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Abstract

Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to
unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral
contact on its boundary has been previously investigated numerically and the corresponding spectrum
of vibration could be partially explored. In the present work, the non-smooth modal analysis of the
above system is reformulated as a set of functional equations through the use of both d’Alembert
solution to the wave equation and the method of steps for Neutral Delay Differential Equations. The
system features a strong internal resonance condition and it is found that irrational and rational
periods of vibration should be carefully distinguished. For irrational periods, the displacement field
of the non-smooth modes of vibration consist in piecewise-linear functions of space and time and
such a motion is unique for a prescribed energy. However, for rational periods, new periodic solutions
are found analytically. They belong to families of iso-periodic solutions with piecewise-smooth
displacement field in space and time.

Keywords: unilateral contact, non-smooth modal analysis, periodic solutions, vibration analysis, Signorini
complementarity conditions, d’Alembert function, method of steps, Neutral Delay Differential Equation
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1 Introduction

Non-smooth modal analysis (NSA) is used to obtain resonant vibratory responses and frequencies for
structures prone to unilateral contact conditions [6,18]. While linear modes of vibration are obtained
by solving eigenvalue problems, non-smooth modes are seen as invariant manifolds supporting periodic
autonomous solutions [16].

The NSA of a simple one-dimensional cantilever bar has recently attracted experimental interest [12]
and has already been investigated analytically and numerically in semi-discrete and continuous settings
in space [1,9,10,15,17-19,22]. In the continuous framework, modes consisting of piecewise-linear
solutions in space and time have been shown to exist [18,21,22]. Similarly to nonlinear modes in
semi-discrete systems commonly reported in the mechanical engineering literature [7,11], these modes
were found to exist for continua of frequencies and energy magnitudes [1,18,21]. Such continua are
widely referred to as backbone curves. Previous research has also concluded that some of the nonsmooth
modes feature purely vertical backbone curves, with periodic motions of the same period but different
energies [19].

The present paper revisits and extends existing results through new theorems on the structure
of the modal space together with the construction of new non-smooth modal families. The above
system enjoys the well-known d’Alembert travelling-wave solution and is known to be mathematically
well-posed without the use of an impact law. It also features a strong internal resonance condition since
all linear eigen-frequencies of the clamped-free bar system are multiples of the first one. Such properties
make it ideal for NSA without prior classical semi-discretization in space (such as the Finite Element
Method) that would annihilate many of the features exposed in the remainder. The reasons are the
following: semi-discretization in space would greatly affect the strong internal resonance condition and
would require a purely elastic impact law for the impacting degree-of-freedom.

The outline is as follows: the formulation of the bar in unilateral contact is briefly recalled in
section 2. Preliminaries to NSA, such as d’Alembert’s solution to the contact problem, formulation of
the periodicity condition, and lemmas on the existence of solutions are exposed in section 3. Finally,
NSA is performed and compared with existing literature in section 4.

2 Problem Statement

The formulation of interest has already been established [21,22] and is briefly recalled for the purpose
of context and introduction to appropriate terminology for the remainder of the article.

As depicted in Figure 1, we consider the displacement field u(Z,t) inside a bar of length L, where &
and t denote physical position and time, respectively. Assuming linear elasticity, the displacement of
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Figure 1: Unilaterally constrained cantilever bar.

the bar satisfies the non-dimensional wave equation
uge(2,1) = Uuge(z,t), x==2/L, t=ct/L, (1)

where ¢ = /p/Y > 0 is the speed of sound in the bar (p denotes the density of the bar and Y, its
Young modulus) and subscript denotes partial differentiation with respect to the denoted variable.
To simplify further the notations, the dimensionless coordinates x and t are introduced and, for the
remainder of the article, the displacement is expressed exclusively in these coordinates, i.e. u(xz,t). As
non-smooth modal analysis requires obtaining periodic solutions of the autonomous system [7,16,18],



the analysis will be performed on a single period of motion, of normalized period T such that the
domains ¢ € [0,T] and x € [0, 1] are considered.

On the boundary x = 1, the bar is prone to unilateral contact with a rigid wall initially at a
normalized distance d > 0. The contact conditions are treated using the Signorini complementarity
conditions stating that there exist two mutually exclusive phases: the bar can either move freely without
contacting the obstacle (inactive contact) or contact the wall while experiencing a repulsive force (active
contact) [20-22|. For the sake of simplicity, non-smooth modes consisting of a single active contact per
period are sought; these are referred to as 1CPP (one active Contact Phase per Period) modes [18,21].

Definition 1 (1CPP motion). A periodic motion of the bar with period T is said to be a 1CPP motion
if there exist an instance in time tg and a duration T such that the bar is in inactive contact for
t € [to,to + 7| and in active contact for t € [to + 7,19 + T.

Without loss of generality, we can pick g = 0. A 1CPP motion at z = 1 with ¢ = 0 is illustrated
in Figure 2.

N T\
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Figure 2: Example of a 1CPP motion: u(1,t) [—| and ug(1,t) [—].
A 1CPP motion should satisfy the boundary conditions
Cantilever bar  u(0,t) =0 Vt € [0,T] (2)
Inactive contact wu(1,t) <d Vte€[0,7] and wu,(l,t)=0 tel0,7]a.e. (3)
Active contact u(l,t) =d Vt€[0,7] and wu,(1,t)<0 te]lr,T]ae. (4)
together with the periodicity conditions
uw(z,0) = u(z,T) Ve |0,1] (5)
ug(x,0) = w(z, T) =z €1[0,1] a.e. (6)

where a.e. denotes almost-everywhere in the prescribed domain. The indication a.e. shall apply to
constraints involving the derivatives of the displacement field (stress and velocity) due to the choice of
solution space, further discussed in section 3.2.

Note that solutions where the bar enters into contact with the wall with zero incoming velocity,
known as grazing motion [2], are valid solutions to (1)-(4). However, such solutions are intentionally
omitted in the discussion for sake of conciseness. Accordingly, the restriction where the tip of the bar
must approach the wall with positive incoming velocity just before contact is considered:

lim w(1,t) > 0. (7)

t—=1—

Conditions (3) and (4) generate non-smooth displacement and velocity fields. Since the displacement
is expected to be continuous from a physical perspective, continuous weak solutions of the wave
Equation (1) are sought. As a consequence, its derivatives in (3)-(6) will only be defined almost
everywhere.



