Denis Roegel Loria 
email: roegel@loria.fr
  
Lambert's proof of the irrationality of π

In this document, I give the first complete English translation of Johann Heinrich Lambert's memoir on the irrationality of π published in 1768 [92], as well as some contextual elements, such as Legendre's proof [98] and more recent proofs such as Niven's [109]. Only a small part of Lambert's memoir has been translated before, namely in Struik's source book [143]. My translation is not based on that of Struik and it is supplemented with notes and indications of gaps or uncertain matters.

The purpose of this document is not to give a complete treatment of such a vast subject, but rather to provide interested people with a better access to the sources. Several accounts of Lambert's proof actually do not refer to Lambert's original memoir, but to more recent expositions, such as those of Legendre or Lebesgue, which may be misleading. Some authors suggest that Lambert gave his results without proofs, which is not true.

Lambert's memoir still contains some gaps and I have tried to identify them in a number of notes. Some of these gaps do not seem to have been reported by others. They may be either genuine gaps in Lambert's proof, or merely things that should be clarified. I hope that these points can be improved in a future version of this document.

Chapter 1 Introduction

In this introduction1 , I give a few additional elements for the understanding of Lambert's proof of the irrationality of π. My purpose is however not to give a complete coverage of this vast and rich subject.

Irrational numbers

Lambert's work deals with the classification of numbers. The simplest numbers are the natural numbers 0, 1, 2, etc. Next come the rational numbers which can be expressed as ratios of two natural numbers, for instance 5/2, 7/3, 1/8, etc. Real numbers correspond to the continuum and this set contains the rational numbers, which themselves contain the natural numbers:

N ⊂ Q ⊂ R
An irrational number is a real number which cannot be expressed as a ratio of two integers. The set of irrational numbers can be denoted by R \ Q The simplest irrational number is probably √ 2 and it is easy to prove that it is not rational. For assume that √ 2 = a/b, where a and b are two positive integers. We can also assume that the fraction is irreductible, that is, that it cannot further be simplified, and that a has the smallest possible value (in case the irreductible fractions were not unique). In that case we find that a 2 = 2b 2 which implies that a = 2a and therefore that √ 2 = b/a . This is a new ratio with b < a and therefore it contradicts our assumptions. Consequently, √ 2 cannot be expressed as a ratio of two integers. Likewise, it is easy to prove that √ 3, √ 5, √ 7, √ 11, etc., are not rational numbers.

But there are many more irrational numbers and proving their irrationality is not so simple. For some numbers such as π, the irrationality has been suspected. For instance, Fantet de Lagny [48, p. 141], who computed π to many places, also conjectured it being irrational.

Furthermore, irrational numbers can be divided into algebraic numbers and transcendental numbers. The set of algebraic numbers is made of those real numbers which are solutions of polynomial equations with integers coefficients. Lambert suspected that π is a transcendental number but this result was only proven in 1882 by Lindemann.

For more context on irrational numbers and their construction, the reader should turn in particular to Brandenberger [23], Niven [110] and Havil [65].

Lambert's work on π

Johann Heinrich Lambert (1728-1777) was born in Mulhouse (France), then in the Swiss confederacy. [START_REF] Angell | Irrationality and transcendence[END_REF] He was the son of a tailor of French ancestry and he was only schooled until the age of 12. Later he became the preceptor of the Count de Salis' children, and this gave him access to a vast library and also the ability to travel through Germany and get in touch with many scientists and mathematicians, in particular Leonhard Euler (1707-1783).

Lambert was a polymath and made contributions to mathematics, optics, astronomy, map projections and philosophy. He died in 1777 in Berlin.

In mathematics, Lambert is the author of the first3 explicit proof of the irrationality of π. Lambert's work relies on continued fractions and his proof of the irrationality of π leads to questions of convergence which are not treated fully rigorously, although fixes have been provided by several authors. It is in part because of these difficulties, as noted by Laczkovich [91], but also because Lambert's proof is very long, that usual proofs of the irrationality of π now avoid continued fractions. It is therefore all the more important to be able to examine carefully Lambert's work, to compare it with that of Legendre, and to put them in the context of various more recent studies.

Here, I go through Lambert's writings related to the irrationality of π, and in the next chapters the translations of Lambert's main memoir, of Legendre's proof and the main modern proofs will be given.

Lambert's article on the transformation of fractions

In a long article on the transformation of fractions [94], probably written in 1765, [START_REF] Arndt | Pi : Algorithmen, Computer, Arithmetik[END_REF] Lambert gave some interesting results related to π. I shall only give one example and not summarize the entire article.

Starting with the arctan series

arctan z = z - z 3 3 + z 5 5 - z 7 7 + • • •
Lambert obtained the continued fraction [94, p. 82] arctan z = This fraction, as observed by Bauer [10], can be rewritten arctan z = z 1 + z [START_REF] Angell | Irrationality and transcendence[END_REF] 3 + z 2 5 : 4 + z 2 28 : 9 + z 2 81 : 64 + z 2 704 : 225 + &c. and arctan z = z 1 + z [START_REF] Angell | Irrationality and transcendence[END_REF] 3 + (2z) [START_REF] Angell | Irrationality and transcendence[END_REF] 5 + (3z) [START_REF] Angell | Irrationality and transcendence[END_REF] 7 + (4z) [START_REF] Angell | Irrationality and transcendence[END_REF] 9 + (5z) [START_REF] Angell | Irrationality and transcendence[END_REF] 11 + &c. and eventually π 4 = 1 1 + 1 [START_REF] Angell | Irrationality and transcendence[END_REF] 3 + 2 2 5 + 3 [START_REF] Angell | Irrationality and transcendence[END_REF] 7 + 4 2 9 + 5 2 11 + &c.

although Lambert did not give this fraction in his article. In their articles [11, 15, 12, 13, 14], Bauer and Haenel explore a number of ideas on the theme of arctan-based approximations of π.

Lambert's article on circle squarers (1766)

In the 1760s, Lambert worked on the quadrature of the circle, the irrationality of π and hyperbolic geometry. The subject of the quadrature of the circle is a very old one [START_REF] Aycock | Euler und die analytische Theorie der Kettenbrüche[END_REF] and Lambert himself became interested in it already in the 1750s. [START_REF] Bailey | Pi: The next generation -A sourcebook on the recent history of pi and its computation[END_REF] Lambert wrote two related articles in 1766 (published in 1770) [START_REF] Baltus | Continued fractions and the first proofs that π is irrational[END_REF] and 1767 (published in 1768) on the quadrature. The first is examined here. In this article, Lambert's focus was on "circle squarers" (those who claim to have solved the quadrature of the circle) and it was a somewhat popular article, not venturing into any actual proof [95]. 8 In his article, Lambert first writes [95, p. 155] that he is not aware of any result on the rationality of π up to now. He cleverly does not state his own result in advance. He writes however that if π is rational, it must be a fraction of large numerators and denominators. He then gives a series of 27 approaching ratios, from [START_REF] Archimedes | Measurement of a circle[END_REF] 1 to 1019514486099146 324521540032945 [95, p. 156-157] and he refers to his article on fractions [94] for their obtention. [START_REF] Heine | Enter, stage center: The early drama of the hyperbolic functions[END_REF] Later, Lambert does state that e p/q is irrational for integers p > 0 and q > 0 [ 95, p. 161].

Regarding π, Lambert writes [95, p. 162] that he found the expression

tan v = 1 1 : v -1 3 : v -1 5 : v -1 7 : v -1 9 : v -&c.
And he deduces immediately that since this continued fraction doesn't end when 1/v is an integer, and in particular when v = 1, that tan v is then irrational.

In fact, Lambert does state that tan m n is irrational for integer m and n and therefore that π is irrational.

Lambert's article concludes with a kind of riddle, which is in fact some mundane observation later clarified by Unger [146, p. 326-327] (see also [127]).

Lambert's main article (1767)

The article read in 1767 and published in 1768 is the one containing the details of Lambert's proof of the irrationality of π. This article is fully transa volume covering communications from 1761, several authors, for instance Brezinski [25, p. 110], or Havil [65, p. 104], mistakenly have dated Lambert's proof to 1761.

8 For a summary of this article, see Jacob [78, p. 50-61] and Viola [148, p. 243]. [START_REF] Heine | Enter, stage center: The early drama of the hyperbolic functions[END_REF] Lambert's ratios are correct, except for the last two. This error has been notified by Schulz in 1803 [134, p. 159] and later by Hirsch [70, p. 90] and Egen [42, p. 444]. Lambert's last ratio is not as accurate as he claimed, but the cause of his incorrect statement is that Lambert used an incorrect continued development of π (see https://oeis.org/A001203 for a more extensive development). In fact, in his last two steps, Lambert assumed that π = [3; 7, 15, 1, 292, . . . , 1, 37, 3, . . .] (see [95, p. 158]) instead of the correct π = [3; 7, 15, 1, 292, . . . , 1, 15, 3, . . .]. Surprisingly, these errors have not been corrected by Rudio [131, p. 147-148] who edited Lambert's article. lated in the next chapter.

It is interesting to note that Lambert never uses the symbol π to denote the ratio of the circumference to the diameter, although the first use of π in its modern meaning goes back to William Jones (1675-1749) in 1706 [85, 130]. Lambert however uses the symbol π in §. 40, but with a different meaning.

Lambert builds upon earlier work by Leonhard Euler (1707-1783), in particular his De fractionibus continuis dissertatio published in 1744 [44] and his Introductio in analysin infinitorum published in 1748 [45].

Lambert starts ( §. 4) with the series for the sines and cosines and obtains a continued fraction [START_REF] Friedrich | Lamberts Kettenbruch[END_REF] for the tangent ( §. 7):

tan v = 1 1 : v -1 3 : v -1 5 : v -1 7 : v -1 9 : v -&c.
Lambert's expression can be rewritten as

tan v = v 1 -v 2 3 -v 2 5 -v 2 7 -v 2 9 -&c.
although Lambert doesn't use it.

Lambert's expression is proven by induction and he obtains series expansions for R , R , R , etc., such that

tan v = sin v cos v = A B = 1 Q + R A = 1 Q + 1 Q + R R = 1 Q + 1 Q + 1 Q + R R = • • • with Q = 1/v, Q = -3/v, Q = 5/v, etc
. This leads us up to §. 14 in Lambert's memoir but it assumed that v < 1 and that 1/v was an integer (v is an aliquot part of 1). Now, starting with

tan v = 1 1 : v -1 3 : v -1 5 : v -1 7 : v -1 9 : v -&c.
and setting w = 1/v (and still keeping implicitely v < 1), Lambert considers the convergents obtained by restricting the continued fraction to a finite number of terms. These convergents are fractions of two polynomials in w and Lambert obtains general expressions for the numerators and the denominators, which he also proves by induction ( §.17 -28). He observes that the quotients of the numerators to the denominators seem to tend to the quotients of the sines to the cosines ( §. 29-30).

Next, Lambert seeks to find how these convergents are approaching the value of the tangent ( §. 32). Lambert obtains the general expression of the differences of these convergents, and then he is able to write the tangent as a sum of terms ( §. 34). Then, assuming w = ϕ ω , Lambert also obtains the analog general expressions with ϕ and ω ( §. 37). Finally, assuming that tan ϕ ω is equal to some fraction M P he defines D > 0 to be the greatest common divisor of M and P . The values M and P need not be integers, they might be for instance 2.793 and 6.23, in which case D would be equal to 0.007, as 2.793 = 399 × 0.007 and 6.23 = 890 × 0.007.

Lambert then defines a sequence of remainders R , R , R , etc., such that D divides each of them ( §. 41-45). But these remainders are decreasing towards 0 ( §. 49) [START_REF] Friedrich | Johann Heinrich Lambert (1728 bis 1777[END_REF] , without ever being equal to 0. We therefore have a decreasing sequence of integers which cannot be equal to 0, which is a contradiction. This is a so-called "proof by infinite descent," or "Fermat's method of descent," although it predates Fermat. In Lambert's case, this contradiction shows that there is no such D > 0 and therefore that tan ϕ ω is not rational when ϕ ω = 0. And then Lambert immediately concludes ( §. 51) that π is not rational. In sections §. 52-71, Lamberts introduces the notion of prime tangent and obtains some of their properties. In section §. 72, Lambert gives a continued fraction whose convergents approach tan v by excess and by default, whereas the convergents of the initial continued fraction (in §. 7) only approach tan v by default.

Sections §. 73-88 develop the theory of the hyperbolic functions and in particular prove that e p/q is irrational if p q > 0 is rational. Eventually in §. 89-91, Lambert suggests the existence of numbers which are not solutions of algebraic equations, hence transcendental numbers.

There are however some gaps in Lambert's proof. Lambert's proof is difficult to read, there are some missing steps and some unproven assumptions, and the text if furthermore crippled by a number of typographical errors. Many of the errors have been corrected by Speiser in 1948 [96], but some errors remain and some parts of the original memoir have been altered although they could have been saved. [START_REF] Friedrich | Gregory-Leibniz und Euler : Arcus-Cotangens-Relationen (Anläßlich des 300. Geburtstags von Leonhard Euler)[END_REF] Even Struik's partial translation [143] contains some new typos, and makes it very difficult to have a complete overview of Lambert's article.

Lambert then expands on the work of Vincenzo Riccati (1707-1775) on hyperbolic trigonometry [START_REF] Friedrich | Kettenbruch-Phänomene : Teil I : Periodische Kettenbrüche[END_REF] and obtains an expression analogous to that of tan v for the hyperbolic tangent ( §. 73).

Like above, Lambert's expression

tan v = 1 1 : v + 1 3 : v + 1 5 : v + 1 7 : v + 1 9 : v + &c.
can be rewritten as

tan v = v 1 + v 2 3 + v 2 5 + v 2 7 + v 2 9 + &c.
which Lambert also doesn't use. As mentionned earlier, Lambert's memoir contains some inaccuracies or gaps, or at least things that are in need of clarifications. In my translation, I did not provide fixes other than those for typos and simple clarifications. There is still a need to improve things, in particular in sections 49, 61, 65, 67, 68, 72, 73, and 88. The interested reader should check the notes in these sections where the gaps or obscure passages are marked.

Lambert's work on e

In his main memoir, Lambert also proves the irrationality of e. This had been proven earlier by Euler [105, 31, 132, 140] in De fractionibus continuis dissertatio [44], written in 1737 and published in 1744, and which is the first comprehensive account of the properties of continued fractions.

In his work, Euler used for instance the continued fraction [45, p. 319]:

e -1 2 = 1 1 + 1 6 + 1 10 + 1 14 + 1 18 + • • •
and this led Lambert [95, p. 162] to research a continued fraction for e-1 e+1 , or rather of e x -1 e x +1 which he gave in §. 74. This enabled him to prove that e p/q is irrational, and also conversely that the hyperbolic logarithm of a rational number is irrational.

After Lambert: a quick review

After the publication of Lambert's proof of the irrationality of π, a number of authors have published comments or summaries of the proof. Some of them provided new and simpler proofs which will be examined in chapter 4.

Legendre's analysis (1794)

Adrien-Marie Legendre (1752-1833)'s Éléments de géométrie, published in 1794 [98, p. 296-304], contains an appendix where π is proven to be irrational, using a convergence lemma for continued fractions. Legendre doesn't describe Lambert's proof in detail and his proof is much simpler. In chapter 3, I give a complete translation of Legendre's proof.

But, even though Legendre never lays any such claim, several later authors, for instance Youschkevitch [152, p. 216], have incorrectly claimed that Legendre fixed some gaps in Lambert's proof, as noted by Pringsheim [122]. Rudio [131], who published a German translation of Legendre's note, also claimed that Legendre gave the lemma which was missing in Lambert's proof [131, p. 56].

It is true that Lambert's demonstration has some gaps, but Legendre has only made two contributions to Lambert's work. First, he simplified Lambert's proof, making it much easier to follow. And second, he extended it by proving the irrationality of π 2 . Legendre was also convinced of the transcendence of π, but did not prove it.

Various authors have summarized or adapted the proof of Legendre. For instance, Chrystal [29] has proven the irrationality of π by first deriving the continued fraction

tan x = x 1 -x 2 3 -x 2 5 -x 2 7 -, etc.
using a technique from Lambert [94], then basically used Legendre's lemma to show that the continued fraction converges towards an irrational value if π were rational, hence a contradiction. Other uses of Legendre's proof are found in Hobson [72, p. 374-375], Serfati [136, 137], Delahaye [37], etc.

In particular Lebesgue [97, p. 108] has observed that Legendre could also have considered tan π 2 = ∞ to prove that π 2 is not rational. Notice should also be made of a manuscript in Gauss's Nachlass [124] which contains some comments on Legendre's lemma.

More concise proofs by Gauss and Hermite

In the 1850s, Gauss worked on a more concise proof of the irrationality of π, but did not publish it. It was only published in 1900 as part of his Nachlass. The first concise proof to be published was therefore that of Hermite in 1873. More details on these proofs will be found in chapter 4.

Various summaries of earlier proofs

Comments and summaries of Lambert's results appeared as early as the beginning of the 19th century. For instance, in 1803, Schulz [134, p. 161-178] gave a summary of Lambert's proof. In 1824, Eytelwein [47, p. 364-367] gave the computation of Lambert's convergents as an exercise. In 1856, Eugène Prouhet (1817-1867) [125] provided extensions to Lambert's results on primary tangents, but did not add anything to the question of the irrationality of π. In 1911, Vahlen [147, p. 319-325] gave a summary of Lambert's proof, of Legendre's proof, as well as of those of Gauss and of Hermite.

In his lectures on geometric constructions [97, p. 103-109], Henri Lebesgue (1875-1941) recast Lambert's proof. He defined A 1 , A 2 , A 3 , etc., such that

tan x = x 1 + A 1 A 1 = - x 2 3 + A 2 A 2 = - x 2 5 + A 3 . . . . . . A k = - x 2 2k + 1 + A k+1 . . . . . . with for A k the general expression A k = ∞ n=0 (-1) n+1 x 2n+2 (2n + 2)(2n + 4) • • • (2n + 2k) (2n + 2k + 1)! ∞ n=0 (-1) n x 2n (2n + 2)(2n + 4) • • • (2n + 2k -2) (2n + 2k -1)! Given that Lambert defines ( §. 6) B = AQ + R , A = R Q + R , R = R Q + R , etc., it is easy to see that B A = Q + A 1 v , A R = Q + A 2 v
, etc., and that in fact Lebesgue's A k is related to Lambert's R k by

A k = v R k R k-1
where the series for R k are given in §. 8, with the exception of the signs, the alternating initial signs having vanished because all the quotients Q i are taken positive.

Lebesgue then gave the general expression of the convergents, but as a fraction of polynomials in v, whereas Lambert gave the series for the numerators and denominators as functions of w ( §. 24):

P n = 1 • 3 • 5 • • • (2n -1) × k=1 (-1) k-1 v 2k-1 (2k -1)! (2n -2k)(2n -2k -2) • • • (2n -4k + 4) (2n -1)(2n -3) • • • (2n -2k + 3) Q n = 1 • 3 • 5 • • • (2n -1) × k=0 (-1) k v 2k (2k)! (2n -2k)(2n -2k -2) • • • (2n -4k + 2) (2n -1)(2n -3) • • • (2n -2k + 1)
the sums being extended until the terms equal 0.

Lebesgue observes then that the expressions in the sums converge uniformly towards sin v and cos v, and that P n /Q n therefore converges uniformly towards tan v.

Lebesgue seems also to be the only one to comment upon Lambert's notion of "primary tangent" [97, p. 107].

Lebesgue's derivation was used by several authors [149, 114, 46] as a way of providing a more concise summary of Lambert's proof.

Eymard and Lafon [46] also follow Lebesgue, but they incorrectly attribute Legendre's lemma to Lambert. Lambert did not deduce the irrationality of a continued fraction from Legendre's first lemma, but instead used a much more complex reasoning.

Pringsheim's renewal (1899) and the rediscovery of Gauss (1932)

In 1899, Alfred Pringsheim (1850-1941), spurred by what he considered to be unfair uncounts of Lambert's merits, gave a summary of Lambert's memoir and claimed [122, p. 326] that Lambert had completely proved the irrationality of π and that Legendre's work instead lacked at proofs of existence and convergence of the infinite continued fractions. I refer the reader to Pringsheim's article on the convergence of continued fractions [121].

Pringsheim returned to Lambert in the 1930s when commenting Gauss's Nachlass published in 1900 [123, 124]. For some reason, Gauss's observations were pretty much ignored until they were rediscovered at the beginning of the 21st century.

