole Normale Supérieure
PSL Research University, Paris, France

ABSTRACT. A linear quadratic regulator can stabilize a nonlinear dynamical system with a local feedback
controller around a linearization point, while minimizing a given performance criteria. An important practical
problem is to estimate the region of attraction of such a controller, that is, the region around this point where
the controller is certified to be valid. This is especially important in the context of highly nonlinear dynamical
systems. In this paper, we propose two stability certificates that are fast to compute and robust when the first, or
second derivatives of the system dynamics are bounded. Associated with an efficient oracle to compute these
bounds, this provides a simple stability region estimation algorithm compared to classic approaches of the state
of the art. We experimentally validate that it can be applied to both polynomial and non-polynomial systems of
various dimensions, including standard robotic systems, for estimating region of attractions around equilibrium
points, as well as for trajectory tracking.

1. INTRODUCTION

Controlling a robot typically involves a global motion planning to steer the system from one initial po-
sition to a target goal, as well as some local feedback corrections to accurately track the planned trajectory.
For instance, the combination of rapidly-exploring random trees [LK01] and local trajectory stabilization
led to a fruitful feedback motion planning algorithm named LQR-trees [TMTR10]. In this algorithm, a
locally optimal trajectory is computed between sampled points of the state space. Each trajectory is then
locally stabilized with a linear quadratic regulator (LQR). The aim is to design a global controller by cov-
ering the whole state space with overlapping funnels, i.e., regions of attraction (ROA) around trajectories.
An important subproblem is to estimate such an ROA: a set of starting points that the controlled dynamics
brings back to an equilibrium. Crucially, it must be performed efficiently, as it will be called repeatedly to
cover a potentially large dimensional state space. Ideally, the estimation must be fast to compute, but not
overly conservative.

A controlled dynamical system can be stabilized around an equilibrium point with an adequate closed-
loop controller. It is possible to synthesize an optimal feedback controller for some stability criterion
[GSM90], but a simply available candidate is the LQR. The stability of a region is commonly assessed with
a Lyapunov function, which again can be optimized [GH15, Joh00], or not. This paper focuses on finding
the largest estimate of the ROA for a given controller and a given Lyapunov function, both obtained from
LQR. The gold standard technique for this problem is based on sum of squares (SOS) programming and
provides high quality estimates. Yet it is limited to polynomial dynamics, and grows computationally heavy
in large dimensions, hence limiting its applicability in practice, especially in the context of robotics where
fast methods are needed to accurately control and stabilize the motions of the robot such as for legged
locomotion [CM18b].

Another stake in robotics is robustness with respect to model misspecification or uncertainties. In par-
ticular, there can be a shift between the behavior of a simulated robotic system and its physical counter-
part [SCH+18]. Robust ROA estimation methods [Che04] must account for the uncertainty on the pa-
rameters of the dynamics. In particular, we focus on the case where the Jacobian or the Hessian of the
dynamics is known to be bounded. This applies to robust control, but also to perfectly known dynamics that
are computationally hard to handle. Bounding the Jacobian or Hessian is possible analytically for simple
polynomial systems, or by sampling, taking advantage of automatic differentiation for complicated robotic
systems [GNS+17]. Interestingly, the bounds can be computed offline, in parallel, or experimentally with

E-mail address: firstname.lastname@inria.fr.
1

a real physical system. With such information on the dynamics, our goal is to design fast, robust ROA
estimation methods, practical in large state dimensions.

Our main contribution is to propose a general ROA estimation framework for non-polynomial systems,
which is faster and simpler than SOS-based methods. The paper is organized as follows. After introducing
the principle of LQR stabilization in Section 2, we adapt in Section 3 an existing robust stability certificate to
systems with entrywise uncertainty bounds on their Jacobians. In Section 4, we present stability certificates
for systems with entrywise bounds on their Hessians, and in Section 5, we propose an algorithm adapting
robust certificates to systems with varying derivatives. In Section 6, we extend the methods to the trajectory
tracking problem. Finally in Section 7, we compare the robust certificates, as well as those provided by
SOS programming, on numerical examples of various dimensions. An implementation is available online.

2. PRELIMINARIES

We consider a nonlinear time-invariant control system:

ẋ = f (x,u),

where x ∈ Rd , u ∈ Rm, with d,m ≥ 1. Assume there exists an equilibrium, without loss of generality at
(x0,u0) = (0,0), that is f (0,0) = 0, and that f is also smoothly differentiable:

f (x,u) =
∂ f
∂x

(0,0)x︸ ︷︷ ︸
Ax

+
∂ f
∂u

(0,0)u︸ ︷︷ ︸
Bu

+o(x)+o(u).

We assume that the pair (A,B) is controllable. For Q� 0, R� 0 symmetric matrices respectively of size
d×d and m×m, we define the infinite-horizon LQR cost [Lib11]:

J(x) :=
∫ +∞

0
(x>(t)Qx(t)+u>(t)Ru(t))dt, with x(0) = x.

