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Abstract

Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to
unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilat-
eral contact on its boundary has been previously investigated numerically and the corresponding
spectrum of vibration could be partially explored. In the present work, the non-smooth modal
analysis of the above system is reformulated as a set of functional equations through the use of
both d’Alembert solution to the wave equation and the method of steps for Neutral Delay Differ-
ential Equations. The system features a strong internal resonance condition and it is established
that irrational and rational periods of vibration should be carefully distinguished. For irrational
periods, it was previously proven that the displacement field of the non-smooth modes of vibration
is characterized with piecewise-linear functions in space and time and such a motion is unique
for a prescribed energy. However, for rational periods, which are the subject of this work, new
periodic solutions are found analytically. Findings consist of families of iso-periodic solutions with
piecewise-smooth displacement fields in space and time and continua of piecewise-smooth periodic
solutions of the same energy and frequency.

Keywords: unilateral contact, non-smooth modal analysis, periodic solutions, vibration analysis, Signorini
complementarity conditions, d’Alembert function, method of steps, Neutral Delay Differential Equation
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1 Introduction

Non-smooth modal analysis (NSA) is used to obtain resonant vibratory responses and frequencies for
structures prone to unilateral contact conditions [6,19]. While linear modes of vibration are obtained
by solving eigenvalue problems, non-smooth modes are seen as invariant manifolds supporting periodic
autonomous solutions [17].

The NSA of a simple one-dimensional cantilever bar has recently attracted experimental inter-
est [13] and has already been investigated analytically and numerically in semi-discrete and continuous
settings in space [1, 9, 10, 16, 18–20, 23]. In the continuous framework, modes consisting of piecewise-
linear solutions in space and time have been shown to exist [19,22,23]. Similarly to nonlinear modes in
semi-discrete systems commonly reported in the mechanical engineering literature [7,12], these modes
were found to exist for continua of frequencies and energy magnitudes [1, 19, 22]. Such continua are
widely referred to as backbone curves. Previous research has also concluded that some of the nons-
mooth modes feature purely vertical backbone curves, with periodic motions of the same period but
different energies [20].

The present paper revisits and extends existing results through new theorems on the structure of
the modal space together with the construction of new non-smooth modal families. The above system
enjoys the well-known d’Alembert travelling-wave solution and is known to be mathematically well-
posed without the use of an impact law. It also features a strong internal resonance condition since all
linear eigen-frequencies of the clamped-free bar system are multiples of the first one. Such properties
make it ideal for NSA without prior classical semi-discretization in space such as the Finite Element
Method. Specifically, the investigated Signorini problem is ill-posed in the framework of Finite Element
method and is often complemented with additional conditions [3]. For example, some schemes may
incorporate a Newton impact law [2] or a penalization term [21]. Penalization techniques, of the type
presented in [3,11,21], require that a penalization parameter reach infinity to guarantee no penetration
of the obstacle. Thus, these are not used as they do not depict accurately the Signorini conditions.
On the other hand, application of a Newton impact law does satisfy the Signorini conditions in the
finite element framework (in continuous time or as the time step reaches zero [2]). A continuum
of periodic solution could be found by implementing a purely elastic impact law which allows for
energy conservation [9] (other Newton impact laws dissipate energy and therefore annihilate periodic
solutions). However, under the purely elastic impact law, the bar exhibits a chattering behaviour at
the contact interface which does not exist in the exact solution of the investigated system [3].

The outline is as follows: the formulation of the bar in unilateral contact is briefly recalled in
section 2. Preliminaries to NSA, such as d’Alembert’s solution to the contact problem, formulation of
the periodicity condition, and lemmas on the existence of solutions are exposed in section 3. Finally,
NSA is performed and compared with existing literature in section 4.

2 Problem Statement

The formulation of interest has already been established [22,23] and is briefly recalled for the purpose
of context and introduction to appropriate terminology for the remainder of the article.

As depicted in Figure 1, we consider the displacement field u(x̃, t̃) inside a bar of length L, where
x̃ and t̃ denote physical position and time, respectively. Assuming linear elasticity, the displacement

dL

L

x̃

u(x̃, t̃)

Figure 1: Unilaterally constrained cantilever bar.
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of the bar satisfies the non-dimensional wave equation

utt(x, t) = uxx(x, t), x = x̃/L, t = ct̃/L, (1)

where c =
√
ρ/Y > 0 is the speed of sound in the bar (ρ denotes the density of the bar and Y , its

Young modulus) and subscript denotes partial differentiation with respect to the denoted variable.
To simplify further the notations, the dimensionless coordinates x and t are introduced and, for the
remainder of the article, the displacement is expressed exclusively in these coordinates, i.e. u(x, t). As
non-smooth modal analysis requires obtaining periodic solutions of the autonomous system [7,17,19],
the analysis will be performed on a single period of motion, of normalized period T such that the
domains t ∈ [0, T ] and x ∈ [0, 1] are considered.

On the boundary x = 1, the bar is prone to unilateral contact with a rigid wall initially at a
normalized distance d > 0. The contact conditions are treated using the Signorini complementarity
conditions stating that there exist two mutually exclusive phases: the bar can either move freely
without contacting the obstacle (inactive contact) or contact the wall while experiencing a repulsive
force (active contact) [21–23]. For the sake of simplicity, non-smooth modes consisting of a single
active contact per period are sought; these are referred to as 1CPP (one active Contact Phase per
Period) modes [19,22].

Definition 1 (1CPP motion). A periodic motion of the bar with period T is said to be a 1CPP motion
if there exist an instance in time t0 and a duration τ < T such that the bar is in inactive contact for
t ∈ [t0, t0 + τ ] and in active contact for t ∈ [t0 + τ, t0 + T ].

Without loss of generality, we can pick t0 = 0. A 1CPP motion at x = 1 with t0 = 0 is illustrated
in Figure 2.

τ T

d

0
t

Figure 2: Example of a 1CPP motion: u(1, t) [ ] and ux(1, t) [ ].

A 1CPP motion should satisfy the boundary conditions

Cantilever bar u(0, t) = 0 ∀t ∈ [0, T ] (2)
Inactive contact u(1, t) ≤ d ∀t ∈ [0, T ] and ux(1, t) = 0 t ∈ [0, τ ] a.e. (3)
Active contact u(1, t) = d ∀t ∈ [0, T ] and ux(1, t) ≤ 0 t ∈ [τ, T ] a.e. (4)

together with the periodicity conditions

u(x, 0) = u(x, T ) ∀x ∈ [0, 1] (5)
ut(x, 0) = ut(x, T ) x ∈ [0, 1] a.e. (6)

where a.e. denotes almost-everywhere in the prescribed domain. The indication a.e. shall apply to
constraints involving the derivatives of the displacement field (stress and velocity) due to the choice
of solution space, further discussed in section 3.2.

Note that solutions where the bar enters into contact with the wall with zero incoming velocity,
known as grazing motion [2], are valid solutions to (1)-(4). However, such solutions are intentionally
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omitted in the discussion for sake of conciseness. Accordingly, the restriction where the tip of the bar
must approach the wall with positive incoming velocity just before contact is considered:

lim
t→τ−

ut(1, t) > 0. (7)

Conditions (3) and (4) generate non-smooth displacement and velocity fields. Since the displace-
ment is expected to be continuous from a physical perspective, continuous weak solutions of the wave
Equation (1) are sought. As a consequence, its derivatives in (3)-(6) will only be defined almost
everywhere.