More concise proofs by Niven and others

Several new proofs of the irrationality of π were published in the 1940s and 1950s. One of the more popular ones was the proof published by Niven in 1947 [109]. It was in turn borrowed or adapted by others [137, 1].

Recent summaries and comments

As part of the 1977 international conference celebrating the 200th anniversary of Lambert's death, Viola [148, p. 239-242] gave another summary of Lambert's main memoir.

In 2000, Wallisser [150] gave a summary of the proofs of Lambert and Legendre, but with some inaccuracies (for instance on the definitions of P and M in Lambert's §. 38), and omitting Pringsheim's second article on Gauss's work [124].

In 2003, Baltus [7] seeked to settle the matter of the completeness of Lambert's proof. Apparently in ignorance of Gauss's earlier findings [123, 124], Baltus rediscovered14 the gap in Lambert's proof in §. 49, where Lambert does not clearly prove that the sequence R , R , R , etc., tends to 0. Baltus provided a fix for the "gap."

Chapter 2

Lambert's memoir (1767)

Memoir on some remarkable properties of the circular and logarithmic transcendental quantities 1 by Mr. Lambert 2 §. 1.

Proving that the diameter of the circle is not to its circumference like an integer to an integer, this is something which geometers will hardly take as a surprise. The numbers of Ludolph, 3 the ratios found by Archimedes, 4

1 "Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques," Histoire de l'Académie Royale des Sciences et Belles-Lettres, Année 1761, tome XVII, Berlin, 1768, pp. 265-322 [92]. Translated from the French by Denis Roegel, 2010-2012. With the exception of the first note, all the notes are from the translator. This translation tries to be as faithful as possible, but intends to remain intelligible. In order to clarify certain passages, a number of notes, as well as several appropriate figures have been added.

2 Read in 1767. (original footnote) [START_REF] Archimedes | Measurement of a circle[END_REF] Ludolph van Ceulen (1540-1610) published a 20-decimal value of π in 1596 (see Vanden circkel daer in gheleert werdt te vinden de naeste proportie des circkels-diameter teghen synen omloop etc., 1596, Folio 14 [26], and 1615, Folio 24 [28]). In his Arithmetische en geometrische fondamenten (1615), p. 163 [27], published by his widow, he reached thirtytwo decimal places. Finally, Willebrord Snell, in his Cyclometricus (1621), p. 55 [139], published Van Ceulen's final triumph, π to 35 places. See also [58, 57, 62] on the early history of the computation of π. [START_REF] Arndt | Pi : Algorithmen, Computer, Arithmetik[END_REF] Archimedes (c. 287 BC-c. 212 BC) found the approximation π 4 ≈ 11 14 , therefore π ≈ 21 by Metius 5 etc., as well as a great number of infinite series are known, and they are all related to the quadrature of the circle. [START_REF] Bailey | Pi: The next generation -A sourcebook on the recent history of pi and its computation[END_REF] And if the sum of these series is a rational amount, it is rather natural to conclude that it will either be an integer, or a very simple fraction. Indeed, if a very complex fraction were needed, why would it be rather this fraction instead of any other? For instance, it is the case that the sum of the series

2 1 • 3 + 2 3 • 5 + 2 5 • 7 + 2 7 • 9 + &c.
is equal to one, [START_REF] Baltus | Continued fractions and the first proofs that π is irrational[END_REF] which of all the rational quantities is the simplest one. But, by omitting alternatively the 2nd, 4th, 6th, 8th &c. terms, the sum of the remaining ones 8

2 1 • 3 + 2 5 • 7 + 2 9 • 11 + 2 13 • 15 + &c.
gives the surface of the circle, when the diameter is = 1. It seems therefore that, if this sum were rational, it should also be expressed by a most simple fraction, such as would be 3 4 or 4 5 &c. Indeed, the diameter being = 1, the radius = [START_REF] Aigner | Proofs from The Book[END_REF] 2 , the square of the radius = 1 4 , it is obvious that these expressions being so simple would not be an obstacle to it. And since we are dealing with the whole circle, which represents a kind of unit, and not with some sector, which by its nature would require very large fractions, it is consequently again obvious that there is no reason to expect a very complex fraction. But since, after the fraction [START_REF] Friedrich | Johann Heinrich Lambert (1728 bis 1777[END_REF] 14 found by Archimedes, which gives only an approximation, we go to that of Metius,355 452 , which is also not exact, and in which the numbers are considerably larger, one must be led to conclude, that the sum of this series, far from being equal to a simple fraction, is an irrational quantity.

§. 2. However vague this reasoning be, there are nevertheless cases where nothing more is required. But this is not the case of the quadrature of 22 7 . See Archimedes' Measurement of a circle in Heath, The works of Archimedes, 1897 [3] and Knorr [89]. [START_REF] Aycock | Euler und die analytische Theorie der Kettenbrüche[END_REF] Metius (1571-1635) found the approximation π 4 ≈ 355 452 , therefore π ≈ 355 113 . See his Arithmeticae et Geometriae practica, 1611 [103], (attested by Prouhet [126]). [START_REF] Bailey | Pi: The next generation -A sourcebook on the recent history of pi and its computation[END_REF] The quadrature of the circle is the process of squaring the circle, that is, constructing √ π using a compass and a straightedge, which is impossible because π is transcendental. This was proven by Lindemann in 1882 [101, 69, 51]. See also the work of Sylvester [145, 144] who proved the transcendance as an extension of Lambert's proof. [START_REF] Baltus | Continued fractions and the first proofs that π is irrational[END_REF] This is easily seen given that the partial sums are 1 1 -

1 3 + 1 3 -1 5 + 1 5 -1 7 + • • • + 1 2n+1 -1 2n+3 = 1 -1 2n+3 . 8 This sum is equal to π 4 .
the circle. [START_REF] Heine | Enter, stage center: The early drama of the hyperbolic functions[END_REF] Most of those who are trying to find it, do so with an ardour which sometimes drives them to cast doubt on the most fundamental and well established truths of geometry. Would one believe that they would be satisfied by what I just wrote? Much more is needed. And if the purpose is to prove that the diameter is not to the circumference like an integer to an integer, this proof must be so solid, that it does not give in to a geometric proof. And with all that, I come back saying that geometers will not be surprised by it. They must have long been accustomed not to expect anything else. But here is what will deserve more attention, and which will make up a good part of this memoir. We want to show that, whenever a circle arc is commensurable to the radius, the tangent of the arc is not commensurable with it; 10 and reciprocally, every commensurable tangent is not that of a commensurable arc. Now we have a reason to be more surprised. This proposition would seem to admit an infinity of exceptions, but it admits none. Moreover it shows how much the transcendental circular quantities are transcendental, and removed beyond all commensurability. Since the proof which I will give requires the entire geometric rigour, and that in addition it will weave a number of other theorems which have to be proven with as much rigour, these reasons will excuse me when I will not hasten to reach the end, or when I will stop along the way to whatever remarkable thing shall present itself. §. 3. Let thus be given any arc commensurable to the radius: and we have to find if this arc will at the same time be commensurable to its tangent or not. Consider now a fraction such that its numerator be equal to the given arc, and its denominator be equal to the tangent of this arc. It is clear that no matter how this arc and its tangent are expressed, this fraction must be equal to another fraction, whose numerator and denominator are integers, whenever the given arc happens to be commensurable to its tangent. It is also clear that this second fraction can be deduced from the first one, by the same method as the one which is used in arithmetic to reduce a fraction to its smallest denominator. This method is known since Euclid, who made it the 2nd proposition of his 7th book [START_REF] Friedrich | Johann Heinrich Lambert (1728 bis 1777[END_REF] , and I will not stop proving it again. [START_REF] Heine | Enter, stage center: The early drama of the hyperbolic functions[END_REF] If π were rational, √ π would be constructible and the quadrature of the circle would be possible. [START_REF] Friedrich | Lamberts Kettenbruch[END_REF] The two lengths are those of the arc AC and of the part AB of the tangent delimited by the line from the center of the circle to the end of the arc. This tangent is only equal to the modern tangent function when the radius is equal to 1.

O A C B

But it should be noted that, whereas Euclid only applies it to integer and rationals, I will have to use it in a different way, when it has to be applied to quantities, of which it is still ignored whether they are rational or not. Here is therefore the procedure which fits the present case. §. 4. Let the radius = 1, and v = any given arc. [START_REF] Friedrich | Gregory-Leibniz und Euler : Arcus-Cotangens-Relationen (Anläßlich des 300. Geburtstags von Leonhard Euler)[END_REF] And we will have the two well known infinite series 13

sin v = v - 1 2 • 3 v 3 + 1 2 • 3 • 4 • 5 v 5 - 1 2 • 3 • 4 • 5 • 6 • 7 v 7 + &c. cos v = 1 - 1 2 v 2 + 1 2 • 3 • 4 v 4 - 1 2 • 3 • 4 • 5 • 6 v 6 + &c.
Since I will give in the sequel two series for the hyperbola which will only differ from these two series in that all signs are positive, 14 I will defer until that point the proof of the progression of these series, and I will in fact only prove it so that nothing required by geometric rigour be omitted. It is sufficient to have warned the readers beforehand. §. 5. Since

tan v = sin v cos v ,
we will have, substituting these two series, the fraction

tan v = v -1 2•3 v 3 + 1 2•3•4•5 v 5 -&c. 1 -1 2 v 2 + 1 2•3•4 v 4 -&c.
For more brevity, I will set

tan v = A B , so that A = sin v, B = cos v.
Here is now the procedure prescribed by Euclid. §. 6. B is divided by A; let the quotient = Q , the remainder = R . A is divided by R ; let the quotient = Q , the remainder = R . R is divided by p. 298 [43].

12 v is therefore the angle of the arc expressed in radians. [START_REF] Friedrich | Kettenbruch-Phänomene : Teil I : Periodische Kettenbrüche[END_REF] These series were first obtained by Newton in 1669, but only published in 1711 (Analysis per quantitatum series, fluxiones, ac differentias cum enumeratione linearum tertii ordinis, London) [108]. See Katz, "The calculus of the trigonometric functions", Historia mathematica 14 (1987), 311-324 [88], and Ferraro, The rise and development of the theory of series up to the early 1820s, Springer, 2008 [49]. [START_REF] Friedrich | Kettenbruch-Phänomene : Teil II : Wechselwegnahme für transzendente Zahlen[END_REF] See §. 73.

R ; let the quotient = Q , the remainder = R . R is divided by R ; let the quotient = Q iv , the remainder = R iv . &c. so that by continuing these divisions, one successively finds [START_REF] Friedrich | Übersehene numerische Aspekte in der Geschichte der Kettenbrüche[END_REF] the quotients 

Q , Q , Q . . . Q n , Q n+1 , Q n+2 . . . &c. the remainders R , R , R . . . R n , R n+1 ,
Q = +1 : v, Q = -3 : v, Q = +5 : v, Q iv = -7 : v, &c.
and in general

Q n = ±(2n -1) : v,
where the + sign stands for odd n exponents, [START_REF] Berggren | Pi: A source book[END_REF] thesign for even n exponents, and that therefore we will have for the tangent expressed by the arc the very simple continued fraction 18

tan v = 1 1 : v -1 3 : v -1 5 : v -1 7 : v -1 9 : v -&c. §. 8
. Second, that the remainders R , R , R &c will be expressed by the [START_REF] Beckmann | A history of π[END_REF] Lambert divides the power series, keeping the smallest degree for the quotient. The proofs are given in §. 9. [START_REF] Berggren | Pi: A source book[END_REF] The original article had mistakenly swapped "even" and "odd." [START_REF] Beukers | A note on the irrationality of ζ(2) and ζ(3)[END_REF] This is obtained in §. 14.

15 B = AQ + R , A = R Q + R , R = R Q + R , etc.
following series, whose progression laws are also very simple:

19 R = - 2 2 • 3 v 2 + 4 2 • 3 • 4 • 5 v 4 - 6 2 • 3 • 4 • 5 • 6 • 7 v 6 + &c. R = - 2 • 4 2 • 3 • 4 • 5 v 3 + 4 • 6 2 • 3 • 4 • 5 • 6 • 7 v 5 - 6 • 8 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 v 7 + &c. R = + 2 • 4 • 6 2 • • • 7 v 4 - 4 • 6 • 8 2 • • • 9 v 6 + 6 • 8 • 10 2 • • • 11 v 8 -&c. R iv = + 2 • 4 • 6 • 8 2 • • • 9 v 5 - 4 • 6 • 8 • 10 2 • • • 11 v 7 + 6 • 8 • 10 • 12 2 • • • 13 v 9 -&c.
that is, the signs of the first terms change according to the quaternary sequence --+ +, and in general we will have 20

±R n = - 2 n (1 • 2 • • • n) 1 • 2 • • • (2n + 1) v n+1 + 2 n (2 • • • (n + 1)) 1 • 2 • • • (2n + 3) v n+3 -&c. ±R n+1 = - 2 n+1 (1 • 2 • • • (n + 1)) 1 • 2 • • • (2n + 3) v n+2 + 2 n+1 (2 • • • (n + 2)) 1 • 2 • • • (2n + 5) v n+4 -&c. ∓R n+2 = + 2 n+2 (1 • 2 • • • (n + 2)) 1 • 2 • • • (2n + 5) v n+3 - 2 n+2 (2 • • • (n + 3)) 1 • 2 • • • (2n + 7) v n+5 + &c. §. 9.
In order to give to the proof of these theorems all the needed brevity, let us consider that each remainder R n+2 is obtained by dividing by the remainder R n+1 , which precedes it immediately, the antepenultimate one [START_REF] Beukers | A rational approach to π[END_REF] See §. 13. [START_REF] Boros | Irresistible integrals: Symbolics, analysis and experiments in the evaluation of integrals[END_REF] The original expressions contained several errors. I have slightly altered the second terms to make the expressions more understandable by comparison with those of §. 11. As observed by Speiser [96, p. 116], more general expressions are

R 4n+1 = - 2 4n+1 (1 • 2 • • • (4n + 1)) 1 • 2 • • • (8n + 3) v 4n+2 + 2 4n+1 (2 • • • (4n + 2)) 1 • 2 • • • (8n + 5) v 4n+4 -&c. R 4n+2 = - 2 4n+2 (1 • 2 • • • (4n + 2)) 1 • 2 • • • (8n + 5) v 4n+3 + 2 4n+2 (2 • • • (4n + 3)) 1 • 2 • • • (8n + 7) v 4n+5 -&c. R 4n+3 = + 2 4n+3 (1 • 2 • • • (4n + 3)) 1 • 2 • • • (8n + 7) v 4n+4 - 2 4n+3 (2 • • • (4n + 4)) 1 • 2 • • • (8n + 9) v 4n+6 + &c. R 4n+4 = + 2 4n+4 (1 • 2 • • • (4n + 4)) 1 • 2 • • • (8n + 9) v 4n+5 - 2 4n+4 (2 • • • (4n + 5)) 1 • 2 • • • (8n + 11) v 4n+7 + &c.
This can be abridged as

R n = (-1) n(n+1)/2 2 n ∞ m=0 (-1) m (n + m)! m!(2n + 2m + 1)! v n+2m+1
which was given by Popken in 1948 [119], apart from a slight change of notation.

R n . 21 This consideration entails that the proof can be split in two parts.

In the first, we must show that if two remainders R n , R n+1 , which are in immediate sequence, have the form I assigned to them, the remainder R n+2 which follows immediately shall have the same form. Once this is proven, it only remains to show in the second part of the proof, that the form of the first two remainders is the one they must have. For, in that manner, it is obvious that the form of all the following ones will be established like by itself.22 §. 10. Let us start to divide the first term of the remainder R n by the first term of the remainder R n+1 , in order to obtain the quotient

Q n+2 = 2 n (1 • 2 • 3 • • • n) 1 • 2 • 3 • • • (2n + 1) v n+1 : 2 n+1 (1 • 2 • 3 • • • (n + 1)) 1 • 2 • 3 • • • (2n + 3) v n+2 = 1 : 2(n + 1)v (2n + 2) • (2n + 3) = (2n + 3) : v.
And it is clear [START_REF] Brandenberger | Die arithmetischen Theorien der Irrationalzahlen[END_REF] that the remainder R n+1 being multiplied by this quotient

Q n+2 = (2n + 3) : v,
and the product being subtracted from the remainder R n , there must remain the remainder R n+2 . §. 11. But in order to avoid having to do this operation separately for each term and consequently in order to restrict ourselves to a mere induction, let us take the general term of each of the series which express the remainders R n , R n+1 , R n+2 , so that by taking the m-th term 24 of the remainders R n , R n+1 , we take the (m -1)-th term of the remainder R n+2 . This being set, as mentioned above ( §. 7.), the sign of Q n+2 is alternating:

B(+) 1/v -→ A(+) -3/v -→ R (-) 5/v -→ R (-) -7/v -→ R (+) 9/v -→ R iv (+) -11/v -→ R v (-) 13/v -→ R vi (-) -15/v -→ R vii (+) 17/v -→ R viii (+) etc.
, where the signs of the first terms are given between parentheses and the values of Q , Q , Q , Q iv , etc., are given over the arrows. [START_REF] Breusch | A proof of the irrationality of π[END_REF] This is because of

R n = R n+1 Q n+2 + R n+2 , because Q n+2 = (2n + 3)/v
and because of the expressions of R n , R n+1 and R n+2 seen above.
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these terms will be 25

±r n = - 2 n (m • (m + 1) • (m + 2) • • • (n + m -1))v n+2m-1 1 • 2 • 3 • 4 • • • (2n + 2m -1)
±r n+1 = - 2 n+1 (m • (m + 1) • (m + 2) • • • (n + m))v n+2m 1 • 2 • 3 • 4 • • • (2n + 2m + 1)
±r n+2 = - 2 n+2 ((m -1) • m • (m + 1) • • • (n + m))v n+2m-1 1 • 2 • 3 • 4 • • • (2n + 2m + 1)
But, since we must have

r n -r n+1 • (2n + 3) : v = r n+2 ,
and that we have indeed 26

r n -r n+1 (2n + 3) : v = - 2 n • (m • • • (n + m -1))v n+2m-1 1 • 2 • 3 • • • (2n + 2m -1) + 2 n+1 • (m • • • (n + m))v n+2m 1 • 2 • 3 • • • (2n + 2m + 1) • 2n + 3 v = 2 n • (m • • • (n + m -1)) 1 • 2 • • • (2n + 2m -1) v n+2m-1 • -1 + 2 • (n + m) • (2n + 3) (2n + 2m) • (2n + 2m + 1) = - 2 n • (m • • • (n + m -1)) 1 • 2 • • • (2n + 2m -1) v n+2m-1 • (2m -2) • (2n + 2m) (2n + 2m) • (2n + 2m + 1) = - 2 n+2 • ((m -1) • m(m + 1) • • • (n + m))v n+2m-1 1 • 2 • 3 • • • (2n + 2m + 1) ,
and therefore = ±r n+2 .