The cost-minimizing controller is known to be:

u(x) =−R−1B>Sx =:−Kx, (1)

where S is the symmetric positive definite solution of the algebraic Ricatti equation (ARE), which exists
because (A,B) is controllable:

A>S+SA−SBR−1B>S =−Q. (2)

Under the closed-loop controller u =−Kx, the system is autonomous with

ẋ = f (x,−Kx) =: g(x). (3)

In addition, the optimal cost-to-go V (x) := x>Sx is used as a Lyapunov function of the nonlinear system.
V is a Lyapunov function over a region R ⊂ Rd around 0, if V (0) = 0, V (x) > 0 in R\{0}, and V̇ (x) < 0
in R [SL91]. This certifies that the sublevel sets of V that are included in R belong to the ROA of the
equilibrium point: every trajectory beginning in this set will asymptotically stabilize to 0. In practice, it is
convenient to choose R as a sublevel set of V .

If the dynamics were exactly linear, then one would have:

V̇ (x) = ∇V (x) ·g(x) = 2x>Sg(x) = x>(SA+A>S−2SBK)x

= x>(−Q−SBR−1B>S)x < 0, ∀x 6= 0.

Hence in the linear case, the ROA is the whole state space. In this work we will consider variations of this
situation, and see how defects of linearity will affect this statement.

3. FIRST ORDER ROBUSTNESS

A linear differential inclusion (LDI) [AC84] is the following set-valued control problem:

ẋ ∈Ωx, x(0) = x0,

where Ω is a convex subset of Rd×d , and Ωx := {Ax,A ∈ Ω}. The constraint can be expressed as a linear
matrix inequality (LMI) for some Ω [BEGFB94]. In particular, for Ω = {A0} we get a linear system, for
Ω = Conv(A1, ...,AL) a polytopic LDI (PLDI), for Ω = {A0 +C∆E | ‖∆‖ ≤ 1} a norm-bound LDI (NLDI)
where ‖.‖ is a matrix norm; if in addition ∆ must be diagonal, we get a diagonal NLDI (DNLDI).

The asymptotic stability of an LDI around 0, i.e., all initial conditions converge to 0, can be certified by
a Lyapunov function of the form V (x) = x>Px. This amounts to finding:

P� 0 such that A>P+PA≺ 0, ∀A ∈Ω.

This problem reduces to an LMI and is solved by interior-point methods [NN94] for general choices of Ω.
LDIs are used to model uncertain linear systems. Any differentiable dynamical system with an equilib-

rium at the origin and with bounded Jacobian (including the closed loop system in equation (3)) belongs to
a suitable LDI, written as an uncertain linear system:

ẋ = A(x)x, A(x) ∈Ω.

Ω is a convex set of matrices that accounts for nonlinearities, uncertainties or time-variations of the dynam-
ics. In particular, Ω can bound the deviation of a nonlinear system ẋ= g(x) from its linearization ẋ= Jg(0)x.
This is similar to the problem considered in [TP07], except that the perturbations lie in a closed convex set
instead of a semialgebraic set.

Suppose we are given individual bounds on the entrywise deviations of the Jacobian from a given ma-
trix A0:

vi j := sup
x∈Rd

|δi j(x)|= sup
x∈Rd

|A(x)i j− (A0)i j|. (4)

Such bounds are easy to estimate from sampling or are computed in closed form. Stability is readily
studied [BEGFB94] if Ω is a convex hull (PLDI) or a matrix ball (NLDI), which we now specify for our
problem. Entrywise bounds can be fitted in both settings. Yet the description of the corresponding PLDI is
intractable in large dimension: the number of vertices required to describe Ω scales as 2d .

The following description of Ω with a DNLDI has polynomial length. Let 1d := (1 ... 1), 0d := (0 ... 0),

∆ := Diag
(

δ11

v11
, ...,

δ1d

v1d
, ... ,

δd1

vd1
, ...,

δdd

vdd

)
∈ Rd2×d2

,

C :=

1d 0d

0d
. . .

1d

= Id⊗1d ∈ Rd×d2
,

E :=
[
E1 ... Ed

]> ∈ Rd2×d , with Ei = Diag(vi1, ...,vid). Hence ‖∆‖2 =
√

λmax(∆>∆) = σmax(∆) ≤ 1,
and the system belongs to the DNLDI defined by

Ω = {A0 +C∆E | ‖∆‖ ≤ 1, ∆ diagonal}.

Checking the asymptotic stability of a DNLDI is an LMI feasibility problem derived by applying the S-
procedure [BEGFB94]:

Proposition 1. Let ẋ = A(x)x an uncertain linear system with entrywise bounded Jacobian. A sufficient
condition for its global asymptotic stability at 0 is the feasibility of the following LMI, for A0,C,E defined
as above:

Find P� 0 ∈ Rd×d , Λ� 0 ∈ Rd2×d2
diagonal such that:[

A>0 P+PA0 +E>ΛE PC
C>P −Λ

]
≺ 0. (5)

One may optimize both P and Λ to obtain a Lyapunov function, or use a fixed predefined value of P, e.g.,
S from the LQR, to check if V (x) = x>Px is a valid Lyapunov function.