3 D’Alembert Solution to the Signorini Problem
The d’Alembert solution satisfying Equations (1) and (2) reads |5, p. 69|
w(a,t) = f(t+2)— ft—2), Y,t) € 0,1 x [0,T]. ®)

Note that the function f, referred to as the d’Alembert function, can be defined up to a constant. In
the sequel, the convention

f(=1)=0 9)

is chosen and does not affect the displacement, velocity or stress solutions derived in this paper. With
t=0and z =1 in (8), this convention yields f(1) = u(1,0). Moreover, for (z,t) € [0,1] x [0,T], f has
to be defined on the interval [—1,1+ T]. Defining f is, therefore, equivalent to determining a cantilever
motion of the bar. Section 3 shall hence show how the boundary conditions (3)-(6) are translated into
conditions on the d’Alembert function.

In previous research on the topic of interest [18,21,22], NSA was formulated using the displacement,
stress and velocity fields and was performed by computing initial conditions that generate admissible
periodic solutions. Instead, in the present article, the d’Alembert function is exploited exclusively, which
leads to new insights. To illustrate the idea, a known admissible periodic solution and its associated
d’Alembert function are plotted in Figure 3.

o 04
—d
—2d
0 T, 0 T
65 == . Al HE e e o T
1 0 1o
i t T t
(a) Displacement field u(z,t) = f(t+x)— f(t—z) [ ] (b) d’Alembert functions from Figure 3(a) seen as sur-
with motion of tip of the bar w(1,t) |m]. faces: u(z,t) = f(t+z) [ and u(z,t) = f(t—x) [].
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(c) (Piecewise-linear) d’Alembert function f(s) corresponding to Figure 3(a).

Figure 3: A 1CPP motion [22] and corresponding d’Alembert function

Before solving Equations (1)-(6) using the d’Alembert function, the considered solution space is
characterized.

3.1 Important Terminology

In this paper, we define non-smooth modes as families of motions defined by non-smooth d’Alembert
functions. Piecewise-linear modes consist of piecewise-linear d’Alembert solutions, as depicted in
Figure 3 and piecewise-smooth modes consist of piecewise-smooth d’Alembert functions, which include



piecewise-linear d’Alembert functions. An example of a piecewise-smooth yet not piecewise-linear
d’Alembert function is illustrated in Figure 11. This distinction will be used to further emphasize the
novelty presented in this manuscript. However, it should be understood that both families (piecewise-
smooth and piecewise-linear) pertain to the family of non-smooth modes.

3.2 Considered Solution Space

Due to the Signorini condition, smooth solutions u are not expected. Instead, it is decided to construct
solutions with a continuous C° and piecewise-C! (denoted C!) displacement field. This stems from (a) the
fact that the displacement should be a continuous function because a mechanical failure of the bar is not
of interest, and (b) the fact that the stress u, on the boundary = 1 should be defined almost everywhere.
Thus, at each instance in time ¢, there is only a finite number of discontinuities in x for the derivatives
uz (-, t) and w(-,t), where right and left derivatives exist but differ. Such assumptions are sufficient to
cover all presented solutions and methodology in this paper. Moreover, this solution space consists of
valid weak solutions to the wave equation [5, p. 407-408]. Accordingly, f is chosen as a continuous and
Cl-piecewise function on its domain of definition, that is f € CO([—1,1 + T]) N C([=1,1 + T]). This
means that the classical derivative of f is defined everywhere except over a finite number of points on
any bounded set. Also, at a point s where f’ is not defined, the right limit f’(s*) and the left limit
f'(s7) still exist. An equality involving f’ is thus satisfied at all points of the considered interval except
at the finite number of points where f is not differentiable. Within the above framework, it should be
noted that solution uniqueness is guaranteed in larger solution spaces H3/2 and H! [8,14]. This is used
in later proofs.

3.3 Solution via the method of steps

Consider the Cauchy problem consisting of the governing PDE (1) with boundary conditions (2)-(4)
and initial conditions u(z,0) = ug(z) and u¢(x,0) = vo(z). The periodicity conditions (5)-(6) will be
considered later in section 3.3.3. The d’Alembert function is defined on [—1,1] as [5, p. 69]

w(s)+Co+ [widu  sel.1)
2fo(s) = 2f(s) = © (10)
—uo(—s)+C'o—/ vo(p)dp s €[-1,0].
0
Our convention (9) implies
1
Co = uo(1) + /0 volp) dp. (1)

Note that imposing a value on the constant Cy does not affect any of the fields of interest: displacement
u, velocity uy or stress u;. Additionally, the notation fj is introduced to describe the part of f depending
exclusively on initial conditions, i.e. fo(s) = f(s) Vs € [—1,1] (as discussed later, the d’Alembert
function beyond s > 1 depends on both boundary and initial conditions). Therefore, to simplify
the terminology used in the remainder, fy will be referred to as initial conditions. Moreover, as the
d’Alembert function is assumed to be continuous for s € [—1, 1], the space of initial conditions uy and
vp consists of those generating C'-piecewise continuous functions fj.

As mentioned previously, the d’Alembert function in (8) is a solution to (1) and (2). However, the
boundary condition at x = 1 remains unsatisfied. To satisfy boundary conditions at both x = 1 and
x = —1, the d’Alembert function is generally extended from [—1,1] to [-1,7T + 1] via initial conditions
using reflections at s = 1 and s = —1 [5,13]. In the present article, this extension will be derived by
solving the boundary conditions Equations (3) and (4) in terms of the d’Alembert function (omitting
inequality constraints)

Inactive contact f'(t+ 1)+ f/(t—1)=0, te€]0,7] a.e. (12)
Active contact  f(t+1)— f(t—1)=d, te][r,T]. (13)



Collectively, Equations (12) and (13) represent a degenerate Neutral Delay Differential Equation
(NDDE) which requires knowledge of an initial condition on f spanning a domain of length equal to the
delay [4]. Namely, to solve (12), the d’Alembert function must be known for any s € [—1, 1] as given by
the initial conditions (10). Thus, given fp, Equation (12) determines f on [1,7 + 1] and, consecutively,
Equation (13) determines f on [+ 1,7 + 1].