It appears that, given the form that I gave to the remainders R n , R n+1 , the remainder R n+2 will have the same form. [START_REF] Ludolf Van Ceulen | Arithmetische en geometrische fondamenten[END_REF] It therefore only remains to check the form of the first two remainders R , R , in order to establish what this first part of our proof had admitted as true as an hypothesis. And this will be the second part of the proof. [START_REF] Brezinski | History of continued fractions and Pade approximants[END_REF] The first terms of R n and R n+1 correspond to m = 1, but the first term of R n+2 corresponds to m = 2. Lambert therefore associates R n m+1 , R n+1 m+1 and R n+2 m . The expressions are given here so that the terms can be associated with the same value of m. The original expressions contained errors. [START_REF] Ludolf Van Ceulen | Vanden circkel daer in gheleert werdt te vinden de naeste proportie des circkels-diameter teghen synen omloop etc[END_REF] The original expressions contained errors. [START_REF] Ludolf Van Ceulen | Arithmetische en geometrische fondamenten[END_REF] However, the remainders do not always appear in this order of signs, and the sign of Q n+2 also changes. The above has made the implicit assumption that Q n+2 is always positive. There are only two configurations. Either the signs of r n , r n+1 and r n+2 are §. 12. For that purpose, let us recall that the first remainder R is the one remaining when dividing 28

cos v = 1 - 1 2 v 2 + 1 2 • 3 • 4 v 4 • • • 1 1 • • • m v m • • • &c.
by

sin v = v - 1 2 • 3 v 3 + 1 2 • 3 • 4 • 5 v 5 • • • 1 1 • • • (m + 1) v m+1 • • • &c.
But the quotient [START_REF] Chrystal | Algebra: An elementary text-book for the higher classes of secondary schools and for colleges[END_REF] resulting from the division of the first term, being = 1 : v, we see that we will have

R = cos v - 1 v • sin v.
Multiplying thus the general term of the divider,

± 1 1 • 2 • • • (m + 1) v m+1
, by 1 : v, and subtracting the product

± 1 1 • 2 • • • (m + 1) • v m ,
from the general term of the dividend

± 1 1 • 2 • • • m • v m ,
we will have the general term of the first remainder R

r = ± m • v m 1 • • • (m + 1)
.

identical, or they are alternating. The second configuration is that of

±r n = + 2 n (m • (m + 1) • (m + 2) • • • (n + m -1))v n+2m-1 1 • 2 • 3 • 4 • • • (2n + 2m -1)
±r n+1 = - 2 n+1 (m • (m + 1) • (m + 2) • • • (n + m))v n+2m 1 • 2 • 3 • 4 • • • (2n + 2m + 1)
±r n+2 = + 2 n+2 ((m -1) • m • (m + 1) • • • (n + m))v n+2m-1 1 • 2 • 3 • 4 • • • (2n + 2m + 1)
We then have Q n+2 = -(2n + 3) : v and it is easy to verify that we have

r n -r n+1 Q n+2 = r n + r n+1 • (2n + 3) : v = r n+2
, the computation being almost identical to that of §. 11. [START_REF] Ludolf Van Ceulen | Vanden circkel daer in gheleert werdt te vinden de naeste proportie des circkels-diameter teghen synen omloop etc[END_REF] See §. 5. [START_REF] Chrystal | Algebra: An elementary text-book for the higher classes of secondary schools and for colleges[END_REF] Hence Q = 1 v .

(m + 1) being always an odd number, m will be an even number, and the first remainder will be

R = - 2 2 • 3 v 2 + 4 2 • 3 • 4 • 5 v 4 - 6 2 • • • 7 v 6 + &c.
as we did assume it.30 §. 13. The second remainder R results from the division of

sin v = v - 1 2 • 3 v 3 + 1 2 • 3 • 4 • 5 v 5 -&c. • • • ± 1 1 • 2 • • • (m -1) v m-1
by the first remainder that we just obtained31 

R = - 2 2 • 3 v 2 + 4 2 • 3 • 4 • 5 v 4 - 6 2 • • • 7 v 6 + • • • ∓ mv m 1 • • • (m + 1)
However the quotient resulting from the division from the first term, being = -3 : v, we see that it will be32 

R = sin v -- 3 v • R .
Multiplying thus the general term of the divisor

∓ mv m 1 • • • (m + 1)
, by -3 : v, and subtracting the product

± 3mv m-1 1 • • • (m + 1)
, from the general term of the dividend

± 1 1 • • • (m -1) v m-1 ,
the general term from the second remainder will be

r = ± v m-1 1 • • • (m -1) ∓ 3mv m-1 1 • • • (m + 1) = ± (m -2) • m • v m-1 1 • • • (m + 1) .
Substituting thus the even numbers for m, we will have the second remain-

der 33 R = - 2 • 4 2 • 3 • 4 • 5 v 3 + 4 • 6 2 • • • 7 v 5 - 6 • 8 2 • • • 9 v 7 + &c.
again as we have assumed it. [START_REF] Raymond | -1777[END_REF] Consequently, the form of the first two remainders being proven, it follows, from the first part of our proof, that the form of all the following remainders is also proven. [START_REF] De | Quadrature of the circle[END_REF] §. 14. It is now no longer necessary to prove separately the progression law of the quotients Q , Q , Q &c. [START_REF] Oliveira | Uma prova elementar da irracionalidade de π. C.Q.D[END_REF] Indeed, the law of the remainders being proven, it is also proven that any quotient will be ( §. 10) 37

±Q n+2 = (2n + 3) : v,
which, by virtue of the theory of continued fractions, [START_REF] Desbrow | On the irrationality of π 2[END_REF] gives

tan v = 1 1 : v -1 3 : v -1 5 : v -1 7 : v -1 9 : v -1 11 : v -1 &c.
33 ± meaning that the first term is positive, but there being no term in v, we start with a negative sign. [START_REF] Raymond | -1777[END_REF] See §. 8. [START_REF] De | Quadrature of the circle[END_REF] This is not totally true, because the first part of the proof is not complete. [START_REF] Oliveira | Uma prova elementar da irracionalidade de π. C.Q.D[END_REF] A more rigorous proof would have included the general form of the quotients, with their sign, in the induction. Right now, Lambert has only provided an incomplete induction. Once this proof is complete, the law of the quotients follows from the law of the remainders, but the latter needs the law of the quotients. . . [START_REF] Delahaye | Le fascinant nombre π[END_REF] Here Q n+2 is positive for n = 1, 3, 5, etc. [START_REF] Desbrow | On the irrationality of π 2[END_REF] We have

A B = tan v, B A = Q + R A , A R = Q + R R , R R = Q + R R , etc., from which it follows that tan v = 1 Q + 1 Q + 1 Q +•••
, which corresponds to the given expression, when the signs are factored out :

tan v = 1 1 : v -1 3 : v -1 5 : v -1 7 : v -1 9 : v -1 11 : v -1 &c. = 1 1 : v + 1 -3 : v + 1 5 : v + 1 -7 : v + 1 9 : v + 1 -11 : v + 1 &c
. This does of course assume that the continued fraction converges.

from which we see at the same time, that whenever the arc v is equal to an aliquot part of the radius, all these quotients will be integers increasing in an arithmetic progression. [START_REF] Dupont | Irrationalité de Pi[END_REF] And this is what must be observed, because in Euclid 's theorem mentioned above ( §. 3.) all the quotients are assumed to be integers. Hence up to now the method prescribed by Euclid will be applicable to all these cases where the arc v is an aliquot part of the radius. But, again in these cases, there is another circumstance that must be observed.

§. 15. The problem proposed by Euclid is to find the greatest common divisor of two integer numbers, which are not mutually prime. This problem can be solved whenever one of the remainders R , R , R &c. • • • R n becomes = 0, the previous remainder R n-1 being different from unity, which case, according to the 1st Proposition 40 of the same book only occurs when the two given numbers are mutually prime, assuming of course that all quotients Q , Q , Q &c. are integers. But we have just seen that the latter assumption is true in the present case, whenever [START_REF] Aigner | Proofs from The Book[END_REF] v is an integer. But, regarding the remainders R , R , R &c., none is becoming = 0. 41 On the contrary, considering the law of progression of the remainders that we have found, we see that they not only decrease without interruption, but that they even decrease more than any geometrical progression. [START_REF] Nikolaus | Handbuch der allgemeinen Arithmetik[END_REF] Although this continues for ever, we will nevertheless be able to apply Euclid 's proposition. Indeed, by virtue of this proposition, the greatest common divisor of A, B, is at the same time the greatest common divisor of all the remainders R , R , R &c. [START_REF]The thirteen books of Euclid's elements[END_REF] But since these remainders decrease in such a way that they become smaller than any assignable amount, it follows that the greatest common divisor of A, B, is smaller than any assignable amount; this means that there is none, and that therefore A, B, being incommensurable quantities,

tan v = A B
will be an irrational quantity whenever the arc v will be an aliquot part of the radius. [START_REF] Euler | De fractionibus continuis dissertatio[END_REF] 39 An aliquot part of an integer is a proper divisor of that integer. In other words, the radius being 1 and the arc being v (in radians), if v is an aliquot part of the radius, 1 : v is an integer, and so are 3 : v, 5 : v, etc. [START_REF] Dutka | The early history of the hypergeometric function[END_REF] See Heath 1908, volume 2, p. 296 [43]. [START_REF] Earl | Towards higher mathematics: a companion[END_REF] It is easy to see that the series are alternating series and that the terms are decreasing. Their sum can therefore not be equal to 0. [START_REF]The thirteen books of Euclid's elements[END_REF] The manuscript had R, R , R . [START_REF] Euler | De fractionibus continuis dissertatio[END_REF] For instance, tan(1), tan(1/2), tan(1/3), etc., are irrational, the angles being expressed in radians. §. 16. This is therefore the extent to which we can make use of Euclid 's proposition. We must now extend it to all cases where the arc v is commensurable with the radius. To this effect, and in order to prove a few other theorems, I will consider again the continued fraction

42 If v < 1, |R n | ≤ 2 n (n+1)•••(2n+1) ≤ 2 n n! .
tan v = 1 1 : v -1 3 : v -1 5 : v -1 7 : v -1 &c.
and by letting 1 : v = w, I will transform it into

tan v = 1 w -1 3w -1 5w -1 7w -1 &c. §. 17.
But, by keeping as many quotients w, 3w, 5w &c. as desired, one will have merely to simplify them, in order to have fractions expressing the tangent of v the more precisely that a greater number of the quotients were retained. So, it is for instance by retaining 1, 2, 3, 4 &c. quotients that we obtain the fractions

1 w , 3w 3w 2 -1 , 15w 2 -1 15w 3 -6w , 105w 3 -10w 105w 4 -45w 2 + 1
, §. 18. But, in order to do all these simplifications in order, & at the same time in order to prove the progression law followed by these fractions, we will first set

tan v = 1 w -a1 3w -a 5w-a = 1 w -1 3w -a 5w-a = = &c. 1 w -1 3w -1 5w -a
expressing by a, a , a , a • • • a n , a n+1 , a n+2 , . . . &c. the quantities resulting from the quotients that we wish to be omitted, so that in order to omit them, it will suffice to set a, a , a , . . . a n &c. = 0. §. 19. Now, I say, that by setting a n = 0, the fraction resulting from the simplification of the quotients retained, will have the form 45

tan v = A -ma n-1 B -pa n-1 ,
in which m, p, A, B do not contain a n-1 . Let us first assume this form to be the true one, and we will easily prove that by retaining an additional quotient, the fraction resulting from the reduction will have the same form. Indeed since we have [START_REF] Eymard | Autour du nombre π[END_REF] a n-1 = 1 (2n + 1)w -a n , it will suffice to substitute this value in the proposed form, and it will be transformed into

tan v = A(2n + 1)w -m -A • a n B(2n + 1)w -p -B • a n ,
Since this is the same form, it will be sufficient to show that it is true for the member a , because it will then be true for all following members a , a , a iv . . . &c. But for the member a it is

tan v = 1 w -1 3w -a
which after reduction gives

tan v = 3w -a 3w 2 -1 -wa ,
the form as we assumed it. [START_REF] Albert | Grundlehren der höhern Analysis[END_REF] § 20. Now that we have found

tan v = A -ma n-1 B -pa n-1
45 In §. 19-21, a number of occurrences of n have been replaced by n -1. This was considered the best means to fall back on correct results. Speiser also made amendments in 1948, but different ones [96]. Contrary to the text edited in 1948, I did not have to alter other sections such as §. 33 and §. 34. [START_REF] Eymard | Autour du nombre π[END_REF] The original article had mistakenly written

a n = 1 (2n + 1)w -a n+1 ,
but this had no consequences, as the correct fractions were used in §. 22.

tan v = A(2n + 1)w -m -A • a n B(2n + 1)w -p -B • a n ,
let us substitute also for a n its value

a n = 1 (2n + 3)w -a n+1 ,
and we will have

tan v = [A(2n + 1)w -m] • (2n + 3)w -A -[A(2n + 1)w -m] • a n+1 [B(2n + 1)w -p] • (2n + 3)w -B -[B(2n + 1)w -p] • a n+1 §. 21
. So, by letting in each of these three values of tan v, the members a n-1 , a n , a n+1 equal to zero, we will obtain the general form of the fractions that we have to find. These three fractions being for the omission of a n-1 , a n , a n+1 , they come in sequence, and it is easy to see that the third can be obtained using the previous two, so that its numerator and its denominator can be computed separately. [START_REF] Ferraro | The rise and development of the theory of series up to the early 1820s[END_REF] This follows because the numerator of the second fraction must be multiplied by the quotient corresponding to a n , and from the product one subtracts the numerator from the first fraction. The remainder will be the numerator from the third fraction. Its denominator is obtained similarly using the denominators of the two previous fractions. §. 22. Now, in order to obtain the fractions themselves, it suffices to write the quotients in three columns, with the numerators and denominators of the first two fractions ( §. 17.) and the following numerators and denominators will be obtained by the simple operation we have just indicated. Here is the [START_REF] Fantet De Lagny | Mémoire sur la quadrature du cercle, et sur la mesure de tout arc, tout secteur, et tout segment donné[END_REF] Note incidentally that the fraction preceding A B is m p . This will be used again in §.33. [START_REF] Ferraro | The rise and development of the theory of series up to the early 1820s[END_REF] By using these fractions, Lambert dispenses with the values of m and p. 

-45w 2 + 1 11w 945w 4 -105w 2 + 1 945w 5 -420w 3 + 15w &c. 10395w 5 -1260w 3 + 21w 10395w 6 -4725w 4 + 210w 2 -1 &c. &c.
This gives the fractions

1 w , 3w 3w 2 -1 , 15w 2 -1 15w 3 -6w , 105w 3 -10w 105w 4 -45w 2 + 1 &c.
of which each one is expressing the tangent of v better than those which precede it. §. 23. However, although by means of the rule we have just given ( §. 21.), each of these fractions can be obtained from the two which precede it immediately, it will be convenient, in order to avoid a kind of induction, to give and to prove the general expression. Let us first observe that the coefficients of each vertical column obey a very simple law in that its factors are partly figured numbers and partly odd numbers. Here they are resolved

Fraction Quotient Denominator 1st w 2nd 5w 3 • w 2 -1 • 1 3rd 7w 3 • 5 • w 3 -2 • 3w 4th 9w 3 • 5 • 7w 4 -3 • 3 • 5w 2 + 1 • 1 5th 11w 3 • • • • 9w 5 -4 • 3 • 5 • 7w 3 + 3 • 5w 6th 13w 3 • • • 11w 6 -5 • 3 • • • • 9w 4 + 6 • 5 • 7w 2 -1 • 1 7th 15w 3 • • • 13w 7 -6 • 3 • • • 11w 5 + 10 • 5 • 7 • 9w 3 -4 • 7w &c.
&c. &c. [START_REF] Heinrich | [END_REF] The quotients represent the values of 2n + 3 for n = 1, 2, . . .. So we have

5w × 3w -1 = 15w 2 -1 5w × (3w 2 -1) -w = 15w 3 -6w 7w × (15w 2 -1) -3w = 105w 3 -10w, etc.
Fraction Quotient Numerator 1st

1 2nd 5w 3 • w 3rd 7w 3 • 5 • w 2 -1 • 1 4th 9w 3 • 5 • 7w 3 -2 • 5w 5th 11w 3 • • • • 9w 4 -3 • 5 • 7w 2 + 1 • 1 6th 13w 3 • • • 11w 5 -4 • 5 • 7 • 9w 3 + 3 • 7w 7th 15w 3 • • • 13w 7 -5 • 5 • • • 11w 4 + 6 • 7 • 9w 2 -1 • 1 &c.
&c. &c. §. 24. This observation makes it easier for us to find the general expression for any of the fractions. Let the n-th fraction be given, and we will have its Denominator

= w n [1 • 3 • 5 • 7 • • • (2n -1)] - w n-2 2 • [(2n -2) • 1 • 3 • 5 • 7 • • • (2n -3)] + w n-4 2 • 3 • 4 • [(2n -4) • (2n -6) • 1 • 3 • 5 • • • (2n -5)] - w n-6 2 • 3 • 4 • 5 • 6 • [(2n -6) • (2n -8) • (2n -10) • 1 • 3 • 5 • • • (2n -7)] + w n-8 2 • 3 • 4 • 5 • 6 • 7 • 8 • [(2n -8)(2n -10)(2n -12)(2n -14) • •1 • 3 • 5 • 7 • • • (2n -9)] -&c. Numerator = w n-1 [1 • 3 • 5 • 7 • • • (2n -1)] - w n-3 2 • 3 • [(2n -4) • 1 • 3 • 5 • 7 • • • (2n -3)] + w n-5 2 • 3 • 4 • 5 • [(2n -6) • (2n -8) • 1 • 3 • 5 • 7 • • • (2n -5)] - w n-7 2 • 3 • 4 • 5 • 6 • 7 • [(2n -8) • (2n -10) • (2n -12) • 1 • 3 • 5 • 7 • • • (2n -7)] + w n-9 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • [(2n -10)(2n -12)(2n -14)(2n -16) • 1 • 3 • 5 • 7 • • • (2n -9)] -&c.
It therefore only remains to prove the universality of these expressions. §. 25. This will be done in that by admitting this form for the n-th fraction, we deduce the forms for the (n-1)-th and (n-2)-th, by substituting (n -1), (n -2) for n. Then, one proceeds in accordance with the rule of §. 21. by deducing both the denominator and the numerator of the n-th fraction, from those of the two preceding fractions as we have found them using the first operation. And by that, we must reproduce the form of the n-th fraction, as we have given it. It is clear that this procedure leads to establish that if two fractions which are in immediate sequence have this form, the one which follows them will also have this form, and that consequently, since the fractions from the previous table, which are the first ones, have this form, it will follow that all the following ones will also have this form.

§. 26. So, if in order to abridge this proof, we want to restrict ourselves to the general term, it will nevertheless be necessary to compute separately the one of the numerator and the one of the denominator, be it only to simplify the computation. Indeed, both will be computed using the same rule ( §. 21.). Let us begin with the denominator, and in taking the m-th term of its general expression for the n-th fraction, it will also be necessary to take the m-th term for the (n -1)-th fraction, but we will only take the (m -1)-th term for the (n -2)-th fraction. We see that we must do so with respect to the dimensions or exponents of the letter w.