4. SECOND ORDER ROBUSTNESS

4.1. Condition on the Sublevel Sets. Let ϕ : Rd → Rd , such that each ϕk is twice continuously differen-
tiable with bounded Hessian on a closed ball B centered around 0. Then, using Taylor’s formula, for any
x ∈ Rd , there exists a symmetric matrix Hk(x) such that for all k ∈ {1, ...,d}:

ϕk(x) = ϕk(0)+∇ϕ
>
k x+

1
2

x>Hk(x)x,

with Hk
i j(x) = 2

∫ 1

0
(1− t)

∂ 2ϕk

∂xi∂x j
(tx)dt.

Hence ∀i, j,k,∀x∈B, |Hk
i j(x)| ≤maxy∈B

∣∣∣ ∂ 2ϕk
∂xi∂x j

(y)
∣∣∣. Note that this is also true if B is an ellipsoid around 0.

This applies to the function g defined in Section 2, equation (3):

gk(x) = fk(x,−Kx) = (A−BK)k·x+
1
2

x>Hk(x)x,

where Mk· denotes the k-th line-vector of a matrix M. The derivative of the candidate Lyapunov function is:

V̇ (x) = 2x>S
(
(A−BK)x+

1
2
(x>Hk(x)x)k∈{1,...,d}

)
= x>(−Q−SBR−1B>S+

d

∑
k=1

(Sk·x)Hk(x))x.

Let Bρ := {x | x>Sx ≤ ρ} for ρ > 0, a sublevel set of V . A sufficient condition for Bρ to be an ROA
around 0 is that −Q−SBR−1B>S+∑k(Sk·x)Hk(x) ≺ 0 for all x ∈ Bρ . Let M := Q+SBR−1B>S � 0, the
condition is equivalent to:

∀x ∈Bρ ,
d

∑
k=1

(Sk·x)H̃
k(x)≺ Id ,

where H̃k(x) := M−1/2Hk(x)M−1/2.
To simplify the problem, we will decouple the two dependencies in x. The contribution of Sk·x will be

bounded by two different bounds below. The tensor H̃(x) is bounded globally, independently from ρ . A
tighter analysis of the Hessian will be discussed in Section 5. For now, assume that we have an oracle on
the magnitude e>i Hke j (ei being the i-th unit vector) of H along d2 directions for each Hk:

∀x, H̃(x) ∈ Ξ := {T ∈ Rd3 |∀i, j,k, |T k
i j| ≤ uk

i j, T k> = T k}. (6)

A relaxation of the problem is then:

sup
x>Sx≤ρ

sup
T∈Ξ

λmax

(
d

∑
k=1

(Sk·x)T
k

)
< 1.

With a simple change of variable and rescaling, the largest ρ fulfilling the condition is given by:

ρ =
1

λ 2 , where λ := sup
‖y‖2≤1

sup
T∈Ξ

λmax

(
d

∑
k=1

(S1/2
k· y)T k

)
. (7)

4.2. Two Upper Bounds on λ . The first bound is based on the following fact:

sup
‖y‖2≤1

sup
T∈Ξ

‖
d

∑
k=1

(S1/2
k· y)T k‖2 ≤ sup

‖y‖2≤1

d

∑
k=1
|S1/2

k· y| sup
T k∈Ξk

‖T k‖2,

where Ξk is the projection of Ξ onto its k-th coordinate subspace. Let Z a matrix with lines Zk· :=(
supT∈Ξk ‖T k‖2

)
S1/2

k· ,

λ ≤ sup
‖y‖2≤1

‖Zy‖1 ≤
√

d sup
‖y‖2≤1

‖Zy‖2 =
√

d‖Z‖2.

With equation (7), this guarantees that Bρb is an ROA for

ρb :=
1

d‖DS1/2‖2
2
, with D = Diag

(
(sup

T k∈Ξk
‖T k‖2)k

)
. (8)

The following proposition explains how to compute D.

Proposition 2. Let ξ be the set of symmetric d×d matrices A such that for all i, j ∈ {1, ...,d}, |Ai j| ≤ ui j.
Let U be the nonnegative symmetric matrix with entries (ui j). Then:

max
A∈ξ

‖A‖2 = ‖U‖2.

Proof. Since ξ is centered around 0, we only look for the largest eigenvalue:

sup
‖x‖2≤1, A∈ξ

x>Ax = sup
‖x‖2≤1

sup
A∈ξ

∑
i

aiix2
i +2 ∑

i< j
ai jxix j.

Maximizing with respect to A, we get aii = uii, and

∀i < j, ai j =

{
ui j if xix j ≥ 0
−ui j else.

And then, x>Ax = ∑i uiix2
i +2∑i< j ui j|xix j|= |x|>U |x|. The full problem becomes:

sup
‖x‖2≤1, x�0

x>Ux.

The Perron-Frobenius theorem ensures that for any nonnegative square matrix, there exists a nonnegative
real eigenvalue with at least one nonnegative eigenvector. Any other eigenvalue’s modulus is smaller than
this eigenvalue. U being symmetric, all its eigenvalues are real, hence the result. �

Remark: If the bounds on the entries of A are not centered around 0, it is possible to write A = A′+ Ā,
where the entries of Ā are symmetrically bounded, and ‖A‖2 ≤ ‖A′‖2 +‖Ā‖2.

The proposition leads to another bound on λ . If T ∈ Ξ:

∀i, j,k,
∣∣∑

k
(S1/2

k· y)T k
i j
∣∣≤∑

k
|S1/2

k· y|uk
i j ≤∑

k
‖S1/2>

k·‖ · ‖y‖u
k
i j.

