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In this document, I give the first complete English translation of Johann
Heinrich Lambert’s memoir on the irrationality of π published in 1768 [92],
as well as some contextual elements, such as Legendre’s proof [98] and more
recent proofs such as Niven’s [109]. Only a small part of Lambert’s memoir
has been translated before, namely in Struik’s source book [143]. My trans-
lation is not based on that of Struik and it is supplemented with notes and
indications of gaps or uncertain matters.

The purpose of this document is not to give a complete treatment of such
a vast subject, but rather to provide interested people with a better access
to the sources. Several accounts of Lambert’s proof actually do not refer to
Lambert’s original memoir, but to more recent expositions, such as those of
Legendre or Lebesgue, which may be misleading. Some authors suggest that
Lambert gave his results without proofs, which is not true.

Lambert’s memoir still contains some gaps and I have tried to identify
them in a number of notes. Some of these gaps do not seem to have been
reported by others. They may be either genuine gaps in Lambert’s proof,
or merely things that should be clarified. I hope that these points can be
improved in a future version of this document.
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Chapter 1

Introduction

In this introduction1, I give a few additional elements for the understanding
of Lambert’s proof of the irrationality of π. My purpose is however not to
give a complete coverage of this vast and rich subject.

1.1 Irrational numbers

Lambert’s work deals with the classification of numbers. The simplest num-
bers are the natural numbers 0, 1, 2, etc. Next come the rational numbers
which can be expressed as ratios of two natural numbers, for instance 5/2,
7/3, 1/8, etc. Real numbers correspond to the continuum and this set con-
tains the rational numbers, which themselves contain the natural numbers:

N ⊂ Q ⊂ R

An irrational number is a real number which cannot be expressed as a
ratio of two integers. The set of irrational numbers can be denoted by R \Q
The simplest irrational number is probably

√
2 and it is easy to prove that

it is not rational. For assume that
√

2 = a/b, where a and b are two positive
integers. We can also assume that the fraction is irreductible, that is, that
it cannot further be simplified, and that a has the smallest possible value
(in case the irreductible fractions were not unique). In that case we find
that a2 = 2b2 which implies that a = 2a′ and therefore that

√
2 = b/a′.

This is a new ratio with b < a and therefore it contradicts our assumptions.
Consequently,

√
2 cannot be expressed as a ratio of two integers. Likewise,

it is easy to prove that
√

3,
√

5,
√

7,
√

11, etc., are not rational numbers.

1It is a pleasure to thank Gérald Tenenbaum for commenting upon a previous version
of this document.

7



8 CHAPTER 1. INTRODUCTION

But there are many more irrational numbers and proving their irrational-
ity is not so simple. For some numbers such as π, the irrationality has been
suspected. For instance, Fantet de Lagny [48, p. 141], who computed π to
many places, also conjectured it being irrational.

Furthermore, irrational numbers can be divided into algebraic numbers
and transcendental numbers. The set of algebraic numbers is made of those
real numbers which are solutions of polynomial equations with integers coef-
ficients. Lambert suspected that π is a transcendental number but this result
was only proven in 1882 by Lindemann.

For more context on irrational numbers and their construction, the reader
should turn in particular to Brandenberger [23], Niven [110] and Havil [65].

1.2 Lambert’s work on π

Johann Heinrich Lambert (1728-1777) was born in Mulhouse (France), then
in the Swiss confederacy.2 He was the son of a tailor of French ancestry and
he was only schooled until the age of 12. Later he became the preceptor
of the Count de Salis’ children, and this gave him access to a vast library
and also the ability to travel through Germany and get in touch with many
scientists and mathematicians, in particular Leonhard Euler (1707-1783).

Lambert was a polymath and made contributions to mathematics, optics,
astronomy, map projections and philosophy. He died in 1777 in Berlin.

In mathematics, Lambert is the author of the first3 explicit proof of the
irrationality of π. Lambert’s work relies on continued fractions and his proof
of the irrationality of π leads to questions of convergence which are not
treated fully rigorously, although fixes have been provided by several authors.
It is in part because of these difficulties, as noted by Laczkovich [91], but also
because Lambert’s proof is very long, that usual proofs of the irrationality
of π now avoid continued fractions. It is therefore all the more important
to be able to examine carefully Lambert’s work, to compare it with that of
Legendre, and to put them in the context of various more recent studies.

Here, I go through Lambert’s writings related to the irrationality of π, and
in the next chapters the translations of Lambert’s main memoir, of Legendre’s

2For biographical sketches of Lambert, see the notices of Formey [50], Huber [73],
Wolf [151] and Scriba [135]. See also the proceedings of the international conference held
in 1977 for the second century of Lambert’s death [112].

3However, according to Youschkevitch [152, p. 216] and Aycock [5], Euler wrote a
letter in 1739 in which he claimed that “it would be easy to prove” that the ratio of the
circumference to the diameter is not rational. The fact is that Euler did not leave any
such proof.
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proof and the main modern proofs will be given.

1.2.1 Lambert’s article on the transformation of frac-
tions

In a long article on the transformation of fractions [94], probably written in
1765,4 Lambert gave some interesting results related to π. I shall only give
one example and not summarize the entire article.

Starting with the arctan series

arctan z = z − z3

3
+
z5

5
− z7

7
+ · · ·

Lambert obtained the continued fraction [94, p. 82]

arctan z =
1

1 : z + 1

3 : z + 1

5 : (4z) + 1

28 : (9z) + 1

81 : (64z) + 1

704 : (225z) + &c.

This fraction, as observed by Bauer [10], can be rewritten

arctan z =
z

1 + z2

3 + z2

5 : 4 + z2

28 : 9 + z2

81 : 64 + z2

704 : 225 + &c.

4In the introduction of the volume containing this article, Lambert writes that all the
articles were written in 1765 or later, and the article described in the next section was
written in 1766.
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and
arctan z =

z

1 + z2

3 + (2z)2

5 + (3z)2

7 + (4z)2

9 + (5z)2

11 + &c.
and eventually

π

4
=

1

1 + 12

3 + 22

5 + 32

7 + 42

9 + 52

11 + &c.
although Lambert did not give this fraction in his article. In their articles [11,
15, 12, 13, 14], Bauer and Haenel explore a number of ideas on the theme of
arctan-based approximations of π.

1.2.2 Lambert’s article on circle squarers (1766)

In the 1760s, Lambert worked on the quadrature of the circle, the irrationality
of π and hyperbolic geometry. The subject of the quadrature of the circle is
a very old one5 and Lambert himself became interested in it already in the
1750s.6

Lambert wrote two related articles in 1766 (published in 1770)7 and 1767
(published in 1768) on the quadrature. The first is examined here. In this

5For some leads on the vast litterature on the quadrature of the circle, see in particular
Montucla [106], De Morgan [35], Hobson [71], Jacob [78], and Crippa [32]. The quadrature
of the circle is sometimes confused with the rationality of π, even by mathematicians who
should know better. For instance, even Glaisher wrote in 1871 that the “arithmetical
quadrature of the circle, that is to say, the expression of the ratio of the circumference to
the diameter in the form of a vulgar fraction with both numerator and denominator finite
quantities, was shown to be impossible by Lambert” [56, p. 12].

6See Jacob [78, p. 402-409].
7The date 1766 is given explicitely by Lambert in the foreword of the second volume

of the Beyträge zum Gebrauche der Mathematik und deren Anwendung , as observed by
Rudio [131, p. 165]. Lambert must already have had his proof of irrationality, except that
the details were only made public in 1767. However, because the proof was published in
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article, Lambert’s focus was on “circle squarers” (those who claim to have
solved the quadrature of the circle) and it was a somewhat popular article,
not venturing into any actual proof [95].8

In his article, Lambert first writes [95, p. 155] that he is not aware of
any result on the rationality of π up to now. He cleverly does not state his
own result in advance. He writes however that if π is rational, it must be a
fraction of large numerators and denominators. He then gives a series of 27
approaching ratios, from 3

1
to 1019514486099146

324521540032945
[95, p. 156-157] and he refers to

his article on fractions [94] for their obtention.9
Later, Lambert does state that ep/q is irrational for integers p > 0 and

q > 0 [95, p. 161].
Regarding π, Lambert writes [95, p. 162] that he found the expression

tan v =
1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − &c.

And he deduces immediately that since this continued fraction doesn’t end
when 1/v is an integer, and in particular when v = 1, that tan v is then
irrational.

In fact, Lambert does state that tan m
n

is irrational for integer m and n
and therefore that π is irrational.

Lambert’s article concludes with a kind of riddle, which is in fact some
mundane observation later clarified by Unger [146, p. 326-327] (see also [127]).

1.2.3 Lambert’s main article (1767)

The article read in 1767 and published in 1768 is the one containing the
details of Lambert’s proof of the irrationality of π. This article is fully trans-

a volume covering communications from 1761, several authors, for instance Brezinski [25,
p. 110], or Havil [65, p. 104], mistakenly have dated Lambert’s proof to 1761.

8For a summary of this article, see Jacob [78, p. 50-61] and Viola [148, p. 243].
9Lambert’s ratios are correct, except for the last two. This error has been noti-

fied by Schulz in 1803 [134, p. 159] and later by Hirsch [70, p. 90] and Egen [42,
p. 444]. Lambert’s last ratio is not as accurate as he claimed, but the cause of his in-
correct statement is that Lambert used an incorrect continued development of π (see
https://oeis.org/A001203 for a more extensive development). In fact, in his last two
steps, Lambert assumed that π = [3; 7, 15, 1, 292, . . . , 1, 37, 3, . . .] (see [95, p. 158]) instead
of the correct π = [3; 7, 15, 1, 292, . . . , 1, 15, 3, . . .]. Surprisingly, these errors have not been
corrected by Rudio [131, p. 147-148] who edited Lambert’s article.
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lated in the next chapter.
It is interesting to note that Lambert never uses the symbol π to denote

the ratio of the circumference to the diameter, although the first use of π in
its modern meaning goes back to William Jones (1675-1749) in 1706 [85, 130].
Lambert however uses the symbol π in §. 40, but with a different meaning.

Lambert builds upon earlier work by Leonhard Euler (1707-1783), in par-
ticular his De fractionibus continuis dissertatio published in 1744 [44] and
his Introductio in analysin infinitorum published in 1748 [45].

Lambert starts (§. 4) with the series for the sines and cosines and obtains
a continued fraction10 for the tangent (§. 7):

tan v =
1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − &c.

Lambert’s expression can be rewritten as

tan v =
v

1− v2

3− v2

5− v2

7− v2

9− &c.

although Lambert doesn’t use it.
Lambert’s expression is proven by induction and he obtains series expan-

sions for R′, R′′, R′′′, etc., such that

tan v =
sin v

cos v
=
A

B
=

1

Q′ + R′

A

=
1

Q′ + 1

Q′′+R′′
R′

=
1

Q′ + 1
Q′′+ 1

Q′′′+R′′′
R′′

= · · ·

with Q′ = 1/v, Q′′ = −3/v, Q′′′ = 5/v, etc. This leads us up to §. 14 in
Lambert’s memoir but it assumed that v < 1 and that 1/v was an integer (v
is an aliquot part of 1).

10In most cases, when I cite continued fractions from Lambert or Legendre’s work, I try
to use their notation.
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Now, starting with

tan v =
1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − &c.

and setting w = 1/v (and still keeping implicitely v < 1), Lambert con-
siders the convergents obtained by restricting the continued fraction to a
finite number of terms. These convergents are fractions of two polynomials
in w and Lambert obtains general expressions for the numerators and the
denominators, which he also proves by induction (§.17-28). He observes that
the quotients of the numerators to the denominators seem to tend to the
quotients of the sines to the cosines (§. 29-30).

Next, Lambert seeks to find how these convergents are approaching the
value of the tangent (§. 32). Lambert obtains the general expression of the
differences of these convergents, and then he is able to write the tangent
as a sum of terms (§. 34). Then, assuming w = ϕ

ω
, Lambert also obtains

the analog general expressions with ϕ and ω (§. 37). Finally, assuming that
tan ϕ

ω
is equal to some fraction M

P
he definesD > 0 to be the greatest common

divisor of M and P . The values M and P need not be integers, they might
be for instance 2.793 and 6.23, in which case D would be equal to 0.007, as
2.793 = 399× 0.007 and 6.23 = 890× 0.007.

Lambert then defines a sequence of remainders R′, R′′, R′′′, etc., such
that D divides each of them (§. 41-45). But these remainders are decreas-
ing towards 0 (§. 49)11, without ever being equal to 0. We therefore have a
decreasing sequence of integers which cannot be equal to 0, which is a contra-
diction. This is a so-called “proof by infinite descent,” or “Fermat’s method of
descent,” although it predates Fermat. In Lambert’s case, this contradiction
shows that there is no such D > 0 and therefore that tan ϕ

ω
is not rational

when ϕ
ω
6= 0.

And then Lambert immediately concludes (§. 51) that π is not rational.
In sections §. 52-71, Lamberts introduces the notion of prime tangent and

obtains some of their properties. In section §. 72, Lambert gives a continued
fraction whose convergents approach tan v by excess and by default, whereas
the convergents of the initial continued fraction (in §. 7) only approach tan v
by default.

11This was not clearly proved by Lambert, as observed by Gauss [123, 124], and more
recently by Baltus [7].
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Sections §. 73-88 develop the theory of the hyperbolic functions and in
particular prove that ep/q is irrational if p

q
> 0 is rational. Eventually in

§. 89-91, Lambert suggests the existence of numbers which are not solutions
of algebraic equations, hence transcendental numbers.

There are however some gaps in Lambert’s proof. Lambert’s proof is dif-
ficult to read, there are some missing steps and some unproven assumptions,
and the text if furthermore crippled by a number of typographical errors.
Many of the errors have been corrected by Speiser in 1948 [96], but some
errors remain and some parts of the original memoir have been altered al-
though they could have been saved.12 Even Struik’s partial translation [143]
contains some new typos, and makes it very difficult to have a complete
overview of Lambert’s article.

Lambert then expands on the work of Vincenzo Riccati (1707-1775) on
hyperbolic trigonometry13 and obtains an expression analogous to that of
tan v for the hyperbolic tangent (§. 73).

Like above, Lambert’s expression

tan v =
1

1 : v + 1

3 : v + 1

5 : v + 1

7 : v + 1

9 : v + &c.

can be rewritten as
tan v =

v

1 + v2

3 + v2

5 + v2

7 + v2

9 + &c.
which Lambert also doesn’t use.

As mentionned earlier, Lambert’s memoir contains some inaccuracies or
gaps, or at least things that are in need of clarifications. In my translation,
I did not provide fixes other than those for typos and simple clarifications.
There is still a need to improve things, in particular in sections 49, 61, 65,
67, 68, 72, 73, and 88. The interested reader should check the notes in these
sections where the gaps or obscure passages are marked.

12Inkeri [75] claims that Speiser, the editor of Lambert’s Opera, filled a gap in Lambert’s
proof but Speiser has in fact only corrected some typos, not any fundamental gap.

13See Barnett [9] for the details of the connection with Riccati.
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1.3 Lambert’s work on e

In his main memoir, Lambert also proves the irrationality of e. This had
been proven earlier by Euler [105, 31, 132, 140] in De fractionibus continuis
dissertatio [44], written in 1737 and published in 1744, and which is the first
comprehensive account of the properties of continued fractions.

In his work, Euler used for instance the continued fraction [45, p. 319]:
e− 1

2
=

1

1 + 1

6 + 1

10 + 1

14 + 1

18 + · · ·

and this led Lambert [95, p. 162] to research a continued fraction for e−1
e+1

, or
rather of ex−1

ex+1
which he gave in §. 74.

This enabled him to prove that ep/q is irrational, and also conversely that
the hyperbolic logarithm of a rational number is irrational.

1.4 After Lambert: a quick review
After the publication of Lambert’s proof of the irrationality of π, a number of
authors have published comments or summaries of the proof. Some of them
provided new and simpler proofs which will be examined in chapter 4.

1.4.1 Legendre’s analysis (1794)

Adrien-Marie Legendre (1752-1833)’s Éléments de géométrie, published in
1794 [98, p. 296-304], contains an appendix where π is proven to be irrational,
using a convergence lemma for continued fractions. Legendre doesn’t describe
Lambert’s proof in detail and his proof is much simpler. In chapter 3, I give
a complete translation of Legendre’s proof.

But, even though Legendre never lays any such claim, several later au-
thors, for instance Youschkevitch [152, p. 216], have incorrectly claimed that
Legendre fixed some gaps in Lambert’s proof, as noted by Pringsheim [122].
Rudio [131], who published a German translation of Legendre’s note, also
claimed that Legendre gave the lemma which was missing in Lambert’s
proof [131, p. 56].

It is true that Lambert’s demonstration has some gaps, but Legendre
has only made two contributions to Lambert’s work. First, he simplified
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Lambert’s proof, making it much easier to follow. And second, he extended
it by proving the irrationality of π2. Legendre was also convinced of the
transcendence of π, but did not prove it.

Various authors have summarized or adapted the proof of Legendre. For
instance, Chrystal [29] has proven the irrationality of π by first deriving the
continued fraction

tanx =
x

1− x2

3− x2

5− x2

7− , etc.

using a technique from Lambert [94], then basically used Legendre’s lemma
to show that the continued fraction converges towards an irrational value if
π were rational, hence a contradiction.

Other uses of Legendre’s proof are found in Hobson [72, p. 374-375],
Serfati [136, 137], Delahaye [37], etc.

In particular Lebesgue [97, p. 108] has observed that Legendre could also
have considered tan π

2
=∞ to prove that π2 is not rational.

Notice should also be made of a manuscript in Gauss’s Nachlass [124]
which contains some comments on Legendre’s lemma.

1.4.2 More concise proofs by Gauss and Hermite

In the 1850s, Gauss worked on a more concise proof of the irrationality of π,
but did not publish it. It was only published in 1900 as part of his Nachlass.
The first concise proof to be published was therefore that of Hermite in 1873.
More details on these proofs will be found in chapter 4.

1.4.3 Various summaries of earlier proofs

Comments and summaries of Lambert’s results appeared as early as the be-
ginning of the 19th century. For instance, in 1803, Schulz [134, p. 161-178]
gave a summary of Lambert’s proof. In 1824, Eytelwein [47, p. 364-367] gave
the computation of Lambert’s convergents as an exercise. In 1856, Eugène
Prouhet (1817-1867) [125] provided extensions to Lambert’s results on pri-
mary tangents, but did not add anything to the question of the irrationality
of π. In 1911, Vahlen [147, p. 319-325] gave a summary of Lambert’s proof,
of Legendre’s proof, as well as of those of Gauss and of Hermite.

In his lectures on geometric constructions [97, p. 103-109], Henri Lebesgue



1.4. AFTER LAMBERT: A QUICK REVIEW 17

(1875-1941) recast Lambert’s proof. He defined A1, A2, A3, etc., such that

tanx =
x

1 + A1

A1 = − x2

3 + A2

A2 = − x2

5 + A3

. . . . . .

Ak = − x2

2k + 1 + Ak+1

. . . . . .

with for Ak the general expression

Ak =

∞∑
n=0

(−1)n+1x2n+2 (2n+ 2)(2n+ 4) · · · (2n+ 2k)

(2n+ 2k + 1)!
∞∑
n=0

(−1)nx2n
(2n+ 2)(2n+ 4) · · · (2n+ 2k − 2)

(2n+ 2k − 1)!

Given that Lambert defines (§. 6) B = AQ′ + R′, A = R′Q′′ + R′′,
R′ = R′′Q′′′+R′′′, etc., it is easy to see that B

A
= Q′+ A1

v
, A
R′

= Q′′+ A2

v
, etc.,

and that in fact Lebesgue’s Ak is related to Lambert’s Rk by

Ak = v
Rk

Rk−1

where the series for Rk are given in §. 8, with the exception of the signs,
the alternating initial signs having vanished because all the quotients Qi are
taken positive.

Lebesgue then gave the general expression of the convergents, but as a
fraction of polynomials in v, whereas Lambert gave the series for the numer-
ators and denominators as functions of w (§. 24):

Pn = 1 · 3 · 5 · · · (2n− 1)×
∑
k=1

(−1)k−1
v2k−1

(2k − 1)!

(2n− 2k)(2n− 2k − 2) · · · (2n− 4k + 4)

(2n− 1)(2n− 3) · · · (2n− 2k + 3)

Qn = 1 · 3 · 5 · · · (2n− 1)×
∑
k=0

(−1)k
v2k

(2k)!

(2n− 2k)(2n− 2k − 2) · · · (2n− 4k + 2)

(2n− 1)(2n− 3) · · · (2n− 2k + 1)

the sums being extended until the terms equal 0.