§. 27. Now, the m-th term of the n-th fraction for the denominator is

M = w n-2m+2 • [(2n -2m + 2) • (2n -2m) • (2n -2m -2) • • • (2n -4m + 6)] • [1 • 3 • 5 • • • (2n -2m + 1)] 1 • 2 • 3 • 4 • 5 • • • (2m -2)
from which, by substituting (n -1) for n, we find the m-th term of the (n -1)-th fraction

M = w n-2m+1 • [(2n -2m) • (2n -2m -2) • • • (2n -4m + 4)] • [1 • 3 • 5 • • • (2n -2m -1)] 1 • 2 • 3 • 4 • 5 • • • (2m -2)
And by substituting (n -2) for n, and (m -1) for m, we find the (m -1)-th term of the (n -2)-th fraction. 51

-M = w n-2m+2 • [(2n -2m) • (2n -2m -2) • • • (2n -4m + 6)] • [1 • 3 • 5 • • • (2n -2m -1)] 1 • 2 • 3 • 4 • 5 • • • (2m -4)
But, by the rule of §. 21. we must have 52

M = (2n -1)w • M -M
51 For consistency, I assume that M , M , and M include the signs. The negative sign of M was absent from the original article. M and M have the same sign, and M is of opposite sign. [START_REF] Friedrich | Determinatio seriei nostrae per aequationem differentialem secundi ordinis[END_REF] That is in fact M = (2n -1)w • M + (-M ).

and consequently we will be able to remove from these three expressions all their common factors by setting them = P . From that we will have

+M = P • w • (2n -2m + 2) • (2n -2m + 1) (2m -2) • (2m -3) +M = P • (2n -4m + 4) (2m -2) • (2m -3) -M = P • w.
By setting

P (2m -2) • (2m -3) = Q, we will have 53 +M = Qw • (2n -2m + 2) • (2n -2m + 1) +M = Q • (2n -4m + 4) -M = Qw • (2m -2) • (2m -3).
From that, by multiplying, we will have

(2n -1)wM = Qw • (4n 2 -8mn + 6n + 4m -4) -M = Qw • (4m 2 -10m + 6) therefore (2n -1)wM -M = Qw(4n 2 -8nm + 6n + 4m 2 -6m + 2).
But we also have

M = Qw • (2n -2m + 2)(2n -2m + 1) = Qw(4n 2 -8nm + 6n + 4m 2 -6m + 2).
Since these two values are the same, it follows that

M = (2n -1)w • M -M ,
and that consequently the form, which we gave to the general term is such as it should be. 54 §. 28. Let us now move to the numerator. The m-th term of the numerator of the n-th fraction must be

+N = w n-2m+1 • [(2n -2m) • (2n -2m -2) • • • (2n -4m + 4)] • [1 • 3 • 5 • • • (2n -2m + 1)] 1 • 2 • 3 • 4 • 5 • • • (2m -1)
53 There were errors in the original expressions. [START_REF] Friedrich | Allgemeine Untersuchungen über die unendliche Reihe 1 + αβ 1.γ x + α(α+1)β(β+1) 1.2.γ(γ+1) xx + α(α+1)(α+2)β(β+1)(β+2) .2.3.γ(γ+1)[END_REF] In fact, the above proof is applicable only to the case m > 1. The case m = 1 is easily checked separately and in that case M = 0. from which, by substituting (n -1) for n, we find the same m-th term as for the (n -1)-th fraction,

+N = w n-2m • [(2n -2m -2) • (2n -2m -4) • • • (2n -4m + 2)] • [1 • 3 • 5 • • • (2n -2m -1)] 1 • 2 • 3 • 4 • 5 • • • (2m -1)
And by substituting (n -2), (m -1), for n, m, we will have the (m -1)-th term of the (n -2)-th fraction,

-N = w n-2m+1 • [(2n -2m -2) • (2n -2m -4) • • • (2n -4m + 4)] • [1 • 3 • 5 • • • (2n -2m -1)] 1 • 2 • 3 • 4 • 5 • • • (2m -3)
Therefore, setting the common factors to these three expressions = P , we will have

+N = P w • (2n -2m) • (2n -2m + 1) (2m -1) • (2m -2) +N = P • (2n -4m + 2) (2m -1) • (2m -2) -N = P w,
and by setting P = Q • (2m -1) • (2m -2), we will have

+N = Qw • (2n -2m) • (2n -2m + 1) +N = Q • (2n -4m + 2) -N = Qw • (2m -1) • (2m -2) But we must have N = (2n -1)w • N -N ,
therefore, by substituting the values found, we will have

(2n -1)wN = Qw • (4nn -8nm + 2n + 4m -2) -N = Qw(4m 2 -6m + 2), hence N = (2n -1)wN -N = Qw(4n 2 -8nm + 2n + 4m 2 -2m).
But the same value results from

N = (2n -2m) • (2n -2m + 1) • Qw.
It follows from that that the form of the general term is as it should be.55 §. 29. Let us take again the general expressions given in §. 24. and let us divide the one of the denominator by its first term, and we will have the series

1 - w -2 2 • 2n -2 2n -1 + w -4 2 • 3 • 4 • (2n -4) • (2n -6) (2n -1) • (2n -3) - w -6 2 • 3 • 4 • 5 • 6 • (2n -6) • (2n -8) • (2n -10) (2n -1)(2n -3)(2n -5) + w -8 2 • 3 • 4 • 5 • 6 • 7 • 8 • (2n -8) • (2n -10) • (2n -12) • (2n -14) (2n -1) • (2n -3) • (2n -5) • (2n -7) -&c.
which, by substituting56 v = w -1 , and by setting n = ∞, gives

1 - v 2 2 + v 4 2 • 3 • 4 - v 6 2 • 3 • 4 • 5 • 6 + &c.
which is the cosine of v, and consequently the denominator of which we made use ( §. 5.) to find the quotients w, 3w &c. §. 30. Let us moreover divide the general expression of the numerator ( §. 24.) by the same first term of the denominator, and we will have the series

w -1 - w -3 2 • 3 • 2n -4 2n -1 + w -5 2 • 3 • 4 • 5 • (2n -6) • (2n -8) (2n -1) • (2n -3) - w -7 2 • 3 • 4 • 5 • 6 • 7 • (2n -8) • (2n -10) • (2n -12) (2n -1) • (2n -3) • (2n -5) + &c. which gives for n = ∞ the series v - 1 2 • 3 v 3 + 1 2 • 3 • 4 • 5 v 5 -&c.
which is = sin v, and consequently the numerator, which was used in §. 5. §. 31. It also follows, that, no matter how big the first term of the two general formulae ( §. 24.) is, the second term, and even more the following ones, will not only be smaller, but even smaller than the [START_REF] Aigner | Proofs from The Book[END_REF] 2 , 1 2•3 , 1 2•3•4 &c. part of the first term. But, by substituting for n successively 1, 2, 3, 4 &c. ad infinitum, the first term, being the product of as many of odd numbers 1 • 3 • 5 • 7&c. will increase more than any increasing geometric sequence; it is also clear that, although the 2nd, 4th, 6th &c. terms are subtractive, this does not prevent the sum of the terms to increase faster than any increasing geometric sequence. [START_REF] Whitbread | Remarks on the calculation of π[END_REF] And this is what I observe here, because I will make use of it in the sequel of this Memoir. Here is a first one, that presents itself.

§. 32. The object is to find the law, according to which the fractions

1 w , 3w 3w 2 -1 , 15w 2 -1 15w 3 -6w , &c.
approach the value of the tangent. To this effect, we will only need to subtract each one from the one which follows, and the remainders will be

1 w • (3w 2 -1) , 1 (3w 2 -1) • (15w 3 -6w)
, &c.

These remainders show how much each fraction is greater than the one preceding it. Let us show in general that all the numerators are = 1, and that all the denominators are the product of those of the two fractions of which these remainders give the difference. §. 33. To this effect, we will take again the three general formulae given at §. 21. and which are But, subtracting the first from the second, the remainder will be

= Ap -Bm B • [B(2n + 1)w -p] .
But the numerator of this remainder is the same which results from the subtraction

A B - m p = Ap -Bm B • p .
m p being the fraction preceding the fraction A B , it is clear that the numerator of all these remainders is the same, and that the denominator is the product of those of the fractions, of which the remainders give the difference. So, when starting with any of the fractions m p , the remainders will be 58

1 p • B , 1 B[B(2n + 1)w -p]
&c. §. 34. Let us now observe that all these remainders being added to the first fraction, which is taken as the base, the sum will always express the tangent of v, so that in general we will have 59

tan v = m p + 1 p • B + 1 B • [B(2n + 1)w -p] + &c.
and consequently

tan v = 1 w + 1 w(3w 2 -1) + 1 (3w 2 -1) • (15w 3 -6w) + &c. tan v = 3w 3w 2 -1 + 1 (3w 2 -1)(15w 3 -6w) + &c. tan v = 15w 2 -1 15w 3 -6w + 1 (15w 2 -6w) • (105w 4 -45w 2 + 1) + &c.
&c.

We see therefore from what we have said ( §. 31.) that all these sequences are more convergent than is any decreasing geometric progression. [START_REF] Gray | mathematician and scientist[END_REF] Let for instance v = w = 1, and the tangent of this arc will be 61 = 1,55740772 . . .

= 1+ 1 1 • 2 + 1 2 • 9 + 1 9 • 61 + 1 61 • 540 + 1 540 • 5879 + 1 5879 • 75887 + 1 75887 • 1132426 +&c.
And for every arc v < 1, we will have an even more convergent sequence. [START_REF] Whitbread | On the quadrature of the circle, A.D. 1580-1630[END_REF] This follows, because the first remainder

1 w(3w 2 -1)
has the numerator 1 and the product of the two denominators as denominator. [START_REF] Lewis | Concrete mathematics[END_REF] If the fractions approximating the tangent are

u 1 = 1 w , u 2 = 3w 3w 2 -1 , etc., Lambert takes the limit of u n = (u n -u n-1 ) + (u n-1 -u n-2 ) + • • • + (u p+1 -u q ) +
u q where u q is the initial term m p . (The initial term need not be 1 w , but could be 3w 3w 2 -1 , 15w 2 -1 15w 3 -6w , etc.) [START_REF] Gray | mathematician and scientist[END_REF] As a consequence of the expressions of §. 24, the factors 3, 3 × 15, 15 × 105, . . . , grow faster than a geometric progression, but this is also true for w, w(3w 2 -1), (3w 2 -1) • (15w 3 -6w), etc., for w ≥ 1.

61 This is tan(1). The development was missing the third term and some denominators were incorrect. These denominators can easily be computed: 2 × 5 -1 = 9, 9 × 7 -2 = 61, 61×9-9 = 540, 540×11-61 = 5879, 5879×13-540 = 75887, 75887×15-5879 = 1132426, etc. §. 35. Let now w = ω : ϕ, v = ϕ : ω, such that ϕ, ω are integers, mutually prime. We will only have to substitute these values, and we will have 62 36. Then the fractions approaching the value of tan ϕ ω will be 63

tan ϕ ω = ϕ ω -ϕϕ 3ω -ϕϕ 5ω -ϕϕ 7ω -ϕϕ 9ω -&c. §.
ϕ ω , 3ωϕ 3ω 2 -ϕ 2 , 15ω 2 ϕ -ϕ 3 15ω 3 -6ϕ 2 ω , 105ω 3 ϕ -10ωϕ 3 105ω 4 -45ω 2 ϕ 2 + ϕ 4 , &c.
so that if any two of these immediately succeeding fractions are

m p , A B ,
the one which will follow will be 64

A(2n + 1)ω -mϕ 2 B(2n + 1)ω -pϕ 2 . §. 37. Finally the differences of these fractions will be

ϕ 3 ω(3ω 2 -ϕ 2 ) , ϕ 5 (3ω 2 -ϕ 2 ) • (15ω 3 -6ωϕ 2 )
, &c.

and

tan ϕ ω = ϕ ω + ϕ 3 ω(3ω 2 -ϕ 2 ) + ϕ 5 (3ω 2 -ϕ 2 ) • (15ω 3 -6ωϕ 2 )
+ &c. [START_REF] Bierens De Haan | On Ludolff van Ceulen's 35-decimal value of π and on some of his works[END_REF] This follows from §. 14.

63 According to §. 22. [START_REF] Hardy | An introduction to the theory of numbers[END_REF] This is easily shown given that the new values m , p are m and p multiplied by ϕ n and the new values A and B are A and B multiplied by

ϕ n+1 (ϕ is 1 × ϕ, 3ωϕ is 3w × ϕ 2 , 15ω 2 ϕ -ϕ 3 is (15w 2 -1) × ϕ 3 , etc.). The old sequence is m p , A B , A(2n+1)w-m B(2n+1)w-p (see §. 21), and it becomes mϕ n pϕ n , Aϕ n+1 Bϕ n+1 , A(2n+1)ωϕ n+1 -mϕ n+2 B(2n+1)ωϕ n+1 -pϕ n+2 , which is m p , A B , A (2n+1)ω-m ϕ 2 B (2n+1)ω-p ϕ 2 .
And I claim that this tangent will never be commensurable to the radius, whatever the integer numbers ω, ϕ. §. 38. In order to prove this theorem, we set

tan ϕ ω = M P ,
such that M , P are quantities expressed in some way, possibly even by decimal expansions, which is always possible, even in the case that M , P are integers, as they could be both multiplied by some irrational quantity. We could also assume, if wished, that M = sin ϕ ω , P = cos ϕ ω , as we did above ( §. 5.). And it is clear that, even if tan ϕ ω were rational, this would not always be the case for sin ϕ ω and cos ϕ ω . §. 39. But the fraction M P being an exact expression of the tangent of ϕ ω , it must give all the quotients w, 3w, 5w &c. which in the present case are 65

+ ω ϕ , - 3ω ϕ , + 5ω ϕ , - 7ω ϕ , +&c. §. 40.
Then, if tan ϕ ω is rational, it is clear that M will be to P as an integer number µ to an integer number π, so that if µ, π, are mutually prime, we will have M : µ = P : π = D, and D will be the greatest common divisor 66 of M , P . And since reciprocally we have

M : D = µ, P : D = π,
it is clear that if M , P are assumed to be irrational quantities, their greatest common divisor will likewise be an irrational quantity, and be as smaller than the integers 67 µ, π, are large. §. 41. These are therefore the two assumptions which will have to be shown incompatible. [START_REF] Hermite | rédigé en 1882 par M. Andoyer[END_REF] Let us first divide P by M , and the quotient 69 must [START_REF] Havil | The irrationals: a story of the numbers you can't count on[END_REF] See §. 14. [START_REF] Hermite | Extrait d'une lettre de Monsieur Ch. Hermite à Monsieur Paul Gordan[END_REF] The assumption is therefore that D > 0. D is not necessarily an integer. This will lead to a contradiction in §. 49. [START_REF] Hermite | Extrait d'une lettre de Mr[END_REF] The original memoir had "quotients." [START_REF] Hermite | rédigé en 1882 par M. Andoyer[END_REF] Namely, that ϕ ω and tan ϕ ω are both rational. In what follows, Lambert will define a series of remainders R , R , R , etc., such that D divides all of them. R is defined in §. 41, R in §. 42 and the others in §. 43.

69 P corresponds to B in §. 6, M to A, and the quotient to

Q = 1 v = w = ω ϕ .
be = ω : ϕ. But since ω : ϕ is a fraction of integers, 70 let us divide ϕP by M , and the quotient ω will be ϕ times ω : ϕ. It is clear that we will be able to divide it by ϕ, whenever it is desired. Here, it will not be required, since it will be sufficient for us that it is an integer. Having thus, by dividing ϕP by M , obtained the quotient ω, let the remainder = R . This remainder will likewise be equal to ϕ times what it would have been, [START_REF] Hobson | Squaring the circle": A history of the problem[END_REF] and this is what we will take into account. Now, since we have P : D = π, an integer, we will also have ϕP : D = ϕπ, an integer. Finally, R : D will also be an integer. Indeed, since Thus the remainder of the first division will still have the divisor D, which is the greatest common divisor of M , P .

ϕP = ωM + R ,
70 nombre rompu in the original text. So, we assume here that ω ϕ is a rational. M P is a fraction, but not necessarily a fraction of integers. However, we assume that µ and π are integers in order to obtain a contradiction. [START_REF] Hobson | Squaring the circle": A history of the problem[END_REF] that is, what it would have been if one had written P = ω ϕ M + • • • . §. 42. Let us now move to the second division. The remainder R being ϕ times what it would be if we had divided P , instead of ϕP , by M , this must be taken into account for this second division, by dividing ϕM , instead of M , by R , in order to obtain the second quotient, [START_REF] Hobson | A treatise on plane trigonometry[END_REF] which is 73 = 3ω : ϕ. But, in order to avoid here too the broken quotient, 74 let us divide ϕ 2 M by R , so as to obtain the quotient 3ω, an integer. Let the remainder = R , and we will have 75

ϕ 2 M = 3ωR + R , thus dividing by D, ϕ 2 M D = 3ωR D + R D .
But we have

ϕ 2 M D = ϕ 2 m = integer number, 3ωR D = 3ωr = integer number, therefore ϕ 2 m = 3ωr + R D ,
which gives

R D = ϕ 2 m -3ωr = integer number,
which we will set = r , so that we have R D = r . [START_REF] Hobson | A treatise on plane trigonometry[END_REF] We will therefore obtain the same sequence of quotients ω ϕ , 3 ω ϕ , 5 ω ϕ , etc. [START_REF] Huber | Lambert nach seinem Leben und Wirken aus Anlaß der zu seinem Andenken begangenen Secularfeier in drei Abhandlungen dargestellt[END_REF] In fact, the second quotient is -3ω : ϕ, but until §. 46, Lambert only divides by positive values. This will be adapted in §. 46. Here, ignoring the signs changes the values of R , but not the result of this paragraph. [START_REF] Huylebrouck | Similarities in irrationality proofs for π, ln 2, ζ(2), and ζ(3)[END_REF] That is, a non integer quotient. [START_REF] Kustaa | The irrationality of π 2[END_REF] Consequently, if the remainders obtained from the division of P by M are R 0 , R 0 , R 0 , etc., we actually have

R = ϕR 0 , R = ϕ 2 R 0 , R = ϕ 3 R 0 , etc., R n = ϕ n R n 0 . M = 3 ω ϕ R 0 + R 0 ⇒ ϕ 2 M = 3ωR + R .
Consequently, the greatest common divisor of M , P , R , also divides the second remainder R . §. 43. Let the following remainders 76 . . . R , R iv . . . R n , R n+1 , R n+2 . . . , corresponding to the ϕ-uple quotients 77 . . . 5ω, 7ω, . . . (2n -1)ω, (2n + 1)ω, (2n + 3)ω, . . . , and we must prove in general that if any two remainders R n , R n+1 , which are in immediate sequence, have D as their divisor, the next remainder R n+2 will also have it, so that if we set 78

R n : D = r n , R n+1 : D = r n+1 ,
r n , r n+1 are integers, we will also have

R n+2 : D = r n+2 ,
an integer. Here is the proof. §. 44. When dividing ϕ 2 R n by R n+1 , the quotient will be (2n + 3)ω = integer number, and the remainder being = R n+2 , we will have 79

ϕ 2 R n = (2n + 3)ω • R n+1 + R n+2 , therefore by dividing by D, ϕ 2 • R n D = (2n + 3)ω • R n+1 D + R n+2 D But we have ϕ 2 R n D = ϕ 2 r n = integer number, (2n + 3)ω • R n+1 D = (2n + 3
)ωr n+1 = integer number, [START_REF] Kustaa | On the irrationality of certain values of elementary transcendental functions[END_REF] As mentioned above, having named the normal remainders R 0 , R 0 , etc., we have (ignoring the signs)

P = ω ϕ M +R 0 , M = 3 ω ϕ R 0 +R 0 , R 0 = 5 ω ϕ R 0 +R 0 , R 0 = 7 ω ϕ R 0 +R iv 0 , etc., and setting R n = ϕ n R n 0 , we obtain easily ϕ 2 R n = (2n + 3)ωR n+1 + R n+2 . Indeed, writing ϕP = ωM + ϕR 0 , ϕ 2 M = 3ω(ϕR 0 ) + (ϕ 2 R 0 ), ϕ 2 R 0 = 5ω(ϕR 0 ) + (ϕ 2 R 0 ), . . . , ϕ 2 R n 0 = (2n + 3)ω(ϕR n+1 0 ) + (ϕ 2 R n+2 0 ), we obtain R n /ϕ n-2 = (2n + 3)ωR n+1 /ϕ n + R n+2 /ϕ n .
77 that is, the quotients 5 ω ϕ , multiplied by ϕ, 7 ω ϕ multiplied by ϕ, etc. [START_REF] Jacob | La quadrature du cercle[END_REF] The original memoir had R n+2 : D = r n+1 . [START_REF] Jeffreys | Scientific inference[END_REF] The original memoir had ϕ 2 R n = (2n + 1)ω • R n+1 + R n+2 and I have replaced all occurrences of 2n + 1 by 2n + 3 in this section. These corrections were not made by Speiser in 1948 [96]. therefore

ϕ 2 r n = (2n + 3)ω • r n+1 + R n+2 D ,
which gives

R n+2 D = ϕ 2 • r n -(2n + 3)ω • r n+1 = integer number = r n+2 .
And this is what had to be proven. §. 45. We have seen that r , r are integers ( §. 41. 42.) and therefore also r , r iv , . . . r n . . . &c. will be integers. So all the remainders R , R , R , . . . , R n , . . . &c. will have D as a common divisor. Let us find the value of these remainders expressed by M , P . §. 46. For that effect, each division results in an equation, that is

R = ϕP -ωM, R = ϕ 2 M -3ω • R , R = ϕ 2 R -5ω • R , &c.
But we should observe that, in the present case, the quotients ω, 3ω, 5ω &c. are alternatively positive and negative, and that the signs of the remainders appear in the sequence --+ +. From that, these equations become80 

R = ωM -ϕP, R = 3ωR -ϕ 2 M, R = 5ωR -ϕ 2 R , R iv = 7ωR -ϕ 2 R , &c.
And in general

R n+2 = (2n + 3)ω • R n+1 -ϕ 2 R n .
From that we see that each remainder can be obtained from the two previous ones, in the same way as the numerators and the denominators of the fractions approaching the value of tan ϕ ω . ( §. 36.) §. 47. Doing therefore the substitutions that these equations indicate, in order to express all these remainders by M , P , we will have

R = ωM -ϕP, R = (3ω 2 -ϕ 2 )M -3ωϕ • P, R = (15ω 3 -6ωϕ 2 )M -(15ω 2 ϕ -ϕ 3 )P, &c.
And these coefficients of M , P , being the numerators and the denominators of the fractions obtained above for the tan ϕ ω , ( §. 36.) [START_REF] Jones | Discovering and proving that π is irrational[END_REF] it is clear that we will have

M P - ϕ ω = R ωP , M P - 3ωϕ 3ω 2 -ϕ 2 = R (3ω 2 -ϕ 2 ) • P , M P - 15ω 2 ϕ -ϕ 3 15ω 3 -6ωϕ 2 = R (15ω 3 -6ωϕ 2 )P , &c. §. 48. But we have 82 M P = tan ϕ ω .
Therefore ( §. 37. 34.)

