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On unitriangular basic sets for symmetric and

alternating groups

Olivier Brunat, Jean-Baptiste Gramain and Nicolas Jacon

Abstract

We study the modular representation theory of the symmetric and alternating groups. One of the most natural ways

to label the irreducible representations of a given group or algebra in the modular case is to show the unitriangularity

of the decomposition matrices, that is, the existence of a unitriangular basic set. We study several ways to obtain

such sets in the general case of a symmetric algebra. We apply our results to the symmetric groups and to their

Hecke algebras and thus obtain new ways to label the simple modules for these objects. Finally, we show that these

sets do not always exist in the case of the alternating groups by studying two explicit cases in characteristic 3.

1 Introduction

One of the major problems in the representation theory of finite groups is to find a natural classification of
the set of simple modules, in particular in the modular case. This problem may be attacked using the notion
of unitriangular basic sets in the wider context of symmetric algebras. Let A be an integral domain and let
H be an associative symmetric A-algebra, finitely generated and free over A (see [9, Def. 7.1.1]). A standard
example of such structure is the group algebra of a finite group. Another example is the Iwahori-Hecke
algebra of a finite Weyl group. Let θ : A → L be a ring homomorphism into a field L such that L is the
field of fractions of θ(A). We obtain an L-algebra LH := L⊗A H, where L is regarded as an A-module via
θ. We assume that LH is split. Our problem is then to describe the set Irr(LH) of isomorphism classes of
simple LH-modules. Note that when H is a group algebra of a finite group and L is a sufficiently large field
of characteristic p dividing the order of the group, this problem coincides with that of finding the irreducible
modular representations of the finite group.

A useful tool in this setting is the decomposition matrix. Let K be the field of fractions of A and write
KH := K ⊗AH. We assume that A is integrally closed in K and that KH is split semisimple. Assume that
we get a classification of the simple KH-modules

Irr(KH) = {V λ | λ ∈ Λ} (1)

for some labeling set Λ. The decomposition map is then the map (see [9, Theorem 7.4.3])

dθ : R0(KH) → R0(LH)

between the associated Grothendieck groups of finite dimensional modules. In particular, for all λ ∈ Λ and
M ∈ Irr(LH), there are uniquely determined non-negative integers dλ,M such that

dθ([V
λ]) =

∑

M∈Irr(LH)

dλ,M [M ]. (2)

We then get the corresponding decomposition matrix (dλ,M )λ∈Λ,M∈Irr(LH), which controls the representation
theory of LH.
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Definition 1. A unitriangular basic set for (H, θ) is the datum of a triplet (B,≤,Ψ) where B ⊂ Λ, ≤ is a
total order defined on Λ and Ψ is a bijective map:

Ψ : B → Irr(LH)

satisfying:

1. for all λ ∈ B, we have dλ,Ψ(λ) = 1,

2. for all M ∈ Irr(LH) and λ ∈ Λ, we have dλ,M = 0 unless λ ≤ Ψ−1(M).

The existence of such a set can be helpful in order to solve our main problem. Indeed, we first remark
that

Irr(LH) = {Ψ(λ) | λ ∈ B},

and the unitriangularity implies that the rows (labeled by Λ) and columns (labeled by Irr(LH)) of the
associated decomposition matrix can be ordered to get a unitriangular shape as follows:

1 0 · · · 0 · · · 0

∗
. . .

. . .
...

...

∗ 1
...

∗ 1

∗ ∗
...

...

.

This then gives a natural and canonical way to label the simple modules of LH by the set B. Thus, it is an
important problem to construct, if possible, unitriangular basic sets associated to a given symmetric algebra.
In this paper, we will mainly focus on the case where H is the group algebra of the alternating or symmetric
group, or the Hecke algebra of the symmetric group. In the first two cases, the field L will be a field of
positive characteristic and the decomposition matrix given above corresponds to the usual “p-decomposition
matrix” for a finite group.

In [3], the first two authors have already shown the existence of a weak version of unitriangular basic
sets (simply called basic sets) for alternating groups. It was expected that this result may be strengthened
by exhibiting unitriangular basic sets. In Section 3, we will in fact show that this is not possible in general.
This result is surprising and unexpected, especially when we compare with the case of the symmetric groups
where it is well known that unitriangular basic sets do exist [11]. As usual, the representations of the
alternating groups can be obtained from those of the symmetric groups using Clifford theory. We will recall
several aspects of this theory in relation with these unitriangular basic sets, and in particular deduce a
criterion for the existence of unitriangular basic sets for alternating groups. Then, using this, we deduce
two counterexamples for the existence of unitriangular basic sets for n = 18 and n = 19 and p = 3 by two
different methods Furthermore, the definition of unitriangular basic set may be refined using the well known
partition of the simple modules into p-blocks. In the cases of the symmetric and alternating groups, we
can attach to each p-block a non-negative integer called its p-weight . The structure of two p-blocks with
the same p-weight is very similar. For example, Chuang and Rouquier [4] proved that two such p-blocks of
symmetric groups are derived equivalent, and, in [3], a weaker result for p-blocks of the alternating groups
with the same weight is shown. We can then expect that two p-blocks of the alternating groups with the
same p-weight should have the same unitriangularity property together. But we will show that this is not
the case.

Despite our counterexamples for the alternating groups, one can ask in which cases and for which types
of blocks unitriangular basic sets exist. To attack this problem, our strategy consists in focusing on the
symmetric group, where we will be interested in the existence of unitriangular basic sets of a special kind.

2



There is also another (connected) motivation to search for these sets. It is well known that the ordinary
irreducible representations of the symmetric group Sn are naturally parametrized by the set Π1(n) of parti-
tions of n, that is, the set of non-increasing sequences of non-negative integers of total sum n. In addition,
these representations, or equivalently the simple KSn-modules (where K is a field of characteristic 0), can
be constructed explicitly thanks to the Specht module theory (for example) and we get nice formulae for
their dimensions. For λ ∈ Π1(n), we write Sλ for the corresponding simple KSn-module. We have

Irr(KSn) = {Sλ | λ ∈ Π1(n)}. (3)

When L is a field of characteristic p > 0, there is also a canonical way to label the simple LSn-modules
by a certain subset Regp(n) of partitions, called the p-regular partitions. These are the partitions in Π1(n)
which do not have p or more parts of the same positive size. A complete set of simple LSn-modules is then
obtained as certain non zero quotients of the Specht modules:

Irr(LSn) = {Dλ | λ ∈ Regp(n)}.

In characteristic zero, the one-dimensional representations of the symmetric group are naturally labeled
by the partition (n) (for the trivial representation) and its conjugate partition (1, . . . , 1︸ ︷︷ ︸

n times

) (for the sign rep-

resentation). In positive characteristic p > 2, the trivial representation is still labeled by the partition (n)
but the partition (1, . . . , 1︸ ︷︷ ︸

n times

) is not p-regular in general so it cannot label the sign representation. In fact, the

problem of finding which p-regular partition labels the sign representation is a particular case of a problem
raised by Mullineux in [15]. The problem is the following. If λ is a partition, then it is well known that
tensoring the simple module Sλ by the sign representation leads to a simple module isomorphic to Sλ

′

where
λ′ is the conjugate of λ. This construction still makes sense in positive characteristic for the simple mod-
ules Dλ indexed by the p-regular partitions. However, the analogue of the conjugate partition is here more
difficult to obtain. In fact, we now know that it can be described by several non-trivial recursive algorithms
[12, 5, 16] (the first one having been conjectured by Mullineux [15]).