In what follows, we derive conditions on fy, 7 and 7" in order to find 1CPP solutions of the cantilever
bar. To this end, we use the method of steps to construct solutions to the inactive contact motion (12)
and active contact motion (13) separately using linear arguments. The nonlinearity of the problem
at hand arises when the inequalities in (3) and (4) together with periodicity conditions (5) to (6) are
enforced on the d’Alembert function.

3.3.1 Inactive Contact Motion

This section details the extension of the d’Alembert function to the domain s € [—1,1+ 7] via boundary
condition (12). Beforehand, since (a) the tip of the bar is in contact with the wall at the end of the
period, see (4), (b) the motion must be periodic, see (5), and (c) the tip of the bar must be initially in
contact with the obstacle to preserve continuity in time from (8), the tip of the bar must contact the
obstacle at the beginning of the period

u(1,0) = f(1) = f(=1) = fo(1) = fo(=1) = fo(1) = d. (14)
Next, the inactive contact condition (12) leads to

f'(s)=—f(s=2), sel[l,7+1] ae. (15)
Integration of (15) reads

fls)=d—f(s—2), Vse[l,r+1]. (16)

By the method of steps, given f(s) = fo(s) for s € [—1, 1], the solution to (16) is

| fols) s € [-1,1]
ﬂﬁ_{d—h@—m sell,r+1]’ O=r=2 (7

this definition applies strictly to the case of 7 < 2 since the domain of definition of initial conditions is
of length 2. Next, for 2 < 7 < 4, we obtain

fo(s) se[-1,1]
fls)=¢d—fo(s—2) s€L,3 (18)
d—f(s—2) se[3,7+1]

Here, the last step d — f(s — 2) s € [3,7 4+ 1] is determined by substituting the previous step,
f(s)=d— fo(s—2) s€[l,3],in f(s —2), admitting

fo(s) se€[-1,1]
f(8)=19d—fo(s—2) se[1,3] , 2<7<4 (19)
fo(s —4) s€[3,7+1]

A solution of the type (19) is illustrated in Figure 4. Further extension of the d’Alembert function for
7 > 4 is not illustrated because the d’Alembert function subject to (15) is 4-periodic, that is

f(s)=f(s—4), Vse[3,7+1], 7>2. (20)

In fact, an inactive contact motion sets an upper bound on the value of 7 for a 1CPP.



(a) D’Alembert function as defined for ¢ € [—1, 3]. Red and Olive functions represent the extension beyond ¢ = 1,
via (19) and depend on the function in blue.

fE+1)

TH(t—1)

(b) Displacement at tip and d’Alembert function components, u(1,t) = f(t+1) — f(t — 1) for ¢t € [0, 2]. Colours
correspond to plot 4(a).

BATf(t—1) _~ flt—1) -~ flt+1) — fl(t+1) _~
\\2 |
_ag | 1+ CP )N =D I —1)

(c) Stress at tip and d’Alembert function components, u,(1,t) = f/(t + 1) + f'(¢ —1) = 0 (due to inactive
contact), for ¢ € [0,2]. Colours correspond to plot 4(a).

T

Figure 4: Extension of d’Alembert function in inactive contact conditions (15) given specific initial
conditions fy (here, piecewise-cubic polynomials for the sake of illustration) and 7 = 7/3 > 2, and
resulting motion.

Proposition 2 (Maximal duration of an inactive contact for a 1CPP). For 1CPP motions, the duration
of inactive contact motion must satisfy

T < 4. (21)
As well, initial conditions must satisfy

fols) >0 V¥se[—1,min(1,7—1)], (22)
fo(s) <d Vse|-1,7=3]if2<71 <4 (23)

Proof. 1t is shown here that for 7 > 4, a non-grazing 1CPP motion cannot occur.

For 7 = 4, the duration of inactive contact motion u equals the period of an inactive contact motion,
which is 4-periodic, from (20). The remainder of the motion can be then described via an inactive
contact condition where the stress at x = 1 always vanishes and active contact is never initiated.
Similarly, if 7 > 4, the remainder of the motion is still 4-periodic and can be described by an inactive
contact condition exclusively, without needing to switch to active contact. Since there must exists a
unique solution to the considered initial-value problem [14], the cannot exist any motion with 7 > 4
that enters into active contact phase.

Next, the constraints (22)-(23) are derived by plugging the resulted d’Alembert function for inactive
contact into the inactive contact inequality constraint (3): u(1,¢) = f(t+1) — f(t — 1) < d Vt € [0, 7].



Starting with the d’Alembert function (17) for 7 < 2, we obtain

FE+1) — ft—1)=d—2fo(t—1)<d Vte[0,7], 0<T<2 (24)
which can be simplified into

fo) >0 Vte[-1,7—1, 0<7<2. (25)
Next, plugging (17) for 2 < 7 <4 into f(t+ 1) — f(t — 1) < d, Vt € [0, 7], we obtain

d—2f(t—1) tel0,2

2folt —3)—d te 2] 2< T <4 (26)

de(t—i—l)—f(t—l):{
The inequality constraint is then assigned separately in ¢ € [0,2] and t € [2,4] and, with further
simplification, admits

0< fo(t) te[-1,1], 2<T<4 (27)
d> folt) te[-1,7—3], 2<7<4 (28)

At last, conditions (25) and (27) lead to (22) and condition (28) is (23) verbatim, which concludes the
proof. O

In turn, the inactive contact phase ends with a contact initiation, ie

u(l,7)=f(r+1)— f(r—1)=d (29)
and the velocity of the tip at this instant 7 must be strictly positive, due to (7), such that
w(l, 77 )= f'(r—+1) = f'(r— =1)>0. (30)

3.3.2 Active contact motion

Similarly to the procedure presented in section 3.3.1, the d’Alembert function is extended for s > 7+ 1
via condition (13), which equivalently reads

f(s)=d+ f(s—2), Vsel[r+1,T+1]. (31)

Note that f(s—2) is assumed to be known for s € [T+ 1, T+ 1], by virtue of (17) or (19). An illustration
of extension (31) is provided in Figure 5. Moreover, we note that u.(1,t) is 2-periodic during active
contact since

ur(L,t+2)=f/t+3)+ f/t+1)=f(t+ 1)+ f(t—1) =u(1,t), te][r,T]ae. (32)
holds true. This sets a bound on the duration 7" — 7 of active contact.