M P - ϕ ω = ϕ 3 ω(3ω 2 -ϕ 2 ) + ϕ 5 (3ω 2 -ϕ 2 ) • (15ω 3 -6ωϕ 2 ) + &c. M P - 3ωϕ 3ω 2 -ϕ 2 = ϕ 5 (3ω 2 -ϕ 2 ) • (15ω 3 -6ωϕ 2 ) + &c. Hence R ωP = ϕ 3 ω(3ω 2 -ϕ 2 ) + ϕ 5 (3ω 2 -ϕ 2 ) • (15ω 3 -6ωϕ 2 ) + &c. R (3ω 2 -ϕ 2 )P = ϕ 5 (3ω 2 -ϕ 2 ) • (15ω 3 -6ωϕ 2 ) + &c. R (15ω 3 -6ωϕ 2 )P = ϕ 7 (15ω 3 -6ωϕ 2 ) • (105ω 4 -45ω 2 ϕ 2 + ϕ 4 ) + &c. &c.
Consequently, all the remainders are obtained using the sequence of the differences ( §. 37.)

tan ϕ ω = ϕ ω + ϕ 3 ω(3ω 2 -ϕ 2 ) + ϕ 5 (3ω 2 -ϕ 2 )(15ω 3 -6ωϕ 2 ) + ϕ 7 (15ω 3 -6ωϕ 2 )(105ω 4 -45ω 2 ϕ 2 + ϕ 4 ) + &c.
omitting 1, 2, 3, 4 &c. of the first terms, and multiplying the sum of the following ones by the first factor of the denominator of the first retained number, and by P . [START_REF] Jones | Euler's identity, Leibniz tables, and the irrationality of pi[END_REF] §. 49. But this sequence of differences is more convergent that any decreasing geometric progression ( §. 34. 35.). Consequently 84 the remainders R , R , R &c. decrease in such a way that they eventually become smaller than any assignable quantity. And since each of these remainders, having D as a common divisor, is a multiple of D, it follows that this common divisor D is smaller than any assignable quantity, which means D = 0, and therefore (M : P ) is a quantity incommensurable to unity, viz. an irrational one. [START_REF] Jones | Synopsis Palmariorum Matheseos[END_REF] §. 50. Consequently whenever a circle arc = ϕ ω will be commensurable to the radius = 1, or rational, the tangent of this arc will be a quantity incommensurable to the radius, or irrational. And reciprocally, no rational tangent is that of a rational arc.

§. 51. But the tangent of 45 • being rational, in that it is equal to the radius, [START_REF] Juhel | Irrationalité et transcendance : Etat des lieux avant Hermite[END_REF] it follows that the arc of 45 • , and therefore also the arcs of 90, 180, [START_REF] Jones | Euler's identity, Leibniz tables, and the irrationality of pi[END_REF] In other words, R , for instance, is obtained by omitting the first three terms of tan ϕ ω , keeping

ϕ 7 (15ω 3 ••• )••• + &c.
and multiplying by 15ω 3 -6ωϕ 2 and by P . [START_REF] Jones | Discovering and proving that π is irrational[END_REF] Lambert does not clearly prove that the remainders R , R , etc., tend to 0. This seems to have been observed first by Gauss [123, 124] who provided a more rigorous proof. Gauss noted that the sequence R , R , etc., may be initially increasing but that it will eventually decrease. As part of his proof, Gauss considers the values of ω ϕ ,

3ω 2 -ϕ 2 ϕ 2 , 15ω 3 -6ωϕ 2 ϕ 3
, etc., and shows that it increases faster than a geometrical series, even when ω/ϕ < 1. However, the case ω/ϕ > 1 is sufficient in Lambert's proof. This gap has also been rediscovered more recently by Baltus [7, p. 11] who also provided a fix for this "gap," not aware of Pringsheim's articles cited above (possibly because Baltus based himself on Wallisser [150] who also omitted one of Pringsheim's articles). [START_REF] Jones | Synopsis Palmariorum Matheseos[END_REF] This follows, because D = 0 contradicts the assumption of §. 40 that such a D exists, that is, that tan ϕ ω is rational.

86 tan 45 • = r: r r 360 degrees, is incommensurable to the radius. Thus the circumference of the circle is not to the diameter like a integer number to an integer number. We now have this theorem in the form of a corollary of another infinitely more universal theorem. §. 52. Indeed, it is precisely this absolute universality, of which we may be surprised. In addition to showing us how much the circular quantities are transcendental, [START_REF] Juhel | Lambert et l'irrationalité de π[END_REF] it also shows us that the rational tangents and the rational arcs are not spread over the whole circumference of the circle as if they were thrown randomly, but that there must be a certain order, and that this order prevents them from ever meeting. [START_REF] Victor | The calculus of the trigonometric functions[END_REF] This order is worthy, without contest, to be examined in more detail. Let us therefore see how far it will be possible to determine its laws. This will be the result of the following theorems.

§. 53. First, we know that, two tangents being rational, the tangent of the sum and that of the difference of their arcs are also rational. Indeed, we have 89

tan(ω + ϕ) = tω + tϕ 1 -tω • tϕ , tan(ω -ϕ) = tω -tϕ 1 + tω • tϕ . §. 54.
From that it follows that if a tangent is rational, the tangent of any multiple of its arc will also be rational.

§. 55. But on the contrary, a tangent being irrational, [START_REF] Jurjen | On Niven's proof that π is irrational[END_REF] no aliquot part of its arc will have a rational tangent. Indeed, the given arc being a multiple of each of its aliquot parts, it is clear that its tangent would be rational, if the tangent of one of its aliquot parts were rational ( §. 54.). §. 56. If the tangent of each of two commensurable arcs is rational, the tangent of the greatest common measure 91 of these two arcs will likewise be rational. Let ω, ϕ, be the two given arcs. Since they are commensurable, ω will be to ϕ like an integer number m to an integer number n. Let these numbers m, n, be mutually prime, and the unit will be their greatest common measure. We thus set ω = mψ, ϕ = nψ, [START_REF] Juhel | Lambert et l'irrationalité de π[END_REF] Here, Lambert means that there are many non rational tangents. [START_REF] Victor | The calculus of the trigonometric functions[END_REF] In other words, they will not lie both on a line drawn from the origin. [START_REF] Richard | Archimedes and the measurement of the circle: A new interpretation[END_REF] tan(ω + ϕ) = tan ω+tan ϕ 1-tan ω•tan ϕ . [START_REF] Jurjen | On Niven's proof that π is irrational[END_REF] The memoir had "rational." [START_REF] Laczkovich | On Lambert's proof of the irrationality of π[END_REF] that is, the greatest common divisor. and the arc ψ will be the greatest common measure of the arcs ω, ϕ. I claim that the tan ψ will be rational. Let m > n, and subtracting n from m as many times as possible, let the last remainder = r, all the tan(m -n)ψ = t(ω -ϕ), tan(m -2n)ψ = t(ω -2ϕ), &c. tan rψ, will be rational 92 ( §. 53.). Substract r from n as many times as possible, let the last remainder = r . Then substract r from r as many times as possible, let the last remainder be r &c. And by continuing like that, you will reach a remainder = 1, the numbers m, n being mutually prime. (Euclid. Pr. I. Book. VII.) [START_REF] Heinrich | Observations trigonométriques[END_REF] will be rational. Therefore &c. §. 57. Since all these tangents can be obtained from tan ω, tan ϕ, without their arcs being known ( §. 53.), it is clear that if any two rational tangents are given, we will find if their arcs are commensurable. [START_REF] Heinrich | Verwandlung der Brüche[END_REF] If the arcs are not commensurable, the process would be endless.

§. 58. Two aliquot parts of a given arc having rational tangents, I claim that the tangent of the greatest common measure of these two aliquot parts will likewise be rational. This theorem immediately follows from the previous one ( §. 56.). One has merely to remember that two arcs ω, ϕ, which are aliquot parts of an arc A, are commensurable. [START_REF] Heinrich | Vorläufige Kenntnisse für die, so die Quadratur und Rectification des Circuls suchen[END_REF] §. 59. Similarly, if any number of aliquot parts of an arc A have rational tangents, the tangent of the arc which is the greatest common measure of these aliquot parts will likewise be rational. Let two of these aliquot parts be ω, ϕ, and let their greatest common measure = ψ, and the tangent ψ will be rational ( §. 56. 58.). But ψ being an aliquot part of the arcs ω, ϕ, which are aliquot parts of the arc A, it is clear that ψ will be aliquot part of the arc A, and that in place of the arcs ω, ϕ, we can substitute ψ, by comparing ψ to one of the other aliquot parts of the given arc A. One can then find again their greatest common measure, of which the tangent will likewise be rational. &c. 92 The previous sentence had a typo. [START_REF] Heinrich | Observations trigonométriques[END_REF] See Heath 1908, volume 2, p. 296. [START_REF] Heinrich | Verwandlung der Brüche[END_REF] We start with x = tan ω and y = tan ϕ which are rational and compute tan(ω -ϕ), tan(ω -2ϕ), etc., only using x and y, and stopping before the result is negative. Then we have tan(rψ), if ω and ϕ are commensurable. This process goes on until one of the tangents becomes equal to 0. If it does, the angles are commensurable, since we have applied Euclid's algorithm on the angles by working on the exact values of the tangents. [START_REF] Heinrich | Vorläufige Kenntnisse für die, so die Quadratur und Rectification des Circuls suchen[END_REF] If A = mω = nϕ, then ω ϕ = n m . §. 60. Let us call primary tangent [START_REF] Heinrich | Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques[END_REF] any rational tangent which is that of an arc of which no aliquot part has a rational tangent. §. 61. Such is for instance the tangent of 45 • . Indeed, let n be any integer, every tan(45 : n) • will be one of the roots of the equation

0 = 1 -nx -n • n -1 2 x 2 + n • n -1 2 • n -2 3 x 3 + n • n -1 2 • n -2 3 • n -3 4 • x 4 -n • n -1 2 • n -2 3 • n -3 4 • n -4 5 x 5 -&c.
whose coefficients are the same as those of Newton's binomial formula, [START_REF] Lebesgue | Leçons sur les constructions géométriques : professées au Collège de France en 1940-1941[END_REF] and whose signs change according to the sequence --+ +. But, for every integer n, these coefficients are integers, and every 98

tan 45 • n < 1.
Therefore, if one or more of the tan(45 • : n) were rational, it would be a rational fraction < 1, and if it were the case, not all the coefficients would be integers. [START_REF] Legendre | Elements of geometry and trigonometry[END_REF] But they are. Therefore &c.100 §. 62. Any primary tangent being given, only the multiples of its arc have rational tangents, with the exception of all the other arcs which are commensurable with it. Let tan ω be primary, and m, n, being mutually prime integers, [START_REF] Ferdinand Von Lindemann | Über die Zahl π[END_REF] assume that tan m n ω is rational. But the arc ω n being the greatest common measure of the arcs ω, and mω n ,102 the tangent of ω n will [START_REF] Heinrich | Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques[END_REF] The values of the arcs could be represented as trees, and when an arc is that of a primary tangent, none of the children has a rational tangent. For instance, none of the tangents tan 1 • , tan 3 • , tan 5 • , tan 9 • are rational if (see below) tan 45 • is a primary tangent, but also none of tan 4.5 • , tan 2.25 • , etc. or any other angle obtained by dividing 45 • by an integer greater than 1. [START_REF] Lebesgue | Leçons sur les constructions géométriques : professées au Collège de France en 1940-1941[END_REF] This formula can be obtained as follows. We have tan

(2x) = 2 tan x 1-tan 2 x , tan(3x) = 3 tan x-tan 3 x
1-3 tan 2 x , etc., which have the general pattern

tan(nα) = nT -n(n-1)(n-2) 3! T 3 + n(n-1)•••(n-4) 5! T 5 -• • • 1 -n(n-1) 2! T 2 + n(n-1)•••(n-3) 4! T 4 -• • •
with T = tan α. This formula can be proven by induction. Lambert's equation is obtained by writing tan(nα) = 1.

98 n is assumed > 1. [START_REF] Legendre | Elements of geometry and trigonometry[END_REF] Lambert's statement is not obvious and should be clarified.

be rational ( §. 56.). But ω n being an aliquot part of ω, tan ω would not be primary. This going against the assumption, it is clear that no tan m n ω could be rational. There thus only remain the multiples of ω, whose tangents will be rational ( §. 54.). This is the reason why these kinds of tangents deserve the name of primary ones. They resemble in some way the prime numbers, in that only their multiples are integers, &c. §. 63. Two primary tangents being given, I claim that their arcs are incommensurable. Indeed, let tan ω, tan ϕ be primary, and let us assume that the arcs ω, ϕ are commensurable. They will thus be like an integer m to an integer n. Therefore ϕ = mω n .

Consequently 103 ( §. 62.) ω n , aliquot part of ω, as well as ϕ m , aliquot part of ϕ, will have rational tangents. Thus tϕ, tω, will not be primary. This going against the assumption, it is clear that the arcs ω, ϕ, can not be commensurable.

§. 64. Therefore all the arcs of primary tangents are incommensurable. Indeed, by the previous theorem, any two such arcs are incommensurable.

§. 65. Any rational and non primary tangent being given, I claim that its arc will be a multiple of the arc of a primary tangent. Indeed, this tangent, although it is rational, it is not primary and this can only be so because there are aliquot parts of its arc whose tangents are rational. Let these aliquot parts be ω m , ω n , ω p , ω q &c. whose number is assumed to be finite. [START_REF] Milla | The transcendence of π and the squaring of the circle[END_REF] But, since we take all of them, the one which is the common measure of all the others must also be among them, whereas by §. 59. its tangent is likewise rational. Assume it is ω r , I claim that tan ω r is primary. For, if it were not primary, the tangents of some of the aliquot parts of ω r would be rational. But since these aliquot parts of ω r are also aliquot parts of the given arc ω, it is clear that they would already be included in the aliquot parts ω m , ω n , ω p . . . ω r , and that consequently ω r would likewise be their greatest common measure. Thus ω r would be a measure of its aliquot parts. This is absurd, it is clear that tan ω r is primary. But ω is a multiple of ω r . Therefore &c. §. 67. We now have all rational tangents sorted in certain classes. They are either themselves primary, or they stem, so to say, in direct line from a primary tangent, because only the multiples of the arcs of primary tangents have rational tangents ( §. 62.). But, if there were only one primary tangent, all the rational tangents would derive from it, and all their arcs would be [START_REF] Metius | Arithmeticae et Geometriae practica[END_REF] By §. 56, the greatest common measure of ω and m n ω, namely ω n will be rational. And also ϕ m and this is a contradiction. [START_REF] Milla | The transcendence of π and the squaring of the circle[END_REF] Lambert does not prove that the number of aliquot parts with rational tangents is finite.

commensurable to each other. But we are far from having only one primary tangent. Such a tangent should be smaller than any assignable quantity. In order to prove it, let us assume that it has a finite value = tan ϕ. And it is clear105 that there will be rational tangents which are smaller than tan ϕ. If these tangents are primary, tan ϕ will not be the only primary one. If they are not primary, they derive from one or more primary tangents, in that their arcs will be multiples of the primary tangents ( §. 65.). [START_REF] Montucla | Histoire des recherches sur la quadrature du cercle, avec une addition concernant les problèmes de la duplication du cube et de la trisection de l'angle[END_REF] Hence, there is more than one, more than 2, 3, 4 &c. primary tangents. And as long as their number will be assumed to be finite, we will find likewise that there are more. Here is another way to find an infinite number of them.

§. 67. Let tω, tϕ be two primary tangents. First, they will be rational, and their arcs will be incommensurable between each other ( §. 64.). Let m, n, be any mutually prime numbers, and (mω +nϕ) will be an arc incommensurable both to ω and to ϕ. But its tangent will be rational ( §. 62. 53.). But the arc (mω + nϕ) being multiple neither of ω, nor of ϕ, the tan(mω + nϕ) will either be primary itself, or it will derive from a primary tangent, necessarily different from tω, tϕ. But, by varying the numbers m, n, in all possible ways, so that they are always mutually prime, we will find as many arcs (mω + nϕ), incommensurable with each other and incommensurable with the arcs ω, ϕ, and which consequently are neither multiples of each other, nor of ω, ϕ. Therefore their tangents, which are all rational, will derive from as many primary tangents, which are different from each other. §. 68. This is therefore what infinitely restricts the possibility of finding a rational arc whose tangent is likewise rational. For, the arcs of all primary tangents being incommensurable to each other, it follows that, if it were possible to find a primary tangent whose arc were commensurable to the radius, it would be the only one, since the arcs of all other primary tangents would necessarily be incommensurable with the radius. But, as a consequence of what we saw above, even this sole one cannot have its arc rational. [START_REF] Ram | Irrational numbers arising from certain differential equations[END_REF] §. 69. The tangent of the angle of 45 • being primary ( §. 61.) and being located in the trigonometrical tables, I will observe moreover as a corollary that it is the only primary tangent, [START_REF] Newton | Analysis per quantitatum series, fluxiones, ac differentias: cum enumeratione linearum tertii ordinis[END_REF] and at the same time the only rational tangent which is found there. [START_REF] Morton | A simple proof that π is irrational[END_REF] The reason is that all the arcs of which the tangents are given in these tables are commensurable to each other, without there being other multiples of 45 • besides the angle of 90 • whose tangent is infinite.

§. 70. I will also observe that, if the cosine of any angle ω is rational, the cosine of any multiple is likewise rational. [START_REF] Morton | Irrational Numbers[END_REF] This circumstance entails that the same reasoning exposed regarding tangents can be applied, with minor change, to the cosines. We will have prime cosines as we had prime tangents, and the arcs of prime cosines will likewise be incommensurable between each other; consequently, if it were possible to find a prime cosine whose arc were rational, it would be the only one that could be found, since for that reason the arcs of all other prime cosines would be irrational.

§. 71. The same is not true for sines, because if a given sin ω is rational, in general only the sin 3ω, sin 5ω, sin 7ω &c. are rational; 111 but the sin 2ω, sin 4ω, sin 6ω &c. are not always rational, except if cos ω is also rational, so that if we wish here too to find prime sines, it will be necessary to proceed in a different way than that used for tangents.