It is a natural question to ask if one can obtain a classification of the simple modules for which the tensor
product by the sign representation is easier to describe. One of our results will be to give an answer to this
problem using the theory of unitriangular basic sets.

Let us now explain in detail the organization of the paper. First, in Section 2, we consider the general
situation where G is a finite group, H is an index two subgroup of G and p is an odd prime number dividing
the order of G. We denote by ε : G → {−1, 1} the linear character of G obtained by inflating the faithful
linear character of G/H to G, and by σ : H → H, g 7→ xgx−1 an automorphism of H , where x ∈ G is a
fixed element with x /∈ H . In this context, we will give relations between unitriangular p-basic sets of G and
of H . More precisely, we will show that if B is a union of p-blocks that covers a σ-stable union b of p-blocks
of H such that b has a unitriangular p-basic set b, then there is a unitriangular p-basic set (B,≤,Θ) of B
satisfying the following two conditions:

(i) The set B is ε-stable.

(ii) The map Θ : B → IBrp(B) is ε-equivariant, where IBrp(B) is the set of irreducible Brauer characters
of B.

Furthermore, a unitriangular p-basic set of B that satisfies these properties restricts to a unitriangular p-basic
set of b. See Theorem 12, Theorem 18 and Remark 20.

In Section 3, we study in detail the case of the symmetric and alternating groups. We begin by applying
our previous results to this case. Then, in §3.2, we give two counterexamples for the existence of a unitri-
angular basic set for the alternating groups, by showing that the principal 3-blocks of A18 and A19 have no
unitriangular 3-basic set.

The aim of the last section is to give a general procedure to produce unitriangular basic sets in the
case of the symmetric and alternating groups when this is possible. In fact, we consider in Section 4 this
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problem in the more general setting of symmetric algebras. We propose a procedure to obtain from a
given unitriangular basic set, new such sets with nice additional properties. This part is quite elementary
but should be of independent interest. In Section 5, we give some applications of the above result to the
symmetric group and to a well known unitriangular basic set for this group, or more generally to its Hecke
algebra. Even these resulting new unitriangular p-basic sets are not completely stable by tensoring by the
sign of Sn in general, but they almost are. We then give a way to modify these sets to obtain p-basic sets
satisfying conditions (i) and (ii) above. Then, finally, we apply these results to prove that any p-block of An
with an odd p-weight has a unitriangular p-basic set. We also study explicitly an example which shows that
“unitriangularity” is not an invariant of the p-weight of the p-blocks of the alternating groups.

2 Groups with an index two subgroup

In this section, we study the relations between the basic sets of a group with those of an index two subgroup.
Of course, we can have in mind the symmetric and the alternating group as a fundamental example. Theorem
12 shows how one can obtain a unitriangular basic set for H from a particular unitriangular basic set for G.
Theorem 15 gives a necessary condition for the existence of a unitriangular basic set for H . Both results will
be crucial in the rest of the paper.

2.1 Setting

Let G be a finite group and p be a prime number dividing |G|. Assume that A is a valuation ring such
that p belongs to its maximal ideal. Suppose that its field of fractions K is a splitting field for G containing
A. Consider the canonical map θ : A → L, where L is the residue field of A. In this case, (K,A,L) is
a modular system for G and p large enough in the following. To any LG-module M , we can associate its
Brauer character ϕM . It is an A-valued class function which vanishes on the set of p-singular elements of
G. We write IBrp(G) for the set of Brauer characters of irreducible LG-modules, and Irr(G) for the set of
(ordinary) irreducible characters of G. We assume that Λ is an indexing set for Irr(G), so that we have
Irr(G) = {χλ | λ ∈ Λ}. Furthermore, for any ϕ ∈ K Irr(G), we define

ϕ̂(g) =

{
ϕ(g) if g is a p-regular element,

0 otherwise.
(4)

Recall that χ̂ ∈ N IBrp(G) for all χ ∈ Irr(G), and that

χ̂λ =
∑

M∈Irr(LH)

dλ,M ϕM . (5)

The numbers dλ,M are the p-decomposition numbers, and the associated matrix (dλ,M )λ∈Λ,M∈Irr(LH) is the
decomposition matrix. The number dλ,M is also denoted by dχ,ϕ when χ is the irreducible character of G
labeled by λ and ϕ is the Brauer character of the simple LH-module M .

Now, for ϕ ∈ IBrp(G), the projective indecomposable character corresponding to ϕ is the ordinary
character Φϕ defined by

Φϕ =
∑

χ∈Irr(G)

dχ,ϕχ. (6)

Write IPrp(G) for the set of projective indecomposable characters of G. The set N IPrp(G) is the set of
projective characters of G. On the other hand, recall that Z IPrp(G) is the set of generalized characters of
G vanishing on the set of p-singular elements. Recall that IPrp(G) is the dual basis of IBrp(G) with respect
to the hermitian scalar product 〈 , 〉G on K Irr(G), that is, the unique K-basis of the subspace of K Irr(G)
vanishing on p-singular elements such that 〈Φϕ, ϑ〉G = δϕ,ϑ for all ϕ, ϑ ∈ IBrp(G).

Lemma 2. We keep the notation as above. For any σ ∈ Aut(G) and ϕ ∈ IBrp(G), we have

σΦϕ = Φσϕ.
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Proof. Assume that we have σ ∈ Aut(G). By Equation (5) applied to σχ̂ and χ̂, and using that σχ̂ = σ̂χ,
we obtain ∑

ϕ∈IBrp(G)

dχ,ϕ
σϕ = σχ̂ = σ̂χ =

∑

ϕ∈IBrp(G)

dσχ,ϕ ϕ =
∑

ϕ∈IBrp(G)

dσχ,σ ϕ
σϕ.

Hence, the uniqueness of the coefficients in a basis gives

dχ,ϕ = dσχ,σϕ (7)

for all χ ∈ Irr(G) and ϕ ∈ IBrp(G). Furthermore, for ϕ ∈ IBrp(G), Equation (7) gives

σΦϕ =
∑

χ∈Irr(G)

dχ,ϕ
σχ =

∑

χ∈Irr(G)

dσχ,σϕ
σχ = Φσϕ,

as required.

The p-blocks of ordinary characters of G are the equivalence classes of the following equivalence relation on
Irr(G): for χ, ψ ∈ Irr(G), the characters χ and ψ are in relation if and only if there are ϕ0, . . . , ϕr ∈ IBrp(G)
such that χ ∈ Φϕ0

, ψ ∈ Φϕr
and, for each 0 ≤ i ≤ r − 1,

〈Φϕi
,Φϕi+1

〉G 6= 0.

The set of Brauer characters appearing in those PIMs form a p-block of Brauer characters. In the following,
a p-block of G can refer to a subset of Irr(G) or of IBrp(G) according to the context. It will be denoted by
Irr(B) or IBrp(B), or sometimes only by B if there is no possible confusion.

Lemma 3. Let σ ∈ Aut(G) and p be a prime number. Let B be a p-block of G. Then

σ Irr(B) = {σχ | χ ∈ Irr(B)} and σ IBrp(B) = {σϕ | ϕ ∈ IBrp(B)}

is a p-block of G, denoted by σB.

Proof. First, we remark that, for any class functions α and β of G, we have

〈α, β〉G = 〈σα, σβ〉G.

Now, χ and ψ are in Irr(B) if and only if there are ϕ0, . . . , ϕr ∈ IBrp(G) such that 〈Φϕi
,Φϕi+1

〉G 6= 0. Since

〈Φϕi
,Φϕi+1

〉G = 〈σΦϕi
, σΦϕi+1

〉G = 〈Φσϕi
,Φσϕi+1

〉G,

the result follows.