3 D’Alembert Solution to the Signorini Problem
The d’Alembert solution satisfying Equations (1) and (2) reads [5, p. 69]

u(x, t) = f(t+ x)− f(t− x), ∀(x, t) ∈ [0, 1]× [0, T ]. (8)

Note that the function f , referred to as the d’Alembert function, can be defined up to a constant. In
the sequel, the convention

f(−1) = 0 (9)

is chosen and does not affect the displacement, velocity or stress solutions derived in this paper. With
t = 0 and x = 1 in (8), this convention yields f(1) = u(1, 0). Moreover, for (x, t) ∈ [0, 1] × [0, T ],
f has to be defined on the interval [−1, 1 + T ]. Defining f is, therefore, equivalent to determining
a cantilever motion of the bar. Section 3 shall hence show how the boundary conditions (3)-(6) are
translated into conditions on the d’Alembert function.

In previous research on the topic of interest [19,22,23], NSA was formulated using the displacement,
stress and velocity fields and was performed by computing initial conditions that generate admissible
periodic solutions. Instead, in the present article, the d’Alembert function is exploited exclusively,
which leads to new insights. To illustrate the idea, a known admissible periodic solution and its
associated d’Alembert function are plotted in Figure 3.

Before solving Equations (1)-(6) using the d’Alembert function, the considered solution space is
characterized.

3.1 Important Terminology

In this paper, we define non-smooth modes as families of motions defined by non-smooth d’Alembert
functions. Piecewise-linear modes consist of piecewise-linear d’Alembert solutions, as depicted in
Figure 3 and piecewise-smooth modes consist of piecewise-smooth d’Alembert functions, which include
piecewise-linear d’Alembert functions. This distinction will be used to further emphasize the novelty
presented in this manuscript. To clarify, an example of a piecewise-smooth yet not piecewise-linear
d’Alembert function is illustrated later in the article, in Figure 11, where the newly detected piecewise-
smooth modes are discussed. Still, it should be understood that both families (piecewise-smooth and
piecewise-linear) pertain to the family of non-smooth modes.

3.2 Considered Solution Space

Due to the Signorini condition, smooth solutions u are not expected. Instead, it is decided to construct
solutions with a continuous C0 and piecewise-C1 (denoted Ĉ1) displacement field. This stems from
(a) the fact that the displacement should be a continuous function because a mechanical failure
of the bar is not of interest, and (b) the fact that the stress ux on the boundary x = 1 should
be defined almost everywhere. Thus, at each instance in time t, there is only a finite number of
discontinuities in x for the derivatives ux(·, t) and ut(·, t), where right and left derivatives exist but
differ. Such assumptions are sufficient to cover all presented solutions and methodology in this paper.
Moreover, this solution space consists of valid weak solutions to the wave equation [5, p. 407-408].
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(a) Displacement field u(x, t) = f(t+x)−f(t−x) [ ]
with motion of tip of the bar u(1, t) [ ].

(b) d’Alembert functions from Figure 3(a) seen as sur-
faces: u(x, t) = f(t + x) [ ] and u(x, t) = f(t −
x) [ ].

−1 1 T T + 1

d

s

f(s)

(c) (Piecewise-linear) d’Alembert function f(s) corresponding to Figure 3(a).

Figure 3: A 1CPP motion [23] and corresponding d’Alembert function

Accordingly, f is chosen as a continuous and piecewise-C1 function on its domain of definition, that
is f ∈ C0([−1, 1 + T ]) ∩ Ĉ1([−1, 1 + T ]). This means that the classical derivative of f is defined
everywhere except over a finite number of points on any bounded set. Also, at a point s where f ′ is
not defined, the right limit f ′(s+) and the left limit f ′(s−) still exist. An equality involving f ′ is thus
satisfied at all points of the considered interval except at the finite number of points where f is not
differentiable. Within the above framework, it should be noted that solution uniqueness is guaranteed
in larger solution spaces H3/2 and H1 [8, 15]. This is used in later proofs.

3.3 Solution via the method of steps

Consider the Cauchy problem consisting of the governing PDE (1) with boundary conditions (2)-(4)
and initial conditions u(x, 0) = u0(x) and ut(x, 0) = v0(x). The periodicity conditions (5)-(6) will be
considered later in section 3.3.3. The d’Alembert function is defined on [−1, 1] as [5, p. 69]

2f0(s) ≡ 2f(s) =


u0(s) + C0 +

∫ s

0
v0(µ) dµ s ∈ [0, 1],

− u0(−s) + C0 −
∫ −s

0
v0(µ) dµ s ∈ [−1, 0].

(10)

Our convention (9) implies

C0 = u0(1) +
∫ 1

0
v0(µ) dµ. (11)

Note that imposing a value on the constant C0 does not affect any of the fields of interest: displacement
u, velocity ut or stress ux. Additionally, the notation f0 is introduced to describe the part of f
depending exclusively on initial conditions, i.e. f0(s) ≡ f(s) ∀s ∈ [−1, 1] (as discussed later, the
d’Alembert function beyond s > 1 depends on both boundary and initial conditions). Therefore, to
simplify the terminology used in the remainder, f0 will be referred to as initial conditions. Moreover,
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as the d’Alembert function is assumed to be continuous for s ∈ [−1, 1], the space of initial conditions
u0 and v0 consists of those generating piecewise-C1 continuous functions f0.

As mentioned previously, the d’Alembert function in (8) is a solution to (1) and (2). However, the
boundary condition at x = 1 remains unsatisfied. To satisfy boundary conditions at both x = 1 and
x = −1, the d’Alembert function is generally extended from [−1, 1] to [−1, T +1] via initial conditions
using reflections at s = 1 and s = −1 [5, 14]. In the present article, this extension will be derived by
solving the boundary conditions Equations (3) and (4) in terms of the d’Alembert function (omitting
inequality constraints)

Inactive contact f ′(t+ 1) + f ′(t− 1) = 0, t ∈ [0, τ ] a.e. (12)
Active contact f(t+ 1)− f(t− 1) = d, t ∈ [τ, T ]. (13)

Collectively, Equations (12) and (13) represent a degenerate Neutral Delay Differential Equation
(NDDE) which requires knowledge of an initial condition on f spanning a domain of length equal to
the delay [4]. Namely, to solve (12), the d’Alembert function must be known for any s ∈ [−1, 1] as
given by the initial conditions (10). Thus, given f0, Equation (12) determines f on [1, τ + 1] and,
consecutively, Equation (13) determines f on [τ + 1, T + 1].

In what follows, we derive conditions on f0, τ and T in order to find 1CPP solutions of the
cantilever bar. To this end, we use the method of steps to construct solutions to the inactive contact
motion (12) and active contact motion (13) separately using linear arguments. The nonlinearity of the
problem at hand arises when the inequalities in (3) and (4) together with periodicity conditions (5)
to (6) are enforced on the d’Alembert function.