18 CHAPTER 1. INTRODUCTION

Lebesgue observes then that the expressions in the sums converge uni-
formly towards sin v and cos v, and that Pn/Qn therefore converges uniformly
towards tan v.

Lebesgue seems also to be the only one to comment upon Lambert’s
notion of “primary tangent” [97, p. 107].

Lebesgue’s derivation was used by several authors [149, 114, 46] as a way
of providing a more concise summary of Lambert’s proof.

Eymard and Lafon [46] also follow Lebesgue, but they incorrectly at-
tribute Legendre’s lemma to Lambert. Lambert did not deduce the irra-
tionality of a continued fraction from Legendre’s first lemma, but instead
used a much more complex reasoning.

1.4.4 Pringsheim’s renewal (1899) and the rediscovery
of Gauss (1932)

In 1899, Alfred Pringsheim (1850-1941), spurred by what he considered to be
unfair uncounts of Lambert’s merits, gave a summary of Lambert’s memoir
and claimed [122, p. 326] that Lambert had completely proved the irrational-
ity of π and that Legendre’s work instead lacked at proofs of existence and
convergence of the infinite continued fractions. I refer the reader to Prings-
heim’s article on the convergence of continued fractions [121].

Pringsheim returned to Lambert in the 1930s when commenting Gauss’s
Nachlass published in 1900 [123, 124]. For some reason, Gauss’s observations
were pretty much ignored until they were rediscovered at the beginning of
the 21st century.

1.4.5 More concise proofs by Niven and others

Several new proofs of the irrationality of π were published in the 1940s and
1950s. One of the more popular ones was the proof published by Niven in
1947 [109]. It was in turn borrowed or adapted by others [137, 1].

1.4.6 Recent summaries and comments

As part of the 1977 international conference celebrating the 200th anniver-
sary of Lambert’s death, Viola [148, p. 239-242] gave another summary of
Lambert’s main memoir.

In 2000, Wallisser [150] gave a summary of the proofs of Lambert and
Legendre, but with some inaccuracies (for instance on the definitions of P
and M in Lambert’s §. 38), and omitting Pringsheim’s second article on
Gauss’s work [124].
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In 2003, Baltus [7] seeked to settle the matter of the completeness of Lam-
bert’s proof. Apparently in ignorance of Gauss’s earlier findings [123, 124],
Baltus rediscovered14 the gap in Lambert’s proof in §. 49, where Lambert
does not clearly prove that the sequence R′, R′′, R′′′, etc., tends to 0. Baltus
provided a fix for the “gap.”

14Not having seen Baltus’s 2004 article [8], there is the possibility that he there has a
reference to Gauss.
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Chapter 2

Lambert’s memoir (1767)

Memoir
on

some remarkable properties
of the circular and logarithmic

transcendental quantities1

by Mr. Lambert2

§. 1.

Proving that the diameter of the circle is not to its circumference like
an integer to an integer, this is something which geometers will hardly take
as a surprise. The numbers of Ludolph,3 the ratios found by Archimedes,4

1“Mémoire sur quelques propriétés remarquables des quantités transcendentes circu-
laires et logarithmiques,” Histoire de l’Académie Royale des Sciences et Belles-Lettres,
Année 1761, tome XVII, Berlin, 1768, pp. 265-322 [92]. Translated from the French by
Denis Roegel, 2010-2012. With the exception of the first note, all the notes are from the
translator. This translation tries to be as faithful as possible, but intends to remain intelli-
gible. In order to clarify certain passages, a number of notes, as well as several appropriate
figures have been added.

2Read in 1767. (original footnote)
3Ludolph van Ceulen (1540–1610) published a 20-decimal value of π in 1596 (see Vanden

circkel daer in gheleert werdt te vinden de naeste proportie des circkels-diameter teghen
synen omloop etc., 1596, Folio 14 [26], and 1615, Folio 24 [28]). In his Arithmetische en
geometrische fondamenten (1615), p. 163 [27], published by his widow, he reached thirty-
two decimal places. Finally, Willebrord Snell, in his Cyclometricus (1621), p. 55 [139],
published Van Ceulen’s final triumph, π to 35 places. See also [58, 57, 62] on the early
history of the computation of π.

4Archimedes (c. 287 BC—c. 212 BC) found the approximation π
4 ≈

11
14 , therefore π ≈

21
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by Metius5 etc., as well as a great number of infinite series are known, and
they are all related to the quadrature of the circle.6 And if the sum of these
series is a rational amount, it is rather natural to conclude that it will either
be an integer, or a very simple fraction. Indeed, if a very complex fraction
were needed, why would it be rather this fraction instead of any other? For
instance, it is the case that the sum of the series

2

1 · 3
+

2

3 · 5
+

2

5 · 7
+

2

7 · 9
+ &c.

is equal to one,7 which of all the rational quantities is the simplest one. But,
by omitting alternatively the 2nd, 4th, 6th, 8th &c. terms, the sum of the
remaining ones8

2

1 · 3
+

2

5 · 7
+

2

9 · 11
+

2

13 · 15
+ &c.

gives the surface of the circle, when the diameter is = 1. It seems therefore
that, if this sum were rational, it should also be expressed by a most simple
fraction, such as would be 3

4
or 4

5
&c. Indeed, the diameter being = 1, the

radius = 1
2
, the square of the radius = 1

4
, it is obvious that these expressions

being so simple would not be an obstacle to it. And since we are dealing with
the whole circle, which represents a kind of unit, and not with some sector,
which by its nature would require very large fractions, it is consequently
again obvious that there is no reason to expect a very complex fraction.
But since, after the fraction 11

14
found by Archimedes, which gives only an

approximation, we go to that of Metius, 355
452

, which is also not exact, and
in which the numbers are considerably larger, one must be led to conclude,
that the sum of this series, far from being equal to a simple fraction, is an
irrational quantity.

§. 2. However vague this reasoning be, there are nevertheless cases where
nothing more is required. But this is not the case of the quadrature of
22
7 . See Archimedes’ Measurement of a circle in Heath, The works of Archimedes, 1897 [3]
and Knorr [89].

5Metius (1571–1635) found the approximation π
4 ≈

355
452 , therefore π ≈

355
113 . See his

Arithmeticæ et Geometriæ practica, 1611 [103], (attested by Prouhet [126]).
6The quadrature of the circle is the process of squaring the circle, that is, constructing√
π using a compass and a straightedge, which is impossible because π is transcendental.

This was proven by Lindemann in 1882 [101, 69, 51]. See also the work of Sylvester [145,
144] who proved the transcendance as an extension of Lambert’s proof.

7This is easily seen given that the partial sums are
(
1
1 −

1
3

)
+
(
1
3 −

1
5

)
+
(
1
5 −

1
7

)
+ · · ·+(

1
2n+1 −

1
2n+3

)
= 1− 1

2n+3 .
8This sum is equal to π

4 .
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the circle.9 Most of those who are trying to find it, do so with an ardour
which sometimes drives them to cast doubt on the most fundamental and
well established truths of geometry. Would one believe that they would be
satisfied by what I just wrote? Much more is needed. And if the purpose
is to prove that the diameter is not to the circumference like an integer
to an integer, this proof must be so solid, that it does not give in to a
geometric proof. And with all that, I come back saying that geometers will
not be surprised by it. They must have long been accustomed not to expect
anything else. But here is what will deserve more attention, and which will
make up a good part of this memoir. We want to show that, whenever
a circle arc is commensurable to the radius, the tangent of the arc is not
commensurable with it ;10 and reciprocally, every commensurable tangent is
not that of a commensurable arc. Now we have a reason to be more surprised.
This proposition would seem to admit an infinity of exceptions, but it admits
none. Moreover it shows how much the transcendental circular quantities are
transcendental, and removed beyond all commensurability. Since the proof
which I will give requires the entire geometric rigour, and that in addition
it will weave a number of other theorems which have to be proven with as
much rigour, these reasons will excuse me when I will not hasten to reach the
end, or when I will stop along the way to whatever remarkable thing shall
present itself.

§. 3. Let thus be given any arc commensurable to the radius: and we have
to find if this arc will at the same time be commensurable to its tangent or
not. Consider now a fraction such that its numerator be equal to the given
arc, and its denominator be equal to the tangent of this arc. It is clear that
no matter how this arc and its tangent are expressed, this fraction must be
equal to another fraction, whose numerator and denominator are integers,
whenever the given arc happens to be commensurable to its tangent. It is
also clear that this second fraction can be deduced from the first one, by the
same method as the one which is used in arithmetic to reduce a fraction to
its smallest denominator. This method is known since Euclid, who made it
the 2nd proposition of his 7th book11, and I will not stop proving it again.

9If π were rational,
√
π would be constructible and the quadrature of the circle would

be possible.
10The two lengths are those of the arc AC and of the part AB of the tangent delimited

by the line from the center of the circle to the end of the arc. This tangent is only equal
to the modern tangent function when the radius is equal to 1.

O A

C
B

11See T. L. Heath, The thirteen books of Euclid’s elements, Cambridge, 1908, volume 2,
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But it should be noted that, whereas Euclid only applies it to integer and
rationals, I will have to use it in a different way, when it has to be applied to
quantities, of which it is still ignored whether they are rational or not. Here
is therefore the procedure which fits the present case.

§. 4. Let the radius = 1, and v = any given arc.12 And we will have the
two well known infinite series13

sin v = v − 1

2 · 3
v3 +

1

2 · 3 · 4 · 5
v5 − 1

2 · 3 · 4 · 5 · 6 · 7
v7 + &c.

cos v = 1− 1

2
v2 +

1

2 · 3 · 4
v4 − 1

2 · 3 · 4 · 5 · 6
v6 + &c.

Since I will give in the sequel two series for the hyperbola which will only
differ from these two series in that all signs are positive,14 I will defer until
that point the proof of the progression of these series, and I will in fact
only prove it so that nothing required by geometric rigour be omitted. It is
sufficient to have warned the readers beforehand.

§. 5. Since

tan v =
sin v

cos v
,

we will have, substituting these two series, the fraction

tan v =
v − 1

2·3v
3 + 1

2·3·4·5v
5 −&c.

1− 1
2
v2 + 1

2·3·4v
4 −&c.

For more brevity, I will set

tan v =
A

B
,

so that

A = sin v,

B = cos v.

Here is now the procedure prescribed by Euclid.
§. 6. B is divided by A; let the quotient = Q′, the remainder = R′. A is

divided by R′; let the quotient = Q′′, the remainder = R′′. R′ is divided by

p. 298 [43].
12v is therefore the angle of the arc expressed in radians.
13These series were first obtained by Newton in 1669, but only published in 1711 (Ana-

lysis per quantitatum series, fluxiones, ac differentias cum enumeratione linearum tertii
ordinis, London) [108]. See Katz, “The calculus of the trigonometric functions”, Historia
mathematica 14 (1987), 311-324 [88], and Ferraro, The rise and development of the theory
of series up to the early 1820s, Springer, 2008 [49].

14See §. 73.
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R′′; let the quotient = Q′′′, the remainder = R′′′. R′′ is divided by R′′′; let
the quotient = Qiv, the remainder = Riv. &c. so that by continuing these
divisions, one successively finds15

the quotients Q′, Q′′, Q′′′ . . . Qn, Qn+1, Qn+2 . . . &c.
the remainders R′, R′′, R′′′ . . . Rn, Rn+1, Rn+2 . . . &c.

and it goes without notice that the exponents n, n+ 1, n+ 2 &c. only serve
to indicate the position of the quotient or remainder. This being set, here is
what must be proven.

§. 7. First, not only can the division be continued forever, but the quotients
follow a very simple law in that16

Q′ = +1 : v,

Q′′ = −3 : v,

Q′′′ = +5 : v,

Qiv = −7 : v, &c.

and in general

Qn = ±(2n− 1) : v,

where the + sign stands for odd n exponents,17 the − sign for even n expo-
nents, and that therefore we will have for the tangent expressed by the arc
the very simple continued fraction18

tan v =
1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − &c.

§. 8. Second, that the remainders R′, R′′, R′′′ &c will be expressed by the

15B = AQ′ +R′, A = R′Q′′ +R′′, R′ = R′′Q′′′ +R′′′, etc.
16Lambert divides the power series, keeping the smallest degree for the quotient. The

proofs are given in §. 9.
17The original article had mistakenly swapped “even” and “odd.”
18This is obtained in §. 14.
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following series, whose progression laws are also very simple:19

R′ = − 2

2 · 3
v2 +

4

2 · 3 · 4 · 5
v4 − 6

2 · 3 · 4 · 5 · 6 · 7
v6 + &c.

R′′ = − 2 · 4
2 · 3 · 4 · 5

v3 +
4 · 6

2 · 3 · 4 · 5 · 6 · 7
v5 − 6 · 8

2 · 3 · 4 · 5 · 6 · 7 · 8 · 9
v7 + &c.

R′′′ = +
2 · 4 · 6
2 · · · 7

v4 − 4 · 6 · 8
2 · · · 9

v6 +
6 · 8 · 10

2 · · · 11
v8 −&c.

Riv = +
2 · 4 · 6 · 8

2 · · · 9
v5 − 4 · 6 · 8 · 10

2 · · · 11
v7 +

6 · 8 · 10 · 12

2 · · · 13
v9 −&c.

that is, the signs of the first terms change according to the quaternary se-
quence − − + +, and in general we will have20

±Rn = − 2n(1 · 2 · · ·n)

1 · 2 · · · (2n+ 1)
vn+1 +

2n(2 · · · (n+ 1))

1 · 2 · · · (2n+ 3)
vn+3 −&c.

±Rn+1 = −2n+1(1 · 2 · · · (n+ 1))

1 · 2 · · · (2n+ 3)
vn+2 +

2n+1(2 · · · (n+ 2))

1 · 2 · · · (2n+ 5)
vn+4 −&c.

∓Rn+2 = +
2n+2(1 · 2 · · · (n+ 2))

1 · 2 · · · (2n+ 5)
vn+3 − 2n+2(2 · · · (n+ 3))

1 · 2 · · · (2n+ 7)
vn+5 + &c.

§. 9. In order to give to the proof of these theorems all the needed
brevity, let us consider that each remainder Rn+2 is obtained by dividing by
the remainder Rn+1, which precedes it immediately, the antepenultimate one

19See §. 13.
20The original expressions contained several errors. I have slightly altered the second

terms to make the expressions more understandable by comparison with those of §. 11.
As observed by Speiser [96, p. 116], more general expressions are

R4n+1 = −24n+1(1 · 2 · · · (4n+ 1))

1 · 2 · · · (8n+ 3)
v4n+2 +

24n+1(2 · · · (4n+ 2))

1 · 2 · · · (8n+ 5)
v4n+4 −&c.

R4n+2 = −24n+2(1 · 2 · · · (4n+ 2))

1 · 2 · · · (8n+ 5)
v4n+3 +

24n+2(2 · · · (4n+ 3))

1 · 2 · · · (8n+ 7)
v4n+5 −&c.

R4n+3 = +
24n+3(1 · 2 · · · (4n+ 3))

1 · 2 · · · (8n+ 7)
v4n+4 − 24n+3(2 · · · (4n+ 4))

1 · 2 · · · (8n+ 9)
v4n+6 +&c.

R4n+4 = +
24n+4(1 · 2 · · · (4n+ 4))

1 · 2 · · · (8n+ 9)
v4n+5 − 24n+4(2 · · · (4n+ 5))

1 · 2 · · · (8n+ 11)
v4n+7 +&c.

This can be abridged as

Rn = (−1)n(n+1)/22n
∞∑
m=0

(−1)m (n+m)!

m!(2n+ 2m+ 1)!
vn+2m+1

which was given by Popken in 1948 [119], apart from a slight change of notation.
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Rn.21 This consideration entails that the proof can be split in two parts.
In the first, we must show that if two remainders Rn, Rn+1, which are in
immediate sequence, have the form I assigned to them, the remainder Rn+2

which follows immediately shall have the same form. Once this is proven, it
only remains to show in the second part of the proof, that the form of the first
two remainders is the one they must have. For, in that manner, it is obvious
that the form of all the following ones will be established like by itself.22

§. 10. Let us start to divide the first term of the remainder Rn by the
first term of the remainder Rn+1, in order to obtain the quotient

Qn+2 =
2n(1 · 2 · 3 · · ·n)

1 · 2 · 3 · · · (2n+ 1)
vn+1 :

2n+1(1 · 2 · 3 · · · (n+ 1))

1 · 2 · 3 · · · (2n+ 3)
vn+2

= 1 :
2(n+ 1)v

(2n+ 2) · (2n+ 3)
= (2n+ 3) : v.

And it is clear23 that the remainder Rn+1 being multiplied by this quotient

Qn+2 = (2n+ 3) : v,

and the product being subtracted from the remainder Rn, there must remain
the remainder Rn+2.

§. 11. But in order to avoid having to do this operation separately for
each term and consequently in order to restrict ourselves to a mere induction,
let us take the general term of each of the series which express the remainders
Rn, Rn+1, Rn+2, so that by taking the m-th term24 of the remainders Rn,
Rn+1, we take the (m − 1)-th term of the remainder Rn+2. This being set,

21In other words, Rn = Rn+1Qn+2 +Rn+2.
22The above three expressions are not totally general, in that Rn+3 is not given, and

the signs complicate the induction. A more general proof is given in the next paragraph,
but it is not totally complete.

23This is in fact not totally clear, and is only clarified in the next paragraph. In general,
as mentioned above (§. 7.), the sign of Qn+2 is alternating: B(+)

1/v−→ A(+)
−3/v−→ R′(−) 5/v−→

R′′(−) −7/v−→ R′′′(+)
9/v−→ Riv(+)

−11/v−→ Rv(−) 13/v−→ Rvi(−) −15/v−→ Rvii(+)
17/v−→ Rviii(+) etc.,

where the signs of the first terms are given between parentheses and the values of Q′, Q′′,
Q′′′, Qiv, etc., are given over the arrows.

24This is because of Rn = Rn+1Qn+2 +Rn+2, because Qn+2 = (2n+ 3)/v and because
of the expressions of Rn, Rn+1 and Rn+2 seen above.
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these terms will be25

±rn = −2n(m · (m+ 1) · (m+ 2) · · · (n+m− 1))vn+2m−1

1 · 2 · 3 · 4 · · · (2n+ 2m− 1)

±rn+1 = −2n+1(m · (m+ 1) · (m+ 2) · · · (n+m))vn+2m

1 · 2 · 3 · 4 · · · (2n+ 2m+ 1)

±rn+2 = −2n+2((m− 1) ·m · (m+ 1) · · · (n+m))vn+2m−1

1 · 2 · 3 · 4 · · · (2n+ 2m+ 1)

But, since we must have

rn − rn+1 · (2n+ 3) : v = rn+2,

and that we have indeed26

rn − rn+1(2n+ 3) : v = −2n · (m · · · (n+m− 1))vn+2m−1

1 · 2 · 3 · · · (2n+ 2m− 1)

+
2n+1 · (m · · · (n+m))vn+2m

1 · 2 · 3 · · · (2n+ 2m+ 1)
· 2n+ 3

v

=
2n · (m · · · (n+m− 1))

1 · 2 · · · (2n+ 2m− 1)
vn+2m−1 ·

(
−1 +

2 · (n+m) · (2n+ 3)

(2n+ 2m) · (2n+ 2m+ 1)

)
= −2n · (m · · · (n+m− 1))

1 · 2 · · · (2n+ 2m− 1)
vn+2m−1 · (2m− 2) · (2n+ 2m)

(2n+ 2m) · (2n+ 2m+ 1)

= −2n+2 · ((m− 1) ·m(m+ 1) · · · (n+m))vn+2m−1

1 · 2 · 3 · · · (2n+ 2m+ 1)
,

and therefore
= ±rn+2.

It appears that, given the form that I gave to the remainders Rn, Rn+1, the
remainder Rn+2 will have the same form.27 It therefore only remains to check
the form of the first two remainders R′, R′′, in order to establish what this
first part of our proof had admitted as true as an hypothesis. And this will
be the second part of the proof.

25The first terms of Rn and Rn+1 correspond to m = 1, but the first term of Rn+2

corresponds to m = 2. Lambert therefore associates Rnm+1, R
n+1
m+1 and Rn+2

m . The expres-
sions are given here so that the terms can be associated with the same value of m. The
original expressions contained errors.

26The original expressions contained errors.
27However, the remainders do not always appear in this order of signs, and the sign

of Qn+2 also changes. The above has made the implicit assumption that Qn+2 is always
positive. There are only two configurations. Either the signs of rn, rn+1 and rn+2 are
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§. 12. For that purpose, let us recall that the first remainder R′ is the
one remaining when dividing28

cos v = 1− 1

2
v2 +

1

2 · 3 · 4
v4 · · · 1

1 · · ·m
vm · · ·&c.

by

sin v = v − 1

2 · 3
v3 +

1

2 · 3 · 4 · 5
v5 · · · 1

1 · · · (m+ 1)
vm+1 · · ·&c.