Definition 4. With the above notation, a subset B ⊆ Irr(B) of a p-block B is a p-basic set of B if the set
{χ̂ | χ ∈ B} is a Z-basis of the Z-module Z IBrp(B).

Remark 5. Since the set {χ̂ | χ ∈ Irr(B)} generates over Z the module Z IBrp(B), a subset B ⊆ Irr(B) is a
p-basic set of the p-block B if and only if

• For any χ ∈ Irr(B), χ̂ is a Z-linear combination of the set B̂ = {ψ̂ | ψ ∈ B}.

• The family B̂ is free.
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2.2 Decomposition matrix for index two subgroups

In this section, we keep the notation of the last section and we assume that p is odd. The following result
can be seen as an analogue of Clifford theory for the projective indecomposable modules.

Proposition 6. Let G be a finite group and H be a subgroup of G of index 2. Let p be an odd prime number
dividing |G|. Write ε : G → {−1, 1} for the surjective morphism with kernel H induced by the canonical
projection G→ G/H. Then

∀ϕ ∈ IBrp(G), ε⊗ Φϕ = Φε⊗ϕ. (8)

Moreover,

1. If ε⊗ ϕ 6= ϕ, then ResGH(Φϕ) = ResGH(Φε⊗ϕ) ∈ IPrp(H).

2. If ε⊗ ϕ = ϕ, then Φϕ splits into two projective indecomposable characters of H.

All projective indecomposable characters of H are obtained by this process.

Proof. First, we remark that ε⊗ϕ ∈ IBrp(G) for all ϕ ∈ IBrp(G). Furthermore, for ϕ, ϑ ∈ IBrp(G) we have

〈ε⊗ Φϕ, ε⊗ ϑ〉G =
1

|G|

∑

g∈G

ε(g)Φϕ(g)ε(g)ϑ(g)

=
1

|G|

∑

g∈G

ε(g)2Φϕ(g)ϑ(g)

= 〈Φϕ, ϑ〉G

= δϕ,ϑ

= δε⊗ϕ,ε⊗ϑ

= 〈Φε⊗ϕ, ε⊗ ϑ〉G.

Hence, by uniqueness of the dual basis, we deduce that

ε⊗ Φϕ = Φε⊗ϕ.

Now, since p is odd and G/H is cyclic of order prime to p, Clifford’s theory for Brauer characters [10,
Theorem 9.18] can be applied. We have

• If ε⊗ ϕ 6= ϕ, then ResGH(ϕ) = ResGH(ε⊗ ϕ) ∈ IBrp(H). To simplify the notation, we still denote by ϕ
the restriction of ϕ to H . [10, Theorem 9.8] also gives that

IndGH(ϕ) = ϕ+ ε⊗ ϕ. (9)

• If ε⊗ ϕ = ϕ, then ResGH(ϕ) = ϕ+ + ϕ− with ϕ± ∈ IBrp(H), and [10, Theorem 9.8] again gives that

IndGH(ϕ+) = IndGH(ϕ−) = ϕ. (10)

Write IPrp(H) = {Ψα | α ∈ IBrp(H)}. Let ϕ ∈ IBrp(G). Since ResGH(Φϕ) vanishes on p-singular elements of
H , it is a generalized projective character of H . Thus, there are integers aα for α ∈ IBrp(H) such that

ResGH(Φϕ) =
∑

α∈IBrp(H)

aαΨα.

Frobenius reciprocity gives that

aα = 〈ResGH(Φϕ), α〉H = 〈Φϕ, Ind
G
H(α)〉G,
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which is zero except for α = ResGH(ϕ) = ResGH(ε⊗ϕ) when ε⊗ϕ 6= ϕ by (9), and for α = ϕ± when ε⊗ϕ = ϕ
by (10). In these last cases, aα = 1. Hence, we obtain

ResGH(Φϕ) = ResGH(ε⊗ Φϕ) = Ψϕ if ε⊗ ϕ 6= ϕ,

and
ResGH(Φϕ) = Ψϕ+ +Ψϕ− if ε⊗ ϕ = ϕ,

as required. Finally, every projective indecomposable character of H is obtained by this process, because
if Ψα ∈ IPrp(H), then there is ϕ ∈ IBrp(G) such that 〈Ψα,Res

G
H(Φϕ)〉H = 〈IndGH(Ψα),Φϕ〉G 6= 0 since

IndGH(Ψα) ∈ Z IPrp(G). The result follows.

Remark 7. Note that, by Clifford theory, the constituents ϕ± ∈ IBrp(H) of an ε-stable Brauer character
ϕ ∈ IBrp(G) are G-conjugate, that is

ϕ+ = σϕ−

for some automorphism σ ∈ Aut(H) induced by an inner automorphism of G. In particular, Lemma 2
implies that

σΦϕ+ = Φϕ− . (11)

By (4), we have ε ⊗ ϕ̂ = ε̂⊗ ϕ for all class functions ϕ on G. Hence (5) gives dε⊗χ,ε⊗ϕ = dχ,ϕ for any
χ ∈ Irr(G) and ϕ ∈ IBrp(G). It follows that ε acts on the p-blocks of G. Let B be a p-block of G. We write
ResGH(B) for the set of constituents of the ResGH(χ) for χ ∈ B. The last proposition gives information on
the decomposition matrix of ResGH(B) from that of B as follows.

Proposition 8. Let B be a p-block of G. Write DB for the decomposition matrix of B.

1. If B 6= ε(B), then b = ResGH(B) = ResGH(ε(B)) is a p-block of H, and the restriction of DB to H
(which is equal to that of Dε(B)) is the decomposition matrix of b.

2. If B = ε(B), then ResGH(B) is the sum of at most two p-blocks of H. Moreover, if there is α ∈ B such
that α 6= ε⊗α, then it is a single p-block whose decomposition matrix has columns Ψϕ for ϕ ∈ B such
that ϕ 6= ε⊗ ϕ and Ψϕ+ and Ψϕ− otherwise.

Proof. Assume B 6= ε(B). Then B ∩ ε(B) = ∅ and B contains no ε-stable character. The columns of DB

and Dε(B) are the ordinary constituents of Φϕ and Φε⊗ϕ for ϕ ∈ B. Thanks to (8), the columns of DB and
Dε(B) are interchanged by ε, and part 1 of Proposition 6 implies that b = ResGH(B) is a single p-block of H
and that the restriction of DB to H is the decomposition matrix of b.

Assume now B = ε(B). Let α and β be in B. Then there are α0, . . . , αr ∈ B with α0 = α, αr = β
and such that 〈Φαi

,Φαi+1
〉G 6= 0 for 0 ≤ i ≤ r − 1. Furthermore, we derive from the proof of Proposition 6

that IndGH(Ψβ) = Φβ + ε ⊗ Φβ if β 6= ε ⊗ β, and IndGH(Ψβ+) = IndGH(Ψβ−) = Φβ otherwise. Suppose that
αi = αi ⊗ ε and αi+1 = αi+1 ⊗ ε. Then

〈Ψα+

i
+Ψα−

i
,Ψα±

i+1

〉H = 〈ResH(Φαi
),Ψα±

i+1

〉H = 〈Φαi
, IndGH(Ψα±

i+1

)〉G = 〈Φαi
,Φαi+1

〉G 6= 0.

It follows that either 〈Ψα+

i
,Ψα±

i+1

〉H 6= 0 or 〈Ψα−
i
,Ψα±

i+1

〉H 6= 0. Assume αi 6= εαi. If αi+1 = εαi+1, then

〈Ψαi
,Ψα±

i+1

〉H = 〈ResGH(Φαi
),Ψα±

i+1

〉H = 〈Φαi
, Ind(Ψα±

i+1

)〉G = 〈Φαi
,Φαi+1

〉G 6= 0.