3.3.1 Inactive Contact Motion

This section details the extension of the d’Alembert function to the domain s ∈ [−1, 1+τ ] via boundary
condition (12). Beforehand, since (a) the tip of the bar is in contact with the wall at the end of the
period, see (4), (b) the motion must be periodic, see (5), and (c) the tip of the bar must be initially
in contact with the obstacle to preserve continuity in time from (8), the tip of the bar must contact
the obstacle at the beginning of the period

u(1, 0) = f(1)− f(−1) = f0(1)− f0(−1) = f0(1) = d. (14)

Next, the inactive contact condition (12) leads to

f ′(s) = −f ′(s− 2), s ∈ [1, τ + 1] a.e. (15)

Integration of (15) reads

f(s) = d− f(s− 2), ∀s ∈ [1, τ + 1]. (16)

By the method of steps, given f(s) = f0(s) for s ∈ [−1, 1], the solution to (16) is

f(s) =
{
f0(s) s ∈ [−1, 1]
d− f0(s− 2) s ∈ [1, τ + 1]

, 0 ≤ τ ≤ 2 (17)

this definition applies strictly to the case of τ ≤ 2 since the domain of definition of initial conditions
is of length 2. Next, for 2 < τ ≤ 4, we obtain

f(s) =


f0(s) s ∈ [−1, 1]
d− f0(s− 2) s ∈ [1, 3]
d− f(s− 2) s ∈ [3, τ + 1]

(18)

Here, the last step d− f(s− 2) s ∈ [3, τ + 1] is determined by substituting the previous step, f(s) =
d− f0(s− 2) s ∈ [1, 3], in f(s− 2), admitting

f(s) =


f0(s) s ∈ [−1, 1]
d− f0(s− 2) s ∈ [1, 3]
f0(s− 4) s ∈ [3, τ + 1]

, 2 < τ ≤ 4. (19)
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1

−d

d

−1 2 3 τ + 1

f0(s− 4)f0(s) d− f0(s− 2)

s

f(s)

(a) D’Alembert function as defined for t ∈ [−1, 3]. Red and Olive functions represent the extension beyond
t = 1, via (19) and depend on the function in blue.

2 τ
−d

d

0

u(1, t)

f(t+ 1)

f(t− 1)

f(t− 1)

f(t+ 1)

t

(b) Displacement at tip and d’Alembert function components, u(1, t) = f(t+ 1)− f(t−1) for t ∈ [0, 2]. Colours
correspond to plot 4(a).

2 τ

−3d

3d

0

f ′(t− 1)

f ′(t− 1)

f ′(t− 1)

f ′(t− 1)f ′(t+ 1)

f ′(t+ 1)f ′(t+ 1)

f ′(t+ 1)

ux(1, t) t

(c) Stress at tip and d’Alembert function components, ux(1, t) = f ′(t + 1) + f ′(t − 1) = 0 (due to inactive
contact), for t ∈ [0, 2]. Colours correspond to plot 4(a).

Figure 4: Extension of d’Alembert function in inactive contact conditions (15) given specific initial
conditions f0 (here, piecewise-cubic polynomials for the sake of illustration) and τ = 7/3 ≥ 2, and
resulting motion.

A solution of the type (19) is illustrated in Figure 4. Further extension of the d’Alembert function for
τ > 4 is not illustrated because the d’Alembert function subject to (15) is 4-periodic, that is

f(s) = f(s− 4), ∀s ∈ [3, τ + 1], τ > 2. (20)

Moreover, we note that there exists an upper bound on the value of τ for a 1CPP.

Proposition 2 (Maximal duration of an inactive contact for a 1CPP). For 1CPP motions, the
duration of inactive contact motion must satisfy

τ < 4. (21)

As well, initial conditions must satisfy

f0(s) ≥ 0 ∀s ∈ [−1,min(1, τ − 1)], (22)
f0(s) ≤ d ∀s ∈ [−1, τ − 3] if 2 < τ < 4. (23)

Proof. First, we will show that a 1CPP motion cannot occur for τ ≥ 4. To this end, we show that a
motion with τ = 4 will never initiate an active contact phase. Then, by extension, we will show that
motions with τ > 4 will not initiate an active contact phase either.

To start, we note that a duration τ = 4 coincides exactly with the period of the bar if it were always
in inactive contact motion (a motion of the bar where ux(1, t) = 0 for all t ∈ [0,∞)). Thus, a motion
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with τ = 4 could hypothetically repeat for t ∈ [4,∞) in periods of 4, as shown in Equation (20),
and still satisfy the wave equation (1), cantilever condition (2), and the set of Signorini conditions
describing inactive contact motion: u(1, t) ≤ d and ux(1, t) = 0 for all t ∈ [0,∞). Specifically, such a
motion would be a solution to Signorini problem while never initiating an active contact phase. Using
the uniqueness theorem for this Singorini problem [15], we can then justify that a motion that never
initiates an active contact phase for t ∈ [4,∞) (following the inactive contact motion taking place
for t ∈ [0, τ ] with τ = 4) is the only possible solution. To clarify, since (I) there must exist a unique
solution to the considered initial-value problem [15], and (II) there always exists a solution that is
exclusively in inactive contact for t > τ = 4; there cannot exist any motion with τ = 4 that enters
into an active contact phase. By the same logic, we can conclude that any inactive motion that lasts
from t = 0 until some time t > 4 - for example, a motion with τ > 4 - must also be exclusively an
inactive contact motion that never initiates active contact. Accordingly, we conclude that a motion
with τ ≥ 4 never initiates active contact (the stress at x = 1 is always zero) and, therefore, cannot
pertain to the group of 1CPP motions.

Next, the constraints (22)-(23) are derived by plugging the resulting d’Alembert function for
inactive contact into the inactive contact inequality constraint (3): u(1, t) = f(t + 1) − f(t − 1) ≤ d
∀t ∈ [0, τ ]. Starting with the d’Alembert function (17) for τ ≤ 2, we obtain

f(t+ 1)− f(t− 1) = d− 2f0(t− 1) ≤ d ∀t ∈ [0, τ ], 0 < τ < 2 (24)

which can be simplified into

f0(t) ≥ 0 ∀t ∈ [−1, τ − 1], 0 < τ ≤ 2. (25)

Next, plugging (17) for 2 < τ < 4 into f(t+ 1)− f(t− 1) ≤ d, ∀t ∈ [0, τ ], we obtain

d ≥ f(t+ 1)− f(t− 1) =
{
d− 2f0(t− 1) t ∈ [0, 2]
2f0(t− 3)− d t ∈ [2, τ ]

2 < τ < 4. (26)

The inequality constraint is then assigned separately in t ∈ [0, 2] and t ∈ [2, 4] and, with further
simplification, admits

0 ≤ f0(t) t ∈ [−1, 1], 2 < τ < 4 (27)
d ≥ f0(t) t ∈ [−1, τ − 3], 2 < τ < 4. (28)

At last, conditions (25) and (27) lead to (22), and condition (28) is (23) verbatim which concludes the
proof.

In turn, the inactive contact phase ends with a contact initiation, ie

u(1, τ) = f(τ + 1)− f(τ − 1) = d (29)

and the velocity of the tip at this instant τ must be strictly positive, due to (7), such that

ut(1, τ−) = f ′(τ− + 1)− f ′(τ− − 1) > 0. (30)

3.3.2 Active contact motion

Similarly to the procedure presented in section 3.3.1, the d’Alembert function is extended for s > τ+1
via condition (13), which equivalently reads

f(s) = d+ f(s− 2), ∀s ∈ [τ + 1, T + 1]. (31)

Note that f(s − 2) is assumed to be known for s ∈ [τ + 1, T + 1], by virtue of (17) or (19). An
illustration of extension (31) is provided in Figure 5. Moreover, we note that ux(1, t) is 2-periodic
during active contact since

ux(1, t+ 2) = f ′(t+ 3) + f ′(t+ 1) = f ′(t+ 1) + f ′(t− 1) = ux(1, t), t ∈ [τ, T ] a.e. (32)

holds true. This sets a bound on the duration T − τ of active contact.
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τ + 1T − 1

−d

d

τ − 1 T + 10

f(s)

d+ f(s− 2)

s

f(s)

(a) D’Alembert function for t ∈ [τ − 1, T + 1]. Extension beyond t = τ + 1
via (31) [ ] dependent on the blue plot.