Proposition 3 (Maximal duration of an active contact for a 1CPP). For 1CPP motions, the duration
of active contact motion, T — 7 where T' > T, must satisfy

T—-17<2, (33)
and the d’Alembert function must satisfy
fft-1)<0 telr,T] ae. (34)

Proof. By contradiction, it is shown that for 7' — 7 > 2 a non-grazing 1CPP periodic motion cannot
occur.

For T'— 7 = 2, the active contact duration equals the period of wu,(1,t), which is 2-periodic
through (32). In future time ¢ > T, u,(1,t) can therefore be described using active contact conditions
exclusively. The same applies for T'— 7 > 2. Since uniqueness is guaranteed, any motion with T'— 7 > 2
remains in active contact motion for any ¢ > T and therefore never switches to inactive contact (such
motion, by definition, would not be periodic). Thus, the bound (33) must hold to guarantee the
existence of 1CPP.

The restriction (34) is derived by plugging (31) into the active contact inequality condition (4). O
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(a) D’Alembert function for ¢ € [7—1,T+1]. Extension beyond ¢t = 7+1 via (31) [—|
dependent on the blue plot.
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(b) Displacement at tip and d’Alembert function components.

Figure 5: Extension of the d’Alembert function due to active contact conditions (15) given specific
initial conditions fp and f in inactive contact motion (shown in Figure 4) from (17) and (19), and
resulting motion.

3.3.3 Periodicity and Admissibility conditions

The periodicity of the solution is now determined by a difference equation involving the d’Alembert
function.

Proposition 4. The displacement u is T-periodic if its associated d’Alembert function satisfies
J(s+T) = fols) + ST —1) Vse[-1,1] (35)

Conversely, if (35) is fulfilled, then f' is T-periodic and u(x,t) = f(t +x) — f(t — ) consists of a
periodic motion.

Proof. 1t is shown that (35) can be derived from (5) and (6) (in their d’Alembert form) and vice-versa.
A periodic solution, such that (5) and (6) are valid, requires that

fo(z) + fo(—z) Vz €]0,1] (36)
fo(x) + fo(=x) 2 €[0,1] ae. (37)

F(T+z) = f(T—x)
f(T+a)— f(T—x)

respectively. Differentiating Equation (36) with respect to x yields:
FT+2) + (T —2) = fola) — fo(—a) @ €[0,1] ac. (38)

In turn, adding (37) to (38) and subtracting (37) from (38) results in

f(T+z)=fi(x) xe€][0,1] ae. (39)

(T —z)= fi(-z) ze€][0,1] ae. (40)
respectively. Next, s = x and s = —x are substituted into (39) and (40), respectively

(T +s) = fi(s) se€]0,1] a.e. (41)

(T +s) = fi(s) se[-1,0] ae. (42)



which can then be assembled as
(T +s)= fi(s) se[-1,1] ae. (43)

Integrating (43) results in (35).

Also, f" abiding (43) (being the derivative (35)) is periodic. To prove this, we show that f/'(s+T) =
f'(s) for s € [-1,T + 1] a.e. by assuming that f'(s+T) and f’(s) are defined by the same NDDEs and
initial conditions (formulated as problem I and IT).

Problem 1 The determination of f’(s) for s € [1,7 + 1] can be obtained from an NDDE problem
formed by the inactive boundary conditions (12) and the derivative of the active contact boundary
conditions (13)

NDDE I
by ) =f(s—2) se[l,7+1]ae.
fls) = {f’(s—2) se[r+1,T+1] ae. (44)
Initial conditions I
f'(s) = fi(s) sel-1,1] ae. (45)

Problem II Similarly, for s > T + 1, it is expected that the same boundary conditions apply. Namely,
determining f’(s) for s € [T + 1,27 + 1] requires solving

NDDE II
—fl(s—2 el+T, T +1] ae.
f(s) = fl(s=2) sc[l+T,7+T+1]ae (46)
ff(s=2) se[r+T+1,2T +1] ae.
where the initial conditions are assumed to be known from Equation (43)
Initial conditions II
f'(s)=fo(s=T) se[T'—1,T+1]ae. (47)

Note that both initial conditions I and II are given by the same function f{(s) for s € [-1,1] a.e.
Similarly, NDDEs I and II are equivalent up to a phase difference T". As shown in sections 3.3.1 and 3.3.2,
the solution to NDDE I is unique with respect to initial conditions (given fo(—1) = 0 as in (9)). Similarly,
using the method of steps, one can show that NDDE II produces a unique solution with respect to
initial conditions (given fo(—1) = 0). Therefore, the solutions f’(s) for s € [-1,T + 1] and f’(s) for
s € [T —1,2T + 1], must be equal, that is f/(T'+ s) = f'(s), s € [-1,T + 1] a.e. and, by induction, we
can show the relationship holds for the extensions of f"in s > 2T+ 1: f'(nT+s) = f'(n—1)T+s), s €
[-1,T+1] a.e., n=2,3,...,00 which also means that f’ is periodic: f'(T +s) = f'(s), s € [-1,00) a.e.
Finally, statement (35) shows that the state of the bar at the end of the period equals the state of
the bar at the beginning of the period since u(x,T) = f(T'+z) — f(T — x) = f(x) — f(—z) = u(z,0),
Ve € [0,1] and u(z,T) = f'(T +z) — f/(T —x) = f'(x) — f'(—x) = w(x,0), x € [0,1] a.e.. Through
uniqueness [14], conditions (35) implies a T-periodic motion of the bar in dimensionless time. O

3.3.4 Summery of necessary conditions for periodic solutions

Via the d’Alembert travelling wave solutions, the conditions for finding a periodic solution consist of
functional equations and inequalities summarized below.