Applying the previous result to the matrix whose entries are the middle term in the inequality above:

λ ≤ λmax

(
∑
k

√
Sk·S−1S>k·U

k

)
=: λa , (9)

which guarantees that Bρa is an ROA for ρa := 1/λ 2
a .

5. ITERATIVE ALGORITHM

5.1. Stability Certificates. The bounds presented in Sections 3 and 4 readily give robust stability certifi-
cates that hold for a whole class of dynamics with suitably bounded derivatives. It is also possible to apply
the same methods to a single known dynamics, if its derivatives can be bounded efficiently. In general the
bounds on the derivatives depend on where they are computed: the larger the region, the larger the bounds.
But such bounds must be computed on a sufficiently large region containing the sublevel set where stability
is asserted.

With the notations of the previous two sections, and given equations (5,8,9), we define three stability
certificates:

C1 : (S,ρup,Ω)→ ρup1LMI (5) is feasible

C
a,b
2 : (S,ρup,Ξ)→min(ρa,b,ρup),

meaning that {x>Sx ≤ C1(S,ρup,Ω)} is an ROA if the derivatives of the dynamics are bounded by Ω

(resp. Ξ) and if ρup is an upper bound on ρ used to compute Ω (resp. Ξ).

5.2. Oracle on the Derivatives. Suppose we have an oracle O computing, on a domain D, a bound O(D)
on the derivatives, corresponding to sets Ω or Ξ above. Our methods compute ρ = C(S,ρup,O(D)).
Then Bρ is an ROA if the whole trajectory to 0 stays inside D (else the assumptions on the derivatives
would be violated). A simple way to ensure that is to choose D as a sublevel set of V containing Bρ , i.e.,
Bρup for ρup ≥ ρ .

For a quadratic dynamical system, each entry of the Jacobian is an affine function and each entry of the
Hessian is constant. Exact entrywise bounds on an ellipsoid are:

sup
x>Sx≤ρup

c>x =
√

ρup‖S−1/2c‖2.

For third-order polynomial systems, the entries of the Hessian are affine and those of the Jacobian are
polynomials of degree two. For a quadratic monomial, this formula can be used:

sup
x>Sx≤ρup

x>Jx = ρupλmax(S−1/2JS−1/2).

In large dimensions, manually identifying each coefficient of the derivatives of a second or third or-
der polynomial dynamics might be tedious: the Hessian tensor has d3 entries. One solution is to work
with symbolic expressions. Another one is to sample derivatives at a few different points with automatic
differentiation [PGM+19], to fit a low order polynomial model, and then to maximize it in closed form.

For generic dynamics, one can sample derivatives, e.g., by automatic differentiation, using analytical
derivatives [CM18a] for rigid body dynamics, or from direct physical measurements on the system. The
sampling process can be done in parallel. Bounding the samples provides estimates of the oracle, and
efficiency improvements can be expected with Bayesian optimization [Moc12] or other global optimization
tools.

5.3. Algorithm. A simple ROA estimation algorithm (see Algorithm 1) consists in iteratively bounding
the derivatives and producing stability certificates, i.e., alternating calls of O and C. ρ0 is an initial upper
bound on the size of the ROA. Each step of the loop provides a certificate that Bρ is an ROA, and this
region grows at each iteration, the sequence of ρs being nondecreasing. The number of iterations before the
algorithm stops depends on the initial guess ρ0 and the step size η . In our experiments, typically we use 10
to 20 iterations.

Algorithm 1 Adaptive stability certificates

Input: S, C(), O(), ρ0 > 0, η ∈ (0,1)
Output: An ROA certificate on {x | x>Sx≤ ρ}

1: ρup← ρ0
2: repeat
3: U ← O(Bρup)
4: ρ ← C(S,ρup,U)
5: ρup← ηρup
6: until ρ ≥ ρup
7: return ρ

6. TRAJECTORY TRACKING

Let (x0(t),u0(t)), for t ∈ [0, t f] be a reference trajectory, with final state x f := x0(t f). For a nearby
trajectory (x(t),u(t)), let x̄(t) := x(t)− x0(t), ū(t) := u(t)−u0(t). The linearized dynamics is:

˙̄x(t) = A(t)x̄(t)+B(t)ū(t)+o(x̄(t))+o(ū(t)).

Let B f a target region {x | (x− x f)
>S f (x− x f) ≤ 1}, for some S f � 0. We define the finite-horizon LQR

problem [Lib11] with the following tracking cost:∫ t f

0
(x̄(t)>Qx̄(t)+ ū(t)>Rū(t))dt + x̄>(t f)S f x̄(t f).

For t ∈ [0, t f], the optimal cost-to-go is V (x, t) = x̄>S(t)x̄, S(t) being the solution of the Ricatti differential
equation (RDE):

Ṡ =−Q+SBR−1B>S−SA−A>S, S(t f) = S f , (10)

with controller ū(t) =−K(t)x̄(t) :=−R−1B>(t)S(t)x̄(t).
We want to estimate the time-varying region (called “funnel” [TMTR10]) B(t) :=

{
x | F(x, t) ∈B f

}
,

where F(x, t) is the integrated closed-loop dynamics with control u(.) from t to t f . In particular, B(t f)=B f .
B(t) is a region where applying u(t) = u0(t)+ ū(t) will make the trajectory reach B(t f) after time t f . If in
addition B(t f) is included in an ROA around 0, the trajectory will then finally reach 0 in finite time.