τ T

−d

d

u(1, t)

f(t+ 1)

f(t− 1)

Inactive Contact Active Contact

t

(b) Displacement at tip and d’Alembert function components.

Figure 5: Extension of the d’Alembert function due to active contact conditions (15) given specific
initial conditions f0 and f in inactive contact motion (shown in Figure 4) from (17) and (19), and
resulting motion.

Proposition 3 (Maximal duration of an active contact for a 1CPP). For 1CPP motions, the duration
of active contact motion, T − τ where T > τ , must satisfy

T − τ < 2, (33)

and the d’Alembert function must satisfy

f ′(t− 1) ≤ 0 t ∈ [τ, T ] a.e. (34)

Proof. By contradiction, it is shown that for T − τ ≥ 2 a non-grazing 1CPP periodic motion cannot
occur.

For T − τ = 2, the active contact duration equals the period of ux(1, t), which is 2-periodic
through (32). In future time t > T , ux(1, t) can therefore be described using active contact conditions
exclusively. The same applies for T−τ > 2. Since uniqueness is guaranteed, any motion with T−τ ≥ 2
remains in active contact motion for any t > T and therefore never switches to inactive contact (such
motion, by definition, would not be periodic). Thus, the bound (33) must hold to guarantee the
existence of 1CPP.

The restriction (34) is derived by plugging (31) into the active contact inequality condition (4).

3.3.3 Periodicity and Admissibility conditions

The periodicity of the solution is now determined by a difference equation involving the d’Alembert
function.

Proposition 4. The displacement u is T -periodic if its associated d’Alembert function satisfies

f(s+ T ) = f0(s) + f(T − 1) ∀s ∈ [−1, 1]. (35)

Conversely, if u(x, t) = f(t+x)−f(t−x) consists of a periodic motion then (35) must be true. Thus,
u(x, t) is periodic in time with period T if and only if (35) holds true. Also, if (35) holds then f ′ is
T -periodic.

9



Proof. The proof is divided into three parts. First, it is shown that (35) can be derived from (5)
and (6) (in their d’Alembert form). Second, we show Equation (35) implies that f ′ is T -periodic.
Third, it is shown if f abides (35) then u(x, t) is T -periodic (in time) by virtue of uniqueness of the
solution to the Signorini problem.

A periodic solution, such that (5) and (6) are valid, requires that

f(T + x)− f(T − x) = f0(x) + f0(−x) ∀x ∈ [0, 1] (36)
f ′(T + x)− f ′(T − x) = f ′0(x) + f ′0(−x) x ∈ [0, 1] a.e. (37)

respectively. Differentiating Equation (36) with respect to x yields:

f ′(T + x) + f ′(T − x) = f ′0(x)− f ′0(−x) x ∈ [0, 1] a.e. (38)

In turn, adding (37) to (38) and subtracting (37) from (38) results in

f ′(T + x) = f ′0(x) x ∈ [0, 1] a.e. (39)
f ′(T − x) = f ′0(−x) x ∈ [0, 1] a.e. (40)

respectively. Next, s = x and s = −x are substituted into (39) and (40), respectively

f ′(T + s) = f ′0(s) s ∈ [0, 1] a.e. (41)
f ′(T + s) = f ′0(s) s ∈ [−1, 0] a.e. (42)

which can then be assembled as

f ′(T + s) = f ′0(s) s ∈ [−1, 1] a.e. (43)

Integrating (43) results in (35). Thus, we have shown that if (5) and (6) are valid, Equation (35) is
true.

Next, f ′ abiding (43) (being the derivative (35)) is periodic. To prove this, we show that f ′(s+T ) =
f ′(s) for s ∈ [−1, T + 1] a.e. by assuming that f ′(s + T ) and f ′(s) are defined by the same NDDEs
and initial conditions (formulated as problem I and II).

Problem 1 The determination of f ′(s) for s ∈ [1, T + 1] can be obtained from an NDDE prob-
lem formed by the inactive boundary conditions (12) and the derivative of the active contact
boundary conditions (13)

NDDE I

f ′(s) =
{
−f ′(s− 2) s ∈ [1, τ + 1] a.e.
f ′(s− 2) s ∈ [τ + 1, T + 1] a.e.

(44)

Initial conditions I

f ′(s) = f ′0(s) s ∈ [−1, 1] a.e. (45)

Problem II Similarly, for s ≥ T+1, it is expected that the same boundary conditions apply. Namely,
determining f ′(s) for s ∈ [T + 1, 2T + 1] requires solving

NDDE II

f ′(s) =
{
−f ′(s− 2) s ∈ [1 + T, τ + T + 1] a.e.
f ′(s− 2) s ∈ [τ + T + 1, 2T + 1] a.e.

(46)

where the initial conditions are assumed to be known from Equation (43)
Initial conditions II

f ′(s) = f ′0(s− T ) s ∈ [T − 1, T + 1] a.e. (47)
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Note that both initial conditions I and II are given by the same function f ′0(s) for s ∈ [−1, 1] a.e.
Similarly, NDDEs I and II are equivalent up to a phase difference T . As shown in sections 3.3.1
and 3.3.2, the solution to NDDE I is unique with respect to initial conditions (given f0(−1) = 0
as in (9)). Similarly, using the method of steps, one can show that NDDE II produces a unique
solution with respect to initial conditions (given f0(−1) = 0). Therefore, the solutions f ′(s) for
s ∈ [−1, T + 1] and f ′(s) for s ∈ [T − 1, 2T + 1], must be equal, that is f ′(T + s) = f ′(s), s ∈
[−1, T + 1] a.e. and, by induction, we can show the relationship holds for the extensions of f ′ in
s > 2T + 1: f ′(nT + s) = f ′((n− 1)T + s), s ∈ [−1, T + 1] a.e., n = 2, 3, . . . ,∞ which also means that
f ′ is periodic: f ′(T + s) = f ′(s), s ∈ [−1,∞) a.e.

Finally, statement (35) shows that the state of the bar at the end of the period equals the state of
the bar at the beginning of the period since u(x, T ) = f(T + x)− f(T − x) = f(x)− f(−x) = u(x, 0),
∀x ∈ [0, 1] and ut(x, T ) = f ′(T + x)− f ′(T − x) = f ′(x)− f ′(−x) = ut(x, 0), x ∈ [0, 1] a.e.. Through
uniqueness [15], condition (35) implies a T -periodic motion of the bar in dimensionless time.

3.3.4 Summary of necessary conditions for periodic solutions

Via the d’Alembert travelling wave solutions, the conditions for finding a periodic solution consist of
functional equations and inequalities summarized below.