But the quotient29 resulting from the division of the first term, being = 1 : v,
we see that we will have

R′ = cos v − 1

v
· sin v.

Multiplying thus the general term of the divider,

± 1

1 · 2 · · · (m+ 1)
vm+1,

by 1 : v, and subtracting the product

± 1

1 · 2 · · · (m+ 1)
· vm,

from the general term of the dividend

± 1

1 · 2 · · ·m
· vm,

we will have the general term of the first remainder R′

r′ = ± m · vm

1 · · · (m+ 1)
.

identical, or they are alternating. The second configuration is that of

±rn = +
2n(m · (m+ 1) · (m+ 2) · · · (n+m− 1))vn+2m−1

1 · 2 · 3 · 4 · · · (2n+ 2m− 1)

±rn+1 = −2n+1(m · (m+ 1) · (m+ 2) · · · (n+m))vn+2m

1 · 2 · 3 · 4 · · · (2n+ 2m+ 1)

±rn+2 = +
2n+2((m− 1) ·m · (m+ 1) · · · (n+m))vn+2m−1

1 · 2 · 3 · 4 · · · (2n+ 2m+ 1)

We then have Qn+2 = −(2n+3) : v and it is easy to verify that we have rn− rn+1Qn+2 =
rn + rn+1 · (2n+ 3) : v = rn+2, the computation being almost identical to that of §. 11.

28See §. 5.
29Hence Q′ = 1

v .
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(m + 1) being always an odd number, m will be an even number, and the
first remainder will be

R′ = − 2

2 · 3
v2 +

4

2 · 3 · 4 · 5
v4 − 6

2 · · · 7
v6 + &c.

as we did assume it.30

§. 13. The second remainder R′′ results from the division of

sin v = v − 1

2 · 3
v3 +

1

2 · 3 · 4 · 5
v5 −&c. · · · ± 1

1 · 2 · · · (m− 1)
vm−1

by the first remainder that we just obtained31

R′ = − 2

2 · 3
v2 +

4

2 · 3 · 4 · 5
v4 − 6

2 · · · 7
v6 + · · · ∓ mvm

1 · · · (m+ 1)

However the quotient resulting from the division from the first term, being
= −3 : v, we see that it will be32

R′′ = sin v −
(
−3

v

)
·R′.

Multiplying thus the general term of the divisor

∓ mvm

1 · · · (m+ 1)
,

by −3 : v, and subtracting the product

± 3mvm−1

1 · · · (m+ 1)
,

from the general term of the dividend

± 1

1 · · · (m− 1)
vm−1,

the general term from the second remainder will be

r′′ = ± vm−1

1 · · · (m− 1)
∓ 3mvm−1

1 · · · (m+ 1)

= ±(m− 2) ·m · vm−1

1 · · · (m+ 1)
.

30See §. 8.
31Here ∓ means that the first, third, fifth, etc., terms are negative. The original expres-

sion contained an error.
32The original expression has a sign error. This error was apparently not corrected by

Speiser [96, p. 119].
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Substituting thus the even numbers for m, we will have the second remain-
der33

R′′ = − 2 · 4
2 · 3 · 4 · 5

v3 +
4 · 6

2 · · · 7
v5 − 6 · 8

2 · · · 9
v7 + &c.

again as we have assumed it.34 Consequently, the form of the first two re-
mainders being proven, it follows, from the first part of our proof, that the
form of all the following remainders is also proven.35

§. 14. It is now no longer necessary to prove separately the progression
law of the quotients Q′, Q′′, Q′′′ &c.36 Indeed, the law of the remainders
being proven, it is also proven that any quotient will be (§. 10)37

±Qn+2 = (2n+ 3) : v,

which, by virtue of the theory of continued fractions,38 gives

tan v =
1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − 1

11 : v − 1 &c.
33± meaning that the first term is positive, but there being no term in v, we start with

a negative sign.
34See §. 8.
35This is not totally true, because the first part of the proof is not complete.
36Amore rigorous proof would have included the general form of the quotients, with their

sign, in the induction. Right now, Lambert has only provided an incomplete induction.
Once this proof is complete, the law of the quotients follows from the law of the remainders,
but the latter needs the law of the quotients. . .

37Here Qn+2 is positive for n = 1, 3, 5, etc.
38We have A

B = tan v, BA = Q′+ R′

A , A
R′ = Q′′+ R′′

R′ ,
R′

R′′ = Q′′′+ R′′′

R′′ , etc., from which it
follows that tan v = 1

Q′+ 1

Q′′+ 1
Q′′′+···

, which corresponds to the given expression, when the

signs are factored out :

tan v =
1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − 1

11 : v − 1 &c.

=
1

1 : v + 1

−3 : v + 1

5 : v + 1

−7 : v + 1

9 : v + 1

−11 : v + 1 &c.
This does of course assume that the continued fraction converges.
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from which we see at the same time, that whenever the arc v is equal to an
aliquot part of the radius, all these quotients will be integers increasing in an
arithmetic progression.39

And this is what must be observed, because in Euclid ’s theorem men-
tioned above (§. 3.) all the quotients are assumed to be integers. Hence up
to now the method prescribed by Euclid will be applicable to all these cases
where the arc v is an aliquot part of the radius. But, again in these cases,
there is another circumstance that must be observed.

§. 15. The problem proposed by Euclid is to find the greatest common
divisor of two integer numbers, which are not mutually prime. This problem
can be solved whenever one of the remainders R′, R′′, R′′′ &c. · · · Rn becomes
= 0, the previous remainder Rn−1 being different from unity, which case, ac-
cording to the 1st Proposition40 of the same book only occurs when the two
given numbers are mutually prime, assuming of course that all quotients Q′,
Q′′, Q′′′ &c. are integers. But we have just seen that the latter assumption
is true in the present case, whenever 1

v
is an integer. But, regarding the

remainders R′, R′′, R′′′ &c., none is becoming = 0.41 On the contrary, con-
sidering the law of progression of the remainders that we have found, we see
that they not only decrease without interruption, but that they even decrease
more than any geometrical progression.42 Although this continues for ever,
we will nevertheless be able to apply Euclid ’s proposition. Indeed, by virtue
of this proposition, the greatest common divisor of A, B, is at the same time
the greatest common divisor of all the remainders R′, R′′, R′′′ &c.43 But
since these remainders decrease in such a way that they become smaller than
any assignable amount, it follows that the greatest common divisor of A, B,
is smaller than any assignable amount; this means that there is none, and
that therefore A, B, being incommensurable quantities,

tan v =
A

B

will be an irrational quantity whenever the arc v will be an aliquot part of the
radius.44

39An aliquot part of an integer is a proper divisor of that integer. In other words, the
radius being 1 and the arc being v (in radians), if v is an aliquot part of the radius, 1 : v
is an integer, and so are 3 : v, 5 : v, etc.

40See Heath 1908, volume 2, p. 296 [43].
41It is easy to see that the series are alternating series and that the terms are decreasing.

Their sum can therefore not be equal to 0.
42If v < 1, |Rn| ≤ 2n

(n+1)···(2n+1) ≤
2n

n! .
43The manuscript had R, R′, R′′.
44For instance, tan(1), tan(1/2), tan(1/3), etc., are irrational, the angles being expressed

in radians.
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§. 16. This is therefore the extent to which we can make use of Euclid ’s
proposition. We must now extend it to all cases where the arc v is commen-
surable with the radius. To this effect, and in order to prove a few other
theorems, I will consider again the continued fraction

tan v =
1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1 &c.

and by letting 1 : v = w, I will transform it into

tan v =
1

w − 1

3w − 1

5w − 1

7w − 1 &c.

§. 17. But, by keeping as many quotients w, 3w, 5w &c. as desired, one
will have merely to simplify them, in order to have fractions expressing the
tangent of v the more precisely that a greater number of the quotients were
retained. So, it is for instance by retaining 1, 2, 3, 4 &c. quotients that we
obtain the fractions

1

w
,

3w

3w2 − 1
,

15w2 − 1

15w3 − 6w
,

105w3 − 10w

105w4 − 45w2 + 1
,

§. 18. But, in order to do all these simplifications in order, & at the same
time in order to prove the progression law followed by these fractions, we will
first set

tan v =
1

w − a1
3w − a′ ′

5w− a

=
1

w − 1

3w − a′ ′

5w− a

= = &c.
1

w − 1

3w − 1

5w − a′′

expressing by a, a′, a′′, a′′′ · · · an, an+1, an+2, . . . &c. the quantities resulting
from the quotients that we wish to be omitted, so that in order to omit them,
it will suffice to set a, a′, a′′, . . . an &c. = 0.

§. 19. Now, I say, that by setting an = 0, the fraction resulting from the
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simplification of the quotients retained, will have the form45

tan v =
A−man−1

B − pan−1
,

in which m, p, A, B do not contain an−1. Let us first assume this form
to be the true one, and we will easily prove that by retaining an additional
quotient, the fraction resulting from the reduction will have the same form.
Indeed since we have46

an−1 =
1

(2n+ 1)w − an
,

it will suffice to substitute this value in the proposed form, and it will be
transformed into

tan v =
A(2n+ 1)w −m− A · an

B(2n+ 1)w − p−B · an
,

Since this is the same form, it will be sufficient to show that it is true for the
member a′, because it will then be true for all following members a′′, a′′′, aiv

. . . &c. But for the member a′ it is

tan v =
1

w − 1

3w − a′

which after reduction gives

tan v =
3w − a′

3w2 − 1− wa′
,

the form as we assumed it.47

§ 20. Now that we have found

tan v =
A−man−1

B − pan−1

45In §. 19-21, a number of occurrences of n have been replaced by n − 1. This was
considered the best means to fall back on correct results. Speiser also made amendments
in 1948, but different ones [96]. Contrary to the text edited in 1948, I did not have to
alter other sections such as §. 33 and §. 34.

46The original article had mistakenly written

an =
1

(2n+ 1)w − an+1
,

but this had no consequences, as the correct fractions were used in §.22.
47It is actually already true for a, since tan v = 1

w−a is also of that form.
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tan v =
A(2n+ 1)w −m− A · an

B(2n+ 1)w − p−B · an
,

let us substitute also for an its value

an =
1

(2n+ 3)w − an+1
,

and we will have

tan v =
[A(2n+ 1)w −m] · (2n+ 3)w − A− [A(2n+ 1)w −m] · an+1

[B(2n+ 1)w − p] · (2n+ 3)w −B − [B(2n+ 1)w − p] · an+1

§. 21. So, by letting in each of these three values of tan v, the members
an−1, an, an+1 equal to zero, we will obtain the general form of the fractions
that we have to find.48

A

B
,

A(2n+ 1)w −m
B(2n+ 1)w − p

,

[A(2n+ 1)w −m] · (2n+ 3)w − A
[B(2n+ 1)w − p] · (2n+ 3)w −B

.

These three fractions being for the omission of an−1, an, an+1, they come
in sequence, and it is easy to see that the third can be obtained using the
previous two, so that its numerator and its denominator can be computed
separately.49 This follows because the numerator of the second fraction must
be multiplied by the quotient corresponding to an, and from the product
one subtracts the numerator from the first fraction. The remainder will be
the numerator from the third fraction. Its denominator is obtained similarly
using the denominators of the two previous fractions.

§. 22. Now, in order to obtain the fractions themselves, it suffices to write
the quotients in three columns, with the numerators and denominators of the
first two fractions (§. 17.) and the following numerators and denominators
will be obtained by the simple operation we have just indicated. Here is the

48Note incidentally that the fraction preceding A
B is m

p . This will be used again in §.33.
49By using these fractions, Lambert dispenses with the values of m and p.
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model50

Quotients numerators denominators
1 . . . . . . . . . . . . . . . . . . . . . . . w

5w 3w . . . . . . . . . . . . . . . . . . . . . . 3w2 − 1
7w 15w2 − 1 . . . . . . . . . . . . . . . . 15w3 − 6w
9w 105w3 − 10w . . . . . . . . . . . . 105w4 − 45w2 + 1

11w 945w4 − 105w2 + 1 945w5 − 420w3 + 15w
&c. 10395w5 − 1260w3 + 21w 10395w6 − 4725w4 + 210w2 − 1

&c. &c.

This gives the fractions

1

w
,

3w

3w2 − 1
,

15w2 − 1

15w3 − 6w
,

105w3 − 10w

105w4 − 45w2 + 1
&c.

of which each one is expressing the tangent of v better than those which
precede it.

§. 23. However, although by means of the rule we have just given (§. 21.),
each of these fractions can be obtained from the two which precede it imme-
diately, it will be convenient, in order to avoid a kind of induction, to give
and to prove the general expression. Let us first observe that the coefficients
of each vertical column obey a very simple law in that its factors are partly
figured numbers and partly odd numbers. Here they are resolved

Fraction Quotient Denominator
1st w
2nd 5w 3 · w2 − 1 · 1
3rd 7w 3 · 5 · w3 − 2 · 3w
4th 9w 3 · 5 · 7w4 − 3 · 3 · 5w2 + 1 · 1
5th 11w 3 · · · · 9w5 − 4 · 3 · 5 · 7w3 + 3 · 5w
6th 13w 3 · · · 11w6 − 5 · 3 · · · · 9w4 + 6 · 5 · 7w2 − 1 · 1
7th 15w 3 · · · 13w7 − 6 · 3 · · · 11w5 + 10 · 5 · 7 · 9w3 − 4 · 7w
&c. &c. &c.

50The quotients represent the values of 2n+ 3 for n = 1, 2, . . .. So we have

5w × 3w − 1 = 15w2 − 1

5w × (3w2 − 1)− w = 15w3 − 6w

7w × (15w2 − 1)− 3w = 105w3 − 10w, etc.
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Fraction Quotient Numerator
1st 1
2nd 5w 3 · w
3rd 7w 3 · 5 · w2 − 1 · 1
4th 9w 3 · 5 · 7w3 − 2 · 5w
5th 11w 3 · · · · 9w4 − 3 · 5 · 7w2 + 1 · 1
6th 13w 3 · · · 11w5 − 4 · 5 · 7 · 9w3 + 3 · 7w
7th 15w 3 · · · 13w7 − 5 · 5 · · · 11w4 + 6 · 7 · 9w2 − 1 · 1
&c. &c. &c.

§. 24. This observation makes it easier for us to find the general expression
for any of the fractions. Let the n-th fraction be given, and we will have its

Denominator

= wn[1 · 3 · 5 · 7 · · · (2n− 1)]− wn−2

2
· [(2n− 2) · 1 · 3 · 5 · 7 · · · (2n− 3)]

+
wn−4

2 · 3 · 4
· [(2n− 4) · (2n− 6) · 1 · 3 · 5 · · · (2n− 5)]

− wn−6

2 · 3 · 4 · 5 · 6
· [(2n− 6) · (2n− 8) · (2n− 10) · 1 · 3 · 5 · · · (2n− 7)]

+
wn−8

2 · 3 · 4 · 5 · 6 · 7 · 8
· [(2n− 8)(2n− 10)(2n− 12)(2n− 14) · ·1 · 3 · 5 · 7 · · · (2n− 9)]

−&c.

Numerator

= wn−1[1 · 3 · 5 · 7 · · · (2n− 1)]− wn−3

2 · 3
· [(2n− 4) · 1 · 3 · 5 · 7 · · · (2n− 3)]

+
wn−5

2 · 3 · 4 · 5
· [(2n− 6) · (2n− 8) · 1 · 3 · 5 · 7 · · · (2n− 5)]

− wn−7

2 · 3 · 4 · 5 · 6 · 7
· [(2n− 8) · (2n− 10) · (2n− 12) · 1 · 3 · 5 · 7 · · · (2n− 7)]

+
wn−9

2 · 3 · 4 · 5 · 6 · 7 · 8 · 9
· [(2n− 10)(2n− 12)(2n− 14)(2n− 16) · 1 · 3 · 5 · 7 · · · (2n− 9)]

−&c.

It therefore only remains to prove the universality of these expressions.
§. 25. This will be done in that by admitting this form for the n-th

fraction, we deduce the forms for the (n−1)-th and (n−2)-th, by substituting
(n − 1), (n − 2) for n. Then, one proceeds in accordance with the rule of
§. 21. by deducing both the denominator and the numerator of the n-th



38 CHAPTER 2. LAMBERT’S MEMOIR (1767)

fraction, from those of the two preceding fractions as we have found them
using the first operation. And by that, we must reproduce the form of the
n-th fraction, as we have given it. It is clear that this procedure leads to
establish that if two fractions which are in immediate sequence have this form,
the one which follows them will also have this form, and that consequently,
since the fractions from the previous table, which are the first ones, have this
form, it will follow that all the following ones will also have this form.

§. 26. So, if in order to abridge this proof, we want to restrict ourselves to
the general term, it will nevertheless be necessary to compute separately the
one of the numerator and the one of the denominator, be it only to simplify
the computation. Indeed, both will be computed using the same rule (§. 21.).
Let us begin with the denominator, and in taking them-th term of its general
expression for the n-th fraction, it will also be necessary to take the m-th
term for the (n − 1)-th fraction, but we will only take the (m − 1)-th term
for the (n − 2)-th fraction. We see that we must do so with respect to the
dimensions or exponents of the letter w.

§. 27. Now, the m-th term of the n-th fraction for the denominator is

M =
wn−2m+2 · [(2n− 2m+ 2) · (2n− 2m) · (2n− 2m− 2) · · · (2n− 4m+ 6)] · [1 · 3 · 5 · · · (2n− 2m+ 1)]

1 · 2 · 3 · 4 · 5 · · · (2m− 2)

from which, by substituting (n − 1) for n, we find the m-th term of the
(n− 1)-th fraction

M ′ =
wn−2m+1 · [(2n− 2m) · (2n− 2m− 2) · · · (2n− 4m+ 4)] · [1 · 3 · 5 · · · (2n− 2m− 1)]

1 · 2 · 3 · 4 · 5 · · · (2m− 2)

And by substituting (n− 2) for n, and (m− 1) for m, we find the (m− 1)-th
term of the (n− 2)-th fraction.51

−M ′′ =
wn−2m+2 · [(2n− 2m) · (2n− 2m− 2) · · · (2n− 4m+ 6)] · [1 · 3 · 5 · · · (2n− 2m− 1)]

1 · 2 · 3 · 4 · 5 · · · (2m− 4)

But, by the rule of §. 21. we must have52

M = (2n− 1)w ·M ′ −M ′′

51For consistency, I assume that M , M ′, and M ′′ include the signs. The negative sign
of M ′′ was absent from the original article. M and M ′ have the same sign, and M ′′ is of
opposite sign.

52That is in fact M = (2n− 1)w ·M ′ + (−M ′′).
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and consequently we will be able to remove from these three expressions all
their common factors by setting them = P . From that we will have

+M =
P · w · (2n− 2m+ 2) · (2n− 2m+ 1)

(2m− 2) · (2m− 3)

+M ′ =
P · (2n− 4m+ 4)

(2m− 2) · (2m− 3)

−M ′′ = P · w.

By setting
P

(2m− 2) · (2m− 3)
= Q,

we will have53

+M = Qw · (2n− 2m+ 2) · (2n− 2m+ 1)

+M ′ = Q · (2n− 4m+ 4)

−M ′′ = Qw · (2m− 2) · (2m− 3).

From that, by multiplying, we will have

(2n− 1)wM ′ = Qw · (4n2 − 8mn+ 6n+ 4m− 4)

−M ′′ = Qw · (4m2 − 10m+ 6)

therefore

(2n− 1)wM ′ −M ′′ = Qw(4n2 − 8nm+ 6n+ 4m2 − 6m+ 2).

But we also have

M = Qw ·(2n−2m+2)(2n−2m+1) = Qw(4n2−8nm+6n+4m2−6m+2).