10



Conditions for Periodic Solutions of the Bar in Unilateral Contact (CPS) Ford >0, a
1CPP motion subject to (1)-(6) and described by u(x,t) = f(t + x) — f(t — ) requires finding T < 4,
T < 71+2 and fo(s) continuous and piecewise C* on [—1,1] such that (equation tags are recalled)

fo(=1) =0 (9)

fo(1)=d (14)
No penetration conditions for t € [0,7] (u(1,t) < d):

fo(s) >0 Vs e [—1,min(l,7—1)] (22)

fols)<d Vse|-1,7—3]if2<T<4 (23)

Positive incoming velocity and contact at t =7 (u(1,7) =g, w(1,77) >0):

fr+1)—f(r—1)=d (29)
ffr+1)—f(r=1)>0 (30)

Repulsion by obstacle for t € [1,T] (uy(1,t) <0):
f'(s)<0 se[r—1,T—1] ae. (34)

Periodicity condition:

f(s+T)—f(T—1)— fo(s) =0 Vse[-1,1] (35)
where f is defined by combining (17) and (31) as
fo(s) s € [-1,1]
T<2: f(s)=Qd-fo(s—2) se[l,7+1] (48)
d+ f(s—2) se[r+1,T+1]
fo(s) s € [-1,1]
) ) — d—fo(S—Q) 86[1,3]
2s7<4: Jlo)= fols —4) s€[3,7+1] (49)
d+ f(s—2) se[r+1,T+1]

While a complete closed-form solution to CPS could not be found, it will be shown that CPS can
be solved for some cases.

4 Non-smooth modal analysis

4.1 Known properties of the non-smooth modal space
Previous NSA on the cantilever bar have led to several important findings [19,21,22]:

F.1 Non-smooth modes parameterized by the period must be piecewise-linear and are already known
to exist for T € (3,4) and 7 € (2,4) [21], see Figure 6. The corresponding initial conditions are
dx

uo(z) = 3T vo(x) =0 Vzx €[0,1]. (50)

F.2 The NSA of the the system of interest was performed numerically in [22| through the wave finite-
element method (WFEM). From this numerical investigation, it was shown that the low-energy
backbone curve in Figure 7 is continuous and can be parameterized by T. However, from the
clouds of points, each of which represents a periodic solution, other continua of periodic solutions
(e.g. internal resonances) could not be clearly established.
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(a) Frequency energy plot. (b) Motion at point A. (¢) Motion at point B.

Figure 6: Nonsmooth Mode of vibration discussed in F.1. In plot (a): w = 27/T and w; = 27 /4.
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Figure 7: Energy-frequency plot corresponding to piecewise-linear mode. w = 27/T and w; = 27 /4.
Source: [21].

F.3 In [19], vertical backbone curves of piecewise-linear modes were shown to exist for T' € Q, as
depicted in Figure 8. We note here that figures 7 and 8 seem to disagree as both approaches were
not able to reveal the full modal space in the considered frequency range. This task remains
unsolvable in this paper as well.

< T T T T
o -
i

Normalized Energy E/F,
102
I
i

— = 1 1
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9 9
Normalized Frequency w/w;

Ik H-

Figure 8: Families of piecewise-linear solutions with the same period of motion represented alongside
the mode found in F.1. Referenced parameters: w = 27/T and w; = 27/4 and E; = d?/4. Black:
piecewise linear mode in F.1. Pale-blue: piecewise-linear modes. Source: [19].

F.4 Infinitely many distinct piecewise-linear periodic solutions of the same energy, same duration
of inactive contact 7 and same period T" were shown to exist for some intervals of energy and
T € Q [19]. Namely, for such energies and periods, there exist infinitely many initial conditions
generating piecewise-linear distinct periodic solutions.

These findings, already reported in the literature, are revisited in the following sections.
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4.2 Piecewise-linear mode

In this section, CPS are solved to reproduce previous findings presented in F.1. Again, a known piecewise-
linear mode exists for periods T' € (3,4), inactive contact durations 7 € (2,4), and 2 > T — 7 > 0. For
7 € (2,4), the d’Alembert function is described by (49) and its the last component, f(s) € [t +1,T+1],
is defined implicitly by previous components. Here, we will define the last component explicitly in fj
using the requirement 7' € (3,4). We first note that for 7' € (3,4) and 7 € (2,4) the argument of the
last component in (49), s —2 € [t + 1,7 + 1], must span s — 2 € [3,5] (or s € [1,3]). Therefore, the last
component of f is determined exclusively by f(s) for s € [1,3]. Namely, for 7 € (2,4) and T € (3,4),
we obtain

Jo(s) € [-1,1] Jo(s) €[-11]
o= Jd—fols =2) [,] _Jd—fols—2) [,]
TV pismn)  seBrsn T \hGe-H  seBren 1)
d+ f(s—2) €lr+1,T+1] 2d — fo(s —4) s€[r+1,T+1]

without loss of generality. Before plugging Expression (51) into CPS, we use the knowledge that f is
continuous piecewise linear, see F.1, to simplify the application CPS conditions. Since f is piecewise
linear, it is trivial to assume that fj is piecewise-linear as well. In order to find the loci of non-smoothness
in fy, we note that the CPS conditions (23) and (34) apply for two adjacent non-overlapping domains:
[—1,7 — 3] and [t — 3,7 — 3]. Thus, it is trivial to assume that loci of non-smoothness are 7 — 3 and
T — 3. Accordingly, we dissect fy into three parts spanning [—1,7 — 3], [r — 3,7 — 3], and [T' — 3, 1] to
obtain a piecewise-linear and continuous function of the type

ag + bos s e [—1,7’—3]
fo(s) =< ag +bo(T —3) + b1(s — 7+ 3) se[r—3,T-3] (52)
ap+bo(tr—=3)+b01(T—7)+b2(s—T+3) se[T—31].

Note that other loci of non-smoothness may be possible, as shown in section 4.3. Then, the piecewise-

linear fy (52) is plugged into the CPS conditions such that
Eq.(9) = ap = by (53)
Eq.(22,23,29) = by =d/(r —2) (54)
Eq.(14,53,55) = bo=-0 (T —7)/(4—-T) (55)
Eq.(29,30,34) = b > 0. (56)

Expressions (53)-(55) are plugged back into (52), itself inserted in (51), to form an expression of f
dependent on by, 7 and T only

(s +1) €[-1,7 -3
d+bi(s—7+3) €[r—3,T—3]
d+b1(4T_‘;)(1—s) e [T -3,1]

Jd—L(s—1) el,7-1]

fle) = —bl(siT—i-l) €lr—1,T—1] &7

0GR B-s)  selr-13
TL(S 3) €[3,7+1]
d—bi(s—7—-1) €[r+1,T+1].

\
It is noted that the first component of f does not depend on by since Equations (9) (which defines the
reference point for f) and (29) (which establishes contact with the rigid wall at the beginning of the
active contact motion) are sufficient to determine the constants ag and by.