Conditions for Periodic Solutions of the Bar in Unilateral Contact (CPS) For d > 0, a
1CPP motion subject to (1)-(6) and described by u(x, t) = f(t+ x)− f(t− x) requires finding τ < 4,
T < τ + 2 and f0(s) continuous and piecewise C1 on [−1, 1] such that (equation tags are recalled)

f0(−1) = 0 (9)
f0(1) = d (14)

No penetration conditions for t ∈ [0, τ ] (u(1, t) < d):

f0(s) ≥ 0 ∀s ∈ [−1,min(1, τ − 1)] (22)
f0(s) ≤ d ∀s ∈ [−1, τ − 3] if 2 < τ < 4 (23)

Positive incoming velocity and contact at t = τ (u(1, τ) = g, ut(1, τ−) > 0):

f(τ + 1)− f(τ − 1) = d (29)
f ′(τ− + 1)− f ′(τ− − 1) > 0 (30)

Repulsion by obstacle for t ∈ [τ, T ] (ux(1, t) < 0):

f ′(s) ≤ 0 s ∈ [τ − 1, T − 1] a.e. (34)

Periodicity condition:

f(s+ T )− f(T − 1)− f0(s) = 0 ∀s ∈ [−1, 1] (35)

where f is defined by combining (17) and (31) as

τ ≤ 2 : f(s) =


f0(s) s ∈ [−1, 1]
d− f0(s− 2) s ∈ [1, τ + 1]
d+ f(s− 2) s ∈ [τ + 1, T + 1]

(48)

or

2 ≤ τ < 4 : f(s) =


f0(s) s ∈ [−1, 1]
d− f0(s− 2) s ∈ [1, 3]
f0(s− 4) s ∈ [3, τ + 1]
d+ f(s− 2) s ∈ [τ + 1, T + 1]

(49)

While a complete closed-form solution to the CPS could not be found, it will be shown that the
CPS can be solved for some cases.
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4 Non-smooth modal analysis

4.1 Known properties of the non-smooth modal space

Previous NSA on the cantilever bar have led to several important findings [20,22,23]:

F.1 Non-smooth modes parameterized by the period must be piecewise-linear and are already known
to exist for T ∈ (3, 4) and τ ∈ (2, 4) [22], see Figure 6. The corresponding initial conditions are

u0(x) = dx

3− T , v0(x) = 0 ∀x ∈ [0, 1]. (50)

1 3
4

d2

2

A

B

Frequency (ω/ω1)

Energy

(a) Frequency energy plot.1 (b) Motion at point A. (c) Motion at point B.

Figure 6: Nonsmooth Mode of vibration discussed in F.1. In plot (a): ω = 2π/T and ω1 = 2π/4.

F.2 The NSA of the the system of interest was performed numerically in [23] through the wave finite-
element method (WFEM). From this numerical investigation, it was shown that the low-energy
backbone curve in Figure 7 is continuous and can be parameterized by T . However, from the
clouds of points, each of which represents a periodic solution, other continua of periodic solutions
(e.g. internal resonances) could not be clearly established.

Figure 7: Energy-frequency plot corresponding to piecewise-linear mode. ω = 2π/T and ω1 = 2π/4.
Source: [22].

F.3 In [20], vertical backbone curves of piecewise-linear modes were shown to exist for T ∈ Q, as
depicted in Figure 8. We note here that figures 7 and 8 seem to disagree as both approaches were
not able to reveal the full modal space in the considered frequency range. This task remains
unsolvable in this paper as well.

1A factor of two correction to the energy from the published article. This is explained at the footnote before
equation (97). This correction has been applied to all figures and quantities affected by this.
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Figure 8: Families of piecewise-linear solutions with the same period of motion represented alongside
the mode found in F.1. Referenced parameters: ω = 2π/T and ω1 = 2π/4 and E1 = d2/2. Black:
piecewise linear mode in F.1. Pale-blue: piecewise-linear modes. Source: [20].

F.4 Infinitely many distinct piecewise-linear periodic solutions of the same energy, same duration
of inactive contact τ and same period T were shown to exist for some intervals of energy and
T ∈ Q [20]. Namely, for such energies and periods, there exist infinitely many initial conditions
generating piecewise-linear distinct periodic solutions.

These findings, already reported in the literature, are revisited in the following sections.

4.2 Piecewise-linear mode

In this section, the CPS are solved to reproduce previous findings presented in F.1. Again, a known
piecewise-linear mode exists for periods T ∈ (3, 4), inactive contact durations τ ∈ (2, 4), and 2 >
T − τ > 0. For τ ∈ (2, 4), the d’Alembert function is described by (49) and its last component, f(s) ∈
[τ + 1, T + 1], is defined implicitly by previous components. Here, we will define the last component
explicitly in f0 using the requirement T ∈ (3, 4). We first note that for T ∈ (3, 4) and τ ∈ (2, 4)
the argument of the last component in (49), s − 2 ∈ [τ + 1, T + 1], must span s − 2 ∈ [3, 5] (or
s ∈ [1, 3]). Therefore, the last component of f is determined exclusively by f(s) for s ∈ [1, 3]. Namely,
for τ ∈ (2, 4) and T ∈ (3, 4), we obtain

f(s) =


f0(s) s ∈ [−1, 1]
d− f0(s− 2) s ∈ [1, 3]
f0(s− 4) s ∈ [3, τ + 1]
d+ f(s− 2) s ∈ [τ + 1, T + 1]

=


f0(s) s ∈ [−1, 1]
d− f0(s− 2) s ∈ [1, 3]
f0(s− 4) s ∈ [3, τ + 1]
2d− f0(s− 4) s ∈ [τ + 1, T + 1]

(51)

without loss of generality. Before plugging Expression (51) into the CPS, we use the knowledge that f is
continuous piecewise linear, see F.1, to simplify the application of the CPS. Since f is piecewise linear,
it is trivial to assume that f0 is piecewise-linear as well. In order to find the loci of non-smoothness in
f0, we note that the CPS conditions (23) and (34) apply for two adjacent non-overlapping domains:
[−1, τ − 3] and [τ − 3, T − 3]. Thus, it is trivial to assume that loci of non-smoothness are τ − 3 and
T − 3. Accordingly, we dissect f0 into three parts spanning [−1, τ − 3], [τ − 3, T − 3], and [T − 3, 1]
to obtain a piecewise-linear and continuous function of the type

f0(s) =


a0 + b0s s ∈ [−1, τ − 3]
a0 + b0(τ − 3) + b1(s− τ + 3) s ∈ [τ − 3, T − 3]
a0 + b0(τ − 3) + b1(T − τ) + b2(s− T + 3) s ∈ [T − 3, 1].

(52)
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Note that other loci of non-smoothness may be possible, as shown in section 4.3. Then, the piecewise-
linear f0 (52) is plugged into the CPS conditions such that

Eq.(9) ⇒ a0 = b0 (53)
Eq.(22, 23, 29) ⇒ b0 = d/(τ − 2) (54)
Eq.(14, 53, 55) ⇒ b2 = −b1(T − τ)/(4− T ) (55)
Eq.(29, 30, 34) ⇒ b1 > 0. (56)

Expressions (53)-(55) are plugged back into (52), itself inserted in (51), to form an expression of f
dependent on b1, τ and T only

f(s) =



d
τ−2(s+ 1) s ∈ [−1, τ − 3]
d+ b1(s− τ + 3) s ∈ [τ − 3, T − 3]
d+ b1

(T−τ)
4−T (1− s) s ∈ [T − 3, 1]

d− d
τ−2(s− 1) s ∈ [1, τ − 1]

−b1(s− τ + 1) s ∈ [τ − 1, T − 1]
−b1

(T−τ)
4−T (3− s) s ∈ [T − 1, 3]

d
τ−2(s− 3) s ∈ [3, τ + 1]
d− b1(s− τ − 1) s ∈ [τ + 1, T + 1].