§. 72. But, without stopping on this matter, I will return to the continued fraction obtained previously 112

tan v = 1 w -1 3w -1 5w -1 7w -1 9w -1 &c.
We have seen that all the fractions

1 w , 3w 3w 2 -1 , 15w 2 -1 15w 3 -6w , &c.
that it produces, only approach the value of the tangent of v by default, [START_REF] Parks | π, e, and other irrational numbers[END_REF] in that they are all smaller than this tangent. But, since it must be possible to find similar fractions which, although they approach the value of tan v, do so by excess, I started to search for them. I will content myself to give here again the continued fraction which contains alternatively the one and 110 cos(na) is a polynomial function of cos a. [START_REF] Novák | A remark to a paper of J. F. Koksma[END_REF] Only when n is odd does sin(nω) expand to a polynomial in sin ω. Otherwise it is a polynomial in sin ω times cos ω. [START_REF] Oberlé | Colloque international et interdisciplinaire Jean-Henri Lambert[END_REF] See §. 16. [START_REF] Parks | π, e, and other irrational numbers[END_REF] The fact that the value of the tangent is approached by default, hence that all these fractions are positive, was not proven by Lambert.

the others. 114 Here it is 115

cot v = 1 0 + 1 (w -1) + 1 1 + 1 (3w -2) + 1 1 + 1 (5w -2) + 1 1 + &c.
This fraction goes on for ever, so that the quotients are

0, (w -1), 1, (3w -2), 1, (5w -2), 1, (7w -2), 1, (9w -2) • • • 1, ((2n + 1)w -2), 1 &c.
And the fractions approaching the value of tan v are

1 w -1 , 1 w , 3w -1 3w 2 -w -1 , 3w 3w 2 -1 , 15w 2 -3w -1 15w 3 -3w 2 -6w + 1 , 15w 2 -1 15w 3 -6w , &c.
The first, 3rd, 5th, 7th &c. are greater than tan v, and the 2nd, 4th, 6th &c., are smaller, and the same as the ones we found above ( §. 22.). I will not stop to give the proof, [START_REF] Popken | On Lambert's proof for the irrationality of π[END_REF] since this continued fraction can be obtained in the same way as we found the one that we used up to now, and which is a lot simpler. I will therefore only observe that the first quotient being here = 0, it will suffice, in order to cancel it, to inverse the fraction so that it expresses the tangent 117 of v, since

cot v = 1 tan v .
114 That is, the fractions by default and those by excess. [START_REF] Popken | On Lambert's proof for the irrationality of π[END_REF] The memoir had tan v = • • • . [START_REF] Popken | On Lambert's proof for the irrationality of π[END_REF] It should still be proven. [START_REF] Popken | Over de onmeetbaarheid van π[END_REF] The memoir had cotangent.

easily, I will not give the detail. [START_REF] Popken | Remark on my paper "On Lambert's proof for the irrationality of π[END_REF] We will therefore have It is clear that these expressions lead to similar consequences than those that we deduced above from the formula

e v -e -v e v + e -v = 1 1 : v + 1 3 : v + 1 5 : v + 1 7 : v + 1 9 : v +
tan v = 1 w -1 3w -1 5w -&c.
It will be found again here that v & e v , as well as x & e x will never be rational quantities at the same time. I will thus not stop to give a repeated deduction of it. We should instead interpret the formulae that we have just exposed. I therefore note that they should have, with respect to the equilateral hyperbola, 122 a quite analogous meaning than the one that had the fraction

tan v = 1 w -1 3w -&c.
with respect to the circle. For, in addition of knowing that by letting u = v √ -1, the expressions e u + e -u , e u -e -u , produce the circular quantities 123

e v √ -1 + e -v √ -1 = 2 cos v, e v √ -1 -e -v √ -1 = 2 sin v • √ -1,
Mr. de Foncenex has also shown in a very simple & direct manner, how this affinity is obtained by comparing together the circle & the equilateral 124 hyperbola having a common center & a common diameter. See Miscell. Societ. Taurin. Tom. I. p. 128 and following. 125 §. 75. But the matter is here to find out how far this affinity can be Plate X. obtained independently of the imaginary quantities. Let therefore C be the center, CH the axis, CA the half-diameter [START_REF] Prouhet | Sur le rapport d'Adrien Metius[END_REF] of the equilateral hyperbola [START_REF] Pringsheim | Ueber die ersten Beweise der Irrationalität von e und π. Sitzungsberichte der mathematisch-physikalischen Classe der k.b[END_REF] The equation of the equilateral hyperbola considered here is x 2 -y 2 = 1.

123 e iv +e -iv 2

= cos v and e iv -e -iv 2i = sin v. 124 The equilateral hyperbola has its two asymptotes at right angle. [START_REF] Prouhet | Note sur les arcs de cercle dont la tangente est rationnelle[END_REF] François Daviet de Foncenex, "Réflexions sur les quantités imaginaires", Miscellanea Philosophico-Mathematica Societatis Privatae Taurinensis, 1759, Tomus Primus, 113-146 [33]. [START_REF] Prouhet | Sur le rapport d'Adrien Metius[END_REF] CA is the semi-major axis. [START_REF]Sur la quadrature du cercle[END_REF] In the sequel of this section, the original text had several typos, and some exponents were missing. I have also rewritten tan ϕ 2 as tan 2 ϕ for clarity. u is twice the surface of AMCA and v is twice the surface of ANCA, hence the divisions by 2. We also have v = ϕ. "Segment" denotes a sector. The equation of the hyperbola is

. . . . tan ϕ = y x , 1 + ηη = ξξ = ηη • cot 2 ϕ . . . . . . . . . . . 1 -yy = xx = yy • cot 2 ϕ, ξξ -1 = ηη = ξξ • tan 2 ϕ . . . . . . . . . . . . 1 -xx = yy = xx tan 2 ϕ, CM 2 = ξ 2 + η 2 = ξ 2 (1 + tan 2 ϕ) CN 2 = x 2 + y 2 = x 2 (1 + t 2 ϕ), = 1+t 2 ϕ 1-t 2 ϕ = 1+t 2 ϕ 1+t 2 ϕ = 1. Hence +du = dϕ • 1+t 2 ϕ 1-t 2 ϕ = dtϕ 1-t 2 ϕ +dv = dϕ = dtϕ 1+t 2 ϕ , +dξ = tϕ•dtϕ (1-t 2 ϕ) 3:2 -dx = tϕ•dtϕ (1+t 2 ϕ) 3:2 , +dη = dtϕ (1-t 2 ϕ) 3:2 +dy = dtϕ (1+t 2 ϕ) 3:2 , ξ = 1 √ 1-
ξ 2 -η 2 = 1. It is easy to see that 1 + η 2 = ξ 2 = η 2 tan 2 ϕ and therefore η 2 = tan 2 ϕ 1-tan 2 ϕ and ξ 2 = 1 1-tan 2 ϕ . We have d(tϕ) = t(ϕ + dϕ) -t(ϕ) = tan(dϕ) × (1 + tan(ϕ + dϕ) tan ϕ) = dϕ(1 + t 2 ϕ) = dϕ cos 2 ϕ .
The half of du is a triangle of base CM and height CM dϕ, hence du = dϕ • CM 2 . Similarly, dv = dϕ, but the sector's surface is only dv/2. When developing (ξ + dξ) 2 -(η + dη) 2 = 1, we obtain (at the first order) ξdξ = ηdη. Then, dϕ = arctan η+dη ξ+dξ -arctan η ξ .

Therefore And the characteristic triangles Mmµ, Nnν, are similar. Finally, since we have 128 Cnq = Cmp, & Nnq = Mmp, we will have [START_REF] Ribenboim | My numbers, my friends: Popular lectures on number theory[END_REF] Cnq + Nnq = Cmp + Mmp = 90 • . By drawing the normal mV , we will have Vmq + Mmq = 90 • , hence [START_REF] Rothman | The man who invented the concept of pi: William Jones and his circle[END_REF] Vmp = Cmp. The normal mV prolonged to the axis AC is therefore equal to Cm, in the same way that in the circle the normal Cn is equal to Cn. These are consequently the foundations of everything which is real in the comparisons which have been made between the circle & the hyperbola. §. 77. Next, if for the hyperbola we want to express ξ, η, using u, it will be found easily that by employing infinite sequences their form must be

t(dϕ) = η+dη ξ+dξ -η ξ 1+ η+dη ξ+dξ × η ξ = dη ξ -η ξ 2 dξ 1+ η 2 ξ 2 = 1 η -η ξ 2 1+ η 2 ξ 2 dξ and dξ = 1+ η 2 ξ 2 1 η -η ξ 2 t(dϕ) = 1+t 2 ϕ 1 η (1-t 2 ϕ) dϕ = 1+t 2 ϕ 1-t 2 ϕ × tϕ √ 1-t 2 ϕ dϕ = 1+t 2 ϕ (1-t 2 ϕ) 3/2 tϕ × d(tϕ) 1+t 2 ϕ = tϕ×d(tϕ) (1-t 2 ϕ) 3/2 . And from dξ it follows that dη = ξ η dξ = d(tϕ) (1-t 2 ϕ) 3/2 . Similarly, since x 2 + y 2 = 1, we have dy = -x y dx = d(tϕ) (1+t 2 ϕ) 3/2 .
ξ = 1 + Au 2 + Bu 4 + Cu 6 + &c. η = au + bu 3 + cu 5 + du 7 + &c.
For, by letting u = 0, we have ξ = 1, η = 0. Moreover, by taking u infinitely small, ξ will increase like u 2 , & η will increase like u, because the angle at A is a right angle, & the osculating radius of the hyperbola at A is = AC . Finally, by taking u negative, all the values of ξ will be the same as for the positive values of u, from which it follows that the abscissa ξ must be expressed by even dimensions of u. And by taking u negative, the values of η will be the same, but negative. η must be expressed by odd dimensions of u. There therefore only remains to determine the coefficients. It is for this purpose that we will use the two formulae found above dξ : du = η, dη : du = ξ.

We will therefore have, by differentiating the first sequence

dξ : du = 2Au + 4Bu 3 + 6Cu 5 + • • • + µ • M u µ-1
128 Namely the angles Cnq, Cmp, etc. [START_REF] Ribenboim | My numbers, my friends: Popular lectures on number theory[END_REF] because CnN = 90 • . [START_REF] Rothman | The man who invented the concept of pi: William Jones and his circle[END_REF] The original article had Vmq = Cmq.

which gets transformed into

e u + 1 2 = 1 1 + 1 -2 : u + 1 -6 : u + 1 -10 : u + &c.
& from which we obtain, for negative values of u e -u + 1 2 = 1 1 + 1 2 : u + 1 6 : u + 1 10 : u + 1 14 : u + &c.

These fractions show us how much the irrationality of the number 135 e = 2,71828182845904523536028 . . . is transcendental, [START_REF] Serfati | Actes de l'université d'été sur l'histoire des mathématiques[END_REF] in that none of its powers, [START_REF] Serfati | Quadrature du cercle, fractions continues et autres contes : sur l'histoire des nombres irrationnels et transcendants aux XVIII e et XIX e siècles, volume 4 of Fragments d'histoire des mathématiques[END_REF] nor any of its roots is rational. Indeed u & e u can not be rational quantities at the same time. But since u is the hyperbolic logarithm of e u , it follows that any rational hyperbolic logarithm is that of an irrational number, & that conversely any rational number has an irrational hyperbolic logarithm. §. 82. But let us still examine what e u & e -u mean in the figure. Going back to this purpose to §. 78., we find the two formulae

ξ = e u + e -u 2 , η = e u -e -u 2 ,
hence, taking the sum & the difference, we have [START_REF] Christoph | Dictionary of Scientific Biography[END_REF] Euler published a proof of the irrationality of e in 1744 ("De fractionibus continuis dissertatio," Commentarii academiae scientiarum imperialis Petropolitanae, IX, p. 98-137) [44]. [START_REF] Serfati | Actes de l'université d'été sur l'histoire des mathématiques[END_REF] Euler was probably the first to define a transcendental number as a number which is not a solution of a polynomial equation with integer coefficients. Lambert was convinced of the transcendence of e but did not actually prove it.

e u = ξ + η, e -u = ξ -η.
137 "dignités" in French.

But the asymptotes CF , CS , making between themselves a right angle, which is divided by the axis CH in two equal parts, we have

ξ = CP = PS = PR, η = PM , hence ξ + η = SM , ξ -η = MR,
& and therefore e u = SM , e -u = MR, from which we see at the same time that we have

e u • e -u = SM • MR = 1.
We can see moreover that, since we have e u = SM , e -u = MR, AB = 1, we will have, taking the logarithms, 138

u = log SM AB = log AB MR .
And since u, e u , cannot be rational at the same time, [START_REF] Snell | Cyclometricus[END_REF] we see that the same is true for the area of the sector AMCA = 1 2 u, & of the ordinates SM , MR. §. 83. We moreover have ( §. 75.) the differential

du = d tan ϕ 1 -t 2 ϕ ,
whose integral happens to be

2u = log 1 + tϕ 1 -tϕ = log tan(45 • + ϕ) = l. tan SCM ,
138 hyperbolic logarithms. [START_REF] Snell | Cyclometricus[END_REF] See §. 74.

from which it follows

tϕ = tϕ + tϕ 1 + tϕ • tϕ ,
& reciprocally for the difference

tϕ = tϕ -tϕ 1 -tϕ • tϕ .
These two formulae only differ by their signs from those which are found for the sectors, or the circular arcs, & they too let us conclude that if the tangents which correspond to two hyperbolic sectors are rational, then the tangents which correspond to the sector which is equal to the sum & the difference of these two sectors will likewise be rational. §. 86. This proposition alone is sufficient to show that everything that was said above ( §. 52• • • 71.) for the circle will also apply to the hyperbola. We can merely use an abridged expression, and name tangent of some hyperbolic sector ACMA, the tangent of the angle ACM which is = AT , the radius AC being set = 1. Then, we should observe that all the sectors considered here must have the axis AC as their common beginning, as do all the MCAM , mCAm sectors. So, e.g. since the mCM sector does not meet the axis, it must be replaced by another one which is equal to it, & which is contiguous to the AC axis, when we want to obtain the angle ϕ & the corresponding tangent. It is obvious that this remark was not necessary in the case of the circle, because each diameter of the circle can be viewed as the axis.

§. 87. It is in that sense that I will say that the hyperbola has an infinity of prime tangents, that the sectors of all these prime tangents are incommensurable between themselves & to the unit, that the tangent of a sector being prime, only the multiples of this sector are rational: That every rational tangent is either prime itself, or its sector is a multiple of a sector whose tangent is prime. &c. Since the proof of these theorems would only be a repetition of those that I gave for the circle, I will omit them, even more so that I only give these theorems in order to show again in that matter the analogy between the circle & the equilateral hyperbola. §. 88. Let us still compare together the circular sector ANCA, & the hyperbolic sector AMCA. Mr. de Foncenex, in the memoir mentioned above ( §. 74.) showed that, by employing the imaginary quantities, these two sectors happen to be in the ratio of 1 to √ -1, which is purely imaginary. But let us see what is the real ratio? This is what we will find by expressing one of these sectors in terms of the other. To this effect we will use the two

are not yet enough developed. Here is however what will help to give an idea of it. It is not sufficient to have found that these transcendental quantities are irrational, that is incommensurable to the unit. This property is not unique to them. For, in addition to irrational quantities which may be obtained by chance, & which for that reason are hardly subject to analysis, there are still an infinity of others which are named algebraic: & such are all the radical irrational quantities, like √ 2, √ 3, 3 √ 4 &c. 2 + √ 3 &c. & all the irrational roots of algebraic equations, such as e.g. those of the equations

0 = xx -4x + 1, 0 = x 3 -5x + 1,
&c.

I will name the ones & the others radical irrational quantities, & here is the theorem, which I believe can be proven. §. 90. I say thus that no circular & logarithmic transcendental quantity can be expressed by any irrational radical quantity, which refers to the same unit, & in which there enters no transcendental quantity. The proof of this theorem appears to rest on the fact that the transcendental quantities depend on e x , where the exponent varies, whereas the radical quantities assume constant exponents. Thus e.g. the arc of a circle being rational or commensurable to the radius, its tangent, which we found to be irrational, cannot be a square root of any rational quantity. For, let the proposed arc = ω, & let us make tan ω = √ a, we will have145 

t 2 ω = sin 2 ω cos 2 ω = 1 -cos 2ω 1 + cos 2ω = a,
from which it follows that cos 2ω = 1 -a 1 + a : but this quantity being rational, it follows that the arc 2ω is irrational, which contradicts the assumption, it is clear that by making tan ω = √ a, the quantity a cannot be rational, & that consequently the tangent of any rational arc is not the square root of any rational quantity.

§. 91. This theorem being once proven in all its universality, it will follow that since the circumference of the circle cannot be expressed by any radical quantity, nor by any rational quantity, there will be no means to determinate it by some geometric construction. For everything that can be constructed geometrically corresponds to the rational & radical quantities; & we are even far from being able to construct the latter ones without any constraints. It is clear that it will also be the case for all the arcs of circles whose length or the two extreme points are given, either by rational quantities, or by radical quantities. For, if the length of the arc is given, it will be necessary to find the two extreme points, by using the chord, the sine, the tangent, or some other straight line which, in order to be constructed, will always depend or be reductible to one of the lines I have mentioned. But the length of the arc being given by rational or radical quantities, these lines will be transcendental, & for that very reason irreductible to any rational or radical quantity. It will also be the case if the two extreme points of the arc are given, I mean by rational or radical quantities. For, in that case, the length of the arc will be a transcendental quantity: this means irreductible to any rational or radical quantity, & consequently it does not admit of any geometrical construction. Chapter 3

Plate X.

Legendre's proof (1794

)
The following is a translation from pages 296-304 of Legendre's Éléments de géométrie published in 1794 [98]. [START_REF] Aigner | Proofs from The Book[END_REF] NOTE VI. Where it is proven that the ratio of the circumference to the diameter can not be expressed in integer numbers.

A proof of this proposition is already known, it was given by Lambert in the Memoirs of Berlin, year 1761; but since this proof is lengthy and difficult to follow, I have tried to shorten it and to simplify it. Here is the result of my researches.

Consider the infinite series 2

1 + a z + 1 2 • a 2 z • (z + 1) + 1 2 • 3 • a 3 z • (z + 1) • (z + 2) + , etc.
and assume that ϕ(z) is its sum. [START_REF] Archimedes | Measurement of a circle[END_REF] If one replaces z by z + 1, ϕ(z + 1) will likewise be the sum of the series

1 + a z + 1 + 1 2 • a 2 (z + 1) • (z + 2) + 1 2 • 3 • a 3 (z + 1) • (z + 2) • (z + 3) + , etc.
Let us subtract these two series term by term one from the other, and we will have ϕ(z) -ϕ(z + 1) for the sum of the remainder, which will be

a z • (z + 1) + a 2 z • (z + 1) • (z + 2) + 1 2 • a 3 z • (z + 1) • (z + 2) • (z + 3) + , etc.
1 Translated by Denis Roegel, 18 June 2020. Legendre's note was also translated in German by Rudio [131]. My translation is not based on the earlier one published in 1828 [99].

2 I have added parentheses for intelligibility.

But this remainder can be put in the form

a z • (z + 1) • 1 + a z + 2 + 1 2 • a 2 (z + 2) • (z + 3) + , etc. ;
and then it reduces to a z•(z+1) ϕ(z + 2). Therefore we will generally have

ϕ(z) -ϕ(z + 1) = a z • (z + 1) ϕ(z + 2).
Let us divide this equation by ϕ(z+1); and, in order to simplify the result, let ψ be a new function of z such that ψ(z) = a z • ϕ(z+1) ϕ(z) ; then instead of ϕ(z) ϕ(z+1) , we can put a zψ(z) , and (z+1)ψ(z+1) a instead of ϕ(z+2) ϕ(z+1) . Once the substitution is done, we have ψ(z) = a z+ψ(z+1) . But by putting in succession in this equation z + 1, z + 2, etc., instead of z, we will obtain ψ(z + 1) = a z+1+ψ(z+2) , ψ(z +2) = a z+2+ψ(z+3) , etc. Thus the value of ψ(z) can be expressed as follows as a continued fraction:

ψ(z) = a z + a z + 1 + a z + 2 + , etc.
Reciprocally this continued fraction, extended to the infinite, has as its sum ψ(z), or its equivalent a z • ϕ(z+1) ϕ(z) , and this sum, developped in ordinary series, is

a z • 1 + a z+1 + 1 2 • a 2 (z+1)•(z+2) + , etc. 1 + a z + 1 2 • a 2 z•(z+1) + , etc. Let now be z = 1
2 , the continued fraction will be ψ(z) = 2a 1 + 4a 3 + 4a 5 + , etc. so that its numerators, except the first, will be equal to 4a, and its denominators will form the sequence of odd numbers 1, 3, 5, 7, etc. The value of this continued fraction can therefore also be expressed by

2a • 1 + 4a 2•3 + 16a 2 2•3•4•5 + 64a 3 2•3•••7 + , etc. 1 + 4a 2 + 16a 2 2•3•4 + 64a 3 2•3•••6 + , etc.
But these series are known, and it is known that by denoting by e the number whose hyperbolic logarithm is 1, the previous expression reduces to e From there two main formulae follow depending on whether a is positive or negative. Let first be 4a = x 2 , we will have e x -e -x e x + e -x =

x 1 + x 2 3 + x 2 5 + , etc.
Let then be 4a = -x 2 , and because

e x √ -1 -e -x √ -1 e x √ -1 +e -x √ -1 = √ -1 • tan x, we will have tan x = x 1 -x 2 3 -x 2 5 -x 2 7 -, etc.
The latter is the formula will be the basis to our proof. But first we must prove the two following lemmas.

LEMMA 1. Given a continued fraction extended to the infinite,

m n + m n + m n + , etc.
in which all the numbers m, n, m , n , etc. are positive or negative integers; if we assume that the composing fractions m n , m n , m n , etc. are all smaller than the unit, I claim that the total value of the continued fraction will necessarily be an irrational number.