We consider regions B(t) := {x | 0≤V (x, t)≤ ρ(t)}. A sufficient condition for B(t) to be a funnel
is [TMT11]:

V (x, t)≥ 0, ∀x ∈B(t) and V̇ (x, t)≤ .
ρ(t), ∀x ∈ ∂B(t).

We drop some occurrences of the time variable to simplify the notations. S(t) being a positive definite
matrix [Lib11] for any t ∈ [0, t f], the first condition holds, the second one is:

V̇ (x, t) = 2x̄>S ˙̄x+ x̄>Ṡx̄≤ .
ρ, ∀x ∈

{
x | x̄>Sx̄ = ρ

}
.

If the closed-loop system is an LDI ˙̄x = Ã(t,x)x̄ in {x | x̄>Sx̄ = ρ}, with Ã ∈ Ω(ρ), a sufficient condi-
tion is:

∀Ã ∈Ω(ρ), Ã>S+SÃ+ Ṡ−
.
ρ

ρ
S� 0. (11)

This can be fit into the LDI framework presented in Section 3, just by shifting the set Ω(ρ) to the set

Ω̃(ρ,
.
ρ) := {Ã+

1
2

S−1Ṡ− 1
2

ρ̇

ρ
Id | Ã ∈Ω(ρ)}.

Now if the closed-loop system is known up to order two in {x | x̄>Sx̄ = ρ}, say

˙̄x = (A−BK)x̄+
1
2

x̄>H(t,x)x̄,

with H(t,x) ∈ Ξ(ρ). Using that S(.) is a solution of equation (10), we obtain the following sufficient
condition: ∀y such that ‖y‖2

2 = 1, ∀H ∈ Ξ(ρ),

−Q−SBR−1B>S− ρ̇

ρ
S+
√

ρ

d

∑
k=1

(S1/2
k· y)Hk � 0.

If N(ρ, ρ̇) = Q+ SBR−1B>S+ ρ̇

ρ
S � 0, let Ξ̃(ρ, ρ̇) the shifted set {N−1/2HN−1/2 | H ∈ Ξ(ρ)}, we must

check that:

∀‖y‖2
2 = 1, ∀H̃ ∈ Ξ̃(ρ,

.
ρ),
√

ρ

d

∑
k=1

(S1/2
k· y)H̃k � Id . (12)

Under such conditions, ρ(.) is built backwards in time by integration, beginning with ρ(t f) = 1. At each
time step, given ρ , a greedy strategy is to choose ρ̇ as the smallest possible value such that the sufficient
condition is enforced. Since ρ(.) is computed backwards, this maximizes ρ(t − dt), hence locally the
funnel’s volume. Also, in both first and second order cases, the sufficient condition is monotonically more
restrictive as ρ̇ decreases. A simple algorithm is to start with a large positive ρ̇ , compute the set Ω̃(ρ, ρ̇)
or Ξ̃(ρ, ρ̇), check that the sufficient condition holds, and progressively decrease ρ̇ until it no longer does
(possibly with ρ̇ < 0 if N � 0 is still enforced, when applicable).

7. NUMERICAL EXPERIMENTS

7.1. Definition of the Systems and Implementation Details. The code to reproduce the experiments is
available online1. The first two systems, an electrical oscillator and a floating satellite with commanded
torques, are taken from the Matlab material of [TMT11]. The third one is a double pendulum, with an
actuated joint between the two arms (also called “acrobot” in [Sut96]). The last one corresponds to the UR5
robotic arm from Universal Robots2, with 6 actuated joints.
Vanderpol. d = 2, m = 0 (unactuated), x0 = 0>2 , Q = I2. The dynamics is a polynomial of degree 3:

∀x = (x1,x2) ∈ R2, f (x) = (−x2, x1 + x2(x2
1−1))>.

Satellite. d = 6, m = 3, (x0,u0) = (0>6 ,0
>
3), Q = I6, R = 10× I3, the dynamics is a polynomial of degree 3.

Let J = Diag(5,3,2). For x = (ω>,σ>)> ∈ R6, with ω,σ ∈ R3, f (x,u) = (ω̇>, σ̇>)>,

ω̇ = J−1(u−ω× Jω)

σ̇ =
1
4

(1−‖σ‖2)I3 +2σσ
>−2

 0 σ3 σ2
σ3 0 σ1
σ2 σ1 0

ω.

Pendulum. d = 4, m = 1, u0 = 0, x0 = 0>4 (bottom) or x0 = (π,π,0,0)> (top), Q = I4, R = 1. Let g = 9.8,
`= 0.5 and µ = 1. For x = (θ1,θ2, p1, p2)

>, f (x,u) is defined by:

θ̇1 =
6

µ`2
2p1−3cos(θ1−θ2)p2

16−9cos2(θ1−θ2)

θ̇2 =
6

µ`2
8p2−3cos(θ1−θ2)p1

16−9cos2(θ1−θ2)

ṗ1 =−
µ`2

2

(
θ̇1θ̇2 sin(θ1−θ2)+

3g
`

sinθ1

)
ṗ2 =−

µ`2

2

(
−θ̇1θ̇2 sin(θ1−θ2)+

g
`

sinθ1

)
+u.