(57)

It is noted that the first component of f does not depend on b1 since Equations (9) (which defines the
reference point for f) and (29) (which establishes contact with the rigid wall at the beginning of the
active contact motion) are sufficient to determine the constants a0 and b0.

Next, we will show that the free parameter b1 becomes a mono-valued function of τ as soon as
periodicity is enforced. For the d’Alembert function, periodicity (35) reads

fp(s) ≡ f(s+ T )− f(T − 1) = f0(s) ∀s ∈ [−1, 1] (58)

where fp denotes the section of the d’Alembert function defining the motion at the end of the period,
f(s+ T )− f(T − 1). Based on the d’Alembert function (57), fp reads

fp(s) =


−b1

T−τ
4−T (3− s− T ) + b1(T − τ) s ∈ [−1, 3− T ]

d
τ−2(s− 3 + T ) + b1(T − τ) s ∈ [3− T, τ − T + 1]
d− b1(s− τ − 1 + T ) + b1(T − τ) s ∈ [τ − T + 1, 1]

(59)

and, accordingly, f0 reads

f0(s) =


d

τ−2(s+ 1) s ∈ [−1, τ − 3]
d+ b1(s− τ + 3) s ∈ [τ − 3, T − 3]
d+ b1

T−τ
4−T (1− s) s ∈ [T − 3, 1].

(60)

Naturally, the first requirement for equality of fp and f0 is that their loci of non-smoothness will be
congruent. Currently, the components in (59) and (60) do not span identical domains. It is chosen to
establish a relationship between τ and T such that the loci of non-smoothness align. Here, equality
between fp and f0 can be enforced as soon as the domains of definition (or support) of the last
component of each function are identical, i.e. T − 3 = τ − T + 1 or

2T (τ) = τ + 4. (61)

This relationship also agrees with the piecewise-linear mode reproduced in this section [22]. Insert-
ing (61) into (59) and (60) yields:

fp(s) =


b1(1 + s) s ∈ [−1, 3− T (τ)]

d
2T (τ)−6(s− 3 + T (τ)) + b1(4− T (τ)) s ∈ [3− T (τ), T (τ)− 3]
d+ b1(1− s) s ∈ [T (τ)− 3, 1]

(62)
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and

f0(s) =


d

2T (τ)−6(s+ 1) s ∈ [−1, 2T (τ)− 7]
d+ b1(s− 2T (τ) + 7) s ∈ [2T (τ)− 7, T (τ)− 3]
d+ b1(1− s) s ∈ [T (τ)− 3, 1].

(63)

For a general solution applicable to any τ ∈ (2, 4), the first components of f0 and fp overlap. For
f0 = fp, the first components must have the same slope, that is

b1(τ) = d

2T (τ)− 6 . (64)

As a consequence, the first and second components in f0 and in fp may be merged to form

f0(s) = fp(s) = d

2T (τ)− 6

{
s+ 1 s ∈ [−1, T (τ)− 3]
2T (τ)− 5− s s ∈ [T (τ)− 3, 1]

(65)

and the periodicity condition (35) is satisfied for arbitrary τ ∈ (2, 4) and T ∈ (3, 4). Thus, any initial
condition (65), for the aforementioned T and τ , generates a periodic motion. This piecewise-linear
mode is now properly defined.

NSM1: Piecewise-Linear Mode of the Cantilever Bar in Unilateral Contact Given d > 0,
u(x, t) = f(t+ x)− f(t− x) with f such that

f(s) = d

2T − 6


s+ 1 s ∈ [−1, T − 3]
2T − 5− s s ∈ [T − 3, T − 1]
s− 3 s ∈ [T − 1, 2T − 3]
4T − 9− s s ∈ [2T − 3, T + 1]

(66)

represents a non-smooth nonlinear mode for all T ∈ [3, 4]2.

To show NSM1 is equivalent to the piecewise-linear mode introduced in F.1, it is noted that NSM1
at t = T − 2 generates the displacement and velocity fields

u(x, T − 2) = f(T − 2 + x)− f(T − 2− x) (67)

= d

2T − 6(T − 3− x)− d

2T − 6(2T − 3 + x) = − dx

T − 3 , ∀x ∈ [0, 1] (68)

ut(x, T − 2) = f ′(T − 2 + x)− f ′(T − 2− x) (69)

= − d

2T − 6 + d

2T − 6 = 0, ∀x ∈ [0, 1] (70)

which agree with (50). Since the solution is unique with respect to initial condition [15], NSM1 is
indeed equivalent to the piecewise-linear mode presented in F.1. Furthermore, we note that NSM1
exists for both rational and irrational periods T ∈ [3, 4]. This fact has been also established in [1]
where it is stated that a continuum of periodic solutions continuously spanning different periods must
consist of piecewise-linear displacements. However, it has been speculated in [1] that for the case
of rational T , families of periodic solutions that are not piecewise-linear may exist. Here, using the
d’Alembert formulation and the CPS, we have found some of such other families of periodic solutions.

2Note that we have removed any reference to τ as it is not critical for illustrating the mode NSM1.
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4.3 Piecewise-smooth mode(s) of the same period

For T ∈ Q, previous works have only reported piecewise-linear modes. Here, we show that solutions
that are piecewise-smooth exist as well. This section details a methodology for determining analytically
these piecewise-smooth modes. An illustrative example is provided.

Assume that both T and τ belong to Q (τ ∈ Q is also a consequence of the work in [20]) such that
T and τ can be described by n, p < n, and m belonging to N, namely,

T = n/m, τ = p/m. (71)

To accommodate for the CPS conditions spanning non-uniform domains, such that no penetration
conditions (22)-(23) and negative repulsion force condition (34), it is useful to dissect f0 into 2m equal
components, each consisting of a smooth function ai(s)

f0(s) =



a0(s+ 1) s ∈ [−1,−1 + 1/m]
a1(s+ 1− 1/m) s ∈ [−1 + 1/m,−1 + 2/m]
...
ai(s+ 1− i/m) s ∈ [−1 + i/m,−1 + (i+ 1)/m]
...
a2m−1(s− 1 + 1/m) s ∈ [1− 1/m, 1]

(72)

where the functions ai have the following features:

ai : [0, 1/m] 7→ [0, d] , i = 0, 1, . . . , p− 2m− 1 (73)
ai : [0, 1/m] 7→ [0,∞) i = p− 2m, p− 2m+ 1, . . . , 2m− 1. (74)

These functions can be nonlinear in s in contrast with (52) where a0 stands for a constant. The
condition ai(s) ≥ 0 is a consequence of (22). In this paper, only 1CPP with τ > 2 are considered so
ai(s) ≤ d from (23). Moreover, to preserve the continuity of f0, the following must hold: ai−1(1/m) =
ai(0) for all i = 1, 2, . . . , 2m − 2. This dissection of f0 allows then for easy depiction of the solution
space of the CPS for T ∈ Q.