If αi+1 6= εαi+1, then

〈Ψαi
,Ψαi+1

〉H = 〈ResGH(Φαi
),Ψαi+1

〉H = 〈Φαi
, Ind(Ψαi+1

)〉G = 〈Φαi
,Φαi+1

+ εΦαi+1
〉G 6= 0.

Now, assume there is α ∈ B such that α 6= ε⊗ α. Let β ∈ B. Then there are α1, . . . , αr ∈ B as above, and
the previous computations show that the constituents of ResGH(αi) and of ResGH(αi+1) for any 0 ≤ i ≤ r − 1
are in the same p-block of H . Hence, ResGH(B) is a p-block of H , and the result follows.
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2.3 Relation between unitriangular p-basic sets of G and H

We now make the following assumption

Hypothesis 9. Let G be a finite group and H be a normal subgroup of index 2. Let x ∈ G\H . Denote
by σ the automorphism of H induced by conjugation by x, and ε the linear character of G induced by the
canonical morphism G → G/H . Let p be an odd prime number and b be a union of p-blocks of H covered
by a union B of p-blocks of G.

Let B be a p-block of G. For any p-basic set B of B, we denote by ResGH(B) the set of constituents of
the ResGH(χ) for χ ∈ B.

Proposition 10. With the notation as above, if B is an ε-stable p-basic set of a union of p-blocks B of G
then

| IBrp(Res
G
H(B)| = |ResGH(B)|.

Proof. We follow step by step the proof of [3, Proposition 6.1]. This is given for the symmetric group Sn,
the sign character ε and the full decomposition matrix of Irr(Sn) but the argument is analogous for a group
G with index two subgroup H and a p-block B with ε-stable p-basic set B. We obtain

|Fixε(B)| = |Fixε(IBrp(B))|, (12)

where Fixε(B)) is the subset of ε-fixed characters of B. Now, since p is odd, Clifford’s modular theory [10,
Theorem 9.18] implies that each Brauer character of Fixε(IBr(B)) splits into two irreducible Brauer charac-
ters of ResGH(IBr(B)), while the others restrict irreducibly to H . Using that every irreducible character χ of
B also splits into two or one irreducible character(s) of ResGH(B) depending on whether χ ∈ Fixε(B) or not,
the result follows.

Remark 11. Let B be an ε-stable p-basic set of a p-block B of G. Even though ResGH(B) is not a p-basic
set of ResGH(B) in general, Proposition 10 asserts however that we can derive from B the number of Brauer
characters of ResGH(B).

The following result is one of the main results of this paper.

Theorem 12. We assume that Hypothesis 9 holds. We suppose that B has an ε-stable unitriangular p-basic
set (B,≤,Θ) such that Θ : B → IBrp(B) is ε-equivariant. Then b = ResGH(B) is a unitriangular p-basic set
of b.

Proof. We consider a subset A = {χ1, . . . , χt} of B that contains all ε-stable characters of B, and only one
of χ and ε⊗ χ when χ is a non ε-stable character of B. By Clifford theory, each character of A is above a
character of b. Furthermore, we suppose that the characters are chosen such that

χ1 ≤ χ2 ≤ · · · ≤ χs and ε⊗ χi ≤ χi if i is such that ε⊗ χi 6= χi.

Since B is ε-stable, Condition (ii) and Equation (8) give that χi is ε-stable if and only if ΦΘ(χi) is. If χi is
ε-stable, then we denote by ϕ±

i the constituents of ResGH(Θ(χi)). If χi 6= ε⊗ χi, then Θ(χi) 6= ε⊗Θ(χi) by
Condition (ii), and we write ϕi = ResGH(Θ(χi)) ∈ IBrp(b). Now, we order ResGH(B) such that if ψ and ψ′

are constituents of ResGH(χi) and ResGH(χj) with i ≤ j, then ψ ≤ ψ′. Suppose that χi ∈ B is ε-stable. Write
ψ+
i and ψ−

i for the constituents of ResGH(χi). We have

dψ±
i ,ϕ

+

i
+ dψ±

i ,ϕ
−
i

= 〈ψ±
i ,Φϕ+

i
〉H + 〈ψ±

i ,Φϕi
〉H

= 〈ψ±
i ,Res

G
H(ΦΘ(χi))〉H

= 〈χi,ΦΘ(χi)〉G
= 1.

8



Hence {dψ±
i ,ϕ

+

i
, dψ±

i ,ϕ
−
i
} = {0, 1}, because decomposition numbers are non-negative integers. We assume

that the labeling of ψ±
i is chosen such that dψ+

i ,ϕ
+

i
= 1 and dψ+

i ,ϕ
−
i

= 0. Furthermore, (7) implies that

dψ−
i ,ϕ

−
i
= 1 and dψ−

i ,ϕ
+

i
= 0. With these choices, we define ψ+

i ≤ ψ−
i . Finally, we set

Ψ : ResGH(B) −→ IBrp(b),
ψ±
i 7−→ ϕ±

i

ψi 7−→ ϕi

.

Assume that 1 ≤ i ≤ j ≤ t.

• Suppose that ψi and ψj are σ-stable. Then

dψi,ϕj
= 〈ψi,Φϕj

〉H
= 〈IndGH(ψi),ΦΘ(χj)〉G
= 〈χi + ε⊗ χi,ΦΘ(χj)〉G
= dχi,Θ(χj) + dε⊗χi,Θ(χj).

(13)

However, ε⊗χi ≤ χi ≤ χj . If i < j then dχi,Θ(χj) = 0 = dε⊗χi,Θ(χj), and dψi,ϕj
= 0. If i = j, then (13)

gives dψi,ϕi
= 1 because dχi,Θ(χi) = 1, and dε⊗χi,Θ(χi) = 0 since ε⊗ χi ≤ χi.

• Suppose that ψi is σ-stable and j labels ψ+
j and ψ−

j . Then

dψi,ϕ
+

j
+ dψi,ϕ

−
j
= 〈ψi,Φϕ+

j
〉H + 〈ψi,Φϕ−

j
〉H = 〈ψi,Φϕ+

j
+Φϕ−

j
〉H = 〈ψi,Res

G
H(ΦΘ(χj))〉H

= 〈IndGH(ψi),ΦΘ(χj)〉G = 〈ε⊗ χi + χi,ΦΘ(χj)〉G

= dχi,Θ(χj) + dε⊗χi,Θ(χj)

= 0

since ε⊗ χi ≤ χi < χj .

• Suppose that i and j label non σ-stable characters. Assume i < j. The same computation as above
gives

dψ±
i ,ϕ

+

j
+ dψ±

i ,ϕ
−
j
= 〈χi,ΦΘ(χj)〉G

= dχi,Θ(χj)

= 0.

If i = j, then dψ+

i ,ϕ
+

i
= 1 = dψ−

i ,ϕ
−
i

and dψ+

i ,ϕ
−
i
= 0 by construction.

• Suppose that i labels two characters and χj is ε-stable. Then

dψ±
i ,ϕj

= 〈ψ±
i ,Res

G
H(ΦΘ(χj))〉H = 〈IndGH(ψ±

i ),ΦΘ(χj)〉G

= 〈χi,ΦΘ(χj)〉G

= dχi,Θ(χj)

= 0.

This proves the result.