Next, we will show that the free parameter b; becomes a mono-valued function of 7 as soon as
periodicity is enforced. For the d’Alembert function, periodicity (35) reads

Jo(s) = f(s +T) = (T —1) = fols) Vse[-11] (58)
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where f;, denotes the section of the d’Alembert function defining the motion at the end of the period,
f(s+T)— f(T'—1). Based on the d’Alembert function (57), f, reads

~IZB-s-T)+bi(T—7) s€e[-1,3-T)]
fo(s) =% =L (s =3+ T) + b (T —7) s€3-T,7—T+1] (59)

d—bi(s—7—14T)+W(T—71) se[r—T+1,1]

and, accordingly, fo reads
do(s+1) s€[~1,7—3
fo(s)=<d+b(s—7+3) s€[r—3,T—3 (60)
d+bI=5(1-5) se[T-3,1].

Naturally, the first requirement for equality of f, and fy is that their loci of non-smoothness will be
congruent. Currently, the components in (59) and (60) do not span identical domains. It is chosen to
establish a relationship between 7 and T' such that the loci of non-smoothness align. Here, equality
between f, and fy can be enforced as soon as the domains of definition (or support) of the last
component of each function are identical, i.e. T —3=7—-T + 1 or

2T(r) = 7 + 4. (61)

This relationship also agrees with the piecewise-linear mode reproduced in this section [21]. Inserting (61)
into (59) and (60) yields:

b1(1+ s) se€[-1,3=T(71)]
fo(s) = ary=s (s = 3+ T(7)) + bi(4 = T(7)) s€B3—T(r),T(r)— 3 (62)
d+bi(1—s) s € [T(r) - 3,1]
and
ﬁ(s—kl) s€[—1,2T(1) — 7]
fo(s) = d+bi(s — 2T(r) +7) s € [2T(r) = 7,T(r) — 3| (63)
d+by(1—s) s € [T(r) —3,1].

For a general solution applicable to any 7 € (2,4), the first components of fy and f, overlap. For
fo = fp, the first components must have the same slope, that is

d
R — 4
As a consequence, the first and second components in fy and in f, may be merged to form
d s+1 s€[-1,T(r) — 3]
S) = S) = ————— 65
Jols) = n(s) 2T(T)—6{2T(T)—5—3 se[T(r)-3,1] (65)

and the periodicity condition (35) is satisfied for arbitrary 7 € (2,4) and T € (3,4). Thus, any initial
condition (65), for the aforementioned T and 7, generates a periodic motion. This piecewise-linear
mode is now properly defined.

NSM1: Piecewise-Linear Mode of the Cantilever Bar in Unilateral Contact Given d > 0,
u(z,t) = f(t+x) — f(t —x) with f such that

s+1 se[-1,T - 3]
d 2I'-5—s se[I'—3,T—1]
s) = 66
1(s) 2'-6 |s—3 se€[T—1,2T — 3] (%)
AT —9—s se 2T —3,T+1]
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represents a non-smooth nonlinear mode for all T € [3,4]'.

To show NSM1 is equivalent to the piecewise-linear mode introduced in F.1, it is noted that NSM1
at t = T — 2 generates the displacement and velocity fields

wz, T -2)=fT-2+z)— f(T-2—x) (67)
:2Td_6(T—3—x)—QT_G(QT—3+95):—T_3, v € [0,1] (68)
u(x, T —2)=f(T-2+x)— f(T-2—x) (69)
___ 4 , d =0, Vzelo,1] (70)

2r—-6 2T -6

which agree with (50). Since the solution is unique with respect to initial condition [14], NSM1 is
indeed equivalent to the piecewise-linear mode presented in F.1.

4.3 Piecewise-smooth mode(s) of the same period

For T € Q, previous works have only reported piecewise-linear modes. Here, we show that solutions
that are piecewise-smooth exist as well. This section details a methodology for determining analytically
these piecewise-smooth modes. An illustrative example is provided.

Assume that both T" and 7 belong to Q (7 € Q is also a consequence of the work in [19]) such that
T and 7 can be described by n, p < n, and m belonging to N, namely,

T=n/m, 7=p/m. (71)
To accommodate for CPS conditions spanning non-uniform domains, such that no penetration con-

ditions (22)-(23) and negative repulsion force condition (34), it is useful to dissect fp into 2m equal
components, each consisting of a smooth function a;(s)

ap(s+1) se€[-1,—-14+1/m)]
ai(s+1—1/m) se[-1+1/m,—1+2/m]

fols) = ;Li(S +1—i/m) se€[-1+4+i/m,—1+ (i +1)/m)] (72)
(a2m-1(s —1+1/m) se€[l—-1/m,1]

where the functions a; have the following features:

a; : [0,1/m]—[0,d], i=0,1,...,p—2m—1 (73)
a; : [0,1/m] —[0,00) i=p—2m,p—2m+1,...,2m— 1. (74)

These functions can be nonlinear in s in contrast with (52) where ag stands for a constant. The condition
a;(s) > 0 is a consequence of (22). In this paper, only 1CPP with 7 > 2 are considered so a;(s) < d
from (23). Moreover, to preserve the continuity of fy, the following must hold: a;—1(1/m) = a;(0) for
allt=1,2,...,2m — 2. This dissection of fy allows then for easy depiction of the solution space of
CPS for T € Q.