As an example, a solution for n = 10, p = 8 and m = 3, i.e. inactive motion duration τ = 8/3
and period T = 10/3, is derived in the remainder of this section. For other choice of parameters p, n
and m this method may fail as further discussed in section 4.4. Inserting the above τ and T together
with (72) into (49) leads to

f(s) =



a0(s+ 1) s ∈ [−1,−2/3]
a1(s+ 2/3) s ∈ [−2/3,−1/3]
a2(s+ 1/3) s ∈ [−1/3, 0]
a3(s) s ∈ [0, 1/3]
a4(s− 1/3) s ∈ [1/3, 2/3]
a5(s− 2/3) s ∈ [2/3, 1]
d− a0(s− 1) s ∈ [1, 4/3]
d− a1(s− 4/3) s ∈ [4/3, 5/3]
d− a2(s− 5/3) s ∈ [5/3, 2]
d− a3(s− 2) s ∈ [2, 7/3]
d− a4(s− 7/3) s ∈ [7/3, 8/3]
d− a5(s− 8/3) s ∈ [8/3, 3]
a0(s− 3) s ∈ [3, 10/3]
a1(s− 10/3) s ∈ [10/3, 11/3]
2d− a2(s− 11/3) s ∈ [11/3, 4]
2d− a3(s− 4) s ∈ [4, 13/3]

(75)
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Note that the most intricate functional equation in the CPS involves the periodicity condition (35)

fp(s) ≡ f(s+ T )− f(−s+ T ) = f0(s) (76)

where fp has been added to denote the state of the bar at the end of contact. Imposing the periodicity
condition (76) on the form of f in (75) leads to

fp(s) =



−a4(s+ 1) + a4(0) s ∈ [−1,−2/3]
−a5(s+ 2/3) + a4(0) s ∈ [−2/3,−1/3]
a0(s+ 1/3) + a4(0)− d s ∈ [−1/3, 0]
a1(s) + a4(0)− d s ∈ [0, 1/3]
−a2(s− 1/3) + a4(0) + d s ∈ [1/3, 2/3]
−a3(s− 2/3) + a4(0) + d s ∈ [2/3, 1]

(77)

and

f0(s) =



a0(s+ 1) s ∈ [−1,−2/3]
a1(s+ 2/3) s ∈ [−2/3,−1/3]
a2(s+ 1/3) s ∈ [−1/3, 0]
a3(s) s ∈ [0, 1/3]
a4(s− 1/3) s ∈ [1/3, 2/3]
a5(s− 2/3) s ∈ [2/3, 1].

(78)

The solution to (76) can be easily extracted by equating each of the components in f0 to their
corresponding components in fp:

a0(s) = a4(0)− a4(s) = a2(s)− d = a0(s) + a4(0)− 2d, ∀s ∈ [0, L/3] (79)
a1(s) = a4(0)− a5(s) = a3(s)− d = a1(s) + a4(0)− 2d, ∀s ∈ [0, L/3]. (80)

For the equalities to hold true, a4(0) = 2d must hold. The dissection of f0 and periodicity condition
are visualized in Figure 9. Thus, applying all other conditions in the CPS (besides the already solved
periodicity condition), a non-smooth mode is obtained as described below.

−1 1 T − 1 T + 10

a1 a2 a3 a4 a5 a6 a∗1 a∗2 a∗3 a∗4 a∗5 a∗6 a1 a2 a∗∗3 a∗∗4
s

f(s)

Figure 9: Method for finding piecewise-smooth solutions. f0 is a piecewise-smooth continuous function
where all smooth components span domains of equal length 1/m. As expressed in (48) or (49), the
extension of the d’Alembert function is done via affine transformations. For the specific f in (75):
a∗i (s) = d−ai(s), a∗∗i (s) = 2d−ai(s). To satisfy periodicity (35), the non-gray components are equated
as done in (79) and (80).

NSM2: Piecewise-Smooth Mode of the Cantilever Bar in Unilateral Contact For an
inactive contact duration τ = 8/3 and period T = 10/3, the arbitrary piecewise-smooth functions a0(s)
and a1(s) in the domain s ∈ [0, 1/3], with the constraints

Continuity of f0: a0(1/3) = a1(0) (81)
Eq.(9, 29) : a0(0) = 0 (82)
Eq.(14) : a1(1/3) = d (83)
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and, recalling the remaining CPS conditions,

Eq.(30) ⇒ a′0(0) > 0 (84)
Eq.(22, 23) ⇒ 0 ≤ a0(s) ≤ d, ∀s ∈ [0, 1/3] (85)
Eq.(22, 23) ⇒ 0 ≤ a1(s) ≤ d, ∀s ∈ [0, 1/3] (86)
Eq.(34) ⇒ a′0(s) ≥ 0, ∀s ∈ [0, 1/3] (87)
Eq.(34) ⇒ a′1(s) ≥ 0, ∀s ∈ [0, 1/3] (88)

define a non-smooth mode with u(x, t) = f(t + x) − f(t − x) where f is defined in (49) with initial
condition

f0(s) =



a0(s+ 1) s ∈ [−1,−2/3]
a1(s+ 2/3) s ∈ [−2/3,−1/3]
d+ a0(s+ 1/3) s ∈ [−1/3, 0]
d+ a1(s) s ∈ [0, 1/3]
2d− a0(s− 1/3) s ∈ [1/3, 2/3]
2d− a1(s) s ∈ [2/3, 1].

(89)

NSM2, as shown in Figures 10 and 11, consists of periodic motions existing exclusively for T = 10/3.
From conditions (81)-(88) on functions a0 and a1, we understand that NSM2 exists in a convex (because
of inequalities) subspace of (C1[0, 1/3])2. In turn, using the procedure presented in this section with
differentm, n and p, similar mode can be derived for any period of the type T ∈ Q and τ ∈ Q. However,
for some values of m, n and p, the proposed methodology could not generate periodic solutions. Also,
choosing affine functions a0 and a1 replicates the results exposed in [20].

1 4
3

6
5

d2

2

NSM2

NSM1

Normalized Frequency ω/ω1

Energy

Figure 10: Piecewise-smooth mode NSM2 in comparison to NSM1. ω = 2π/T and ω1 = 2π/4. The
point in red indicates a mode of solutions of the same energy, described in the proof of Theorem 7.

Example of NSM2 solutions

The functions a0 and a1 involved in the definition of NSM2 exist in a convex subspace of (C1[0, 1/3])2.
It is of interest to give an example of a functional space with varying a0 and constant a1 answering
all NSM2 equalities and inequalities (81) to (88). To this end, we choose an arbitrary real function
R0(s) such that

a0(s) = d

∫ s

0
R2

0(µ) dµ, s ∈ [0, 1/3] and
∫ 1/3

0
R2

0(µ) dµ = 1 (90)

together with

a1(s) = d. (91)
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(a) D’Alembert function for a0(s) = 3ds (or R0 = 1
in reference to section 4.3) and a1(s) = d. (b) Displacement.
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(c) d’Alembert function for a0(s) = −4.5d((s−1/3)2−
(1/3)2) and a1(s) = 4.5ds2 + 0.5d. (d) Displacement.

Figure 11: Periodic motions belonging to NSM2.

Note that for any function R0, Equations (90) and (91) satisfy NSM2 conditions (81)-(83) and (85)-
(88). The remaining condition (84) is satisfied by restricting R0 as follows:

R0(0) 6= 0. (92)

Thus, any integrable function R0, such that (90) to (92) are satisfied, generates a periodic solution of
the type NSM2 (including piecewise-smooth). Such a motion is illustrated in Figure 11(a-b).