We consider the set T of ε-stable irreducible characters χ of G such that the constituents χ+ and χ− of their
restriction to H satisfies χ̂+ 6= χ̂−.
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Remark 13. Note that, if B is a unitriangular p-basic set of G which satisfies the assumptions of Theorem 12,
then the σ-stable characters of B lie in T . Indeed, since ResGH(B) is a p-basic set of H , for any ε-stable
character χ of B, by Remark 5, the family (χ̂+, χ̂−) is free and, in particular, χ̂+ 6= χ̂−.

Example 14. Let G = S6 and H = A6. Write sgn for the sign character of G. The principal 3-block
B0 of G has 9 irreducible characters and 5 Brauer characters. It has a unitriangular 3-basic set (B,≤,Θ)
with B = {χ1, χ2, χ3, χ4, χ5}, such that χ2 = sgn⊗χ1, χ4 = sgn⊗χ3, and χ5 is ε-stable and lies in T . The
restriction of the 3-decomposition matrix to B is

χ1 1 0 0 0 0

χ2 0 1 0 0 0

χ3 1 0 1 0 0

χ4 0 1 0 1 0

χ5 1 1 1 1 1

.

We remark that Θ is ε-equivariant. We set ϕ̃i = Θ(χi). Furthermore, we write ψi = ResGH(χi) for 1 ≤ i ≤
4 and ResGH(χ5) = ψ+

5 + ψ−
5 . Then the set A appearing in the proof of Theorem 12 is A = {χ2, χ4, χ5}. Set

ϕ2 = ResGH(ϕ̃1), ϕ4 = ResGH(ϕ̃4) and ResGH(ϕ̃5) = ϕ+
5 +ϕ−

5 . Using the fact that 〈ψ+
5 ,Φϕi

〉H = 〈ψ−
5 ,Φϕi

〉H =
dχ5,Φϕ̃i

for i ∈ {2, 4} (see for example the last computation in the proof of Theorem 12), we deduce from
Theorem 12 that the restriction to {ψ2, ψ4, ψ

+
5 , ψ

−
5 } of the 3-decomposition matrix of the principal block of

A6 is

ψ2 1 0 0 0

ψ4 1 1 0 0

ψ+
5 1 1 1 0

ψ−
5 1 1 0 1

.

Now, we assume that Hypothesis 9 holds and that b has a unitriangular p-basic set (b, ≤, Ψ). We write
Rb for the set of Brauer characters ϕ̃ ∈ IBrp(G) such that the restriction of ϕ to H splits into the sum of
two Brauer characters of b. Set

Sb = {ϕ, σϕ | ϕ̃ ∈ Rb} and Cb = {Ψ−1(ϕ) | ϕ ∈ Sb}.

Notation 15. Assume Hypothesis 9 is satisfied, and that b has a unitriangular p-basic set (b,≤,Ψ). For
any ϕ ∈ Sb, we write E(ϕ) and E(ϕ)⋆ for the irreducible characters of b such that

{E(ϕ), E(ϕ)⋆} = {Ψ−1(ϕ),Ψ−1(σϕ)} and E(ϕ) ≤ E(ϕ)⋆. (14)

Note that this construction depends on the basic set b.

Theorem 16. Assume Hypothesis 9 holds and that b has a unitriangular p-basic set (b,≤,Ψ). Then, for
any ϕ ∈ Sb, we have

σÊ(ϕ) 6= Ê(ϕ) and E(ϕ) ≤ σE(ϕ). (15)

Furthermore, if we write
χ = IndGH(E(ϕ)) and ϑ = IndGH(ϕ),

then χ ∈ Irr(G) and
dχ,ϑ = 1.

10



Proof. First, we remark that σb ∩ b 6= ∅ since ϕ and σϕ lie in b. Hence, σb = b. Furthermore, Φϕ and Φσϕ

are distinct by Lemma 2 since ϕ 6= σϕ.
By assumption, b is a unitriangular p-basic set of b and dE(ϕ),ϕ = 1. Hence, Equation (7) gives

dσE(ϕ),σϕ = 1 6= 0,

and E(ϕ)⋆ ≤ σE(ϕ), where E(ϕ)⋆ is defined in Notation 15. Then (14) implies that E(ϕ) ≤ σE(ϕ).
On the other hand, by the choice of E(ϕ), we also have dE(ϕ),σϕ = 0. Hence Ê(ϕ) 6= σÊ(ϕ), otherwise
dE(ϕ),σϕ = dσE(ϕ),σϕ = 1. In particular, E(ϕ) 6= σE(ϕ), and χ is an irreducible character of G which
satisfies χ = ε⊗ χ by Clifford theory. Write

χ̂ =
∑

β∈IBrp(G)

dχ,β β.

By Clifford theory, restricting this relation to H , we obtain

Ê(ϕ) + σÊ(ϕ) =
∑

β=ε⊗β∈IBrp(G)

dχ,β (β
+ + β−) +

∑

β 6=ε⊗β

(dχ,β + dχ,ε⊗β)β,

and the following two identities:

Ê(ϕ) =
∑

β=ε⊗β

(dE(ϕ),β+β+ + dE(ϕ),β−β−) +
∑

β 6=εβ

dE(ϕ),β β,

σÊ(ϕ) =
∑

β=ε⊗β

(dσE(ϕ),β+β+ + dσE(ϕ),β−β−) +
∑

β 6=εβ

dσE(ϕ),β β.

By uniqueness of the coefficients in a basis, for all β ∈ IBrp(G) such that β = ε⊗ β, we obtain

dχ,β = dE(ϕ),β+ + dσE(ϕ),β+ and dχ,β = dE(ϕ),β− + dσE(ϕ),β− . (16)

In particular, dχ,ϑ = dE(ϕ),ϕ + dσE(ϕ),ϕ. Assume that dχ,ϑ > 1. Then Equation (7) gives

dE(ϕ),σϕ = dσE(ϕ),ϕ

= dχ,ϑ − dE(ϕ),ϑ

= dχ,ϑ − 1
> 0,

which is a contradiction. The result follows.

For any subsets A ⊆ Irr(H) and B ⊆ IBrp(H), we write DA,B for the restriction of the p-decomposition
matrix of H to A×B.

Proposition 17. Assume Hypothesis 9 holds, and that b has a unitriangular p-basic set (b,≤,Ψ) Let D be
the p-decomposition matrix of G. Then there is a subset Tb of T so that DTb,Rb

is unitriangularisable.

Proof. We label Rb = {ϕ̃1, . . . , ϕ̃r} so that

E(ϕ1) ≤ E(ϕ2) ≤ · · · ≤ E(ϕr).

For any 1 ≤ i ≤ r, set
χi = IndGH(E(ϕi)).

Then χi ∈ T by Theorem 16. Set
Tb = {χ1, . . . , χr}. (17)
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We remark that the elements of Tb are pairwise distinct. Indeed, if χi = χj for i 6= j, then E(ϕi) =
σE(ϕj).

However, Theorem 16 gives that E(ϕi) ≤ σE(ϕi) = E(ϕj) and E(ϕj) ≤ σE(ϕj) = E(ϕi). Hence, E(ϕi) =
E(ϕj) =

σE(ϕi), which is a contradiction. In particular, |Tb| = r = |Rb|.
Now, we define an order on Tb by setting χi ≤ χj whenever i ≤ j, and we set

Θ : Tb −→ Rb, χi 7−→ ϕ̃i.

The map Θ is well-defined and surjective by construction. Hence, it is bijective by cardinality. Now, we
prove that DTb,Rb

is unitriangular with respect to the datum (≤,Θ). First, by Theorem 16, we have, for all
1 ≤ i ≤ r

dχi,Θ(χi) = dIndG
H(E(ϕi)),IndG

H(ϕi) = 1.