First I claim that this value will be smaller than the unit. [START_REF] Arndt | Pi : Algorithmen, Computer, Arithmetik[END_REF] Indeed, without reducing the generality of the continued fraction, we can assume that all the denominators n, n , n , etc. are positive: but, if we take only one term of the proposed sequence, we will have by hypothesis m n < 1. If we take the first two, because of m n < 1, it is clear that n + m n is larger than n -1: but m is smaller than n; and since they are both integers, m will also be smaller than n + m n . Hence the value which results from the two terms is smaller than the unit. Pursuing the same reasoning, one will see that, whatever the number of terms which are computed of the proposed continued fraction, the value which will result is smaller than the unit; therefore the total value of this fraction extended to the infinite is also smaller than the unit. It could be equal to the unit only in the sole case where the proposed fraction would be of the form

m m + 1 -m m + 1 -m m + 1 -, etc.
In all the other cases it will be smaller. That being set, if one denies that the value of the proposed continued fraction is equal to an irrational number, let us assume it is equal to a rational number, and let this number be B A , B and A being some integers; we will thus have

B A = m n + m n + m n + , etc.
Let C, D, E, etc. be indeterminate values such that we have5 

C B = m n + m n + m n + , etc. D C = m n + m n + m iv n iv + etc.
and so on to the infinite. These different continued fractions having all their terms smaller than the unit, their values or sums B A , C B , D C , E D , etc. will be smaller than the unit, following what we have just proven, and therefore we will have6 B < A, C < B, D < C, etc.; in such a way that the sequence A, B, C, D, E, etc. is decreasing to the infinite. But the sequence of continued fractions considered here gives etc.

And since the first two numbers A and B are integers by assumption, it follows that all the others C, D, E, etc., which until now were indeterminate, are also integer numbers. But a contradiction follows from the fact that an infinite sequence A, B, C, D, E, etc. is both decreasing and composed of integer numbers; indeed as a matter of fact none of the numbers A, B, C, D, E, etc. can be zero, since the proposed continued fraction extends to the infinite, and that thus the sums represented by B A , C B , D C , etc. must always be something. [START_REF] Baltus | Continued fractions and the first proofs that π is irrational[END_REF] Therefore the assumption that the sum of the proposed continued fraction is equal to a rational quantity B A could not be maintained; therefore this sum is necessarily an irrational number.

LEMMA II. The same things being set, if the component fractions m n , m n , m n , etc. are of any size at the beginning of the sequence, but if after a certain interval they are constantly smaller than the unit, I claim that the proposed continued fraction, still assuming it extends to the infinite, will have an irrational value. Indeed if starting with m n , for instance, all the fractions m n , m iv n iv , m v n v , etc. at the infinite, are smaller than the unit; then, according to lemma I, the continued fraction

m n + m iv n iv + m v n v + , etc.
will have an irrational value. Let us call this value ω, and the proposed continued fraction will become

m n + m n + m n + ω.

But if one does in succession

m n + ω = ω , m n + ω = ω , m n + ω = ω ,
it is clear that, because ω is irrational, that all the quantities ω , ω , ω , will likewise be. But the last one ω is equal to the proposed continued fraction; thus its value is irrational.

We can now, coming back to our subject, prove this general proposition.

THEOREM.

If an arc is commensurable with the radius, its tangent will be incommensurable with that same radius.

Indeed, let the radius = 1, and the arc x = m n , m and n being integer numbers, the formula obtained above will give, when the substitution is performed,

tan m n = m n -m 2 3n -m 2 5n -m 2 7n -, etc.
But this continued fraction is in the case of lemma II; for it is clear that the denominators 3n, 5n, 7n, etc. increasing continuedly whereas the numerator m 2 remains of the same size, the composing fractions will or will soon become smaller than the unit; consequently the value of tan m n is irrational; therefore, if the arc is commensurable with the radius, its tangent will be incommensurable.

From there results as a very immediate consequence the proposition which is the object of this note. Let π be the half circumference whose radius is 1; if π were rational, the arc π 4 would also be, and consequently its tangent should be irrational: but it is known instead that the tangent of the arc π 4 is equal to the radius 1; thus π can not be rational. Therefore the ratio of the circumference to the diameter is an irrational number.

It is likely that the number π does not even belong to the algebraic irrationals, that is that it cannot be the root of an algebraic equation of a finite number of terms whose coefficients are rational: but it seems very difficult to prove this proposition rigorously; we can only show that the square of π is again an irrational number.

Indeed if in the continued fraction which expresses tan x, one does x = π, because of tan π = 0, one must have

8 0 = 3 - π 2 5 -π 2 7 -π 2 9 -, etc.
But if π 2 were rational, and if we had π 2 = m n , m and n being integers, this 8 From the expression of tan x, one actually finds that 1 -π 2 3-π 2

••• must be infinite, and hence that 3 -π 2 ••• must be equal to 0.

Gauss thus concludes that tan m n cannot be rational if m and n are integers.

Pringsheim [123] adds some comments on Gauss's derivation, stressing that Gauss must have been very familiar with Lambert's work, something which was confirmed in Pringsheim's second note.

In the note published shortly afterwards [124], [START_REF] Aigner | Proofs from The Book[END_REF] Pringsheim was able to locate an unpublished manuscript by Gauss, dated 1850. The derivation published from the Nachlass may also be dated from the 1850s.

Gauss's observations concern §. 48 and §. 49 in Lambert's memoir, who assumes, without saying so, that w > 1. In his manuscript, Gauss proves that the limit of R , R , etc., is 0, which was not clearly proved by Lambert.

Glaisher (1872)

In a note published in 1872 [56], J.W.L. Glaisher (1848-1928) gave a concise version of Lambert's proof of the irrationality of π, but he also gave an interesting derivation of Lambert's continued fraction for tan v using differential equations.

Glaisher considers the equation2 y = cos( √ 2x) which satisfies the differential equation y + y + 2xy = 0

It is easy to see that by differentiating this equation i times, that one obtains

y (i) + (2i + 1)y (i+1) + 2xy (i+2) = 0
And it follows that

y y = -1 1 + 2x y y y y = -1 3 + 2x y y . . . . . . y (i+1) y (i) = -1 (2i + 1) + 2x y (i+2) y (i+1)
and therefore

y y = - 1 √ 2x tan √ 2x = -1 1 -2x 3-2x 5-etc. Setting √ 2x = v, one then obtains tan v = v 1 -v 2 3-v 2 5-etc.

Hermite (1873)

No significant new proof of the irrationality of π seems to have been published between Legendre and Hermite, the work of Gauss having not been published.

In an excerpt of a letter to the German mathematician Carl Borchardt (1817-1880) [67], the French mathematician Charles Hermite (1822-1901) gave a new proof of the irrationality of π. I give here a sketch of this proof, using ideas by Juhel [86]. Hermite considers the equations

A n = Q n (x) sin x -P n (x) cos x (4.1) 
and refers for definitions of A n , Q n and P n to a letter sent by him to Paul Gordan (1837-1912) [66]. There, Hermite sets A 0 (x) = sin x, and successively

A 1 (x) = x 0 A 0 (t)t dt = sin x -x cos x A 2 (x) = x 0 A 1 (t)t dt = (3 -x 2 ) sin x -3x cos x, A 3 (x) = x 0 A 2 (t)t dt = (15 -6x 2 ) sin x -(15x -x 3 ) cos x, etc.
In fact, we have Q 0

(x) = Q 1 (x) = 1, P 0 (x) = 0, P 1 (x) = x, and 
Q n (x) = (2n -1)Q n-1 (x) -x 2 Q n-2 (x) P n (x) = (2n -1)P n-1 (x) -x 2 P n-2 (x)
It is possible to show that

A n (x) = x 2n+1 2 • 4 • • • 2n 1 0 (1 -z 2 ) n cos(xz) dz
This expression is in turn related to the Bessel function J n+1/2 (x).

In any case, assuming n even, Q n (x) is a polynomial in x 2 and if we let

x = π 2 with π 2 4 = a b , then Q n (x) = N a n/2 where N is an integer. Then N = b a 1 2 b √ a n 2 • 4 • • • 2n 1 0 (1 -z 2 ) n cos π 2 z dz, (4.2) 
This leads to a contradiction, because the right-hand side of this equation tends to 0, without ever being equal to 0, and N is an integer. Therefore π 2 is not rational, and also not π.

Cartwright's proof (see below) is a simplification of Hermite's proof.

Hermite (1882)

In his 1882 lecture [68, p. 68-69], Hermite dispenses with the integrals and adapted his earlier proof:

Hermite sets

X = sin x x X 1 = - 1 x X = 1 x 3 (sin x -x cos x) X 2 = - 1 x X 1 = 1 x 5 (3 -x 2 ) sin x -3x cos x X 3 = - 1 x X 2 = 1 x 7 (15 -6x 2 ) sin x -(15x -x 3 ) cos x . . . . . . X n+1 = - 1 x X n
It is now already clear that X n = 1 x 2n+1 A n with the 1873 definition of A n . We have

X n = 1 x 2n+1 [Φ(x) sin x -Φ 1 (x) cos x]
where Φ(x) and Φ 1 (x) are of degree n and n -1, or n -1 and n, depending whether n is even or odd.

But Hermite goes on and writes

X = 1 - x 2 3! + x 4 5! -• • • X n = 1 1.3.5 . . . (2n + 1) 1 - x 2 2(2n + 3) + x 4 2.4(2n + 3)(2n + 5) -• • • = 1 1.3.5 . . . (2n + 1) S
which is easily proved by induction. By grouping two adjoining terms, S can be rewritten as follows:

S = 1 - x 2 2(2n + 3) + x 4 2.4(2n + 3)(2n + 5) 1 - x 2 6(2n + 7) + • • • This series is strictly positive if 1 -x 2 2(2n+3) > 0 and this condition is met if x = π
2 and n ≥ 0. Let us now assume that π 2 = b a , with a and b integers. We therefore have

Φ(b/a) = π 2 2n+1 X n = A a n
where A is a positive integer (as a polynomial in b of degree ≤ n). And therefore And since the right-hand side tends to 0 but always remains positive, we obtain a contradiction, and π must be irrational. Hermite observes that the result still holds if we take π 2 2 = b a , because Φ(x) only contains even powers.

A = a n π

Hobson (1918)

In his Treatise on plane trigonometry (1918 and probably earlier editions) [72, p. 374-375], Hobson gave a proof of the irrationality of π which is a clear adaptation of Legendre's proof where a is restricted to the case < 0.

Laczkovich uses the same line of thought, but refers to Gauss [53]. Hobson's function below is a hypergeometric function [40, 59], and Gauss derives some continued fractions from hypergeometric functions, but not exactly the case below.

Hobson considers the function

f (c) = 1 - x 2 1.c + x 4 1.2.c(c + 1) - x 6 1.2.3.c(c + 1)(c + 2) + • • • Then f (c + 1) -f (c) = x 2 c(c + 1) f (c + 2)
and therefore

f (c) f (c + 1) = 1 - x 2 c(c + 1) f (c + 2) f (c + 1)
and f (c + 1) f (c) can be expressed as the continued fraction

1 1 -x 2 /[c(c + 1)] 1 -x 2 /[(c + 1)(c + 2)] 1 -x 2 /[(c + 2)(c + 3)] 1 -etc.
Now, if c = 1 2 and replacing x by x/2, the series f (c) becomes

f (c) = cos x = 1 - x 2 1.2 + x 4 1.2.3.4 -• • •
and f (c + 1) becomes sin x x . Consequently (for details, see [91])

tan x x = 1 1 -x 2 3 -x 2 5 -x 2 7 -etc.
For x = π 4 , Hobson observes that the right-hand side is irrational, referring to Chrystal [29], who himself used Legendre's lemma and this proves the irrationality of π.

Popken (1940)

Jan Popken (1905-1970) had the purpose of freeing Lambert's proof from the theory of continued fractions and therefore made it simpler. His proof is actually related to Hermite's proof, as he observed later [120]. In his first article [115], he proceeds as follows. He first proves a lemma about the existence of polynomials p h (x -1 ) and q h (x -1 ) with integral coefficients and of degree at most 2h (with h ≥ 0), such that

p h (x -1 ) sin x+q h (x -1 ) cos x = (-2) h ∞ n=0 (-1) n (n + 1)(n + 2) • • • (n + h) (2n + 2h + 1)! x 2n+1 (4.
3) This is clear for h = 0:

sin x = x 1! - x 3 3! + x 5 5! - x 7 7! + x 9 9! -• • • (4.4)
In his later publication [117], Popken also gives examples of such polynomials for h = 1 and h = 2:

-x -2 sin x + x -1 cos x = -2 1 • x 3! - 2 • x 3 5! + 3 • x 5 7! - 4 • x 7 9! + • • • (3x -4 -x -2 ) sin x -3x -3 cos x = (-2) 2 1 • 2x 5! - 2 • 3x 3 7! + 3 • 4x 5 9! -• • •
One can notice that these expressions have a simple relationship with Hermite's A n . Now, assuming that π is rational and setting π 4 = a b , and applying the lemma with x = a b , we obtain for h ≥ 0:

p h b a + q h b a √ 2 2 = (-2) h h! (2h + 1)! π 4 - 2 • 3 • • • (h + 1) (2h + 3)! π 4 3 + • • • (4.5)
In the alternating series between brackets, the terms decrease and tend to 0. Consequently

2 h h! (2h + 1)! π 4 - 2 • 3 • • • (h + 1) (2h + 3)! π 4 3 < √ 2 2 p h b a + q h b a < 2 h h! (2h + 1)! π 4 < 2 h h! , (4.6) 
and

0 < a 2h p h b a + a 2h q h b a < √ 2 2 h |a| 2h h! (4.7)
The assumptions on the polynomials p h and q h entail that a 2h p h b a + a 2h q h b a is an integer, for each h ≥ 0. But since lim h→∞ √ 2 2 h |a| 2h h! = 0, this is impossible. Hence, π cannot be rational.

Cartwright (1945)

The following proof was given as an exercise by Mary Cartwright (1900-1998) in Cambridge in 1945, but it has an earlier origin and is obviously related to Hermite's first proof. It was published by Jeffreys in 1957 [79, p. 231] and 1973 [80, p. 268].

Cartwright considers the integrals

I n = 1 -1 (1 -x 2 ) n cos(αx) dx
Integrating by parts twice gives (for n ≥ 2)

α 2 I n = 2n(2n -1)I n-1 -4n(n -1)I n-2
Setting J n = α 2n+1 I n , it becomes

J n = 2n(2n -1)J n-1 -4n(n -1)α 2 J n-2 .
We also have J 0 = 2 sin α and J and there would be an integer between 0 and 1. This shows that π 2 cannot be a rational.

Cartwright's proof was reprinted in several other places, such as in Earl's Towards Higher Mathematics [41, p. 383]. Boros and Noll [20, p. 117-118] also give a slight variant where they take π = a b instead of π 2 = b a in the above proof. They do however incorrectly attribute their proof to Niven.

In 2004, Ghislain Dupont [39] published another variant of Cartwright's proof (without referring to it), first defining

I n = 1 n! π/2 -π/2 π 2 4 -t 2 n dt
He observes that I n > 0 and lim n→∞ r n I n = 0 for any integer r > 0. He then proves by induction that I n is a polynomial in π 2 of degree at most n and with integer coefficients:

I n = P n (π 2 )
Assuming then that π 2 = r/s with r and s integers, it follows that s n I n is an integer whose limit is 0 when n → ∞, which is impossible since I n > 0. Hence π 2 is irrational, and so must be π. The same proof was borrowed by Oliveira [36], without any sources.

Lord [102] may have some additional information, but I haven't been able to obtain his article.

Niven (1947)

In 1947, Ivan Niven (1915-1999) published a simple proof that π is irrational [109]. This was also based on a technique introduced by Hermite. Assuming that π = a/b, Niven defined the two polynomials f (x) =

x n (a -bx) n n! ,

F (x) = f (x) -f (2) (x) + f (4) (x) -• • • + (-1) n f (2n) (x),
For j < n, f (j) (x) = x n-j × • • • and f (j) (0) = 0.

For n ≤ j ≤ 2n, we have

f (x) = x n n! • • • + n j -n a 2n-j (-bx) j-n + • • •
and consequently

f (j) (x) = • • • + j! n! n j -n a 2n-j (-b) j-n + • • • j!
n! , n j-n and a 2n-j (-b) j-n are integers, hence f (j) (0) has an integral value.

And since f (x) = f (a/b -x), we have f (π) = 0 and as f (j) (x) = (-1) j f (j) (a/b -x), f (j) (π) is also an integer.

We also have which is equal to an integer, because of the above results. But, because of the definition of f (x), we have, for 0 < x < π, 0 < f (x) sin x < π n a n n! Therefore the integral (4.8) is positive, but can be made arbitrarily small for n sufficiently large. It follows that (4.8) is false, and with it the assumption that π is rational. Niven's proof can actually be slightly adapted to prove that π 2 is irrational, which then also entails the irrationality of π.

Bourbaki's treatise [22] has an exercise for proving the irrationality of π. It is in fact Niven's proof, but taking instead of f (x) = x n (a-bx) n n! the function h(x) = x n (a/b-x) n n! = f (x)/b n . In his book on irrational numbers [110], Niven reproduces his previous proof of the irrationality of π, but also gives another proof where he deduces the irrationality of π from the fact that cos r is irrational for any rational number r = 0. Since cos π = -1, π is necessarily irrational.

Hardy and Wright [64], Remmert [128], Spivak [141], as well as Eymard and Lafon [46, p. 129-130] reproduced slight adaptations of Niven's proof where f (x) =

x n (1 -x) n n! .

x then varies between 0 and 1 instead of between 0 and π.

Ribenboim [129] and Beukers [19] also gave Niven's proof.

Jones published an insightful motivation of Niven's proof [81, 84] which I will not describe here, but that the curious reader might want to study. Other interesting studies are those of Conrad [30] and again of Jones [83] and Zhou and Markov [155, 153, 154].

Parks [113] generalized Niven's proof and proved for instance that if 0 < |r| ≤ π and if cos(r) and sin(r) are rational, then r is irrational. He also proved that if r is positive and rational, r = 1, then ln(r) is irrational.

Koksma [90] has also adapted Niven's proof, this time in order to prove the irrationality of e p/q for a rational p/q > 0.

4.9 Popken (1948) In 1948, Popken gave a simpler proof [119].

Popken first obtains the expressions for R , R , etc. (see §. 7 in Lambert's memoir):

cos v = w sin v + R sin v = -3wR + R R = 5wR + R . . . . . . R n = (-1) n+1 (2n + 3)wR n+1 + R n+2
and in general, as mentioned earlier (in a note to Lambert's §. 8):

R n = (-1) n(n+1)/2 2 n ∞ m=0 (-1) m (n + m)! m!(2n + 2m + 1)! v n+2m+1 (4.9)

Popken then assumes that v is rational and that the denominator of w = 1/v is a. He also assumes that tan v = q/p, so that cos v = pρ and sin v = qρ, for ρ > 0. Now, from the above, it follows that R (v) = pρ -wqρ so that R ρ is a fraction with denominator a. Likewise, R ρ is a fraction with denominator a 2 , etc. In general, R n ρ is a fraction with denominator a n , so that R n a n ρ is an integer. From equation (4.9), it follows that

|R n | < A n n!
where A is a positive integer not depending on n.

For n sufficiently large, we therefore have R n a n ρ < 1, and consequently R n = 0.

In all three sums, the numerator of each fraction is a product of t consecutive integers, and is therefore divisible by t!. In particular, in the first sum, since 2k + 1 ≤ t, the numerator is also divisible by (2k + 1)! and each term of the first sum is an integer. In the second sum, the second factor of the first numerator, the sixth factor of the third numerator, etc., as well as the penultimate factor of the last numerator

(
(2t -1 -(t + 1)) • • • =0 (2t -1 -(2t -1))(2t -1 -2t)
are equal to 0. Therefore, the second sum is equal to 0.

Therefore, since B t (N ) is an integer, the third sum ∞ k=t must also be an integer. Now, since When t is greater than some integer t 0 , N 2 t t+1 e N < 1. Therefore, the third sum above, which is an integer, must be S(t) = 0 for every integer t > t 0 .

(
However, this is impossible because

lim t→∞ S(t) = 1 - 1 2 2 • N 2 2! + 1 2 4 • N 4 4! -• • • = cos(N/2) = ±1.
Therefore the initial assumption that π = a/b is not valid and π is irrational.

4.11 Laczkovich (1997) In 1997, Laczkovich [91] published a new proof of the irrationality of π, in that he simplified a result by Popken [119]. Laczkovich vaguely refers to Gauss [53], but an exact reference is not given. Laczkovich may however have been inspired by the way Gauss obtains a continued fraction from the ratio of two hypergeometric functions. In any case, as already mentioned, it should be noted that Laczkovich's proof is similar to Hobson's proof shown above.