Since these two values are the same, it follows that

M = (2n− 1)w ·M ′ −M ′′,

and that consequently the form, which we gave to the general term is such
as it should be.54

§. 28. Let us now move to the numerator. Them-th term of the numerator
of the n-th fraction must be

+N =
wn−2m+1 · [(2n− 2m) · (2n− 2m− 2) · · · (2n− 4m+ 4)] · [1 · 3 · 5 · · · (2n− 2m+ 1)]

1 · 2 · 3 · 4 · 5 · · · (2m− 1)

53There were errors in the original expressions.
54In fact, the above proof is applicable only to the case m > 1. The case m = 1 is easily

checked separately and in that case M ′′ = 0.
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from which, by substituting (n− 1) for n, we find the same m-th term as for
the (n− 1)-th fraction,

+N ′ =
wn−2m · [(2n− 2m− 2) · (2n− 2m− 4) · · · (2n− 4m+ 2)] · [1 · 3 · 5 · · · (2n− 2m− 1)]

1 · 2 · 3 · 4 · 5 · · · (2m− 1)

And by substituting (n− 2), (m− 1), for n, m, we will have the (m− 1)-th
term of the (n− 2)-th fraction,

−N ′′ = wn−2m+1 · [(2n− 2m− 2) · (2n− 2m− 4) · · · (2n− 4m+ 4)] · [1 · 3 · 5 · · · (2n− 2m− 1)]

1 · 2 · 3 · 4 · 5 · · · (2m− 3)

Therefore, setting the common factors to these three expressions = P , we
will have

+N =
Pw · (2n− 2m) · (2n− 2m+ 1)

(2m− 1) · (2m− 2)

+N ′ =
P · (2n− 4m+ 2)

(2m− 1) · (2m− 2)

−N ′′ = Pw,

and by setting P = Q · (2m− 1) · (2m− 2), we will have

+N = Qw · (2n− 2m) · (2n− 2m+ 1)

+N ′ = Q · (2n− 4m+ 2)

−N ′′ = Qw · (2m− 1) · (2m− 2)

But we must have
N = (2n− 1)w ·N ′ −N ′′,

therefore, by substituting the values found, we will have

(2n− 1)wN ′ = Qw · (4nn− 8nm+ 2n+ 4m− 2)

−N ′′ = Qw(4m2 − 6m+ 2),

hence

N = (2n− 1)wN ′ −N ′′ = Qw(4n2 − 8nm+ 2n+ 4m2 − 2m).

But the same value results from

N = (2n− 2m) · (2n− 2m+ 1) ·Qw.
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It follows from that that the form of the general term is as it should be.55

§. 29. Let us take again the general expressions given in §. 24. and let
us divide the one of the denominator by its first term, and we will have the
series

1− w−2

2
· 2n− 2

2n− 1
+

w−4

2 · 3 · 4
· (2n− 4) · (2n− 6)

(2n− 1) · (2n− 3)
− w−6

2 · 3 · 4 · 5 · 6
· (2n− 6) · (2n− 8) · (2n− 10)

(2n− 1)(2n− 3)(2n− 5)

+
w−8

2 · 3 · 4 · 5 · 6 · 7 · 8
· (2n− 8) · (2n− 10) · (2n− 12) · (2n− 14)

(2n− 1) · (2n− 3) · (2n− 5) · (2n− 7)
−&c.

which, by substituting56 v = w−1, and by setting n =∞, gives

1− v2

2
+

v4

2 · 3 · 4
− v6

2 · 3 · 4 · 5 · 6
+ &c.

which is the cosine of v, and consequently the denominator of which we made
use (§. 5.) to find the quotients w, 3w &c.

§. 30. Let us moreover divide the general expression of the numerator
(§. 24.) by the same first term of the denominator, and we will have the
series

w−1 − w−3

2 · 3
· 2n− 4

2n− 1
+

w−5

2 · 3 · 4 · 5
· (2n− 6) · (2n− 8)

(2n− 1) · (2n− 3)

− w−7

2 · 3 · 4 · 5 · 6 · 7
· (2n− 8) · (2n− 10) · (2n− 12)

(2n− 1) · (2n− 3) · (2n− 5)

+ &c.

which gives for n =∞ the series

v − 1

2 · 3
v3 +

1

2 · 3 · 4 · 5
v5 −&c.

which is = sin v, and consequently the numerator, which was used in §. 5.
§. 31. It also follows, that, no matter how big the first term of the two

general formulæ (§. 24.) is, the second term, and even more the following
ones, will not only be smaller, but even smaller than the 1

2
, 1

2·3 ,
1

2·3·4 &c. part
of the first term. But, by substituting for n successively 1, 2, 3, 4 &c. ad
infinitum, the first term, being the product of as many of odd numbers 1 · 3 ·
5 · 7&c. will increase more than any increasing geometric sequence; it is also
clear that, although the 2nd, 4th, 6th &c. terms are subtractive, this does not

55Like in §. 27., this proof is only applicable to the case m > 1, and the case m = 1 can
be checked separately.

56We had w = 1/v, see §. 16.
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prevent the sum of the terms to increase faster than any increasing geometric
sequence.57 And this is what I observe here, because I will make use of it in
the sequel of this Memoir. Here is a first one, that presents itself.

§. 32. The object is to find the law, according to which the fractions

1

w
,

3w

3w2 − 1
,

15w2 − 1

15w3 − 6w
,&c.

approach the value of the tangent. To this effect, we will only need to subtract
each one from the one which follows, and the remainders will be

1

w · (3w2 − 1)
,

1

(3w2 − 1) · (15w3 − 6w)
,&c.

These remainders show how much each fraction is greater than the one pre-
ceding it. Let us show in general that all the numerators are = 1, and that
all the denominators are the product of those of the two fractions of which
these remainders give the difference.

§. 33. To this effect, we will take again the three general formulæ given
at §. 21. and which are

A

B
,

A(2n+ 1)w −m
B(2n+ 1)w − p

,

[A(2n+ 1)w −m](2n+ 3)w − A
[B(2n+ 1)w − p](2n+ 3)w −B

.

But, subtracting the first from the second, the remainder will be

=
Ap−Bm

B · [B(2n+ 1)w − p]
.

But the numerator of this remainder is the same which results from the
subtraction

A

B
− m

p
=
Ap−Bm
B · p

.

m
p
being the fraction preceding the fraction A

B
, it is clear that the numerator

of all these remainders is the same, and that the denominator is the product

57This does easily follow because of Lambert’s implicit assumption w ≥ 1, already
mentioned above.
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of those of the fractions, of which the remainders give the difference. So,
when starting with any of the fractions m

p
, the remainders will be58

1

p ·B
,

1

B[B(2n+ 1)w − p]
&c.

§. 34. Let us now observe that all these remainders being added to the first
fraction, which is taken as the base, the sum will always express the tangent
of v, so that in general we will have59

tan v =
m

p
+

1

p ·B
+

1

B · [B(2n+ 1)w − p]
+ &c.

and consequently

tan v =
1

w
+

1

w(3w2 − 1)
+

1

(3w2 − 1) · (15w3 − 6w)
+ &c.

tan v =
3w

3w2 − 1
+

1

(3w2 − 1)(15w3 − 6w)
+ &c.

tan v =
15w2 − 1

15w3 − 6w
+

1

(15w2 − 6w) · (105w4 − 45w2 + 1)
+ &c.

&c.

We see therefore from what we have said (§. 31.) that all these sequences
are more convergent than is any decreasing geometric progression.60 Let for
instance v = w = 1, and the tangent of this arc will be61 = 1,55740772 . . .

= 1+
1

1 · 2
+

1

2 · 9
+

1

9 · 61
+

1

61 · 540
+

1

540 · 5879
+

1

5879 · 75887
+

1

75887 · 1132426
+&c.

And for every arc v < 1, we will have an even more convergent sequence.

58This follows, because the first remainder
(

1
w(3w2−1)

)
has the numerator 1 and the

product of the two denominators as denominator.
59If the fractions approximating the tangent are u1 = 1

w , u2 = 3w
3w2−1 , etc., Lambert

takes the limit of un = (un − un−1) + (un−1 − un−2) + · · ·+ (up+1 − uq) + uq where uq is
the initial term m

p . (The initial term need not be 1
w , but could be 3w

3w2−1 ,
15w2−1
15w3−6w , etc.)

60As a consequence of the expressions of §. 24, the factors 3, 3× 15, 15× 105, . . . , grow
faster than a geometric progression, but this is also true for w, w(3w2 − 1), (3w2 − 1) ·
(15w3 − 6w), etc., for w ≥ 1.

61This is tan(1). The development was missing the third term and some denominators
were incorrect. These denominators can easily be computed: 2×5−1 = 9, 9×7−2 = 61,
61×9−9 = 540, 540×11−61 = 5879, 5879×13−540 = 75887, 75887×15−5879 = 1132426,
etc.
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§. 35. Let now w = ω : ϕ, v = ϕ : ω, such that ϕ, ω are integers, mutually
prime. We will only have to substitute these values, and we will have62

tan
(ϕ
ω

)
=

ϕ

ω − ϕϕ

3ω − ϕϕ

5ω − ϕϕ

7ω − ϕϕ

9ω − &c.

§. 36. Then the fractions approaching the value of tan ϕ
ω
will be63

ϕ

ω
,

3ωϕ

3ω2 − ϕ2
,

15ω2ϕ− ϕ3

15ω3 − 6ϕ2ω
,

105ω3ϕ− 10ωϕ3

105ω4 − 45ω2ϕ2 + ϕ4
,&c.

so that if any two of these immediately succeeding fractions are

m

p
,

A

B
,

the one which will follow will be64

A(2n+ 1)ω −mϕ2

B(2n+ 1)ω − pϕ2
.

§. 37. Finally the differences of these fractions will be

ϕ3

ω(3ω2 − ϕ2)
,

ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
,&c.

and

tan
ϕ

ω
=
ϕ

ω
+

ϕ3

ω(3ω2 − ϕ2)
+

ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.

62This follows from §. 14.
63According to §. 22.
64This is easily shown given that the new values m′, p′ are m and p multiplied by ϕn

and the new values A′ and B′ are A and B multiplied by ϕn+1 (ϕ is 1×ϕ, 3ωϕ is 3w×ϕ2,
15ω2ϕ− ϕ3 is (15w2 − 1)× ϕ3, etc.). The old sequence is m

p ,
A
B , A(2n+1)w−m

B(2n+1)w−p (see §. 21),

and it becomes mϕn

pϕn , Aϕ
n+1

Bϕn+1 ,
A(2n+1)ωϕn+1−mϕn+2

B(2n+1)ωϕn+1−pϕn+2 , which is m′

p′ ,
A′

B′ ,
A′(2n+1)ω−m′ϕ2

B′(2n+1)ω−p′ϕ2 .



45

And I claim that this tangent will never be commensurable to the radius,
whatever the integer numbers ω, ϕ.

§. 38. In order to prove this theorem, we set

tan
ϕ

ω
=
M

P
,

such that M , P are quantities expressed in some way, possibly even by dec-
imal expansions, which is always possible, even in the case that M , P are
integers, as they could be both multiplied by some irrational quantity. We
could also assume, if wished, that M = sin ϕ

ω
, P = cos ϕ

ω
, as we did above

(§. 5.). And it is clear that, even if tan ϕ
ω
were rational, this would not always

be the case for sin ϕ
ω
and cos ϕ

ω
.

§. 39. But the fraction
M

P
being an exact expression of the tangent of ϕ

ω
, it must give all the quotients

w, 3w, 5w &c. which in the present case are65

+
ω

ϕ
,−3ω

ϕ
,+

5ω

ϕ
,−7ω

ϕ
,+&c.

§. 40. Then, if tan ϕ
ω
is rational, it is clear thatM will be to P as an integer

number µ to an integer number π, so that if µ, π, are mutually prime, we
will have

M : µ = P : π = D,

and D will be the greatest common divisor66 ofM , P . And since reciprocally
we have

M : D = µ,

P : D = π,

it is clear that if M , P are assumed to be irrational quantities, their greatest
common divisor will likewise be an irrational quantity, and be as smaller than
the integers67 µ, π, are large.

§. 41. These are therefore the two assumptions which will have to be
shown incompatible.68 Let us first divide P by M , and the quotient69 must

65See §. 14.
66The assumption is therefore that D > 0. D is not necessarily an integer. This will

lead to a contradiction in §. 49.
67The original memoir had “quotients.”
68Namely, that ϕ

ω and tan ϕ
ω are both rational. In what follows, Lambert will define a

series of remainders R′, R′′, R′′′, etc., such that D divides all of them. R′ is defined in
§. 41, R′′ in §. 42 and the others in §. 43.

69P corresponds to B in §. 6, M to A, and the quotient to Q′ = 1
v = w = ω

ϕ .
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be = ω : ϕ. But since ω : ϕ is a fraction of integers,70 let us divide ϕP by
M , and the quotient ω will be ϕ times ω : ϕ. It is clear that we will be able
to divide it by ϕ, whenever it is desired. Here, it will not be required, since
it will be sufficient for us that it is an integer. Having thus, by dividing ϕP
by M , obtained the quotient ω, let the remainder = R′. This remainder will
likewise be equal to ϕ times what it would have been,71 and this is what we
will take into account. Now, since we have P : D = π, an integer, we will
also have ϕP : D = ϕπ, an integer. Finally, R′ : D will also be an integer.
Indeed, since

ϕP = ωM +R′,

we have

ϕP

D
=
ωM

D
+
R′

D
.

But

ϕP : D = ϕπ,

ωM : D = ωµ,

therefore

ϕπ = ωµ+
R′

D
,

which gives

R′

D
= ϕπ − ωµ = integer number,

which we will set = r′, so that

R′

D
= r′.

Thus the remainder of the first division will still have the divisor D, which
is the greatest common divisor of M , P .

70nombre rompu in the original text. So, we assume here that ω
ϕ is a rational. M

P is a
fraction, but not necessarily a fraction of integers. However, we assume that µ and π are
integers in order to obtain a contradiction.

71that is, what it would have been if one had written P = ω
ϕM + · · · .
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§. 42. Let us now move to the second division. The remainder R′ being
ϕ times what it would be if we had divided P , instead of ϕP , by M , this
must be taken into account for this second division, by dividing ϕM , instead
of M , by R′, in order to obtain the second quotient,72 which is73 = 3ω : ϕ.
But, in order to avoid here too the broken quotient,74 let us divide ϕ2M by
R′, so as to obtain the quotient 3ω, an integer. Let the remainder = R′′, and
we will have75

ϕ2M = 3ωR′ +R′′,

thus dividing by D,

ϕ2M

D
=

3ωR′

D
+
R′′

D
.

But we have

ϕ2M

D
= ϕ2m = integer number,

3ωR′

D
= 3ωr′ = integer number,

therefore

ϕ2m = 3ωr′ +
R′′

D
,

which gives

R′′

D
= ϕ2m− 3ωr′ = integer number,

which we will set = r′′, so that we have

R′′

D
= r′′.

72We will therefore obtain the same sequence of quotients ω
ϕ , 3

ω
ϕ , 5

ω
ϕ , etc.

73In fact, the second quotient is −3ω : ϕ, but until §. 46, Lambert only divides by
positive values. This will be adapted in §. 46. Here, ignoring the signs changes the values
of R′, but not the result of this paragraph.

74That is, a non integer quotient.
75Consequently, if the remainders obtained from the division of P by M are R′0, R′′0 ,

R′′′0 , etc., we actually have R′ = ϕR′0, R′′ = ϕ2R′′0 , R′′′ = ϕ3R′′′0 , etc., Rn = ϕnRn0 .
M = 3ωϕR

′
0 +R′′0 ⇒ ϕ2M = 3ωR′ +R′′.
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Consequently, the greatest common divisor of M , P , R′, also divides the
second remainder R′′.

§. 43. Let the following remainders76 . . . R′′′, Riv . . . Rn, Rn+1, Rn+2 . . . ,
corresponding to the ϕ-uple quotients77 . . . 5ω, 7ω, . . . (2n−1)ω, (2n+1)ω,
(2n+ 3)ω, . . . , and we must prove in general that if any two remainders Rn,
Rn+1, which are in immediate sequence, have D as their divisor, the next
remainder Rn+2 will also have it, so that if we set78

Rn : D = rn,

Rn+1 : D = rn+1,

rn, rn+1 are integers, we will also have

Rn+2 : D = rn+2,

an integer. Here is the proof.
§. 44. When dividing ϕ2Rn by Rn+1, the quotient will be (2n + 3)ω =

integer number, and the remainder being = Rn+2, we will have79

ϕ2Rn = (2n+ 3)ω ·Rn+1 +Rn+2,

therefore by dividing by D,

ϕ2 ·Rn

D
=

(2n+ 3)ω ·Rn+1

D
+
Rn+2

D

But we have

ϕ2Rn

D
= ϕ2rn = integer number,

(2n+ 3)ω ·Rn+1

D
= (2n+ 3)ωrn+1 = integer number,

76As mentioned above, having named the normal remainders R′0, R′′0 , etc., we have
(ignoring the signs) P = ω

ϕM+R′0,M = 3ωϕR
′
0+R

′′
0 , R′0 = 5ωϕR

′′
0 +R

′′′
0 , R′′0 = 7ωϕR

′′′
0 +Riv

0,
etc., and setting Rn = ϕnRn0 , we obtain easily ϕ2Rn = (2n + 3)ωRn+1 + Rn+2. Indeed,
writing ϕP = ωM + ϕR′0, ϕ2M = 3ω(ϕR′0) + (ϕ2R′′0 ), ϕ2R′0 = 5ω(ϕR′′0 ) + (ϕ2R′′′0 ), . . . ,
ϕ2Rn0 = (2n + 3)ω(ϕRn+1

0 ) + (ϕ2Rn+2
0 ), we obtain Rn/ϕn−2 = (2n + 3)ωRn+1/ϕn +

Rn+2/ϕn.
77that is, the quotients 5ωϕ , multiplied by ϕ, 7ωϕ multiplied by ϕ, etc.
78The original memoir had Rn+2 : D = rn+1.
79The original memoir had ϕ2Rn = (2n + 1)ω · Rn+1 + Rn+2 and I have replaced all

occurrences of 2n+1 by 2n+3 in this section. These corrections were not made by Speiser
in 1948 [96].



49

therefore

ϕ2rn = (2n+ 3)ω · rn+1 +
Rn+2

D
,

which gives

Rn+2

D
= ϕ2 · rn − (2n+ 3)ω · rn+1 = integer number = rn+2.

And this is what had to be proven.
§. 45. We have seen that r′, r′′ are integers (§. 41. 42.) and therefore also

r′′′, riv, . . . rn . . . &c. will be integers. So all the remainders R′, R′′, R′′′,
. . . , Rn, . . . &c. will have D as a common divisor. Let us find the value of
these remainders expressed by M , P .

§. 46. For that effect, each division results in an equation, that is

R′ = ϕP − ωM,

R′′ = ϕ2M − 3ω ·R′,
R′′′ = ϕ2R′ − 5ω ·R′′,

&c.

But we should observe that, in the present case, the quotients ω, 3ω, 5ω &c.
are alternatively positive and negative, and that the signs of the remainders
appear in the sequence − − + +. From that, these equations become80

R′ = ωM − ϕP,
R′′ = 3ωR′ − ϕ2M,

R′′′ = 5ωR′′ − ϕ2R′,

Riv = 7ωR′′′ − ϕ2R′′,

&c.

And in general

Rn+2 = (2n+ 3)ω ·Rn+1 − ϕ2Rn.

From that we see that each remainder can be obtained from the two previ-
ous ones, in the same way as the numerators and the denominators of the
fractions approaching the value of tan ϕ

ω
. (§. 36.)

80So, now Lambert is changing the definition of R′, R′′, R′′′, Riv, . . . , in the middle
of his demonstration. . . The sign of R′ is inverted and all the other expressions follow
accordingly. Below, I have replaced Lambert’s 2n− 1 by 2n+ 3.
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§. 47. Doing therefore the substitutions that these equations indicate, in
order to express all these remainders by M , P , we will have

R′ = ωM − ϕP,
R′′ = (3ω2 − ϕ2)M − 3ωϕ · P,
R′′′ = (15ω3 − 6ωϕ2)M − (15ω2ϕ− ϕ3)P,

&c.

And these coefficients of M , P , being the numerators and the denominators
of the fractions obtained above for the tan ϕ

ω
, (§. 36.)81 it is clear that we

will have
M

P
− ϕ

ω
=

R′

ωP
,

M

P
− 3ωϕ

3ω2 − ϕ2
=

R′′

(3ω2 − ϕ2) · P
,

M

P
− 15ω2ϕ− ϕ3

15ω3 − 6ωϕ2
=

R′′′

(15ω3 − 6ωϕ2)P
,

&c.

§. 48. But we have82

M

P
= tan

ϕ

ω
.

Therefore (§. 37. 34.)

M

P
− ϕ

ω
=

ϕ3

ω(3ω2 − ϕ2)
+

ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.

M

P
− 3ωϕ

3ω2 − ϕ2
=

ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.

Hence

R′

ωP
=

ϕ3

ω(3ω2 − ϕ2)
+

ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.

R′′

(3ω2 − ϕ2)P
=

ϕ5

(3ω2 − ϕ2) · (15ω3 − 6ωϕ2)
+ &c.