Assume i ≤ j (in particular χi ≤ χj). Then

dχi,ϕ̃j
= 〈χi,Φϕ̃j

〉G

= 〈E(ϕi),Res
G
H(Φϕ̃j

)〉H (by Frobenius Reciprocity)

= 〈E(ϕi),Φϕj
+ Φσϕj

〉H (by Proposition 6)

= 〈E(ϕi),Φϕj
)〉H + 〈E(ϕi),Φσϕj

〉H

= 〈E(ϕi),ΦΨ(E(ϕj)))〉H + 〈E(ϕi),ΦσΨ(E(ϕj))〉H

= dE(ϕi),Ψ(E(ϕj)) + dE(ϕi),Ψ(E(ϕj)∗).

However, E(ϕi) ≤ E(ϕj) ≤ E(ϕj)
∗, hence

dE(ϕi),Ψ(E(ϕj)) = 0 and dE(ϕi),Ψ(E(ϕj)∗) = 0.

This proves that dχi,ϕ̃j
= 0 whenever χi ≤ χj , as required.

Theorem 18. Let G be a finite group and H be an index 2 subgroup of G. Let p be an odd prime number.
Assume Hypothesis 9 is satisfied, and that b has a unitriangular p-basic set (b,≤,Ψ). Let B be the union of
all p-blocks of G covering b. Then B has a unitriangular p-basic set.

Proof. We keep Notation 15, and define Eb = Irr(b)\{E(ϕ)∗ | ϕ̃ ∈ Rb}. Suppose that Eb = {ψ1, . . . , ψs}
with

ψ1 ≤ ψ2 ≤ · · · ≤ ψs.

Note that, for all 1 ≤ i ≤ s, we have σψi = ψi if and only if ΦΨ(ψi) =
σΦΨ(ψi). For any 1 ≤ i ≤ s, we write

ϕ̃+
i and ϕ̃−

i for the constituents of IndGH(Ψ(ψi)) if ψi is σ-stable, and ϕ̃i = IndGH(Φ(ψi)) if ψi is not σ-stable.
Moreover, we also write

ResGH(ϕ̃i
+) = ϕi and ResGH(ϕ̃i) = ϕi +

σϕi.

Assume that IndGH(ψi) has two constituents, χ+
i and χ−

i . Then

d±
χ+

i ,ϕ̃
±
i

+ d±
χ−
i ,ϕ̃

±
i

= 〈IndGH(ψi),Φϕ̃±
i
〉G

= 〈ψi,Res
G
H(Φϕ̃±

i
)〉H

= 〈ψi,Φϕi
〉H

= 1.

(18)

Since these are non-negative integers, one has to be equal to 1 and the other to 0. We then choose the
labeling such that dχ+

i ,ϕ̃
+

i
= 1 and dχ−

i ,ϕ̃
−
i
= 0. Furthermore, since the characters of {χ+

i , χ
−
i } and of the set

{Φϕ̃+

i
,Φϕ̃−

i
} are interchanged by ε, we deduce that dχ+

i ,ϕ̃
−
i
= 0 and dχ−

i ,ϕ̃
−
i
= 1.

We define B as the set of constituents of the IndGH(ψi)’s for 1 ≤ i ≤ s. We order B so that the natural
order of the indices is respected and χ+

i ≤ χ−
i . Finally, we set

Θ : B −→ IBrp(B),
χ±
i 7−→ ϕ̃±

i

χi 7−→ ϕ̃i

. (19)

12



Now, we prove that B is a unitriangular p-basic set of B with respect to (≤,Θ). We already checked in
Proposition 17 that if χi and χj are ε-stable and such that χi ≤ χj , then dχi,Θ(χi) = 1 and dχi,Θ(χj) = 0.
Suppose 1 ≤ i < j ≤ s.

• Assume that i labels two non ε-stable characters χ+
i and χ−

i . If χj is ε-stable, then so is ϕ̃j and

dχ+

i ,ϕ̃j
+ dχ−

i ,ϕ̃j
= 〈IndGH(ψi),Φϕ̃j

〉G

= 〈ψi,Res
G
H(Φϕ̃j

)〉H

= 〈ψi,Φϕj
〉H + 〈ψi,Φσϕj

〉H

= 0,

because ψj = E(ϕj), whence ψi ≤ E(ϕj) ≤ E(ϕj)
∗. It follows that dχ+

i ,ϕ̃j
= 0 = dχ−

i ,ϕ̃j
since both

are non-negative integers. If j labels two non ε-stable characters, then ResGH Φϕ̃+

j
= ResGH Φϕ̃−

j
= Φϕj

.

Hence, an analogue computation as above shows that

d±
χ+

i ,ϕ̃
±
j

+ d±
χ−
i ,ϕ̃

±
j

= 〈IndGH(ψi),Φϕ̃±
j
〉G

= 〈ψi,Res
G
H(Φϕ̃±

j
)〉H

= 〈ψi,Φϕj
〉H

= 0

because ψi ≤ ψj . Finally, by the choice of our labeling (see the discussion after (18)), we have
dχ±

i ,Φϕ̃
±
i

= 1 and dχ+

i ,Φϕ̃
−
i

= 0.

• Assume χi is ε-stable and j labels two non ε-stable characters. Then

dχi,ϕ̃
±
j

= 〈χi,Φϕ̃±
j
〉G

= 〈IndGH(ψi),Φϕ̃±
j
〉G

= 〈ψi,Res
G
H(Φϕ̃±

j
)〉H

= 〈ψi,Φϕj
〉H = dψi,ϕj

= 0.

This proves the result.

Example 19. Consider the unitriangular 3-basic set (b,≤,Ψ) of the principal block b0 of A6 obtained in
Example 14, where b = {ψ2, ψ4, ψ

+
5 , ψ

−
5 }. We have Rb0

= {χ5} and

E(ϕ+
5 ) = E(ϕ−

5 ) = ψ+
5 and E(ϕ+

5 )
∗ = E(ϕ−

5 )
∗ = ψ−

5 .

Applying Theorem 18, we obtain a unitriangular 3-basic set of B0 with decomposition matrix of the form

1 0 0 0 0

0 1 0 0 0

∗ ∗ 1 0 0

∗ ∗ 0 1 0

1 1 1 1 1

.

Note that, even though we deduce the existence of a unitriangular 3-basic set of B0, Theorem 18 does
not give its complete associated decomposition matrix. Since dψ4,Φϕ2

= 1, we only know that the missing

values are either

(
1 0
0 1

)
or

(
0 1
1 0

)
.
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Remark 20. The p-basic set b̃ of B constructed from b in Theorem 18 is ε-stable, and its ε-stable characters
lie in T by construction. Furthermore, the bijection Θ is ε-equivariant by (19). In particular, b̃ satisfies the
assumptions of Theorem 12. Hence, if b has a unitriangular p-basic set, then b has a unitriangular p-basic
set that comes from the restriction of an ε-stable p-basic set of B. However, note that in general

ResGH (̃b) 6= b.

Example 21. The principal 3-block b0 of A6 has an ε-stable character ψ6 of degree 5 whose modular
restriction with respect to the labeling of IBr3(b0) given in Example 14 is

[0 1 1 1].

In particular, b′ = {ψ2, ψ4, ψ
+
5 , ψ6} is also a unitriangular 3-basic set of b0. Note that, when we apply

Theorem 18 with b′, we obtain the same unitriangular basic set of B0 as that of Example 19.