As an example, a solution for n = 10, p = 8 and m = 3, i.e. inactive motion duration 7 = 8/3 and
period T' = 10/3, is derived in the remainder of this section. For other choice of parameters p, n and m
this method may fail as further discussed in section 4.4. Inserting the above 7 and T together with (72)

'Note that we have removed any reference to 7 as it is not critical for illustrating the mode NSM1.
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into (49) leads to
(ap(s + 1) €[-1,-2/3]
ai(s+2/3) €[-2/3,-1/3]
as(s+1/3) €[-1/3,0]
az(s) €[0,1/3]
as(s —1/3) € [1/3,2/3)
as(s — 2/3) € [2/3.1]
d—ap(s—1) €[1,4/3]
d—ai(s —4/3) € [4/3,5/3]
T =Yaan(s—5/3)  se5/3.2] (75)
d—as(s—2) €1[2,7/3]
d—ay(s—7/3) € [7/3,8/3]
d—as(s —8/3) € [8/3,3]
ap(s —3) € [3,10/3]
ai(s —10/3) € [10/3,11/3]
2d —az(s —11/3) s € [11/3,4]
2d — asz(s —4) € [4,13/3]
Note that the most intricate functional equation in CPS involves the periodicity condition (35)
fo(8) =f(s+T) = f(=s+T) = fols) (76)

where f;, has been added to denote the state of the bar at the end of contact. Imposing the periodicity

condition (76) on the form of f in (75)

leads to

(—au(s + 1) + aq(0) € [-1,-2/3]
—as(s +2/3) + as(0) €[-2/3,-1/3]
~ Jao(s+1/3) +as(0) —d € [-1/3,0]
Tols) = a1(s) + as(0) — d € [0,1/3] (77)
—az(s —1/3) + a4(0) +d €[1/3,2/3]
| —a3(s — 2/3) + as(0) + d € [2/3,1]
and
ao(s+1) € [-1,-2/3]
a1(8+2/3) [ 2/37_1/3]
D LACRRVE) € [~1/3,0]
AR P c[0.1/3 "
as(s —1/3) € [1/3,2/3]
[ as(s —2/3) € [2/3,1].

The solution to (76) can be easily extracted by equating each of the components in fy to their

corresponding components in f,:

4(0) — aa(s)
1(0) — as(s)

= as(s

a
a

)—d=
=as(s) —d =

a()(S) +

as(0) — 2d, Vs e[0,L/3]
a1(s) + aq

(79)

(0)—2d, Vselo,L/3]. (80)

For the equalities to hold true, a4(0) = 2d must hold. The dissection of fp and periodicity condition
are visualized in Figure 9. Thus, applying all other conditions in CPS (besides the already solved
periodicity condition), a non-smooth mode is obtained as described below.
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Figure 9: Method for finding piecewise-smooth solutions. fy is a piecewise-smooth continuous function
where all smooth components span domains of equal length 1/m. As expressed in (48) or (49), the
extension of the d’Alembert function is done via affine transformations. For the specific f in (75):
a;’(s) =d—a;(s), ai*(s) = 2d — a;(s). To satisty periodicity (35), the non-gray components are equated

as done in (79) and (80).

NSM2: Piecewise-Smooth Mode of the Cantilever Bar in Unilateral Contact For an
inactive contact duration T = 8/3 and period T = 10/3, the arbitrary piecewise-smooth functions ag(s)
and ai(s) in the domain s € [0,1/3], with the constraints

Continuity of fo: ao(1/3) = a1(0) (81)
Eq.(9,29) : ao(0) =0 (82)
Eq.(14): a1(1/3)=d (83)

and, recalling the remaining CPS conditions,

Eq.(30) = a((0) >0 (84)
Fq.(22,23) = 0<uag(s) <d, Vse][0,1/3] (85)
Fq.(22,23) = 0<ai(s) <d, Vse]l0,1/3] (86)
Eq.(34) = ap(s) >0, Vs € [0,1/3] (87)
Eq.(34) = aj(s) >0, Vs € [0,1/3] (88)

define a non-smooth mode with u(x,t) = f(t + x) — f(t — x) where f is defined in (49) with initial
condition

(ao(s+1) s€[-1,-2/3]
ai(s+2/3) s €[-2/3,—-1/3]
Javats+1/3) se-1/3,0]
P =0 44 ay(s) s€[0,1/3] (89)
2d —ap(s—1/3) se[1/3,2/3]
2d — ay(s) s €[2/3,1].

NSM2, as shown in Figures 10 and 11, consists of periodic motions existing exclusively for 7= 10/3.
From conditions (81)-(88) on functions ag and a1, we understand that NSM2 exists in a convex (because
of inequalities) subspace of (C[0,1/3])2. In turn, using the procedure presented in this section with
different m, n and p, similar mode can be derived for any period of the type T € Q and 7 € Q. However,
for some values of m, n and p, the proposed methodology could not generate periodic solutions. Also,
choosing affine functions ag and a; replicates the results exposed in [19].

Example of NSM2 solutions

The functions ag and a; involved in the definition of NSM2 exist in a convex subspace of (C1[0,1/3])%.
It is of interest to give an example of a functional space with varying ag and constant a; answering all
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Figure 10: Piecewise-smooth mode NSM2 in comparison to NSM1. w = 27 /T and wy = 27/4. The
point in red indicates a mode of solutions of the same energy, described in the proof of Theorem 7.

NSM2 equalities and inequalities (81) to (88). To this end, we choose an arbitrary real function Ry(s)
such that

s 1/3
() =d [ B, se0.1/3) and [ RYGdp =1 (90)
0 0
together with
ai(s) =d. (91)

Note that for any function Ry, Equations (90) and (91) satisfy NSM2 conditions (81)-(83) and (85)-(88).
The remaining condition (84) is satisfied by restricting Ry as follows:

Ro(0) # 0. (92)

Thus, any integrable function Ry, such that (90) to (92) are satisfied, generates a periodic solution of
the type NSM2 (including piecewise-smooth). Such a motion is illustrated in Figure 11(a-b).

4.4 Applications to non-smooth modal analysis

The use of d’Alembert function has proven useful in deriving novel periodic solutions, see NSM2. While
non-smooth modes of the bar in unilateral contact were considered to consist mainly of piecewise-linear
functions (F.1 to F.4), it has been shown that other piecewise-smooth solutions may exist as well.

Theorem 5. There exist piecewise-smooth modes of the cantilever bar in unilateral contact which are
not necessarily piecewise-linear.

Proof. An example of such piecewise smooth mode is NSM2 in section 4.3. Using the same methodology
as presented in 4.3, with different values p,n and m, it is possible to find other modes of the same
type. O

Conjecture 6. For all T € Q where a periodic motion of the cantilever bar in unilateral contact exists,
there exists a piecewise-smooth mode of the type discussed in Theorem 5.

As mentioned previously, using the methodology in section 4.3, we have found solutions for other
T € Q. In fact, we can confidently conjecture that there exist piecewise-smooth modes for a dense
group of T € Q. Conjecture 6 is also supported analytically in |1, p.7] where it is stated that any modes
that are not piecewise-linear would exist only for T' € Q.