R′′′

(15ω3 − 6ωϕ2)P
=

ϕ7

(15ω3 − 6ωϕ2) · (105ω4 − 45ω2ϕ2 + ϕ4)
+ &c.

&c.
81It is easy to see that the expressions for R′, R′′, R′′′, etc., enable a formal manipulation

of both numerators and denominators as seen in §. 22, but this is not proven by Lambert.
82The memoir had M

P = tanϕ.
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Consequently, all the remainders are obtained using the sequence of the dif-
ferences (§. 37.)

tan
ϕ

ω
=
ϕ

ω
+

ϕ3

ω(3ω2 − ϕ2)
+

ϕ5

(3ω2 − ϕ2)(15ω3 − 6ωϕ2)

+
ϕ7

(15ω3 − 6ωϕ2)(105ω4 − 45ω2ϕ2 + ϕ4)

+ &c.

omitting 1, 2, 3, 4 &c. of the first terms, and multiplying the sum of the
following ones by the first factor of the denominator of the first retained
number, and by P .83

§. 49. But this sequence of differences is more convergent that any de-
creasing geometric progression (§. 34. 35.). Consequently84 the remainders
R′, R′′, R′′′ &c. decrease in such a way that they eventually become smaller
than any assignable quantity. And since each of these remainders, having D
as a common divisor, is a multiple of D, it follows that this common divisor
D is smaller than any assignable quantity, which means D = 0, and therefore
(M : P ) is a quantity incommensurable to unity, viz. an irrational one.85

§. 50. Consequently whenever a circle arc = ϕ
ω

will be commensurable
to the radius = 1, or rational, the tangent of this arc will be a quantity
incommensurable to the radius, or irrational. And reciprocally, no rational
tangent is that of a rational arc.

§. 51. But the tangent of 45◦ being rational, in that it is equal to the
radius,86 it follows that the arc of 45◦, and therefore also the arcs of 90, 180,

83In other words, R′′′, for instance, is obtained by omitting the first three terms of tan ϕ
ω ,

keeping ϕ7

(15ω3··· )··· +&c. and multiplying by 15ω3 − 6ωϕ2 and by P .
84Lambert does not clearly prove that the remainders R′, R′′, etc., tend to 0. This

seems to have been observed first by Gauss [123, 124] who provided a more rigorous
proof. Gauss noted that the sequence R′, R′′, etc., may be initially increasing but that it
will eventually decrease. As part of his proof, Gauss considers the values of ω

ϕ ,
3ω2−ϕ2

ϕ2 ,
15ω3−6ωϕ2

ϕ3 , etc., and shows that it increases faster than a geometrical series, even when
ω/ϕ < 1. However, the case ω/ϕ > 1 is sufficient in Lambert’s proof. This gap has also
been rediscovered more recently by Baltus [7, p. 11] who also provided a fix for this “gap,”
not aware of Pringsheim’s articles cited above (possibly because Baltus based himself on
Wallisser [150] who also omitted one of Pringsheim’s articles).

85This follows, because D = 0 contradicts the assumption of §. 40 that such a D exists,
that is, that tan ϕ

ω is rational.

86tan 45◦ = r:

r

r



52 CHAPTER 2. LAMBERT’S MEMOIR (1767)

360 degrees, is incommensurable to the radius. Thus the circumference of the
circle is not to the diameter like a integer number to an integer number. We
now have this theorem in the form of a corollary of another infinitely more
universal theorem.

§. 52. Indeed, it is precisely this absolute universality, of which we may
be surprised. In addition to showing us how much the circular quantities are
transcendental,87 it also shows us that the rational tangents and the rational
arcs are not spread over the whole circumference of the circle as if they were
thrown randomly, but that there must be a certain order, and that this order
prevents them from ever meeting.88 This order is worthy, without contest, to
be examined in more detail. Let us therefore see how far it will be possible
to determine its laws. This will be the result of the following theorems.

§. 53. First, we know that, two tangents being rational, the tangent of
the sum and that of the difference of their arcs are also rational. Indeed, we
have89

tan(ω + ϕ) =
tω + tϕ

1− tω · tϕ
,

tan(ω − ϕ) =
tω − tϕ

1 + tω · tϕ
.

§. 54. From that it follows that if a tangent is rational, the tangent of any
multiple of its arc will also be rational.

§. 55. But on the contrary, a tangent being irrational,90 no aliquot part
of its arc will have a rational tangent. Indeed, the given arc being a multiple
of each of its aliquot parts, it is clear that its tangent would be rational, if
the tangent of one of its aliquot parts were rational (§. 54.).

§. 56. If the tangent of each of two commensurable arcs is rational, the
tangent of the greatest common measure91 of these two arcs will likewise be
rational. Let ω, ϕ, be the two given arcs. Since they are commensurable,
ω will be to ϕ like an integer number m to an integer number n. Let these
numbersm, n, be mutually prime, and the unit will be their greatest common
measure. We thus set

ω = mψ,

ϕ = nψ,

87Here, Lambert means that there are many non rational tangents.
88In other words, they will not lie both on a line drawn from the origin.
89tan(ω + ϕ) = tanω+tanϕ

1−tanω·tanϕ .
90The memoir had “rational.”
91that is, the greatest common divisor.
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and the arc ψ will be the greatest common measure of the arcs ω, ϕ. I claim
that the tanψ will be rational. Letm > n, and subtracting n fromm as many
times as possible, let the last remainder = r, all the tan(m−n)ψ = t(ω−ϕ),
tan(m−2n)ψ = t(ω−2ϕ), &c. tan rψ, will be rational92 (§. 53.). Substract r
from n as many times as possible, let the last remainder = r′. Then substract
r′ from r as many times as possible, let the last remainder be r′′ &c. And by
continuing like that, you will reach a remainder = 1, the numbers m, n being
mutually prime. (Euclid. Pr. I. Book. VII.)93 But by §. 53 all the tangents

t(m− n )ψ, t(m− 2n )ψ . . . . . . . . . . . . . . . tr ψ,
t(n − r )ψ, t(n − 2r )ψ . . . . . . . . . . . . . . . tr′ ψ,
t(r − r′)ψ, t(n − 2r′)ψ . . . . . . . . . . . . . . . tr′′ψ,

&c.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t ψ,

will be rational. Therefore &c.
§. 57. Since all these tangents can be obtained from tanω, tanϕ, without

their arcs being known (§. 53.), it is clear that if any two rational tangents
are given, we will find if their arcs are commensurable.94 If the arcs are not
commensurable, the process would be endless.

§. 58. Two aliquot parts of a given arc having rational tangents, I claim
that the tangent of the greatest common measure of these two aliquot parts will
likewise be rational. This theorem immediately follows from the previous one
(§. 56.). One has merely to remember that two arcs ω, ϕ, which are aliquot
parts of an arc A, are commensurable.95

§. 59. Similarly, if any number of aliquot parts of an arc A have rational
tangents, the tangent of the arc which is the greatest common measure of
these aliquot parts will likewise be rational. Let two of these aliquot parts be
ω, ϕ, and let their greatest common measure = ψ, and the tangent ψ will
be rational (§. 56. 58.). But ψ being an aliquot part of the arcs ω, ϕ, which
are aliquot parts of the arc A, it is clear that ψ will be aliquot part of the
arc A, and that in place of the arcs ω, ϕ, we can substitute ψ, by comparing
ψ to one of the other aliquot parts of the given arc A. One can then find
again their greatest common measure, of which the tangent will likewise be
rational. &c.

92The previous sentence had a typo.
93See Heath 1908, volume 2, p. 296.
94We start with x = tanω and y = tanϕ which are rational and compute tan(ω − ϕ),

tan(ω − 2ϕ), etc., only using x and y, and stopping before the result is negative. Then
we have tan(rψ), if ω and ϕ are commensurable. This process goes on until one of the
tangents becomes equal to 0. If it does, the angles are commensurable, since we have
applied Euclid’s algorithm on the angles by working on the exact values of the tangents.

95If A = mω = nϕ, then ω
ϕ = n

m .
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§. 60. Let us call primary tangent96 any rational tangent which is that of
an arc of which no aliquot part has a rational tangent.

§. 61. Such is for instance the tangent of 45◦. Indeed, let n be any integer,
every tan(45 : n)◦ will be one of the roots of the equation

0 = 1−nx−n · n− 1

2
x2 +n · n− 1

2
· n− 2

3
x3 +n · n− 1

2
· n− 2

3
· n− 3

4
·x4

− n · n− 1

2
· n− 2

3
· n− 3

4
· n− 4

5
x5 −&c.

whose coefficients are the same as those of Newton’s binomial formula,97 and
whose signs change according to the sequence − − + +. But, for every
integer n, these coefficients are integers, and every98

tan

(
45◦

n

)
< 1.

Therefore, if one or more of the tan(45◦ : n) were rational, it would be a
rational fraction < 1, and if it were the case, not all the coefficients would
be integers.99 But they are. Therefore &c.100

§. 62. Any primary tangent being given, only the multiples of its arc have
rational tangents, with the exception of all the other arcs which are com-
mensurable with it. Let tanω be primary, and m, n, being mutually prime
integers,101 assume that tan

(
m
n
ω
)
is rational. But the arc

(
ω
n

)
being the

greatest common measure of the arcs ω, and
(
mω
n

)
,102 the tangent of ω

n
will

96The values of the arcs could be represented as trees, and when an arc is that of
a primary tangent, none of the children has a rational tangent. For instance, none of
the tangents tan 1◦, tan 3◦, tan 5◦, tan 9◦ are rational if (see below) tan 45◦ is a primary
tangent, but also none of tan 4.5◦, tan 2.25◦, etc. or any other angle obtained by dividing
45◦ by an integer greater than 1.

97This formula can be obtained as follows. We have tan(2x) = 2 tan x
1−tan2 x , tan(3x) =

3 tan x−tan3 x
1−3 tan2 x , etc., which have the general pattern

tan(nα) =
nT − n(n−1)(n−2)

3! T 3 + n(n−1)···(n−4)
5! T 5 − · · ·

1− n(n−1)
2! T 2 + n(n−1)···(n−3)

4! T 4 − · · ·

with T = tanα. This formula can be proven by induction. Lambert’s equation is obtained
by writing tan(nα) = 1.

98n is assumed > 1.
99Lambert’s statement is not obvious and should be clarified.

100Therefore none of the tan
(

45◦

n

)
for n > 1 are rational.

101n is implicitely assumed > 1.
102If we assume ω = αp with p < n and m

n ω = αq, then it is easy to show that p ≥ n, a
contradiction.
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be rational (§. 56.). But ω
n
being an aliquot part of ω, tanω would not be pri-

mary. This going against the assumption, it is clear that no tan
(
m
n
ω
)
could

be rational. There thus only remain the multiples of ω, whose tangents will
be rational (§. 54.). This is the reason why these kinds of tangents deserve
the name of primary ones. They resemble in some way the prime numbers,
in that only their multiples are integers, &c.

§. 63. Two primary tangents being given, I claim that their arcs are in-
commensurable. Indeed, let tanω, tanϕ be primary, and let us assume that
the arcs ω, ϕ are commensurable. They will thus be like an integer m to an
integer n. Therefore

ϕ =
mω

n
.

Consequently103 (§. 62.) ω
n
, aliquot part of ω, as well as ϕ

m
, aliquot part

of ϕ, will have rational tangents. Thus tϕ, tω, will not be primary. This
going against the assumption, it is clear that the arcs ω, ϕ, can not be
commensurable.

§. 64. Therefore all the arcs of primary tangents are incommensurable.
Indeed, by the previous theorem, any two such arcs are incommensurable.

§. 65. Any rational and non primary tangent being given, I claim that its
arc will be a multiple of the arc of a primary tangent. Indeed, this tangent,
although it is rational, it is not primary and this can only be so because
there are aliquot parts of its arc whose tangents are rational. Let these
aliquot parts be ω

m
, ω
n
, ω
p
, ω
q
&c. whose number is assumed to be finite.104

But, since we take all of them, the one which is the common measure of all
the others must also be among them, whereas by §. 59. its tangent is likewise
rational. Assume it is ω

r
, I claim that tan ω

r
is primary. For, if it were not

primary, the tangents of some of the aliquot parts of
(
ω
r

)
would be rational.

But since these aliquot parts of
(
ω
r

)
are also aliquot parts of the given arc

ω, it is clear that they would already be included in the aliquot parts ω
m
, ω
n
,

ω
p
. . . ω

r
, and that consequently ω

r
would likewise be their greatest common

measure. Thus ω
r
would be a measure of its aliquot parts. This is absurd, it

is clear that tan ω
r
is primary. But ω is a multiple of ω

r
. Therefore &c.

§. 67. We now have all rational tangents sorted in certain classes. They
are either themselves primary, or they stem, so to say, in direct line from a
primary tangent, because only the multiples of the arcs of primary tangents
have rational tangents (§. 62.). But, if there were only one primary tangent,
all the rational tangents would derive from it, and all their arcs would be

103By §. 56, the greatest common measure of ω and m
n ω, namely ω

n will be rational. And
also ϕ

m and this is a contradiction.
104Lambert does not prove that the number of aliquot parts with rational tangents is

finite.
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commensurable to each other. But we are far from having only one primary
tangent. Such a tangent should be smaller than any assignable quantity. In
order to prove it, let us assume that it has a finite value = tanϕ. And it is
clear105 that there will be rational tangents which are smaller than tanϕ. If
these tangents are primary, tanϕ will not be the only primary one. If they
are not primary, they derive from one or more primary tangents, in that
their arcs will be multiples of the primary tangents (§. 65.).106 Hence, there
is more than one, more than 2, 3, 4 &c. primary tangents. And as long as
their number will be assumed to be finite, we will find likewise that there are
more. Here is another way to find an infinite number of them.

§. 67. Let tω, tϕ be two primary tangents. First, they will be rational, and
their arcs will be incommensurable between each other (§. 64.). Let m, n, be
any mutually prime numbers, and (mω+nϕ) will be an arc incommensurable
both to ω and to ϕ. But its tangent will be rational (§. 62. 53.). But the
arc (mω + nϕ) being multiple neither of ω, nor of ϕ, the tan(mω + nϕ) will
either be primary itself, or it will derive from a primary tangent, necessarily
different from tω, tϕ. But, by varying the numbers m, n, in all possible
ways, so that they are always mutually prime, we will find as many arcs
(mω + nϕ), incommensurable with each other and incommensurable with
the arcs ω, ϕ, and which consequently are neither multiples of each other,
nor of ω, ϕ. Therefore their tangents, which are all rational, will derive from
as many primary tangents, which are different from each other.

§. 68. This is therefore what infinitely restricts the possibility of finding
a rational arc whose tangent is likewise rational. For, the arcs of all primary
tangents being incommensurable to each other, it follows that, if it were
possible to find a primary tangent whose arc were commensurable to the
radius, it would be the only one, since the arcs of all other primary tangents
would necessarily be incommensurable with the radius. But, as a consequence
of what we saw above, even this sole one cannot have its arc rational.107

§. 69. The tangent of the angle of 45◦ being primary (§. 61.) and being
located in the trigonometrical tables, I will observe moreover as a corollary
that it is the only primary tangent,108 and at the same time the only rational
tangent which is found there.109 The reason is that all the arcs of which the
tangents are given in these tables are commensurable to each other, without
there being other multiples of 45◦ besides the angle of 90◦ whose tangent is

105Any rational number is the tangent of an arc, and we can choose a rational which is
smaller than tanϕ.

106but §. 65 has not completely been proven.
107This should be better explained.
108That is, if the table is restricted to [0, 90◦].
109See §. 62.
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infinite.
§. 70. I will also observe that, if the cosine of any angle ω is rational, the

cosine of any multiple is likewise rational.110 This circumstance entails that
the same reasoning exposed regarding tangents can be applied, with minor
change, to the cosines. We will have prime cosines as we had prime tangents,
and the arcs of prime cosines will likewise be incommensurable between each
other; consequently, if it were possible to find a prime cosine whose arc were
rational, it would be the only one that could be found, since for that reason
the arcs of all other prime cosines would be irrational.

§. 71. The same is not true for sines, because if a given sinω is rational,
in general only the sin 3ω, sin 5ω, sin 7ω &c. are rational;111 but the sin 2ω,
sin 4ω, sin 6ω &c. are not always rational, except if cosω is also rational, so
that if we wish here too to find prime sines, it will be necessary to proceed
in a different way than that used for tangents.

§. 72. But, without stopping on this matter, I will return to the continued
fraction obtained previously112

tan v =
1

w − 1

3w − 1

5w − 1

7w − 1

9w − 1 &c.

We have seen that all the fractions

1

w
,

3w

3w2 − 1
,

15w2 − 1

15w3 − 6w
, &c.

that it produces, only approach the value of the tangent of v by default,113

in that they are all smaller than this tangent. But, since it must be possible
to find similar fractions which, although they approach the value of tan v,
do so by excess, I started to search for them. I will content myself to give
here again the continued fraction which contains alternatively the one and

110cos(na) is a polynomial function of cos a.
111Only when n is odd does sin(nω) expand to a polynomial in sinω. Otherwise it is a

polynomial in sinω times cosω.
112See §. 16.
113The fact that the value of the tangent is approached by default, hence that all these

fractions are positive, was not proven by Lambert.
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the others.114 Here it is115

cot v =
1

0 + 1

(w − 1) + 1

1 + 1

(3w − 2) + 1

1 + 1

(5w − 2) + 1

1 + &c.

This fraction goes on for ever, so that the quotients are

0, (w − 1), 1, (3w − 2), 1, (5w − 2), 1, (7w − 2), 1, (9w − 2)

· · · 1, ((2n+ 1)w − 2), 1 &c.

And the fractions approaching the value of tan v are

1

w − 1
,

1

w
,

3w − 1

3w2 − w − 1
,

3w

3w2 − 1
,

15w2 − 3w − 1

15w3 − 3w2 − 6w + 1
,

15w2 − 1

15w3 − 6w
, &c.

The first, 3rd, 5th, 7th &c. are greater than tan v, and the 2nd, 4th, 6th &c.,
are smaller, and the same as the ones we found above (§. 22.). I will not
stop to give the proof,116 since this continued fraction can be obtained in the
same way as we found the one that we used up to now, and which is a lot
simpler. I will therefore only observe that the first quotient being here = 0,
it will suffice, in order to cancel it, to inverse the fraction so that it expresses
the tangent117 of v, since

cot v =
1

tan v
.

114That is, the fractions by default and those by excess.
115The memoir had tan v = · · · .
116It should still be proven.
117The memoir had cotangent.
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Consequently we will have

tan v =
1

(w − 1) + 1

1 + 1

(3w − 2) + 1

1 + 1

(5w − 2) + 1

1 + 1

(7w − 2) + 1

1 + &c.

§. 73. Let us now compare the transcendental circular quantities to the
logarithmic quantities which correspond to them. Let e be the number whose
hyperbolic118 logarithm = 1. And it is known that if in the two series that
we used above (§. 4.)

sin v = v − 1

2 · 3
v3 +

1

2 · 3 · 4 · 5
v5 − 1

2 · 3 · 4 · 5 · 6 · 7
v7 + &c.

cos v = 1− 1

2
v2 +

1

2 · 3 · 4
v4 − 1

2 · 3 · 4 · 5 · 6
v6 + &c.

all the signs are taken positive, these equations become119

ev − e−v

2
= v +

1

2 · 3
v3 +

1

2 · 3 · 4 · 5
v5 +

1

2 · 3 · 4 · 5 · 6 · 7
v7 + &c.

ev + e−v

2
= 1 +

1

2
v2 +

1

2 · 3 · 4
v4 +

1

2 · 3 · 4 · 5 · 6
v6 + &c.

But, by handling these last two series in the same way as we handled the
first two (§. 4 and following) the operation will only differ by the signs, which
in the present case are all positive. As one can convince himself or herself

118The “hyperbolic logarithm” is the natural (or neperian) logarithm. On Lambert’s work
on hyperbolic functions, see also his article published in 1770 [93] and Barnett’s study [9].

119sinh(v) = ev−e−v
2 and cosh(v) = ev+e−v

2 .
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easily, I will not give the detail.120 We will therefore have
ev − e−v

ev + e−v
=

1

1 : v + 1

3 : v + 1

5 : v + 1

7 : v + 1

9 : v + 1

11 : v + 1

13 : v + &c.

§. 74. And since we have

ev − e−v

ev + e−v
=
e2v − 1

e2v + 1
,

we see that by making 2v = x, we will have
ex − 1

ex + 1
=

1

2 : x+ 1

6 : x+ 1

10 : x+ 1

14 : x+ 1

18 : x+ &c.

from which we obtain121

ex + 1

2
=

1

1− 1

2 : x+ 1

6 : x+ 1

10 : x+ 1

14 : x+ &c.

or
ex − 1

2
=

1

(2 : x)− 1 + 1

6 : x+ 1

10 : x+ 1

14 : x+ 1

18 : x+ &c.
120A new proof should be given.
121 ex+1

2 = 1

1− ex−1
ex+1

and ex−1
2 = 1

ex+1
ex−1−1

.
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It is clear that these expressions lead to similar consequences than those that
we deduced above from the formula

tan v =
1

w − 1

3w − 1

5w − &c.