3 Consequences for the p-basic sets of the alternating groups

3.1 Ordinary and modular representations

Let p be a prime number and n be a positive integer. For this section, we refer to [11] for more details.
For any λ ∈ Π1(n) we denote by χλ the character of the simple module Sλ given in (3). We write λ′

for the conjugate partition of λ and recall that Sλ
′

= sgn⊗Sλ, where sgn is the sign character of Sn.
Furthermore, the irreducible characters of An can be described from those of Sn as follows. If λ 6= λ′, then
ResSn

An
(χλ) = ResSn

An
(sgn⊗χλ) is irreducible and denoted by ρλ. If λ = λ′, then ResSn

An
(χλ) splits into two

irreducible characters ρ+λ and ρ−λ of An. These two class functions take the same values everywhere, except
on the elements with cycle structure given by the partition λ, whose parts are the diagonal hook lengths of
λ. These elements form a single conjugacy class in Sn which splits into two classes λ− and λ+ of An, and,
following [11, Theorem 2.5.13], the notation can be chosen such that

ρ±λ (tλ+
) = xλ ± yλ and ρ±λ (tλ−

) = xλ ∓ yλ,

where tλ+
(resp. tλ−

) is a representative of the class λ+ (resp. λ−) of An, and, if λ = (d1, d2, . . . , dk), then

xλ =
1

2
(−1)(n−k)/2 and yλ =

1

2

√
(−1)(n−k)/2d1 · · · dk. (20)

Lemma 22. Let p be an odd prime number. The set T defined on page 9 for An is

T = {χλ | λ ∈ G},

where G is the set of self-conjugate partitions none of whose diagonal hooks has length divisible by p.

Proof. For any self-conjugate partition λ, if p divides a part of λ, then the corresponding class is p-singular.
In particular, ρ̂±λ (tλ−

) = 0 = ρ̂±λ (tλ+
), and ρ̂+λ = ρ̂−λ . Thus, χλ /∈ T . Now, if λ ∈ G, then λ+ and λ−

label p-regular classes of An. The values of ρ̂+λ and ρ̂−λ on these classes are distinct by (20), and the result
follows.

By [11], the simple Sn-modules in characteristic p are labeled by the set of p-regular partitions Rp
n of n.

Write Dµ for the simple Sn-module labeled by µ ∈ Rp
n and ϕµ for its Brauer character. For any p-regular

partition µ, the Mullineux partition m(µ) associated to µ is the p-regular partition such that

sgn⊗Dµ ≃ Dm(µ).

We denote by Mp
n the set of p-regular partitions µ such that m(µ) = µ. Since p is odd, and following the

notation of §2.2, we then have

IBrp(An) = {ϕµ | µ 6= m(µ)} ∪ {ϕ±
µ | µ ∈ Mp

n}. (21)
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We write σ for conjugation by the transposition (1 2). In particular, for any self-conjugate partition λ ∈ Π1
n

and µ ∈ Mp
n,

σρ±λ = ρ∓λ and σϕ±
µ = ϕ∓

µ .

Now, we recall the construction of the p-blocks of Sn and An. To any partition λ of n, we can associate
its p-core λ(p) and its p-quotient λ(p) = (λ1, . . . , λp) ∈ Πp(w), where Πp(n) is the set of p-multipartitions of
n and w = (n− |λ(p)|)/p. Note that the map

λ 7→ (λ(p), λ
(p)) (22)

is bijective. Recall that (see for example [3, Lemma 3.1])

(λ′)(p) = λ′(p) and (λ′)(p) =
(
(λp)′, (λp−1)′, . . . , (λ1)′

)
. (23)

Furthermore, the Nakayama Conjecture [11, §6.1] asserts that two irreducible characters χλ and χµ lie in
the same p-blocks of Sn if and only if λ(p) = µ(p). It follows that the p-block of Sn are parametrized by
the p-cores of partitions of n. In particular, by (22), the irreducible characters lying in a p-block of Sn

corresponding to a p-core γ are labeled by the set Πp(w), where w = (n− |γ|)/p is called the p-weight of the
block.

The p-blocks of An can then be parametrized as follows. Let γ be the p-core of a partition of n. Write
Bγ for the p-block of weight w of Sn corresponding to γ, and bγ = ResSn

An
(Bγ). If γ 6= γ′ then bγ = bγ′ is a

p-block of An. If γ = γ′ and w > 0, then the character χλ of Sn such that λ(p) = γ and λ(p) = ((w), ∅, . . . , ∅)
is not ε-stable by (23). Hence bγ is again a single p-block of An by Proposition 8. Finally, when w = 0, the
block Bγ contains a unique character whose restriction to An splits into two irreducible characters of An,
which give two p-blocks of An with defect zero.

Remark 23. The set T of Lemma 22 is described in [3, Lemma 3.4] in terms of the bijection (22). It is the
set C of self-conjugate partitions λ ∈ Π1

n whose p-quotient’s (p + 1)/2-th part is the empty partition (or,
equivalently, whose diagonal hook lengths are prime to p).

Lemma 24. Let p be an odd prime number. Let γ be a symmetric p-core of n labeling a p-block of Sn with
positive p-weight.

(i) If bγ has a p-basic set b, then the non σ-stable characters of b are labeled by the set Cγ of partitions of
C with p-core γ. Moreover, any λ ∈ Cγ labels at least one non σ-stable character of b.

(ii) If Bγ has an ε-stable p-basic set B which restricts to a p-basic set of bγ, then the set of ε-stable
characters of B is labeled by Cγ.

Proof. Let b be a p-basic set of bγ . The non σ-stable characters of b have to be labeled by partitions of Cγ
by Lemma 22. Let λ ∈ Cγ . Assume that b contains neither ρ+λ nor ρ−λ . Since b is a p-basic set of bγ , by
Remark 5 there are ψ1, . . . , ψr ∈ b and a1, . . . , ar ∈ Z such that

ρ̂+λ =
r∑

j=1

ajψ̂j . (24)

By Lemma 22, tλ+
and tλ−

are p-regular elements. On the other hand, for any symmetric partition µ 6= λ,

ρ+µ (tλ±
) = ρ−µ (tλ±

). Now, using that ρ±λ /∈ b and evaluating equality (24) on tλ±
, we obtain

ρ̂+λ (tλ+
) =

r∑

j=1

ajψ̂j(tλ+
) =

r∑

j=1

ajψ̂j(tλ−
) = ρ̂+λ (tλ−

),

which is a contradiction. Hence, either ρ+λ or ρ−λ lies in b.
Suppose now there is an ε-stable p-basic set B of Bγ such that ResSn

An
(B) = b. Again by Lemma 22, the

ε-stable characters of B are in T , that is, are labeled by partitions of Cγ . But at least one character of b is
labeled by a partition of Cγ and its induced character to Sn is in B. The result follows.
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Remark 25. (i) Note that if b is the restriction of an ε-stable p-basic set of Bγ , then b contains both ρ+λ
and ρ−λ for all λ ∈ Cγ . The converse is not true, as we see in Remark 5 and in Example 21.

(ii) Assume bγ has a unitriangular p-basic set. Then for any ϕ̃ ∈ Rb, there exists a unique λ ∈ Cγ such
that either E(ϕ) = ρ+λ or E(ϕ) = ρ−λ . In particular, the set Tb of Proposition 17 constructed in (17) is
labeled by Cγ .

Example 26. We return to Example 14. We have γ = ∅, B0 has 3-weight 2, and the characters χ1, . . . , χ5

are labeled by the partitions (6), (16), (5, 1), (2, 14) and (3, 2, 1), respectively. The 3-quotient of (3, 2, 1) is
((1), ∅, (1)). In particular, (3, 2, 1) lies in T , and is the only self-conjugate partition of 6 of weight 2 in T .