1www.github.com/eloiseberthier/Fast-Robust-ROA
2www.universal-robots.com/products/ur5-robot

www.github.com/eloiseberthier/Fast-Robust-ROA
www.universal-robots.com/products/ur5-robot

TABLE 1. Radius and volume of the certified ROA for the different methods, relative to
the values obtained by sampling for reference.

Dynamics
C1 Ca

2 Cb
2 SOS sampling

ρ/ρs v/vs ρ/ρs v/vs ρ/ρs v/vs ρ/ρs v/vs ρ/ρs v/vs

Vanderpol 0.20 0.20 0.14 0.14 0.10 0.10 1 1 1 1

Satellite 2.9×10−2 2.6×10−5 9.3×10−2 9.4×10−4 7.9×10−2 5.7×10−4 0.93 0.82 1 1

Pend. (bot.) 3.2×10−2 1.1×10−3 3.5×10−2 1.2×10−3 4.2×10−2 1.9×10−3 1.4×10−2 2.0×10−4 1 1

Pend. (top) 5.1×10−3 2.6×10−5 4.5×10−2 2.0×10−3 4.7×10−2 2.2×10−3 N.A. N.A. 1 1

Robot 2.4×10−3 1.8×10−16 7.1×10−3 1.5×10−13 1.5×10−2 1.2×10−11 N.A. N.A. 1 1

TABLE 2. CPU time (s) per iteration, except for SOS (total time).

Dynamics O+C1 O+Ca
2 O+Cb

2 SOS

Vanderpol 1.8×10−3 1.1×10−4 1.6×10−4 0.05

Satellite 1.2 0.17 0.17 32

Pend. (bot.) 2.3 15 15 132

Robot 2.3 32 33 N.A.

Robot. d = 12, m = 6, x0 = (q>0 ,06)
>, q0 is the configuration q0 = (0,−π/5,−3π/5,0,0,0), Q = I12,

R = I6. u0 is such that f (x0,u0) = 0 and is computed by the recursive Newton-Euler algorithm (RNEA)
implemented in the C++ library Pinocchio [CVM+19] coming with Python bindings. The forward dynamics
f (x,u) is computed as a black box with the so-called articulated body algorithm (ABA).

The software used for the SOS based certificates is adapted from the Matlab material of [TMT11]. The
oracles on the derivatives are computed either in closed form, for Vanderpol and the Hessian of Satellite,
or by sampling p derivatives. Using automatic differentiation in PyTorch [PGM+19], we sample p = 104

Jacobians for Satellite, p = 103 Jacobians and Hessians for Pendulum. For Robot, p = 5× 104 and the
Jacobians of the dynamics are computed analytically [CM18a], and we use finite differences on the first
partial derivatives for the Hessians. It is important to notice at this stage that more advanced methods to
efficiently compute these Hessians could improve the whole computation time of our methods, for instance
by code-generating the second-order derivatives computed by automatic differentiation. Yet, the proposed
solution already provides competitive timings.

7.2. Results. The performances of the certificates are compared in Table 1, in terms of radius of Bρ , and
volume v ∝ ρd/2/

√
|S|, the latter exacerbating differences in large dimensions. The volume, divided by the

volume of the state space, is roughly the inverse of the number of ROAs that would have covered it. All
the values in the table are divided by the ground truth ρs, the maximal ρ such that ∀x>Sx≤ ρ , V̇ (x)< 0,
estimated by sampling a very large number of points. Apart from SOS on the first two problems, all methods
are very far from estimating the true maximal ROA.

For the SOS method on Pendulum, because the dynamics is non polynomial, we substitute the odd
function f by its Taylor expansion around the equilibrium, truncated at order n = 7. The result is sensitive
to the order: for n = 2, f is linear hence ρ =+∞, whereas ρ decreases for higher orders. It is unclear which
one to choose, and the results are no longer certified. At the top position, an utterly unstable position, SOS
fails to provide a positive ρ , regardless of n≥ 3.

Table 2 reports the corresponding CPU running times on a standard laptop. The code, in Python, is
not optimized, except the SOS method and the LMI solver for C1 which are in Matlab. Our methods are
much lighter than SOS, yet one must keep in mind that Algorithm 1 typically calls the oracle and the
certificate 10 times. Nonetheless, this allows to tackle systems of larger dimensions, like Robot. If the
oracle uses sampling, this dominates the running time. Figure 1 compares the running times of bounding
the derivatives for C1 and Ca

2, depending on the number of samples p, on Satellite. At fixed p, it is of course
longer to sample Hessians than Jacobians. The sampling oracle overestimates ρ , but this tends to stabilize
for reasonable values of p, as seen for ρa

2 which can also be computed using a closed form oracle.
We also experiment trajectory tracking on a given trajectory of Vanderpol, with x f = (−1,−1)>, t f = 2.