It will be found again here that v & ev, as well as x & ex will never be
rational quantities at the same time. I will thus not stop to give a repeated
deduction of it. We should instead interpret the formulæ that we have just
exposed. I therefore note that they should have, with respect to the equi-
lateral hyperbola,122 a quite analogous meaning than the one that had the
fraction

tan v =
1

w − 1

3w − &c.

with respect to the circle. For, in addition of knowing that by letting u =
v
√
−1, the expressions

eu + e−u,

eu − e−u,

produce the circular quantities123

ev
√
−1 + e−v

√
−1 = 2 cos v,

ev
√
−1 − e−v

√
−1 = 2 sin v ·

√
−1,

Mr. de Foncenex has also shown in a very simple & direct manner, how
this affinity is obtained by comparing together the circle & the equilateral124

hyperbola having a common center & a common diameter. See Miscell. So-
ciet. Taurin. Tom. I. p. 128 and following.125

§. 75. But the matter is here to find out how far this affinity can be Plate X.
obtained independently of the imaginary quantities. Let therefore C be the
center, CH the axis, CA the half-diameter126 of the equilateral hyperbola

122The equation of the equilateral hyperbola considered here is x2 − y2 = 1.
123 eiv+e−iv

2 = cos v and eiv−e−iv
2i = sin v.

124The equilateral hyperbola has its two asymptotes at right angle.
125François Daviet de Foncenex, “Réflexions sur les quantités imaginaires”, Miscellanea

Philosophico-Mathematica Societatis Privatae Taurinensis, 1759, Tomus Primus, 113–
146 [33].

126CA is the semi-major axis.
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AMG & of the circle AND , CF the asymptote, AB perpendicular to the
axis, & at the same time the common tangent to the circle & the hyperbola.
Let the two infinitely close lines CM , Cm drawn from the center C, & from
the intersection points M , m, N , n, let the ordinates MP , mp, NQ , nq be
obtained from perpendiculars. Finally, let the radius AC = 1. Set the angle
MCA = ϕ, & let127

for the hyperbola for the circle
the abscissa CP = ξ . . . . . . . . . . . . . . . . . . . . . . . . .CQ = x
the ordinate PM = η . . . . . . . . . . . . . . . . . . . . . . . .QN = y
the segment AMCA = u : 2 . . . . . . . . . . . . . . .ANCA = v : 2

& we will have
tanϕ = η

ξ
. . . . . . . . . . . . . . . . . . . . . . . . . . tanϕ = y

x
,

1 + ηη = ξξ = ηη · cot2 ϕ . . . . . . . . . . . 1− yy = xx = yy · cot2 ϕ,
ξξ − 1 = ηη = ξξ · tan2 ϕ . . . . . . . . . . . .1− xx = yy = xx tan2 ϕ,

CM 2 = ξ2 + η2 = ξ2(1 + tan2 ϕ) CN 2 = x2 + y2 = x2(1 + t2ϕ),
= 1+t2ϕ

1−t2ϕ = 1+t2ϕ
1+t2ϕ

= 1.
Hence

+du = dϕ ·
(

1+t2ϕ
1−t2ϕ

)
= dtϕ

1−t2ϕ +dv = dϕ = dtϕ
1+t2ϕ

,
+dξ = tϕ·dtϕ

(1−t2ϕ)3:2 −dx = tϕ·dtϕ
(1+t2ϕ)3:2

,
+dη = dtϕ

(1−t2ϕ)3:2 +dy = dtϕ
(1+t2ϕ)3:2

,
ξ = 1√

1−t2ϕ
. . . . . . . . . . . . . . . . . . . . x = 1√

1+t2ϕ
,

η = tϕ√
1−t2ϕ

. . . . . . . . . . . . . . . . . . . . y = tϕ√
1+t2ϕ

,

Hence
+dξ : du = η . . . . . . . . . . . . . . . . . . −dx : dv = y,
+dη : du = ξ . . . . . . . . . . . . . . . . . . +dy : dv = x,

127In the sequel of this section, the original text had several typos, and some exponents
were missing. I have also rewritten tanϕ2 as tan2 ϕ for clarity. u is twice the surface of
AMCA and v is twice the surface of ANCA, hence the divisions by 2. We also have v = ϕ.
“Segment” denotes a sector. The equation of the hyperbola is ξ2 − η2 = 1. It is easy to
see that 1 + η2 = ξ2 = η2

tan2 ϕ and therefore η2 = tan2 ϕ
1−tan2 ϕ and ξ2 = 1

1−tan2 ϕ . We have
d(tϕ) = t(ϕ+ dϕ)− t(ϕ) = tan(dϕ)× (1+ tan(ϕ+ dϕ) tanϕ) = dϕ(1+ t2ϕ) = dϕ

cos2 ϕ . The
half of du is a triangle of base CM and height CM dϕ, hence du = dϕ · CM 2. Similarly,
dv = dϕ, but the sector’s surface is only dv/2. When developing (ξ+dξ)2− (η+dη)2 = 1,
we obtain (at the first order) ξdξ = ηdη. Then, dϕ = arctan

(
η+dη
ξ+dξ

)
− arctan

(
η
ξ

)
.

Therefore t(dϕ) =
η+dη
ξ+dξ−

η
ξ

1+ η+dη
ξ+dξ×

η
ξ

=
dη
ξ −

η

ξ2
dξ

1+ η2

ξ2

=
1
η−

η

ξ2

1+ η2

ξ2

dξ and dξ =
1+ η2

ξ2

1
η−

η

ξ2
t(dϕ) = 1+t2ϕ

1
η (1−t2ϕ)

dϕ =

1+t2ϕ
1−t2ϕ ×

tϕ√
1−t2ϕ

dϕ = 1+t2ϕ
(1−t2ϕ)3/2 tϕ ×

d(tϕ)
1+t2ϕ = tϕ×d(tϕ)

(1−t2ϕ)3/2 . And from dξ it follows that

dη = ξ
ηdξ =

d(tϕ)
(1−t2ϕ)3/2 . Similarly, since x2 + y2 = 1, we have dy = −xy dx = d(tϕ)

(1+t2ϕ)3/2
.
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+dξ = dη · tanϕ . . . . . . . . . . . . . . . . −dx : dy = tanϕ.

§. 76. Since the angle ϕ is the same for the hyperbola & for the circle, it
follows from the last two equations that we have

tanϕ = dξ : dη = −dx : dy = η : ξ = y : x.

The angles Mmp, Nnq , are therefore equal. As a result

Mm : Nn = dξ : −dx = dη : dy.

And the characteristic triangles Mmµ, Nnν, are similar. Finally, since we
have128 Cnq = Cmp, & Nnq = Mmp, we will have129 Cnq + Nnq = Cmp +
Mmp = 90◦. By drawing the normal mV , we will have Vmq + Mmq = 90◦,
hence130 Vmp = Cmp. The normal mV prolonged to the axis AC is therefore
equal to Cm, in the same way that in the circle the normal Cn is equal to
Cn. These are consequently the foundations of everything which is real in
the comparisons which have been made between the circle & the hyperbola.

§. 77. Next, if for the hyperbola we want to express ξ, η, using u, it will
be found easily that by employing infinite sequences their form must be

ξ = 1 + Au2 +Bu4 + Cu6 + &c.
η = au+ bu3 + cu5 + du7 + &c.

For, by letting u = 0, we have ξ = 1, η = 0. Moreover, by taking u infinitely
small, ξ will increase like u2, & η will increase like u, because the angle at
A is a right angle, & the osculating radius of the hyperbola at A is = AC .
Finally, by taking u negative, all the values of ξ will be the same as for
the positive values of u, from which it follows that the abscissa ξ must be
expressed by even dimensions of u. And by taking u negative, the values of
η will be the same, but negative. η must be expressed by odd dimensions of
u. There therefore only remains to determine the coefficients. It is for this
purpose that we will use the two formulæ found above

dξ : du = η,

dη : du = ξ.

We will therefore have, by differentiating the first sequence

dξ : du = 2Au+ 4Bu3 + 6Cu5 + · · ·+ µ ·Muµ−1

128Namely the angles Ĉnq , Ĉmp, etc.
129because ĈnN = 90◦.
130The original article had Vmq = Cmq .
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which must be = η, hence

dξ : du = au+ bu3 + cu5 + · · ·+m · uµ−1

Consequently, comparing the terms

2A = a,

4B = b,

6C = c,

&c.
µM = m.

But, by differentiating η, we must also have dη : du = ξ, hence

dη : du = a+ 3bu2 + 5cu4 + · · · (µ− 1) ·muµ−2

= 1 + Au2 +Bu4 + · · ·L · uµ−2

So, comparing the terms

a = 1,

3b = A,

5c = B,

&c.
(µ− 1)m = L.

Using these equations, we obtain

a = 1,

A =
1

2
a =

1

2
,

b =
1

3
A =

1

2 · 3
,

B =
1

4
b =

1

2 · 3 · 4
,

c =
1

5
B =

1

2 · 3 · 4 · 5
,

C =
1

6
c =

1

2 · 3 · 4 · 5 · 6
,

&c.

m =
1

(µ− 1)
L =

1

2 · 3 · 4 · · · (µ− 1)
,

M =
1

µ
·m =

1

2 · 3 · 4 · · ·µ
.
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We therefore will have

ξ = 1 +
1

2
u2 +

1

2 · 3 · 4
u4 +

1

2 · 3 · 4 · 5 · 6
u6 + &c.

η = u+
1

2 · 3
u3 +

1

2 · 3 · 4 · 5
u5 +

1

2 · 3 · 4 · 5 · 6 · 7
u7 + &c.

Here we have therefore the abscissa ξ, & the ordinate η, expressed by the
letter u, which is twice the area of the hyperbolic segment AMCA. But
we know that if instead of u we take v which is twice the circular segment
ANCA,131 the abscissa x, & the ordinate y, both circulary, are

x = 1− 1

2
v2 +

1

2 · 3 · 4
v4 − 1

2 · 3 · 4 · 5 · 6
v6 + &c.

y = v − 1

2 · 3
v3 +

1

2 · 3 · 4 · 5
v5 − 1

2 · 3 · 4 · 5 · 6 · 7
v7 + &c.

two sequences, which for the form only differ from the two previous ones by
the alternating change of signs.

§. 78. And since we have (§. 73.)

eu + e−u

2
= 1 +

1

2
u2 +

1

2 · 3 · 4
u4 + &c.

eu − e−u

2
= u+

1

2 · 3
u3 +

1

2 · 3 · 4 · 5
u5 + &c.

it is clear that we will have

ξ =
eu + e−u

2
,

η =
eu − e−u

2
,

& that consequently these quantities express the abscissa ξ = CP , & the
ordinate η = PM of the hyperbola.132

§. 79. And since η : ξ = tanϕ, it is clear that we also have

tanϕ =
eu − e−u

eu + e−u
,

131If v is twice the circular segment (that is, the area of) ANCA, this area is equal to
ϕ/2, we actually have v = ϕ and Lambert gives the familiar expressions of sinx and cosx.

132Consequently, we have ξ = cosh(u), η = sinh(u), and tanϕ = η
ξ = tanh(u).
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and hence from §. 81.133

tanϕ =
1

1 : u+ 1

3 : u+ 1

5 : u+ 1

7 : u+ 1

9 : u+ &c.

And since the same tangent is also134

tan v = tanϕ =
1

1 : v − 1

3 : v − 1

5 : v − 1

7 : v − 1

9 : v − &c.

we see that this tangent is obtained from these two continued fractions, which
for the form do only differ by the signs: when the first is used, we only employ
u = 2AMCA, instead of v = 2ANCA to obtain the same tangent by means of
the second one. Now we have the analogy which was sought independently
from the imaginary quantities, & without using them.

§. 80. Now we can draw in very clear terms the consequence that the area
of the hyperbolic sector AMCA, as well as that of the corresponding circular
sector ANCA, will be an irrational quantity, incommensurable with respect to
the square of the radius AC , whenever the angle ϕ, which is that formed by
each of the two sectors at the center C, will have a rational tangent, & that
conversely this tangent will be irrational whenever one of these two sectors
will be a rational quantity.

§. 81. There is a quite analogous consequence to draw regarding the
continued fraction (§. 74.)

eu + 1

2
=

1

1− 1

2 : u+ 1

6 : u+ 1

10 : u+ 1

14 : u+ 1

18 : u+ &c.
133Actually, perhaps from §. 73.
134See §. 7. Note that since tanϕ = tanh(u), we have tanh(u) = tan(v).
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which gets transformed into
eu + 1

2
=

1

1 + 1

−2 : u+ 1

−6 : u+ 1

−10 : u+ &c.

& from which we obtain, for negative values of u
e−u + 1

2
=

1

1 + 1

2 : u+ 1

6 : u+ 1

10 : u+ 1

14 : u+ &c.

These fractions show us how much the irrationality of the number135

e = 2,71828182845904523536028 . . .

is transcendental,136 in that none of its powers,137 nor any of its roots is
rational. Indeed u & eu can not be rational quantities at the same time.
But since u is the hyperbolic logarithm of eu, it follows that any rational
hyperbolic logarithm is that of an irrational number, & that conversely any
rational number has an irrational hyperbolic logarithm.

§. 82. But let us still examine what eu & e−u mean in the figure. Going
back to this purpose to §. 78., we find the two formulæ

ξ =
eu + e−u

2
,

η =
eu − e−u

2
,

hence, taking the sum & the difference, we have

eu = ξ + η,

e−u = ξ − η.
135Euler published a proof of the irrationality of e in 1744 (“De fractionibus continuis

dissertatio,” Commentarii academiae scientiarum imperialis Petropolitanae, IX, p. 98-
137) [44].

136Euler was probably the first to define a transcendental number as a number which is
not a solution of a polynomial equation with integer coefficients. Lambert was convinced
of the transcendence of e but did not actually prove it.

137“dignités” in French.
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But the asymptotes CF , CS , making between themselves a right angle, which
is divided by the axis CH in two equal parts, we have

ξ = CP = PS = PR,

η = PM ,

hence

ξ + η = SM ,

ξ − η = MR,

& and therefore

eu = SM ,

e−u = MR,

from which we see at the same time that we have

eu · e−u = SM ·MR = 1.

We can see moreover that, since we have

eu = SM ,

e−u = MR,

AB = 1,

we will have, taking the logarithms,138

u = log
SM

AB
= log

AB

MR
.

And since u, eu, cannot be rational at the same time,139 we see that the same
is true for the area of the sector AMCA = 1

2
u, & of the ordinates SM , MR.

§. 83. We moreover have (§. 75.) the differential

du =
d tanϕ

1− t2ϕ
,

whose integral happens to be

2u = log
1 + tϕ

1− tϕ
= log tan(45◦ + ϕ) = l. tan SCM ,

138hyperbolic logarithms.
139See §. 74.
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or

2u = − log
1− tϕ
1 + tϕ

= −l. tan(45◦ − ϕ) = −l. tanRCM .

Let us retain the first of these formulæ

2u = log

(
1 + tϕ

1− tϕ

)
,

& it will enable us to find again for hyperbolic sectors what we found to be
first tangent for circular sectors. Here is how.

§. 84. Let us first consider that the hyperbolic sector AMCA increases
with the angle ϕ = MCA, in such a way that it becomes infinite when
ϕ = 45◦. It is thus clear that when one of these sectors is given, it is possible
to find others, which are either any multiples of it, & any parts, or which
exceed it by any amount. Now, to each of these sectors corresponds an angle
MCP , by which it is formed, & the tangent of this angle being = ϕ, the
sector = 1

2
u, we have seen that it is

2u = log
1 + tϕ

1− tϕ
.

§. 85. Let therefore be three sectors 1
2
u, 1

2
u′, 1

2
u′′, such that the third is

the sum of the first two. Let moreover ϕ, ϕ′, ϕ′′ be the corresponding angles.
We will have

2u = log
1 + tϕ

1− tϕ
,

2u′ = log
1 + tϕ′

1− tϕ′
,

2u′′ = log
1 + tϕ′′

1− tϕ′′
.

Since we must have
1

2
u′′ =

1

2
u′ +

1

2
u,

we also have
log

1 + tϕ′′

1− tϕ′′
= log

1 + tϕ′

1− tϕ′
+ log

1 + tϕ

1− tϕ
,

which gives
1 + tϕ′′

1− tϕ′′
=

1 + tϕ′

1− tϕ′
· 1 + tϕ

1− tϕ
,
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from which it follows

tϕ′′ =
tϕ+ tϕ′

1 + tϕ · tϕ′
,

& reciprocally for the difference

tϕ′ =
tϕ′′ − tϕ

1− tϕ · tϕ′′
.

These two formulæ only differ by their signs from those which are found
for the sectors, or the circular arcs, & they too let us conclude that if the
tangents which correspond to two hyperbolic sectors are rational, then the
tangents which correspond to the sector which is equal to the sum & the
difference of these two sectors will likewise be rational.

§. 86. This proposition alone is sufficient to show that everything that was
said above (§. 52· · · 71.) for the circle will also apply to the hyperbola. We
can merely use an abridged expression, and name tangent of some hyperbolic
sector ACMA, the tangent of the angle ACM which is = AT , the radius AC
being set = 1. Then, we should observe that all the sectors considered here
must have the axis AC as their common beginning, as do all the MCAM ,
mCAm sectors. So, e.g. since the mCM sector does not meet the axis, it
must be replaced by another one which is equal to it, & which is contiguous
to the AC axis, when we want to obtain the angle ϕ & the corresponding
tangent. It is obvious that this remark was not necessary in the case of the
circle, because each diameter of the circle can be viewed as the axis.

§. 87. It is in that sense that I will say that the hyperbola has an infinity
of prime tangents, that the sectors of all these prime tangents are incom-
mensurable between themselves & to the unit, that the tangent of a sector
being prime, only the multiples of this sector are rational: That every ratio-
nal tangent is either prime itself, or its sector is a multiple of a sector whose
tangent is prime. &c. Since the proof of these theorems would only be a
repetition of those that I gave for the circle, I will omit them, even more so
that I only give these theorems in order to show again in that matter the
analogy between the circle & the equilateral hyperbola.

§. 88. Let us still compare together the circular sector ANCA, & the
hyperbolic sector AMCA. Mr. de Foncenex, in the memoir mentioned above
(§. 74.) showed that, by employing the imaginary quantities, these two sec-
tors happen to be in the ratio of 1 to

√
−1, which is purely imaginary. But

let us see what is the real ratio? This is what we will find by expressing
one of these sectors in terms of the other. To this effect we will use the two



71

sequences140

v = tϕ− 1

3
t3ϕ+

1

5
t5ϕ− 1

7
t7ϕ+ &c.

tϕ = u− 1

3
u3 +

2

15
u5 − 17

315
u7 + &c.

which are easily found using the differential formulæ given above (§. 75.).141

By substituting the value of the second of these sequences within the first,
we will have, after reduction,142

v = u− 2

3
u3 +

2

3
u5 − 244

315
u7 + &c.

& reciprocally143

u = v +
2

3
v3 +

2

3
v5 +

244

315
v7 + &c.

These two sequences144 only differ with respect to the signs, the coefficients
& the exponents being the same. If in the first of these sequences we set

u = v
√
−1,

we find
v =
√
−1 ·

(
v +

2

3
v3 +

2

3
v5 +

244

315
v7 + &c.

)
which means that

v = u
√
−1.

Hence, by means of an imaginary hyperbolic sector, we find an imaginary
circular sector, & reciprocally.

§. 89. All that I have shown on the circular & logarithmic transcendental
quantities seems to be based on principles much more universal, but which

140In the expression of v, exponents have been moved for clarity. The first expression is
obtained by integrating dv = d(tϕ)

1+t2ϕ = d(tϕ)(1−t2ϕ+t4ϕ−t6ϕ+ · · · ). The second member
of the second equation is equal to tanh(u) (the original article wrote tϕ = v− 1

3u
3 + · · · ).

141How was the expression of tϕ found? By division of η and ξ given in §. 78?
142As observed in an earlier note, this amounts to

v = arctan(tanh(u)) and u = artanh(tan(v)).