4.4 Applications to non-smooth modal analysis

The use of d’Alembert function has proven useful in deriving novel periodic solutions, see NSM2. While
non-smooth modes of the bar in unilateral contact were considered to consist mainly of piecewise-linear
functions (F.1 to F.4), it has been shown that other piecewise-smooth solutions may exist as well.

Theorem 5. There exist piecewise-smooth modes of the cantilever bar in unilateral contact which are
not necessarily piecewise-linear.

Proof. An example of such piecewise smooth mode is NSM2 in section 4.3. Using the same method-
ology as presented in 4.3, with different values p, n and m, it is possible to find other modes of the
same type.

Conjecture 6. For all T ∈ Q where a periodic motion of the cantilever bar in unilateral contact
exists, there exists a piecewise-smooth mode of the type discussed in Theorem 5.

As mentioned previously, using the methodology in section 4.3, we have found solutions for other
T ∈ Q. In fact, we can confidently conjecture that there exist piecewise-smooth modes for a dense
group of T ∈ Q. Conjecture 6 is also supported analytically in [1, p.7] where it is stated that any
mode that is not piecewise-linear would exist only for T ∈ Q.

At last, the detected modes discussed in conjecture 6 exhibit a peculiar property: infinitely many
periodic solutions for the same energy and same period, as suggested in F.4 and proved below.
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Theorem 7. For the cantilever bar in unilateral contact, there exist continua of piecewise-smooth
periodic solutions of the same energy and frequency.

Proof. Consider the dimensionless energy of the cantilever bar:

2E(t) =
∫ 1

0
u2
x(x, t) + u2

t (x, t) dx (93)

Plugging the d’Alembert expression of the stress and velocity (8) gives:

2E(t) =
∫ 1

0
(f ′(t+ x) + f ′(t− x))2 + (f ′(t+ x)− f ′(t− x))2dx (94)

=
∫ 1

0
f ′2(t+ x)dx+

∫ 1

0
f ′2(t− x) dx (95)

The second term can be put then in terms of f ′(t+ x) via a basic change of variable

2E(t) =
∫ 1

0
f ′2(t+ x)dx−

∫ −1

0
f ′2(t+ x)dx =

∫ 1

−1
f ′2(t+ x)dx =

∫ t+1

t−1
f ′2(s)ds. (96)

Also, note that the energy under unilateral contact is preserved [3, 19, 23] and can be represented in
terms of initial conditions, in the d’Alembert form f0, exclusively3

E(t) = E(0) =
∫ 1

−1
f ′20 (s)ds ≡ E. (97)

Plugging f0 from NSM2 (89) leads to (the simplification procedure has been omitted for sake of
conciseness)4

E = 3
∫ 1/3

0
a′20 (s)ds+ 3

∫ 1/3

0
a′21 (s)ds. (98)

Any functions a1 and a0 satisfying (98) generate a periodic solution with T = 10/3, τ = 8/3 and
prescribed energy E. For example, a linear function a0 and cubic function a1 belonging to NSM2 can
be denoted as follows (derivations were omitted to facilitate reading)

a0(s) = b1s (99)

a1(s) = 27
(
d− b1

3
)s3 + b2s

1 + 9b2
+ b1

3 (100)

where, to satisfy (81)-(88), b1 and b2 must abide

0 < b1 ≤ 3d, (101)
b2 > 0. (102)

To obtain the energy of this NSM2 motion, (99) and (100) are plugged into (98):

E(b1, b2) = 9(45b2
2 + 10b2 + 1)(b1 − 3d)2

5(9b2 + 1)2 + b2
1 (103)

For several energy values, E, there exist infinitely many values b1 and b2 (i.e. infinitely many NSM2
solutions) generating motions of the same energy. For example, E(b1, b2) = 9d2 is satisfied for any

b1 = 6d
7 + 90b2 + 405b2

2
(104)

and 0 < b2 < ∞ satisfies (101) and (102). Thus, b2 ∈ (0,∞] with (104), (99) and (100) represents
a family of periodic solution with the same energy and period in NSM2. Several solutions from this
piecewise-smooth mode are depicted in Figure 12.

3This is the correct formula for the energy in comparison to the same formula in the published article
4A factor of three has been omitted in the published article. All other mentions of energy depending on this formulation

have been corrected as well.
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(a) D’Alembert functions for selected b2 values. b2 = d/5 [ ] b2 = 3d/5 [ ], and b2 = d [ ].

(b) Displacement field, b2 = d/5. (c) Displacement field, b2 = d.

Figure 12: Selected solutions from the continuum of solutions described by (99), (100) and (104)
defined by the b2 values. All depicted solutions are motions of energy E = 9d2 and period T = 10/3.

Similarly to Conjecture 6, for τ, T ∈ Q where periodic motions can be found, there also exist
energy-frequency (or period) pairs consisting of piecewise-smooth modes of the type mentioned in
Theorem 7. This mode is also depicted as a red point in Figure 10.

The theorems and conjectures presented in this section are used to derive conclusions about NSA
via numerical methods:

C.1 The aforementioned “isolated” solutions presented in F.2 most likely belong to the non-smooth
modes of the type discussed in Theorem 5. This conclusion is induced by the fact that the
numerical method used to obtain the isolated solutions in F.2 produces Signorini solutions for
rational periods and inactive contact durations T, τ ∈ Q similar to the piecewise-smooth modes
discussed in Theorem 5.

C.2 The non-smooth modes in the present work can be parameterized in functional spaces describing
different possible initial conditions f0 generating motions that are not necessarily piecewise-linear
yet can be of the same energy and and of the same period. Here, conjecture 6 implies that these
modes exist for a dense set of rational periods. This is explained by the full internal resonance
condition enjoyed by the investigated one-dimensional bar. This conclusion could not be deduced
by available numerical techniques [19,22].

5 Conclusion

The non-smooth modal analysis of a bar in unilateral contact with a rigid foundation at one boundary
is explored in the present paper. Existing results already reported in the literature are extended by
formulating the conditions for one-contact per period motions in terms of the d’Alembert travelling
wave solution. This formulation results in a non-smooth Delay Differential Equation of the neutral
type. Using the method of steps, this equation is solved and the problem of non-smooth modal
analysis is transformed into a system of functional equalities and inequalities to be satisfied by the
initial condition. While a complete closed-form solution cannot be exhibited, interesting solutions
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could be obtained for rational periods T ∈ Q: modes with piecewise-smooth displacement in space
and time, families of modes with same period, and families of modes with the same energy and period.

The findings in this paper may also provide practical conclusions on the forced motions of the
bar. Vibratory resonances induced by periodic external forcing are expected to occur at frequencies
where non-smooth modes exist. Accordingly, the existence of iso-period modes for a dense group of
periods T ∈ Q suggests that resonances can emerge for all periods of forcing T ∈ Q. It should also
be understood that the initial conditions generating admissible solutions were chosen in the space of
continuous and piecewise once-differentiable functions C0∩Ĉ1 which could be extended to H1 allowing
for much more exotic solutions with cusps for instance.

At last, we note that NSA via d’Alembert functions and method of steps can also be used for
analysis of motions with k > 1 active contact phases per period. Results for k = 2 could be produced
and confirm the suggested theorems and conjectures presented in this manuscript.
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