The target region B f = {x | x̄>S f x̄ ≤ 1} is the largest ellipsoid included in R, an ROA around 0 computed

101 102 103 104

p

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

ρ(
p)

ρa
2

10−2

10−1

100

101

cp
u

tim
e

(s
) p

er
 it

er
at

io
n1

a2

FIGURE 1. Results of C1, Ca
2, and cpu time on Satellite, depending on p.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.2

0.4

0.6

0.8

1.0

ρ(
t)

1
a2
SOS itr 1
SOS itr 2

FIGURE 2. ρ(t) with different certificates, around a trajectory of Vanderpol. The total
CPU time is 7s for two iterations of SOS, roughly 1s for C1, Ca

2.

f

(t)

FIGURE 3. A funnel B(t) around a trajectory of Vanderpol, obtained with C1. The state-
space is in green, R in light gray is an ROA around 0, and B f in red is the target region.
The reference trajectory is displayed with arrows.

by SOS. In Figure 3, the state-space is in green, R in light gray and B f in red. The funnel B(t), in gray,
is computed backwards, with one or two iterations of the SOS-based algorithm of [TMT11], and with
the methods of Section 6. Figure 2 shows our certificates lead to competitive values of ρ(t), with faster
computations.

8. CONCLUSION

The stability certificates presented in this paper are both fast to compute, and robust over a class of
bounded-derivatives dynamics. They readily extend to the trajectory tracking problem, with a linear com-
plexity in the number of time steps. Such certificates are easily implemented and enable handling non-
polynomial, large dimensional control systems that were previously out of reach. The complexity is trans-
ferred from the certificate to a derivative-bounding oracle, which can be estimated efficiently in some cases,
including rigid body dynamics in robotics. The certificates for trajectory tracking can in turn be integrated
into the LQR-trees framework for global motion planning. They are more conservative than competing
methods, yet faster, hence repeating calls to these certificates could be more efficient overall. Providing
empirical evidence or counter-evidence for this trade-off phenomenon in real-world control systems would
be an interesting avenue for future research.

ACKNOWLEDGEMENTS

This work was supported by the Direction Générale de l’Armement, and by the French government
under management of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program,
reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

REFERENCES

[AC84] Jean-Pierre Aubin and Arrigo Cellina, Differential inclusions: Set-valued maps and viability theory, Springer, 1984.
[BEGFB94] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan, Linear matrix inequalities in system

and control theory, vol. 15, Siam, 1994.
[Che04] Graziano Chesi, Estimating the domain of attraction for uncertain polynomial systems, Automatica 40 (2004), no. 11,

1981–1986.
[CM18a] Justin Carpentier and Nicolas Mansard, Analytical derivatives of rigid body dynamics algorithms, Robotics: Science and

Systems, 2018.
[CM18b] , Multicontact locomotion of legged robots, IEEE Transactions on Robotics 34 (2018), no. 6, 1441–1460.
[CVM+19] Justin Carpentier, Florian Valenza, Nicolas Mansard, et al., Pinocchio: fast forward and inverse dynamics for poly-

articulated systems, https://stack-of-tasks.github.io/pinocchio, 2015–2019.
[GH15] Peter Giesl and Sigurdur Hafstein, Review on computational methods for Lyapunov functions, Discrete and Continuous

Dynamical Systems-Series B 20 (2015), no. 8, 2291–2331.
[GNS+17] Markus Giftthaler, Michael Neunert, Markus Stäuble, Marco Frigerio, Claudio Semini, and Jonas Buchli, Automatic

differentiation of rigid body dynamics for optimal control and estimation, Advanced Robotics 31 (2017), no. 22, 1225–
1237.

[GSM90] K Glover, J Sefton, and DC McFarlane, A tutorial on loop shaping using H-infinity robust stabilization, IFAC Proceedings
Volumes 23 (1990), no. 8, 117–126.

[Joh00] Tor A Johansen, Computation of Lyapunov functions for smooth nonlinear systems using convex optimization, Automat-
ica 36 (2000), no. 11, 1617–1626.

[Lib11] Daniel Liberzon, Calculus of variations and optimal control theory: a concise introduction, Princeton University Press,
2011.

[LK01] Steven M LaValle and James J Kuffner, Rapidly-exploring random trees: Progress and prospects, Algorithmic and
Computational Robotics: New Directions (2001), no. 5, 293–308.

[Moc12] Jonas Mockus, Bayesian approach to global optimization: Theory and applications, vol. 37, Springer Science & Business
Media, 2012.

[NN94] Yurii Nesterov and Arkadii Nemirovskii, Interior-point polynomial algorithms in convex programming, SIAM, 1994.
[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala, PyTorch: An im-
perative style, high-performance deep learning library, Advances in Neural Information Processing Systems 32, 2019,
pp. 8024–8035.

[SCH+18] Sumeet Singh, Mo Chen, Sylvia L Herbert, Claire J Tomlin, and Marco Pavone, Robust tracking with model mismatch
for fast and safe planning: an SOS optimization approach, International Workshop on the Algorithmic Foundations of
Robotics, Springer, 2018, pp. 545–564.