143This is correct, but how did Lambert obtain it?
144The sequences of numerators and denominators have been submitted to the On-Line

Encyclopedia of Integer Sequences (OEIS) as sequences A335257 and A335258.
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are not yet enough developed. Here is however what will help to give an idea
of it. It is not sufficient to have found that these transcendental quantities are
irrational, that is incommensurable to the unit. This property is not unique
to them. For, in addition to irrational quantities which may be obtained by
chance, & which for that reason are hardly subject to analysis, there are still
an infinity of others which are named algebraic: & such are all the radical
irrational quantities, like

√
2,
√

3, 3
√

4 &c.
√

2 +
√

3 &c. & all the irrational
roots of algebraic equations, such as e.g. those of the equations

0 = xx− 4x+ 1,

0 = x3 − 5x+ 1,

&c.

I will name the ones & the others radical irrational quantities, & here is the
theorem, which I believe can be proven.

§. 90. I say thus that no circular & logarithmic transcendental quantity
can be expressed by any irrational radical quantity, which refers to the same
unit, & in which there enters no transcendental quantity. The proof of this
theorem appears to rest on the fact that the transcendental quantities depend
on

ex,

where the exponent varies, whereas the radical quantities assume constant
exponents. Thus e.g. the arc of a circle being rational or commensurable to
the radius, its tangent, which we found to be irrational, cannot be a square
root of any rational quantity. For, let the proposed arc = ω, & let us make
tanω =

√
a, we will have145

t2ω =
sin2 ω

cos2 ω
=

1− cos 2ω

1 + cos 2ω
= a,

from which it follows that

cos 2ω =
1− a
1 + a

:

but this quantity being rational, it follows that the arc 2ω is irrational, which
contradicts the assumption, it is clear that by making tanω =

√
a, the

quantity a cannot be rational, & that consequently the tangent of any rational
arc is not the square root of any rational quantity.

§. 91. This theorem being once proven in all its universality, it will follow
that since the circumference of the circle cannot be expressed by any radical

145I have moved the exponents for clarity and replaced
∫

by sin.
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quantity, nor by any rational quantity, there will be no means to determinate
it by some geometric construction. For everything that can be constructed
geometrically corresponds to the rational & radical quantities; & we are even
far from being able to construct the latter ones without any constraints. It
is clear that it will also be the case for all the arcs of circles whose length or
the two extreme points are given, either by rational quantities, or by radical
quantities. For, if the length of the arc is given, it will be necessary to find
the two extreme points, by using the chord, the sine, the tangent, or some
other straight line which, in order to be constructed, will always depend or be
reductible to one of the lines I have mentioned. But the length of the arc being
given by rational or radical quantities, these lines will be transcendental, &
for that very reason irreductible to any rational or radical quantity. It will
also be the case if the two extreme points of the arc are given, I mean by
rational or radical quantities. For, in that case, the length of the arc will be
a transcendental quantity: this means irreductible to any rational or radical
quantity, & consequently it does not admit of any geometrical construction.
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Plate X.
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Note : in the original plate, V is not on the horizontal line CA, because the
figure does not extend to the actual intersection V .



Chapter 3

Legendre’s proof (1794)

The following is a translation from pages 296-304 of Legendre’s Éléments de
géométrie published in 1794 [98].1

NOTE VI. Where it is proven that the ratio of the circumference to the
diameter can not be expressed in integer numbers.

A proof of this proposition is already known, it was given by Lambert in
the Memoirs of Berlin, year 1761; but since this proof is lengthy and difficult
to follow, I have tried to shorten it and to simplify it. Here is the result of
my researches.

Consider the infinite series2

1 +
a

z
+

1

2
· a2

z · (z + 1)
+

1

2 · 3
· a3

z · (z + 1) · (z + 2)
+ , etc.

and assume that ϕ(z) is its sum.3 If one replaces z by z + 1, ϕ(z + 1) will
likewise be the sum of the series

1 +
a

z + 1
+

1

2
· a2

(z + 1) · (z + 2)
+

1

2 · 3
· a3

(z + 1) · (z + 2) · (z + 3)
+ , etc.

Let us subtract these two series term by term one from the other, and we
will have ϕ(z)− ϕ(z + 1) for the sum of the remainder, which will be

a

z · (z + 1)
+

a2

z · (z + 1) · (z + 2)
+

1

2
· a3

z · (z + 1) · (z + 2) · (z + 3)
+ , etc.

1Translated by Denis Roegel, 18 June 2020. Legendre’s note was also translated in
German by Rudio [131]. My translation is not based on the earlier one published in
1828 [99].

2I have added parentheses for intelligibility.
3Legendre used the notation ϕ : z for our ϕ(z). I have adapted all the occurrences of

‘ϕ :’ and ‘ψ :’ in this translation.
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But this remainder can be put in the form

a

z · (z + 1)
·
(

1 +
a

z + 2
+

1

2
· a2

(z + 2) · (z + 3)
+ , etc.

)
;

and then it reduces to a
z·(z+1)

ϕ(z + 2). Therefore we will generally have

ϕ(z)− ϕ(z + 1) =
a

z · (z + 1)
ϕ(z + 2).

Let us divide this equation by ϕ(z+1); and, in order to simplify the result, let
ψ be a new function of z such that ψ(z) = a

z
· ϕ(z+1)

ϕ(z)
; then instead of ϕ(z)

ϕ(z+1)
,

we can put a
zψ(z)

, and (z+1)ψ(z+1)
a

instead of ϕ(z+2)
ϕ(z+1)

. Once the substitution
is done, we have ψ(z) = a

z+ψ(z+1)
. But by putting in succession in this

equation z+ 1, z+ 2, etc., instead of z, we will obtain ψ(z+ 1) = a
z+1+ψ(z+2)

,
ψ(z+2) = a

z+2+ψ(z+3)
, etc. Thus the value of ψ(z) can be expressed as follows

as a continued fraction:

ψ(z) =
a

z + a

z + 1 + a

z + 2 + , etc.

Reciprocally this continued fraction, extended to the infinite, has as its
sum ψ(z), or its equivalent a

z
· ϕ(z+1)

ϕ(z)
, and this sum, developped in ordinary

series, is
a

z
·

1 + a
z+1

+ 1
2
· a2

(z+1)·(z+2)
+ , etc.

1 + a
z

+ 1
2
· a2

z·(z+1)
+ , etc.

Let now be z = 1
2
, the continued fraction will be

ψ(z) =
2a

1 + 4a

3 + 4a

5 + , etc.

so that its numerators, except the first, will be equal to 4a, and its denom-
inators will form the sequence of odd numbers 1, 3, 5, 7, etc. The value of
this continued fraction can therefore also be expressed by

2a ·
1 + 4a

2·3 + 16a2

2·3·4·5 + 64a3

2·3···7 + , etc.
1 + 4a

2
+ 16a2

2·3·4 + 64a3

2·3···6 + , etc.
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But these series are known, and it is known that by denoting by e the
number whose hyperbolic logarithm is 1, the previous expression reduces
to e2

√
a−e−2

√
a

e2
√

a+e−2
√
a ·
√
a ; so that in general we will have

e2
√
a − e−2

√
a

e2
√
a + e−2

√
a
· 2
√
a =

4a

1 + 4a

3 + 4a

5 + , etc.

From there two main formulæ follow depending on whether a is positive or
negative. Let first be 4a = x2, we will have

ex − e−x

ex + e−x
=
x

1 + x2

3 + x2

5 + , etc.

Let then be 4a = −x2, and because ex
√
−1−e−x

√
−1

ex
√
−1+e−x

√
−1 =

√
−1 · tanx, we will have

tanx =
x

1− x2

3− x2

5− x2

7− , etc.

The latter is the formula will be the basis to our proof. But first we must
prove the two following lemmas.

LEMMA 1. Given a continued fraction extended to the infinite,

m

n+ m′

n′ + m′′

n′′ + , etc.

in which all the numbers m, n, m′, n′, etc. are positive or negative integers; if
we assume that the composing fractions m

n
, m′

n′
, m′′

n′′
, etc. are all smaller than

the unit, I claim that the total value of the continued fraction will necessarily
be an irrational number.

First I claim that this value will be smaller than the unit.4 Indeed, with-
out reducing the generality of the continued fraction, we can assume that all

4In what follows, the composing fractions are assumed to be smaller than 1 in absolute
value.
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the denominators n, n′, n′′, etc. are positive: but, if we take only one term
of the proposed sequence, we will have by hypothesis m

n
< 1. If we take the

first two, because of m′

n′
< 1, it is clear that n+ m′

n′
is larger than n− 1: but

m is smaller than n; and since they are both integers, m will also be smaller
than n+ m′

n′
. Hence the value which results from the two terms

m

n+ m′

n′

is smaller than the unit. Let us compute three terms of the proposed con-
tinued fraction; and first, following what we have seen, the value of the
component

m′

n′ + m′′

n′′

will be smaller than the unit. Let us call this value ω, and it is clear that m
n+ω

will be even smaller than unit: therefore what results from the three terms

m

n+ m′

n′ + m′′

n′′

is smaller than the unit. Pursuing the same reasoning, one will see that,
whatever the number of terms which are computed of the proposed continued
fraction, the value which will result is smaller than the unit; therefore the
total value of this fraction extended to the infinite is also smaller than the
unit. It could be equal to the unit only in the sole case where the proposed
fraction would be of the form

m

m+ 1− m′

m′ + 1− m′′

m′′ + 1− , etc.

In all the other cases it will be smaller.
That being set, if one denies that the value of the proposed continued

fraction is equal to an irrational number, let us assume it is equal to a rational
number, and let this number be B

A
, B and A being some integers; we will
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thus have
B

A
=
m

n+ m′

n′ + m′′

n′′ + , etc.

Let C, D, E, etc. be indeterminate values such that we have5

C

B
=
m′

n′ + m′′

n′′ + m′′′

n′′′ + , etc.
D

C
=
m′′

n′′ + m′′′

n′′′ + miv

niv + etc.

and so on to the infinite. These different continued fractions having all their
terms smaller than the unit, their values or sums B

A
, C
B
, D
C
, E
D
, etc. will be

smaller than the unit, following what we have just proven, and therefore we
will have6 B < A, C < B, D < C, etc.; in such a way that the sequence A,
B, C, D, E, etc. is decreasing to the infinite. But the sequence of continued
fractions considered here gives

B

A
= ; from which it follows C = mA− nB,
m

n+ C

B
C

B
= ; from which it follows D = m′B − n′C,
m′

n′ + D

C
D

C
= ; from which it follows E = m′′C − n′′D,
m′′

n′′ + E

D
etc. etc.

And since the first two numbers A and B are integers by assumption, it
follows that all the others C, D, E, etc., which until now were indeterminate,
are also integer numbers. But a contradiction follows from the fact that an
infinite sequence A, B, C, D, E, etc. is both decreasing and composed of

5These expressions are valid, because C, D, E, etc., are not assumed to be integers. C
is determined by the choice of B„ D is determined by the choice of C, and so on.

6all these orders are implicitely in absolute value: |B| < |A|, etc.
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integer numbers; indeed as a matter of fact none of the numbers A, B, C,
D, E, etc. can be zero, since the proposed continued fraction extends to the
infinite, and that thus the sums represented by B

A
, C
B
, D
C
, etc. must always

be something.7 Therefore the assumption that the sum of the proposed
continued fraction is equal to a rational quantity B

A
could not be maintained;

therefore this sum is necessarily an irrational number.

LEMMA II. The same things being set, if the component fractions m
n
,

m′

n′
, m′′

n′′
, etc. are of any size at the beginning of the sequence, but if after

a certain interval they are constantly smaller than the unit, I claim that the
proposed continued fraction, still assuming it extends to the infinite, will have
an irrational value. Indeed if starting with m′′′

n′′′
, for instance, all the fractions

m′′′

n′′′
, miv
niv ,

mv
nv , etc. at the infinite, are smaller than the unit; then, according

to lemma I, the continued fraction

m′′′

n′′′ + miv

niv + mv

nv + , etc.

will have an irrational value. Let us call this value ω, and the proposed
continued fraction will become

m

n+ m′

n′ + m′′

n′′ + ω.

But if one does in succession

m′′

n′′ + ω
= ω′,

m′

n′ + ω′
= ω′′,

m

n+ ω′′
= ω′′′,

it is clear that, because ω is irrational, that all the quantities ω′, ω′′, ω′′′, will
likewise be. But the last one ω′′′ is equal to the proposed continued fraction;
thus its value is irrational.

We can now, coming back to our subject, prove this general proposition.

THEOREM.
7that is, they must have some non-zero value.
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If an arc is commensurable with the radius, its tangent will be incommen-
surable with that same radius.

Indeed, let the radius = 1, and the arc x = m
n
, m and n being inte-

ger numbers, the formula obtained above will give, when the substitution is
performed,

tan
m

n
=
m

n− m2

3n− m2

5n− m2

7n− , etc.

But this continued fraction is in the case of lemma II; for it is clear that the
denominators 3n, 5n, 7n, etc. increasing continuedly whereas the numera-
tor m2 remains of the same size, the composing fractions will or will soon
become smaller than the unit; consequently the value of tan m

n
is irrational;

therefore, if the arc is commensurable with the radius, its tangent will be
incommensurable.

From there results as a very immediate consequence the proposition which
is the object of this note. Let π be the half circumference whose radius is
1; if π were rational, the arc π

4
would also be, and consequently its tangent

should be irrational: but it is known instead that the tangent of the arc π
4
is

equal to the radius 1; thus π can not be rational. Therefore the ratio of the
circumference to the diameter is an irrational number.

It is likely that the number π does not even belong to the algebraic
irrationals, that is that it cannot be the root of an algebraic equation of
a finite number of terms whose coefficients are rational: but it seems very
difficult to prove this proposition rigorously; we can only show that the square
of π is again an irrational number.

Indeed if in the continued fraction which expresses tanx, one does x = π,
because of tanπ = 0, one must have8

0 = 3− π
2

5− π2

7− π2

9− , etc.

But if π2 were rational, and if we had π2 = m
n
, m and n being integers, this

8From the expression of tanx, one actually finds that 1 − π2

3−π2

···
must be infinite, and

hence that 3− π2

··· must be equal to 0.
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would entail
3 =

m

5n− m

7n− m

9n− m

11n− etc.

But it is visible that this continued fraction is still in the case of lemma II;
its value is therefore irrational and could not be equal to the number 3.
Therefore the square of the ratio of the circumference to the diameter is an
irrational number.



Chapter 4

Modern proofs

In this chapter, I give the main modern shorter proofs of the irrationality of
π I know of, and allude to a few others which have not been included, either
because they are longer, or because they would go beyond the limits I set
myself for this work.

4.1 Gauss (1850s?)

In his Nachlass [55], Carl Friedrich Gauss (1777-1855) considers m,n > 0
and the series

P = 1− 1

2
· m

2

n2
+

1

2 · 4
· 1

1 · 3
· m

4

n4
− 1

2 · 4 · 6
· 1

1 · 3 · 5
· m

6

n6
+ etc.

and for θ ≥ 1

Pθ =
1

1 · 3 · 5 · · · (2θ − 1)
· m

2θ−1

nθ
− 1

2
· 1

1 · 3 · 5 · · · (2θ + 1)
· m

2θ+1

nθ+2

+
1

2 · 4
· 1

1 · 3 · 5 · · · (2θ + 3)
· m

2θ+3

nθ+4
− etc.

which are all convergent. Although Gauss does not explicit it, we have P =
cos m

n
and P1 = sin m

n
, as observed by Pringsheim [123].

Gauss’s reasoning is actually based on §. 46 in Lambert’s memoir and
he observes that Pθ, Pθ+1, Pθ+2, etc., represents a sequence of decreasing
values, as long as 2θ + 1 ≥ m2

n
+ m2

2n2 . Then, if P1

P
= tan m

n
is rational,

P and P1 are proportional to integers, and so are Pθ for θ > 1, because
Pθ+2 = (2θ + 1)nPθ+1 − m2Pθ. We would then have an infinite decreasing
sequence of integers which is impossible.
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Gauss thus concludes that tan m
n
cannot be rational if m and n are inte-

gers.

Pringsheim [123] adds some comments on Gauss’s derivation, stressing
that Gauss must have been very familiar with Lambert’s work, something
which was confirmed in Pringsheim’s second note.

In the note published shortly afterwards [124],1 Pringsheim was able to
locate an unpublished manuscript by Gauss, dated 1850. The derivation
published from the Nachlass may also be dated from the 1850s.

Gauss’s observations concern §. 48 and §. 49 in Lambert’s memoir, who
assumes, without saying so, that w > 1. In his manuscript, Gauss proves
that the limit of R′, R′′, etc., is 0, which was not clearly proved by Lambert.

4.2 Glaisher (1872)
In a note published in 1872 [56], J.W.L. Glaisher (1848-1928) gave a concise
version of Lambert’s proof of the irrationality of π, but he also gave an inter-
esting derivation of Lambert’s continued fraction for tan v using differential
equations.

Glaisher considers the equation2 y = cos(
√

2x) which satisfies the differ-
ential equation

y + y′ + 2xy′′ = 0

It is easy to see that by differentiating this equation i times, that one obtains

y(i) + (2i+ 1)y(i+1) + 2xy(i+2) = 0

And it follows that

y′

y
=

−1

1 + 2xy
′′

y′

y′′

y′
=

−1

3 + 2xy
′′′

y′′

. . . . . .

y(i+1)

y(i)
=

−1

(2i+ 1) + 2xy
(i+2)

y(i+1)

1For some reason, this second note was forgotten in Wallisser’s account [150] who cites
only the first note by Pringsheim.

2I have slightly simplified the definition of y, as it was including two constants one of
which can be taken equal to 0 and the other to 1.
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and therefore
y′

y
= − 1√

2x
tan
(√

2x
)

=
−1

1− 2x
3− 2x

5−etc.

Setting
√

2x = v, one then obtains

tan v =
v

1− v2

3− v2

5−etc.

4.3 Hermite (1873)
No significant new proof of the irrationality of π seems to have been published
between Legendre and Hermite, the work of Gauss having not been published.

In an excerpt of a letter to the German mathematician Carl Borchardt
(1817-1880) [67], the French mathematician Charles Hermite (1822-1901)
gave a new proof of the irrationality of π. I give here a sketch of this proof,
using ideas by Juhel [86]. Hermite considers the equations

An = Qn(x) sinx− Pn(x) cosx (4.1)

and refers for definitions of An, Qn and Pn to a letter sent by him to Paul
Gordan (1837-1912) [66]. There, Hermite sets A0(x) = sinx, and successively

A1(x) =

∫ x

0

A0(t)t dt = sinx− x cosx

A2(x) =

∫ x

0

A1(t)t dt = (3− x2) sinx− 3x cosx,

A3(x) =

∫ x

0

A2(t)t dt = (15− 6x2) sinx− (15x− x3) cosx,

etc.

In fact, we have Q0(x) = Q1(x) = 1, P0(x) = 0, P1(x) = x, and

Qn(x) = (2n− 1)Qn−1(x)− x2Qn−2(x)

Pn(x) = (2n− 1)Pn−1(x)− x2Pn−2(x)

It is possible to show that

An(x) =
x2n+1

2 · 4 · · · 2n

∫ 1

0

(1− z2)n cos(xz) dz

This expression is in turn related to the Bessel function Jn+1/2(x).



86 CHAPTER 4. MODERN PROOFS

In any case, assuming n even, Qn(x) is a polynomial in x2 and if we let
x = π

2
with π2

4
= a

b
, then Qn(x) = N

an/2 where N is an integer.
Then

N =

(
b
a

) 1
2

(
b√
a

)n
2 · 4 · · · 2n

∫ 1

0

(1− z2)n cos
(π

2
z
)
dz, (4.2)

This leads to a contradiction, because the right-hand side of this equation
tends to 0, without ever being equal to 0, and N is an integer.

Therefore π2 is not rational, and also not π.

Cartwright’s proof (see below) is a simplification of Hermite’s proof.

4.4 Hermite (1882)

In his 1882 lecture [68, p. 68-69], Hermite dispenses with the integrals and
adapted his earlier proof:

Hermite sets

X =
sinx

x

X1 = −1

x
X ′ =

1

x3
(sinx− x cosx)

X2 = −1

x
X ′1 =

1

x5
[
(3− x2) sinx− 3x cosx

]
X3 = −1

x
X ′2 =

1

x7
[
(15− 6x2) sinx− (15x− x3) cosx

]
. . . . . .

Xn+1 = −1

x
X ′n

It is now already clear that Xn = 1
x2n+1An with the 1873 definition of An.