Laczkovich starts with the family of series

f k (x) = 1 - x 2 k + x 4 k(k + 1) • 2! - x 6 k(k + 1)(k + 2) • 3! + • • •
f k (x) converges for every x and k = 0, -1, -2, . . .. It is easy to see that f 1/2 (x) = cos(2x) and f 3/2 (x) = sin(2x) 2x . Likewise, we have

x 2 k(k + 1) f k+2 (x) = f k+1 (x) -f k (x)
for the same values of x and k as above. Now, Laczkovich uses an argument by Popken [119] and proves the theorem Theorem. If x = 0 and x 2 is rational, then f k (x) = 0 and f k+1 (x)/f k (x) is irrational for every k ∈ Q, k = 0, -1, -2, . . . Laczkovich's proof is by infinite descent but I refer the reader to the original article for details. The proof itself is rather straightforward.

The irrationality of π 2 (and therefore of π) follows from the observation f 1/2 (π/4) = cos(π/2) = 0.

Finally Laczkovich derives the continued fraction

tan x = x 1 -x 2 3 -x 2 5 -x 2 7 -etc.
in much the same way as Hobson, but with more detail.

Other proofs

The summary above is not meant to be complete. There are certainly other proofs of the irrationality of π, some of them mere variants of proofs I have described, and some of them using different ideas. Without going into the details of the proofs, let me mention a few:

• In 2001, Huylebrouck [74] provided a uniform treatment for the irrationality proofs of π, ln 2, ζ(2) and ζ(3). His proof of the irrationality of π involves the integral where P n is a polynomial defined by

P n (x) = 1 n! d n dx n (x n (1 -x) n )
Huylebrouck claims that these polynomials are the so-called Legendre polynomials, but they are actually a variant of them.

For more on this proof and the related ones, I refer the reader to Huylebrouck's article.

• Another proof of interest is that of Angell [2]. In order to prove the irrationality of tan r for a rational r > 0, Angell studies the theory of generalized continued fraction, and borrows some ideas from Chrystal [29]. Again, the interested reader should consult Angell's proof. Bott also derived the irrationality of π in a similar way [21].

Irrationality of powers of π and other results

The methods used to prove the irrationality of π have often been adapted to obtain other results. For instance, observing that there were no separate proofs of the irrationality of π n for n > 2, other than those deriving the irrationality of π n from the transcendence of π, Jones obtained such proofs for e n and π n [82].

Iwamoto [77] extended Niven's proof to π 2 and Inkeri [75] proved the irrationality of π 2 as a direct application of Hermite's method.

Beukers has also proven the irrationality of ζ(2) = π 2 6 [18] and his proof is summarized by Eymard and Lafon [46, p. 136-138].

In 1975 and 1976, Novák [111] and Inkeri [76] generalized some of Niven's results. In 1977, Murty and Murty [107] also obtained more general results from which Niven's proof and others are corollaries.

Other generalizations are those of Schneider [133] and Desbrow [38].

Transcendence

As mentioned earlier, the quadrature of the circle would only be possible if π were algebraic. But the fact that π is not algebraic, hence is transcendental, was proved by Lindemann in 1882 [101].

For more on the transcendance of π, see Sylvester [145, 144], Hessenberg [69], and more recent expositions by Juhel [86] and Jacob [78]. Fritsch has also commemorated the hundredth anniversary of Lindemann's result [51].

More recently, Lian and Zhang [100] gave a simple proof of the transcendence of the trigonometric functions. Milla [104] has also recently published a new proof of the transcendence of π.
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  & of the circle AND, CF the asymptote, AB perpendicular to the axis, & at the same time the common tangent to the circle & the hyperbola. Let the two infinitely close lines CM , Cm drawn from the center C, & from the intersection points M , m, N , n, let the ordinates MP , mp, NQ, nq be obtained from perpendiculars. Finally, let the radius AC = 1. Set the angle MCA = ϕ, & let 127 for the hyperbola for the circle the abscissa CP = ξ . . . . . . . . . . . . . . . . . . . . . . . . . CQ = x the ordinate PM = η . . . . . . . . . . . . . . . . . . . . . . . . QN = y the segment AMCA = u : 2 . . . . . . . . . . . . . . . ANCA = v : 2 & we will have tan ϕ = η ξ . . . . . . . . . . . . . . . . . . . . . .

1 √

 1 t 2 ϕ . . . . . . . . . . . . . . . . . . . . x = . . . . . . . . . . . . . . . . . y = tϕ √ 1+t 2 ϕ , Hence +dξ : du = η . . . . . . . . . . . . . . . . . . -dx : dv = y, +dη : du = ξ . . . . . . . . . . . . . . . . . . +dy : dv = x,

  +dξ = dη • tan ϕ. . . . . . . . . . . . . . . . -dx : dy = tan ϕ. §. 76. Since the angle ϕ is the same for the hyperbola & for the circle, it follows from the last two equations that we have tan ϕ = dξ : dη = -dx : dy = η : ξ = y : x. The angles Mmp, Nnq, are therefore equal. As a result Mm : Nn = dξ : -dx = dη : dy.

  the original plate, V is not on the horizontal line CA, because the figure does not extend to the actual intersection V .

m n + m n is smaller than

  the unit. Let us compute three terms of the proposed continued fraction; and first, following what we have seen, the value of the component m n + m n will be smaller than the unit. Let us call this value ω, and it is clear that m n+ω will be even smaller than unit: therefore what results from the three terms m n + m n + m n

  it follows D = m B -n C, m n + D C D C = ; from which it follows E = m C -n D, m n + E D etc.

2 2n+1 1 . 3 . 5

 2135 . . . (2n + 1) S

1 =

 1 -4α cos α + 4 sin α. Therefore for all n J n = α 2n+1 I n = n!(P n sin α + Q n cos α) where P n , Q n are polynomials in α of degree ≤ 2n and with integral coefficients depending on n. Now, let α = π 2 = b a where a and b are integers. Then b 2n+1 n! I n = P n a 2n+1 . The right side is an integer. But 0 < I n < 2 since 0 < (1 -x 2 ) n cos( 1 2 πx) < 1 for -1 < x < 1 and b 2n+1 /n! → 0 as n → ∞. Hence, for sufficiently large n 0 < b 2n+1 I n /n! < 1

0 f

 0 d dx {F (x) sin x -F (x) cos x} = F (x) sin x + F (x) sin x = f (x) sin x because f (2n+2) (x) = 0. Consequently π (x) sin x dx = [F (x) sin x -F (x) cos x] π 0 = F (π) + F (0) (4.8)

1 0P

 1 n (x) sin(πx) dx

  But by §. 53 all the tangents t(m -n )ψ, t(m -2n )ψ . . . . . . . . . . . . . . . tr ψ, t(n -r )ψ, t(n -2r )ψ . . . . . . . . . . . . . . . tr ψ, t(r -r )ψ, t(n -2r )ψ . . . . . . . . . . . . . . . tr ψ, &c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	t ψ,

  t + 2 -(t + 1)) =0 (t + 2 -(t + 2)) • • • (t + 2 -2t)the fourth factor of the second numerator,(t + 4 -(t + 1))(t + 4 -(t + 2))(t + 4 -(t + 3))

	=0
	(t + 4 -(t + 4)) • • • (t + 4 -2t)

It is a pleasure to thank Gérald Tenenbaum for commenting upon a previous version of this document.

For biographical sketches of Lambert, see the notices of Formey[START_REF] Heinrich | [END_REF], Huber[START_REF] Huber | Lambert nach seinem Leben und Wirken aus Anlaß der zu seinem Andenken begangenen Secularfeier in drei Abhandlungen dargestellt[END_REF], Wolf[START_REF] Wolf | 1728-1777[END_REF] and Scriba[START_REF] Christoph | Dictionary of Scientific Biography[END_REF]. See also the proceedings of the international conference held in 1977 for the second century of Lambert's death[START_REF] Oberlé | Colloque international et interdisciplinaire Jean-Henri Lambert[END_REF].

However, according to Youschkevitch[152, p. 216] and Aycock[START_REF] Aycock | Euler und die analytische Theorie der Kettenbrüche[END_REF], Euler wrote a letter in 1739 in which he claimed that "it would be easy to prove" that the ratio of the circumference to the diameter is not rational. The fact is that Euler did not leave any such proof.

In the introduction of the volume containing this article, Lambert writes that all the articles were written in 1765 or later, and the article described in the next section was written in 1766.

For some leads on the vast litterature on the quadrature of the circle, see in particular Montucla[START_REF] Montucla | Histoire des recherches sur la quadrature du cercle, avec une addition concernant les problèmes de la duplication du cube et de la trisection de l'angle[END_REF], De Morgan[START_REF] De | Quadrature of the circle[END_REF], Hobson[START_REF] Hobson | Squaring the circle": A history of the problem[END_REF], Jacob[START_REF] Jacob | La quadrature du cercle[END_REF], and Crippa[START_REF] Crippa | The impossibility of squaring the circle in the 17th century: A debate among Gregory, Huygens and Leibniz[END_REF]. The quadrature of the circle is sometimes confused with the rationality of π, even by mathematicians who should know better. For instance, even Glaisher wrote in 1871 that the "arithmetical quadrature of the circle, that is to say, the expression of the ratio of the circumference to the diameter in the form of a vulgar fraction with both numerator and denominator finite quantities, was shown to be impossible by Lambert"[56, p. 12].

See Jacob[78, p. 402-409].

The date 1766 is given explicitely by Lambert in the foreword of the second volume of the Beyträge zum Gebrauche der Mathematik und deren Anwendung, as observed by Rudio[131, p. 165]. Lambert must already have had his proof of irrationality, except that the details were only made public in 1767. However, because the proof was published in

In most cases, when I cite continued fractions from Lambert or Legendre's work, I try to use their notation.

This was not clearly proved by Lambert, as observed by Gauss[123, 

124], and more recently by Baltus[START_REF] Baltus | Continued fractions and the first proofs that π is irrational[END_REF].

Inkeri[START_REF] Kustaa | The irrationality of π 2[END_REF] claims that Speiser, the editor of Lambert's Opera, filled a gap in Lambert's proof but Speiser has in fact only corrected some typos, not any fundamental gap.

See Barnett[START_REF] Heine | Enter, stage center: The early drama of the hyperbolic functions[END_REF] for the details of the connection with Riccati.

Not having seen Baltus's 2004 article [8], there is the possibility that he there has a reference to Gauss.

See T. L. Heath, The thirteen books of Euclid's elements, Cambridge, 1908, volume 2,

In other words, R n = R n+1 Q n+2 + R n+2 .

The above three expressions are not totally general, in that R n+3 is not given, and the signs complicate the induction. A more general proof is given in the next paragraph, but it is not totally complete.

This is in fact not totally clear, and is only clarified in the next paragraph. In general,

See §. 8.

Here ∓ means that the first, third, fifth, etc., terms are negative. The original expression contained an error.

[START_REF] Crippa | The impossibility of squaring the circle in the 17th century: A debate among Gregory, Huygens and Leibniz[END_REF] The original expression has a sign error. This error was apparently not corrected by Speiser[96, p. 119].

It is actually already true for a, since tan v = 1 w-a is also of that form.

Like in §. 27., this proof is only applicable to the case m > 1, and the case m = 1 can be checked separately.

We had w = 1/v, see §.16. 

This does easily follow because of Lambert's implicit assumption w ≥ 1, already mentioned above.

So, now Lambert is changing the definition of R , R , R , R iv , . . . , in the middle of his demonstration. . . The sign of R is inverted and all the other expressions follow accordingly. Below, I have replaced Lambert's 2n -1 by 2n + 3.

It is easy to see that the expressions for R , R , R , etc., enable a formal manipulation of both numerators and denominators as seen in §. 22, but this is not proven by Lambert.

The memoir had M P = tan ϕ.

Therefore none of the tan 45 • n for n > 1 are rational.

n is implicitely assumed > 1.

If we assume ω = αp with p < n and m n ω = αq, then it is easy to show that p ≥ n, a contradiction.

Any rational number is the tangent of an arc, and we can choose a rational which is smaller than tan ϕ.

but §. 65 has not completely been proven.

This should be better explained.

That is, if the table is restricted to [0, 90 • ].

See §. 62.

If v is twice the circular segment (that is, the area of) ANCA, this area is equal to ϕ/2, we actually have v = ϕ and Lambert gives the familiar expressions of sin x and cos x.

Consequently, we have ξ = cosh(u), η = sinh(u), and tan ϕ = η ξ = tanh(u).

This is correct, but how did Lambert obtain it?

The sequences of numerators and denominators have been submitted to the On-Line Encyclopedia of Integer Sequences (OEIS) as sequences A335257 and A335258.

I have moved the exponents for clarity and replaced by sin.

Legendre used the notation ϕ : z for our ϕ(z). I have adapted all the occurrences of 'ϕ :' and 'ψ :' in this translation.

In what follows, the composing fractions are assumed to be smaller than 1 in absolute value.

These expressions are valid, because C, D, E, etc., are not assumed to be integers. C is determined by the choice of B" D is determined by the choice of C, and so on.

all these orders are implicitely in absolute value: |B| < |A|, etc.

that is, they must have some non-zero value.

For some reason, this second note was forgotten in Wallisser's account[START_REF] Wallisser | On Lambert's proof of the irrationality of π[END_REF] who cites only the first note by Pringsheim.

I have slightly simplified the definition of y, as it was including two constants one of which can be taken equal to 0 and the other to 1.
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Consequently we will have

1 + 1 (7w -2) + 1 1 + &c. §. 73. Let us now compare the transcendental circular quantities to the logarithmic quantities which correspond to them. Let e be the number whose hyperbolic 118 logarithm = 1. And it is known that if in the two series that we used above ( §. 4.)

all the signs are taken positive, these equations become 119

But, by handling these last two series in the same way as we handled the first two ( §. 4 and following) the operation will only differ by the signs, which in the present case are all positive. As one can convince himself or herself which must be = η, hence

Consequently, comparing the terms

But, by differentiating η, we must also have dη : du = ξ, hence

So, comparing the terms

Using these equations, we obtain

We therefore will have

Here we have therefore the abscissa ξ, & the ordinate η, expressed by the letter u, which is twice the area of the hyperbolic segment AMCA. But we know that if instead of u we take v which is twice the circular segment ANCA, [START_REF] Rudio | Vier Abhandlungen über die Kreismessung[END_REF] the abscissa x, & the ordinate y, both circulary, are

two sequences, which for the form only differ from the two previous ones by the alternating change of signs. §. 78. And since we have ( §. 73.)

it is clear that we will have

& that consequently these quantities express the abscissa ξ = CP , & the ordinate η = PM of the hyperbola. 132 §. 79. And since η : ξ = tan ϕ, it is clear that we also have

and hence from §. 81.

And since the same tangent is also 134

we see that this tangent is obtained from these two continued fractions, which for the form do only differ by the signs: when the first is used, we only employ u = 2AMCA, instead of v = 2ANCA to obtain the same tangent by means of the second one. Now we have the analogy which was sought independently from the imaginary quantities, & without using them. §. 80. Now we can draw in very clear terms the consequence that the area of the hyperbolic sector AMCA, as well as that of the corresponding circular sector ANCA, will be an irrational quantity, incommensurable with respect to the square of the radius AC , whenever the angle ϕ, which is that formed by each of the two sectors at the center C, will have a rational tangent, & that conversely this tangent will be irrational whenever one of these two sectors will be a rational quantity.

§. 81. There is a quite analogous consequence to draw regarding the continued fraction ( §. 74.)

133 Actually, perhaps from §. 73. [START_REF] Schulz | Sehr leichte und kurze Entwickelung einiger der wichtigsten mathematischen Theorien[END_REF] See §. 7. Note that since tan ϕ = tanh(u), we have tanh(u) = tan(v).

or

Let us retain the first of these formulae

& it will enable us to find again for hyperbolic sectors what we found to be first tangent for circular sectors. Here is how. §. 84. Let us first consider that the hyperbolic sector AMCA increases with the angle ϕ = MCA, in such a way that it becomes infinite when ϕ = 45 • . It is thus clear that when one of these sectors is given, it is possible to find others, which are either any multiples of it, & any parts, or which exceed it by any amount. Now, to each of these sectors corresponds an angle MCP , by which it is formed, & the tangent of this angle being = ϕ, the sector = [START_REF] Aigner | Proofs from The Book[END_REF] 2 u, we have seen that it is 2u = log 1 + tϕ 1 -tϕ . §. 85. Let therefore be three sectors 1 2 u, [START_REF] Aigner | Proofs from The Book[END_REF] 2 u , 1 2 u , such that the third is the sum of the first two. Let moreover ϕ, ϕ , ϕ be the corresponding angles. We will have

Since we must have

we also have

which are easily found using the differential formulae given above ( §. 75.). [START_REF] Spivak | Calculus[END_REF] By substituting the value of the second of these sequences within the first, we will have, after reduction,

These two sequences [START_REF] Joseph | Preuve que π ne peut pas être racine d'une équation algébrique à coefficient entiers[END_REF] only differ with respect to the signs, the coefficients & the exponents being the same. If in the first of these sequences we set

Hence, by means of an imaginary hyperbolic sector, we find an imaginary circular sector, & reciprocally. §. 89. All that I have shown on the circular & logarithmic transcendental quantities seems to be based on principles much more universal, but which [START_REF] Sondow | A geometric proof that e is irrational and a new measure of its irrationality[END_REF] In the expression of v, exponents have been moved for clarity. The first expression is obtained by integrating dv = d(tϕ)

The second member of the second equation is equal to tanh(u) (the original article wrote tϕ = v -1 3 u 3 + • • • ). [START_REF] Spivak | Calculus[END_REF] How was the expression of tϕ found? By division of η and ξ given in §. 78? [START_REF] Steck | Bibliographia Lambertiana : Ein Führer durch das gedruckte und ungedruckte Schriftum und den wissenschaftlichen Briefwechsel von Johann Heinrich Lambert 1728-1777[END_REF] As observed in an earlier note, this amounts to v = arctan(tanh(u)) and u = artanh(tan(v)).

would entail

But it is visible that this continued fraction is still in the case of lemma II; its value is therefore irrational and could not be equal to the number 3. Therefore the square of the ratio of the circumference to the diameter is an irrational number.

Chapter 4

Modern proofs

In this chapter, I give the main modern shorter proofs of the irrationality of π I know of, and allude to a few others which have not been included, either because they are longer, or because they would go beyond the limits I set myself for this work.

Gauss (1850s?)

In his Nachlass [55], Carl Friedrich Gauss (1777-1855) considers m, n > 0 and the series

and for θ ≥ 1

which are all convergent. Although Gauss does not explicit it, we have P = cos m n and P 1 = sin m n , as observed by Pringsheim [123]. Gauss's reasoning is actually based on §. 46 in Lambert's memoir and he observes that P θ , P θ+1 , P θ+2 , etc., represents a sequence of decreasing values, as long as 2θ + 1 ≥ m 2 n + m 2 2n 2 . Then, if P 1 P = tan m n is rational, P and P 1 are proportional to integers, and so are P θ for θ > 1, because P θ+2 = (2θ + 1)nP θ+1 -m 2 P θ . We would then have an infinite decreasing sequence of integers which is impossible.

However if for a given value of n we have both R n and R n+1 equal to 0, then it follows from the construction of R n that R n-1 = 0, R n-2 = 0, and eventually sin v = 0 and cos v = 0. Now, for v = π, cos v = -1 and sin v = 0, therefore we should have also cos v = 0 which is a contradiction. Therefore, π can not be rational.

Breusch (1954)

In 1954, Breusch [24] gave yet another relatively elementary proof. He began by assuming that π = a/b with a and b integers. Then, setting N = 2a = 2bπ, one immediately has sin N = 0, cos N = 1 and cos(N/2) = ±1 (depending on the parity of b).

Breusch then defined the series

for each integer m ≥ 0. It is easy to see that A 0 = sin x and that A m+1 (x) = x dA m dx and to prove by induction that A m (x) = P m (x) cos x + Q m (x) sin x where P m (x) and Q m (x) are polynomials with integer coefficients.

Consequently, A m (N ) = P m (N ) is an integer for every m ≥ 0.

Then for an integer t > 0, Breusch defines the series

The values of b i are integers depending on t and in particular b t = (t + 1)(t + 2)