[SL91] Jean-Jacques E Slotine and Weiping Li, Applied nonlinear control, vol. 199, Prentice hall Englewood Cliffs, NJ, 1991.
[Sut96] Richard S Sutton, Generalization in reinforcement learning: Successful examples using sparse coarse coding, Advances

in Neural Information Processing Systems, 1996, pp. 1038–1044.
[TMT11] Mark M Tobenkin, Ian R Manchester, and Russ Tedrake, Invariant funnels around trajectories using sum-of-squares

programming, IFAC Proceedings Volumes 44 (2011), no. 1, 9218–9223.
[TMTR10] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts, LQR-trees: Feedback motion planning via

sums-of-squares verification, The International Journal of Robotics Research 29 (2010), no. 8, 1038–1052.
[TP07] Ufuk Topcu and Andrew Packard, Stability region analysis for uncertain nonlinear systems, IEEE Conference on Deci-

sion and Control, 2007, pp. 1693–1698.

APPENDIX A. IMPLEMENTATION SUMMARY

Static
LQR

1st/2ndord.
Oracle

1st/2ndord.
Certificate

≤

x0,u0, f

S,K A0,V

U

M = Id

M = Q+SBK

Q,R ρup

ρ1

ρa,b

ρup

repeat with decreasing ρup

FIGURE 4. ROA estimation algorithm. Elements specific to the 1st order method are in
red, to the 2nd order in blue. Framed steps are repeated until ρ ≥ ρup.

Dynamic
LQR

1st/2ndord.
Oracle

1st/2ndord.
Certificate

1st ord.
Shift

2nd ord.
Shift

≤

x0,u0, f

S(t + τ)

S,K

ρ̇
A0,V

Ã0,V

U

M = IdM̃

M = Q+SBKρ̇

Q,R ρ(t + τ)

λmax

repeat with decreasing ρ̇

FIGURE 5. Trajectory tracking algorithm for one time-step. Framed steps are repeated
while equations (11) for the 1st order, or (12) for the 2nd order hold.

The complete ROA estimation and trajectory tracking frameworks are summarized respectively in Fig-
ure 4 and 5. Each building block used in the diagrams is detailed below. The first one computes the LQR
as in Section 2.
• Static LQR: (Q,R,x0,u0, f)→ (S,K).

A = ∂ f
∂x (x0,u0), B = ∂ f

∂u (x0,u0), S is the positive definite solution of A>S+SA−SBR−1B>S =−Q, and K =

R−1B>S.
The following block computes the LQR for one time step of trajectory tracking and is detailed in Sec-

tion 6.
• Dynamic LQR: (S(t + τ),Q,R,x0(t),u0(t), f)→ (S(t),K(t)).

Let S̄ = S(t + τ), then S(t) = S̄− τ Ṡ, with A = ∂ f
∂x (x0(t),u0(t)), B = ∂ f

∂u (x0(t),u0(t)),

Ṡ =−Q− S̄A−A>S̄+ S̄BR−1B>S̄, and K(t) = R−1B>S(t).

The next two blocks compute bounds on the derivatives of the dynamics. They can be implemented
arbitrarily.
• First-order oracle: (ρup,S,K,M,x0,u0, f)→ (A0,V).

Vi j := sup
x>Sx≤ρup

|Ji j(x)− (A0)i j|,

where J is the Jacobian of x 7→ f (x0 + x,u0−Kx). A default choice for A0 is J(0) = A−BK.
• Second-order oracle: (ρup,S,K,M,x0,u0, f)→U.

Uk
i j := sup

x>Sx≤ρup

[
M−1/2Hk(x)M−1/2

]
i j
,

where H is the Hessian of x 7→ f (x0 + x,u0−Kx).
The next two blocks compute stability certificates, as detailed in Sections 3 and 4.

• First-order certificate: (ρup,S,A0,V)→ ρ1 = ρup1LMI is feasible.

Let C, E defined as in section 3. The LMI feasibility problem is to find Λ� 0 ∈ Rd2×d2
diagonal such that:[

A>0 S+SA0 +E>ΛE SC
C>S −Λ

]
≺ 0.

• Second-order certificate: (ρup,S,U)→ ρa,b =
1

λ 2
a,b
.

λa = λmax

(
∑
k

√
Sk·S−1S>k·U

k

)
,

λb =
√

d‖DS−1/2‖2, with D = Diag(‖Uk‖2)k .

The last two blocks are used in Section 6.
• First-order shift: (A0, ρ̇,ρ(t + τ),S(t), Ṡ(t))→ Ã0.

Ã0 = A0 +
1
2 S−1Ṡ− 1

2
ρ̇

ρ
Id , where Ṡ is given by the RDE (equation (10)).

• Second-order shift: (M, ρ̇,ρ(t + τ),S(t))→ M̃ = M+ ρ̇

ρ
S.

	1. Introduction
	2. Preliminaries
	3. First Order Robustness
	4. Second Order Robustness
	4.1. Condition on the Sublevel Sets
	4.2. Two Upper Bounds on

	5. Iterative Algorithm
	5.1. Stability Certificates
	5.2. Oracle on the Derivatives
	5.3. Algorithm

	6. Trajectory Tracking
	7. Numerical Experiments
	7.1. Definition of the Systems and Implementation Details
	7.2. Results

	8. Conclusion
	Acknowledgements
	References
	Appendix A. Implementation Summary