We have

Xn =
1

x2n+1
[Φ(x) sinx− Φ1(x) cosx]

where Φ(x) and Φ1(x) are of degree n and n− 1, or n− 1 and n, depending
whether n is even or odd.
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But Hermite goes on and writes

X = 1− x2

3!
+
x4

5!
− · · ·

Xn =
1

1.3.5 . . . (2n+ 1)

[
1− x2

2(2n+ 3)
+

x4

2.4(2n+ 3)(2n+ 5)
− · · ·

]
=

1

1.3.5 . . . (2n+ 1)
S

which is easily proved by induction.
By grouping two adjoining terms, S can be rewritten as follows:

S =

[
1− x2

2(2n+ 3)

]
+

x4

2.4(2n+ 3)(2n+ 5)

[
1− x2

6(2n+ 7)

]
+ · · ·

This series is strictly positive if 1− x2

2(2n+3)
> 0 and this condition is met

if x = π
2
and n ≥ 0.

Let us now assume that π
2

= b
a
, with a and b integers. We therefore have

Φ(b/a) =
(π

2

)2n+1

Xn =
A

an

where A is a positive integer (as a polynomial in b of degree ≤ n). And
therefore

A =
an
(
π
2

)2n+1

1.3.5 . . . (2n+ 1)
S

And since the right-hand side tends to 0 but always remains positive, we
obtain a contradiction, and π must be irrational.

Hermite observes that the result still holds if we take
(
π
2

)2
= b

a
, because

Φ(x) only contains even powers.

4.5 Hobson (1918)

In his Treatise on plane trigonometry (1918 and probably earlier editions) [72,
p. 374-375], Hobson gave a proof of the irrationality of π which is a clear
adaptation of Legendre’s proof where a is restricted to the case < 0.

Laczkovich uses the same line of thought, but refers to Gauss [53]. Hob-
son’s function below is a hypergeometric function [40, 59], and Gauss derives
some continued fractions from hypergeometric functions, but not exactly the
case below.
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Hobson considers the function

f(c) = 1− x2

1.c
+

x4

1.2.c(c+ 1)
− x6

1.2.3.c(c+ 1)(c+ 2)
+ · · ·

Then
f(c+ 1)− f(c) =

x2

c(c+ 1)
f(c+ 2)

and therefore
f(c)

f(c+ 1)
= 1− x2

c(c+ 1)

f(c+ 2)

f(c+ 1)

and
f(c+ 1)

f(c)
can be expressed as the continued fraction

1

1− x2/[c(c+ 1)]

1− x2/[(c+ 1)(c+ 2)]

1− x2/[(c+ 2)(c+ 3)]

1− etc.

Now, if c = 1
2
and replacing x by x/2, the series f(c) becomes

f(c) = cos x = 1− x2

1.2
+

x4

1.2.3.4
− · · ·

and f(c+ 1) becomes
sinx

x
. Consequently (for details, see [91])

tanx

x
=

1

1− x2

3− x2

5− x2

7− etc.

For x = π
4
, Hobson observes that the right-hand side is irrational, referring

to Chrystal [29], who himself used Legendre’s lemma and this proves the
irrationality of π.

4.6 Popken (1940)
Jan Popken (1905-1970) had the purpose of freeing Lambert’s proof from
the theory of continued fractions and therefore made it simpler. His proof
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is actually related to Hermite’s proof, as he observed later [120]. In his
first article [115], he proceeds as follows. He first proves a lemma about the
existence of polynomials ph(x−1) and qh(x

−1) with integral coefficients and
of degree at most 2h (with h ≥ 0), such that

ph(x
−1) sinx+qh(x

−1) cosx = (−2)h
∞∑
n=0

(−1)n
(n+ 1)(n+ 2) · · · (n+ h)

(2n+ 2h+ 1)!
x2n+1

(4.3)
This is clear for h = 0:

sinx =
x

1!
− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · · (4.4)

In his later publication [117], Popken also gives examples of such polyno-
mials for h = 1 and h = 2:

−x−2 sinx+ x−1 cosx = −2

(
1 · x
3!
− 2 · x3

5!
+

3 · x5

7!
− 4 · x7

9!
+ · · ·

)
(3x−4 − x−2) sinx− 3x−3 cosx = (−2)2

(
1 · 2x

5!
− 2 · 3x3

7!
+

3 · 4x5

9!
− · · ·

)
One can notice that these expressions have a simple relationship with

Hermite’s An.
Now, assuming that π is rational and setting π

4
= a

b
, and applying the

lemma with x = a
b
, we obtain for h ≥ 0:

{
ph

(
b

a

)
+ qh

(
b

a

)} √
2

2
= (−2)h

(
h!

(2h+ 1)!

π

4
− 2 · 3 · · · (h+ 1)

(2h+ 3)!

(π
4

)3
+ · · ·

)
(4.5)

In the alternating series between brackets, the terms decrease and tend
to 0.

Consequently

2h
(

h!

(2h+ 1)!

π

4
− 2 · 3 · · · (h+ 1)

(2h+ 3)!

(π
4

)3)
<

√
2

2

∣∣∣∣ph( ba
)

+ qh

(
b

a

)∣∣∣∣ < 2h
h!

(2h+ 1)!

π

4
<

2h

h!
,

(4.6)
and

0 <

∣∣∣∣a2hph( ba
)

+ a2hqh

(
b

a

)∣∣∣∣ < √2
2h|a|2h

h!
(4.7)

The assumptions on the polynomials ph and qh entail that
∣∣a2hph ( ba)+ a2hqh

(
b
a

)∣∣
is an integer, for each h ≥ 0. But since limh→∞

√
22h|a|2h

h!
= 0, this is impos-

sible. Hence, π cannot be rational.
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4.7 Cartwright (1945)
The following proof was given as an exercise by Mary Cartwright (1900-1998)
in Cambridge in 1945, but it has an earlier origin and is obviously related to
Hermite’s first proof. It was published by Jeffreys in 1957 [79, p. 231] and
1973 [80, p. 268].

Cartwright considers the integrals

In =

∫ 1

−1
(1− x2)n cos(αx) dx

Integrating by parts twice gives (for n ≥ 2)

α2In = 2n(2n− 1)In−1 − 4n(n− 1)In−2

Setting Jn = α2n+1In, it becomes

Jn = 2n(2n− 1)Jn−1 − 4n(n− 1)α2Jn−2.

We also have J0 = 2 sinα and J1 = −4α cosα + 4 sinα. Therefore for all n

Jn = α2n+1In = n!(Pn sinα +Qn cosα)

where Pn, Qn are polynomials in α of degree ≤ 2n and with integral coeffi-
cients depending on n.

Now, let α = π
2

= b
a
where a and b are integers. Then

b2n+1

n!
In = Pna

2n+1.

The right side is an integer. But 0 < In < 2 since

0 < (1− x2)n cos(
1

2
πx) < 1 for −1 < x < 1

and b2n+1/n!→ 0 as n→∞. Hence, for sufficiently large n

0 < b2n+1In/n! < 1

and there would be an integer between 0 and 1. This shows that π
2
cannot

be a rational.

Cartwright’s proof was reprinted in several other places, such as in Earl’s
Towards Higher Mathematics [41, p. 383]. Boros and Noll [20, p. 117-118]
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also give a slight variant where they take π = a
b
instead of π

2
= b

a
in the above

proof. They do however incorrectly attribute their proof to Niven.
In 2004, Ghislain Dupont [39] published another variant of Cartwright’s

proof (without referring to it), first defining

In =
1

n!

∫ π/2

−π/2

(
π2

4
− t2

)n
dt

He observes that In > 0 and limn→∞ r
nIn = 0 for any integer r > 0. He then

proves by induction that In is a polynomial in π2 of degree at most n and
with integer coefficients:

In = Pn(π2)

Assuming then that π2 = r/s with r and s integers, it follows that snIn is
an integer whose limit is 0 when n → ∞, which is impossible since In > 0.
Hence π2 is irrational, and so must be π. The same proof was borrowed by
Oliveira [36], without any sources.

Lord [102] may have some additional information, but I haven’t been able
to obtain his article.

4.8 Niven (1947)
In 1947, Ivan Niven (1915-1999) published a simple proof that π is irra-
tional [109]. This was also based on a technique introduced by Hermite.
Assuming that π = a/b, Niven defined the two polynomials

f(x) =
xn(a− bx)n

n!
,

F (x) = f(x)− f (2)(x) + f (4)(x)− · · ·+ (−1)nf (2n)(x),

For j < n, f (j)(x) = xn−j × · · · and f (j)(0) = 0.
For n ≤ j ≤ 2n, we have

f(x) =
xn

n!

[
· · ·+

(
n

j − n

)
a2n−j(−bx)j−n + · · ·

]
and consequently

f (j)(x) = · · ·+ j!

n!

(
n

j − n

)
a2n−j(−b)j−n + · · ·

j!
n!
,
(
n
j−n

)
and a2n−j(−b)j−n are integers, hence f (j)(0) has an integral

value.
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And since f(x) = f(a/b − x), we have f(π) = 0 and as f (j)(x) =
(−1)jf (j)(a/b− x), f (j)(π) is also an integer.

We also have

d

dx
{F ′(x) sinx− F (x) cosx} = F ′′(x) sinx+ F (x) sinx = f(x) sinx

because f (2n+2)(x) = 0.
Consequently∫ π

0

f(x) sinx dx = [F ′(x) sinx− F (x) cosx]
π
0 = F (π) + F (0) (4.8)

which is equal to an integer, because of the above results.
But, because of the definition of f(x), we have, for 0 < x < π,

0 < f(x) sinx <
πnan

n!

Therefore the integral (4.8) is positive, but can be made arbitrarily small for
n sufficiently large. It follows that (4.8) is false, and with it the assumption
that π is rational.

Niven’s proof can actually be slightly adapted to prove that π2 is irra-
tional, which then also entails the irrationality of π.

Bourbaki’s treatise [22] has an exercise for proving the irrationality of π.
It is in fact Niven’s proof, but taking instead of f(x) = xn(a−bx)n

n!
the function

h(x) = xn(a/b−x)n
n!

= f(x)/bn.
In his book on irrational numbers [110], Niven reproduces his previous

proof of the irrationality of π, but also gives another proof where he deduces
the irrationality of π from the fact that cos r is irrational for any rational
number r 6= 0. Since cos π = −1, π is necessarily irrational.

Hardy and Wright [64], Remmert [128], Spivak [141], as well as Eymard
and Lafon [46, p. 129-130] reproduced slight adaptations of Niven’s proof
where

f(x) =
xn(1− x)n

n!
.

x then varies between 0 and 1 instead of between 0 and π.
Ribenboim [129] and Beukers [19] also gave Niven’s proof.
Jones published an insightful motivation of Niven’s proof [81, 84] which

I will not describe here, but that the curious reader might want to study.
Other interesting studies are those of Conrad [30] and again of Jones [83]
and Zhou and Markov [155, 153, 154].
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Parks [113] generalized Niven’s proof and proved for instance that if 0 <
|r| ≤ π and if cos(r) and sin(r) are rational, then r is irrational. He also
proved that if r is positive and rational, r 6= 1, then ln(r) is irrational.

Koksma [90] has also adapted Niven’s proof, this time in order to prove
the irrationality of ep/q for a rational p/q > 0.

4.9 Popken (1948)
In 1948, Popken gave a simpler proof [119].

Popken first obtains the expressions for R′, R′′, etc. (see §. 7 in Lambert’s
memoir):

cos v = w sin v +R′

sin v = −3wR′ +R′′

R′ = 5wR′′ +R′′′

. . . . . .

Rn = (−1)n+1(2n+ 3)wRn+1 +Rn+2

and in general, as mentioned earlier (in a note to Lambert’s §. 8):

Rn = (−1)n(n+1)/22n
∞∑
m=0

(−1)m
(n+m)!

m!(2n+ 2m+ 1)!
vn+2m+1 (4.9)

Popken then assumes that v is rational and that the denominator of
w = 1/v is a. He also assumes that tan v = q/p, so that cos v = pρ and
sin v = qρ, for ρ > 0.

Now, from the above, it follows that

R′(v) = pρ− wqρ

so that R′

ρ
is a fraction with denominator a. Likewise, R′′

ρ
is a fraction with

denominator a2, etc. In general, Rn

ρ
is a fraction with denominator an, so

that Rnan

ρ
is an integer.

From equation (4.9), it follows that

|Rn| < An

n!

where A is a positive integer not depending on n.
For n sufficiently large, we therefore have Rnan

ρ
< 1, and consequently

Rn = 0.
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However if for a given value of n we have both Rn and Rn+1 equal to 0,
then it follows from the construction of Rn that Rn−1 = 0, Rn−2 = 0, and
eventually sin v = 0 and cos v = 0.

Now, for v = π, cos v = −1 and sin v = 0, therefore we should have also
cos v = 0 which is a contradiction. Therefore, π can not be rational.

4.10 Breusch (1954)
In 1954, Breusch [24] gave yet another relatively elementary proof. He began
by assuming that π = a/b with a and b integers. Then, settingN = 2a = 2bπ,
one immediately has sinN = 0, cosN = 1 and cos(N/2) = ±1 (depending
on the parity of b).

Breusch then defined the series

Am(x) =
∞∑
k=0

(−1)k(2k + 1)m
x2k+1

(2k + 1)!

for each integer m ≥ 0. It is easy to see that A0 = sinx and that

Am+1(x) = x
dAm
dx

and to prove by induction that

Am(x) = Pm(x) cosx+Qm(x) sinx

where Pm(x) and Qm(x) are polynomials with integer coefficients.
Consequently, Am(N) = Pm(N) is an integer for every m ≥ 0.
Then for an integer t > 0, Breusch defines the series

Bt(N) =
∞∑
k=0

(−1)k
(2k + 1− t− 1)(2k + 1− t− 2) · · · (2k + 1− 2t)

(2k + 1)!
N2k+1

=
∞∑
k=0

(−1)k
(2k + 1)t − b1(2k + 1)t−1 + · · · ± bt

(2k + 1)!
N2k+1

= At(N)− b1At−1(N) + · · · ± btA0(N).

The values of bi are integers depending on t and in particular bt = (t+ 1)(t+
2) · · · 2t.

Consequently Bt(N) is an integer too.
Breusch now separates the sum Bt(N) in three parts:

Bt(N) =

b(t−1)/2c∑
k=0

+
t−1∑

k=b(t+1)/2c

+
∞∑
k=t
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In all three sums, the numerator of each fraction is a product of t consecutive
integers, and is therefore divisible by t!. In particular, in the first sum, since
2k + 1 ≤ t, the numerator is also divisible by (2k + 1)! and each term of
the first sum is an integer. In the second sum, the second factor of the first
numerator,

(t+ 2− (t+ 1))

=0︷ ︸︸ ︷
(t+ 2− (t+ 2)) · · · (t+ 2− 2t)

the fourth factor of the second numerator,

(t+ 4− (t+ 1))(t+ 4− (t+ 2))(t+ 4− (t+ 3))

=0︷ ︸︸ ︷
(t+ 4− (t+ 4)) · · · (t+ 4− 2t)

the sixth factor of the third numerator, etc., as well as the penultimate factor
of the last numerator

(2t− 1− (t+ 1)) · · ·
=0︷ ︸︸ ︷

(2t− 1− (2t− 1))(2t− 1− 2t)

are equal to 0. Therefore, the second sum is equal to 0.
Therefore, since Bt(N) is an integer, the third sum

∑∞
k=t must also be an

integer.
Now, since

(2k + 1− t− 1)(2k + 1− t− 2) · · · (2k + 1− 2t) =
(2k − t)!
(2k − 2t)!

the third sum is
∞∑
k=t

(−1)k
(2k − t)!

(2k + 1)!(2k − 2t)!
N2k+1

= (−1)t
t!

(2t+ 1)!
N2t+1(

1− (t+ 1)(t+ 2)

(2t+ 2)(2t+ 3)

N2

2!
+

(t+ 1)(t+ 2)(t+ 3)(t+ 4)

(2t+ 2)(2t+ 3)(2t+ 4)(2t+ 5)

N4

4!
− · · ·

)
If S(t) is the sum between parentheses, we clearly have

|S(t)| < 1 +N +
N2

2!
+ · · · = eN

and therefore∣∣∣∣∣
∞∑
k=t

(−1)k
(2k − t)!

(2k + 1)!(2k − 2t)!
N2k+1

∣∣∣∣∣ < t!

(2t+ 1)!
N2t+1eN <

t!

t!tt+1
N2t+1eN <

(
N2

t

)t+1

eN
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When t is greater than some integer t0,
(
N2

t

)t+1

eN < 1. Therefore, the
third sum above, which is an integer, must be S(t) = 0 for every integer
t > t0.

However, this is impossible because

lim
t→∞

S(t) = 1− 1

22
· N

2

2!
+

1

24
· N

4

4!
− · · · = cos(N/2) = ±1.

Therefore the initial assumption that π = a/b is not valid and π is irra-
tional.

4.11 Laczkovich (1997)
In 1997, Laczkovich [91] published a new proof of the irrationality of π, in
that he simplified a result by Popken [119]. Laczkovich vaguely refers to
Gauss [53], but an exact reference is not given. Laczkovich may however
have been inspired by the way Gauss obtains a continued fraction from the
ratio of two hypergeometric functions. In any case, as already mentioned, it
should be noted that Laczkovich’s proof is similar to Hobson’s proof shown
above.

Laczkovich starts with the family of series

fk(x) = 1− x2

k
+

x4

k(k + 1) · 2!
− x6

k(k + 1)(k + 2) · 3!
+ · · ·

fk(x) converges for every x and k 6= 0,−1,−2, . . ..
It is easy to see that f1/2(x) = cos(2x) and f3/2(x) = sin(2x)

2x
.

Likewise, we have

x2

k(k + 1)
fk+2(x) = fk+1(x)− fk(x)

for the same values of x and k as above.
Now, Laczkovich uses an argument by Popken [119] and proves the the-

orem

Theorem. If x 6= 0 and x2 is rational, then fk(x) 6= 0 and fk+1(x)/fk(x) is
irrational for every k ∈ Q, k 6= 0,−1,−2, . . .

Laczkovich’s proof is by infinite descent but I refer the reader to the
original article for details. The proof itself is rather straightforward.

The irrationality of π2 (and therefore of π) follows from the observation
f1/2(π/4) = cos(π/2) = 0.
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Finally Laczkovich derives the continued fraction

tanx =
x

1− x2

3− x2

5− x2

7− etc.

in much the same way as Hobson, but with more detail.

4.12 Other proofs

The summary above is not meant to be complete. There are certainly other
proofs of the irrationality of π, some of them mere variants of proofs I have
described, and some of them using different ideas. Without going into the
details of the proofs, let me mention a few:

• In 2001, Huylebrouck [74] provided a uniform treatment for the irra-
tionality proofs of π, ln 2, ζ(2) and ζ(3). His proof of the irrationality
of π involves the integral∫ 1

0

Pn(x) sin(πx) dx

where Pn is a polynomial defined by

Pn(x) =
1

n!

dn

dxn
(xn(1− x)n)

Huylebrouck claims that these polynomials are the so-called Legendre
polynomials, but they are actually a variant of them.

For more on this proof and the related ones, I refer the reader to Huyle-
brouck’s article.

• Another proof of interest is that of Angell [2]. In order to prove the
irrationality of tan r for a rational r > 0, Angell studies the theory
of generalized continued fraction, and borrows some ideas from Chrys-
tal [29]. Again, the interested reader should consult Angell’s proof.
Bott also derived the irrationality of π in a similar way [21].
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4.13 Irrationality of powers of π and other re-
sults

The methods used to prove the irrationality of π have often been adapted
to obtain other results. For instance, observing that there were no separate
proofs of the irrationality of πn for n > 2, other than those deriving the
irrationality of πn from the transcendence of π, Jones obtained such proofs
for en and πn [82].

Iwamoto [77] extended Niven’s proof to π2 and Inkeri [75] proved the
irrationality of π2 as a direct application of Hermite’s method.

Beukers has also proven the irrationality of ζ(2) = π2

6
[18] and his proof

is summarized by Eymard and Lafon [46, p. 136-138].
In 1975 and 1976, Novák [111] and Inkeri [76] generalized some of Niven’s

results. In 1977, Murty and Murty [107] also obtained more general results
from which Niven’s proof and others are corollaries.

Other generalizations are those of Schneider [133] and Desbrow [38].

4.14 Transcendence
As mentioned earlier, the quadrature of the circle would only be possible if π
were algebraic. But the fact that π is not algebraic, hence is transcendental,
was proved by Lindemann in 1882 [101].

For more on the transcendance of π, see Sylvester [145, 144], Hessen-
berg [69], and more recent expositions by Juhel [86] and Jacob [78]. Fritsch
has also commemorated the hundredth anniversary of Lindemann’s result [51].

More recently, Lian and Zhang [100] gave a simple proof of the transcen-
dence of the trigonometric functions. Milla [104] has also recently published
a new proof of the transcendence of π.
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