At last, the detected modes discussed in conjecture 6 exhibit a peculiar property: infinitely many
periodic solutions for the same energy and same period, as suggested in F.4 and proved below.

Theorem 7. For the cantilever bar in unilateral contact, there exist continua of piecewise-smooth
periodic solutions of the same energy and frequency.
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(a) D’Alembert function for ag(s) = 3ds (or Rg =1 in
reference to section 4.3) and a;(s) = d. (b) Displacement.

f(s)

A
ai(s)
a0(s) \ A
f t t t S
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| —d
(c) d’Alembert function for ag(s) = —4.5d((s—1/3)? —
(1/3)%) and a4 (s) = 4.5ds* + 0.5d. (d) Displacement.

Figure 11: Periodic motions belonging to NSM2.

Proof. Consider the dimensionless energy of the cantilever bar:
1
2E(t) = / ul(z,t) + ul(z,t) de (93)
0

Plugging the d’Alembert expression of the stress and velocity (8) gives:

1
2B(t) = / (f'(t+ )+ f(t—2)? + (f(t+2) - f(t—2))de (94)
01 1
= / f’2(t + z)dx + / f’Z(t —x)dx (95)
0 0
The second term can be put then in terms of f/(t + x) via a basic change of variable
1 ~1 1 1
2E@):/‘f%t+@dr—/ jﬂ@+xﬂx:/nfa@+xMx: t+fﬂwm& (96)
0 0 -1 t—1

Also, note that the energy under unilateral contact is preserved [3,18,22] and can be represented in
terms of initial conditions, in the d’Alembert form fj, exclusively

1
E(t) = E(0) = % / 1 f(s)ds = E. (97)

Plugging fy from NSM2 (89) leads to (the simplification procedure has been omitted for sake of
conciseness)

1/3 1/3
2F = ag(s)ds —|—/ a?(s)ds. (98)
0
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Any functions a; and ag satisfying (98) generate a periodic solution with 7" = 10/3, 7 = 8/3 and
prescribed energy E. For example, a linear function ag and cubic function a1 belonging to NSM2 can
be denoted as follows (derivations were omitted to facilitate reading)

ap(s) = bis (99)
bl 83 +’b28 bl
=2Td— = | ————+ = 100
a1(s) 7( 3> 149 @ 3 (100)
where, to satisfy (81)-(88), by and by must abide

0 < by < 3d, (101)
by > 0. (102)

To obtain the energy of this NSM2 motion, (99) and (100) are plugged into (98):

3(45b5 + 10by + 1) (by — 3d)* | b7

2B (by, by) = 20002 T 1002+ 1)(by = 3d)7 | by (103)

5(9b2 4+ 1)2 3
For several energy values, F, there exist infinitely many values by and b (i.e. infinitely many NSM2

solutions) generating motions of the same energy. For example, E(by,by) = 3d?/2 is satisfied for any

B 6d
7+ 90by + 405b3

by (104)

and 0 < by < oo satisfies (101) and (102). Thus, by € (0,00] with (104), (99) and (100) represents
a family of periodic solution with the same energy and period in NSM2. Several solutions from this
piecewise-smooth mode are depicted in Figure 12. O

f(s)
I

N ™

—1 0 1 / T T+1
1 —d Vé4/

(a) D’Alembert functions for selected by values. by = d/5 [—] by = 3d/5 [—], and by = d [—].

—2d

(b) Displacement field, by = d/5. (c) Displacement field, by = d.

Figure 12: Selected solutions from the continuum of solutions described by (99), (100) and (104) defined
by the by values. All depicted solutions are motions of energy E = 3d? and period T = 10/3.

Similarly to Conjecture 6, for 7,7 € Q where periodic motions can be found, there also exist
energy-frequency (or period) pairs consisting of piecewise-smooth modes of the type mentioned in
Theorem 7. This mode is also depicted as a red point in Figure 10.
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The theorems and conjectures presented in this section are used to derive conclusions about NSA
via numerical methods:

C.1 The aforementioned “isolated” solutions presented in F.2 most likely belong to the non-smooth
modes of the type discussed in Theorem 5. This conclusion is induced by the fact that the
numerical method used to obtain the isolated solutions in F.2 produces Signorini solutions for
rational periods and inactive contact durations 7,7 € QQ similar to the piecewise-smooth modes
discussed in Theorem 5.

C.2 Unlike periodic solutions of discrete nonlinear mechanical systems |7,16] which are commonly
unique as soon as their period and energy are specified, the non-smooth modes in the present work
can be parameterized in functional spaces describing different possible configurations of initial
condition fy at the same energy and period. Moreover, conjecture 6 implies that these modes exist
for a dense set of rational periods. This is explained by the full internal resonance condition enjoyed
by the investigated one-dimensional bar. This fact has consequences on numerical approaches
implemented for NSA purposes and more specifically, those involving continuation methods [7,11].

5 Conclusion

The non-smooth modal analysis of a bar in unilateral contact with a rigid foundation at one boundary
is explored in the present paper. Existing results already reported in the literature are extended by
formulating the conditions for one-contact per period motions in terms of the d’Alembert travelling
wave solution. This formulation results in a non-smooth Delay Differential Equation of the neutral type.
Using the method of steps, this equation is solved and the problem of non-smooth modal analysis is
transformed into a system of functional equalities and inequalities to be satisfied by the initial condition.
While a complete closed-form solution cannot be exhibited, interesting solutions could be obtained
for rational periods T' € Q: modes with piecewise-smooth displacement in space and time, families of
modes with same period, and families of modes with the same energy and period.

The findings in this paper may also provide practical conclusions on the forced motions of the
bar. Vibratory resonances induced by periodic external forcing are expected to occur at frequencies
where non-smooth modes exist. Accordingly, the existence of iso-period modes for a dense group of
periods T' € QQ suggests that resonances can emerge for all periods of forcing T' € Q. It should also
be understood that the initial conditions generating admissible solutions were chosen in the space of
continuous and piecewise once-differentiable functions C° N C! which could be extended to H? allowing
for much more exotic solutions with cusps for instance.

At last, we note that NSA via d’Alembert functions and method of steps can also be used for
analysis of motions with k > 1 active contact phases per period. Results for k£ = 2 could be produced
and confirm the suggested theorems and conjectures presented in this manuscript.
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