3.2 Counterexamples for alternating groups

Now, we will prove that, for p = 3, the alternating groups A18 and A19 have no unitriangular 3-basic set.

3.2.1 The case of A18 and p = 3

In this section, we consider the principal block b0 of A18 for p = 3. Assume b0 has a unitriangular 3-basic
set (b,≤,Ψ). Let B0 be the principal block of S18. Note that this is the unique 3-block of S18 that covers
b0. Furthermore, B0 has exactly three PIMs Φµ1 , Φµ2 and Φµ3 fixed under sgn, where µ1, µ2 and µ3 are
the 3-regular partitions of M3

18 given by

µ1 = (10, 42), µ2 = (9, 42, 1) and µ3 = (7, 5, 22, 12).

Since b0 has a unitriangular p-basic set, by Lemma 24 and Remark 25, the set Tb defined in (17) is the set
of characters of S18 labeled by C0 = {λ1, λ2, λ3}, where

λ1 = (9, 2, 17), λ2 = (7, 4, 22, 13) and λ3 = (6, 5, 23, 1).

Note that (λ1)(3) = ((13), ∅, (3)), (λ2)(3) = ((3), ∅, (13)) and (λ3)(3) = ((2, 1), ∅, (2, 1)).
Now, using Chevie [6], we obtain that the part of the decomposition matrix of B0 corresponding to these

characters is

D =

1 1 0

2 1 1

2 0 1

, (25)

where the lines are labeled (from top to bottom) by λ1, λ2 and λ3 and the columns (from left to right)
by µ1, µ2 and µ3. Note that D is not unitriangularisable (because D has only two 0 entries). Thus, by
Proposition 17, b0 has no unitriangular 3-basic set.

3.2.2 The case of A19 and p = 3

In this section, we show that, in the case of the alternating group A19, for p = 3, there cannot exist a
unitriangular p-basic set.

To see that, we need the theory of Fock spaces. We briefly recall how this theory appears in our context
and we refer to [8, Ch. 6] for details. Let v be an indeterminate and define Fv to be the C(v) vector space
with basis given by all integer partitions:

Fv :=
⊕

n∈Z≥0

⊕

λ∈Π1(n)

C(v)λ.

The module Fv is in fact an integrable module over the affine quantum group of affine type A. The action of
the divided powers of the Chevalley operators Ei and Fi can be explicitly given via a combinatorial formula
which we do not recall here. We get the following well-known proposition whose proof can be found for
example in [13, Prop 2.3].
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Proposition 27. Assume that there exist k ∈ N, (i1, . . . , ik) ∈ (Z/pZ)k and (a1, . . . , ak) ∈ Nk such that

F
(a1)
i1

. . . F
(ak)
ik

.∅ = λ+
∑

µ6=λ

aλ,µ(v)µ

with aµ,λ ∈ vNv for all µ 6= λ, then λ is p-regular and we have, for all λ 6= µ, that aµ,λ(1) = dλ,µ.

Now, to each p-regular partition λ, by [8, §3.5.11], one can attach a certain sequence of elements in Z/pZ:

ηp(λ) := i1, . . . , i1︸ ︷︷ ︸
a1 times

, . . . , ik, . . . , ik︸ ︷︷ ︸
ak times

,

where a1 + · · · + ak = n. This sequence is the analogue of the sequence obtained using the ladder method
(but this is not identical.) From this sequence, we define an element of the Fock space which is the action of
a certain divided power of the Chevalley operators Fi on the empty partition:

A(λ) := F
(a1)
i1

. . . F
(ak)
ik

.∅ ∈ Fv.

Let us now consider the case n = 19 and p = 3, and the 3-regular partition λ = (10, 4, 4, 1). First, one
can check that m(10, 4, 4, 1) = (10, 4, 4, 1). Now, we have:

ηp(λ) = (0, 2, 1, 1, 0, 2, 2, 1, 0, 0, 0, 1, 2, 2, 0, 1, 1, 2, 0),

which allows the definition of

A(10, 4, 4, 1) := F0F2F
(2)
1 F0F

(2)
2 F1F

(3)
0 F1F

(2)
2 F0F

(2)
1 F2F0.∅.

This element may be computed using the file “arikidec” in the directory “contr” ’ in the package Chevie [7] of
gap3 (the function is called “aliste”). We get that:

A(10, 4, 4, 1) = (10, 4, 1, 1) + v(9, 5, 4, 1) + v(8, 5, 4, 1, 1) + v(10, 4, 3, 2) + v2(9, 5, 3, 2) + v(8, 5, 3, 3) + 2v2(8, 5, 3, 2, 1)
+2v2(8, 4, 3, 2, 2) + (v3 + v)(7, 5, 4, 3) + v2(7, 4, 4, 4) + (v4 + 2v2)(7, 5, 4, 2, 1) + (v3 + v)(7, 4, 4, 2, 2)
+v(7, 6, 5, 1) + v2(6, 6, 6, 1) + v2(7, 6, 4, 1, 1) + v2(7, 6, 3, 3) + v3(7, 6, 3, 2, 1) + v3(6, 6, 3, 2, 2)
+v2(7, 5, 5, 2) + v3(6, 5, 4, 4) + (v4 + 2v2)(6, 5, 4, 2, 2) + v(10, 3, 3, 2, 1) + v(9, 3, 3, 2, 2)
+v3(8, 3, 3, 3, 2) + v2(10, 3, 3, 1, 1, 1) + 2v2(9, 3, 3, 1, 1, 1, 1) + v3(8, 5, 3, 1, 1, 1) + 2v3(8, 4, 3, 1, 1, 1, 1)
+(v4 + v2)(7, 5, 3, 2, 1, 1) + 2v2(7, 4, 3, 2, 2, 1)3v3(7, 4, 3, 2, 1, 1, 1) + 2v3(7, 3, 3, 3, 2, 1)+
v4(7, 3, 3, 3, 1, 1, 1) + v3(5, 5, 5, 2, 2) + v3(5, 5, 4, 4, 1) + (v4 + v2)(5, 5, 4, 3, 2) + v3(7, 5, 4, 1, 1, 1)+
2v3(6, 5, 4, 1, 1, 1, 1) + v4(5, 5, 5, 1, 1, 1, 1)2v3, (6, 5, 3, 2, 2, 1) + 2v4, (6, 5, 3, 2, 1, 1, 1)+
(2v4 + v2)(5, 5, 3, 3, 2, 1) + (v5 + v3)(5, 5, 3, 3, 1, 1, 1) + v3(5, 4, 4, 4, 2) + (v4 + v2)(6, 4, 3, 2, 2, 1, 1)+
(2v4 + v2)(5, 4, 3, 3, 2, 1, 1) + v3, (5, 5, 3, 2, 2, 2) + v3(5, 4, 3, 2, 2, 2, 1) + v3(4, 4, 4, 4, 2, 1)+
(v5 + v3)(4, 4, 4, 3, 2, 1, 1) + v4(4, 4, 4, 2, 2, 2, 1) + v2(7, 3, 3, 3, 3) + v3(5, 5, 3, 3, 3) + v3(6, 3, 3, 3, 2, 1, 1)+
v4(5, 3, 3, 3, 2, 2, 1) + v4(4, 4, 3, 3, 3, 1, 1) + v4(4, 3, 3, 3, 3, 3) + v5(4, 3, 3, 3, 3, 2, 1) + v(10, 3, 2, 1, 1, 1, 1)+
v2(8, 5, 2, 1, 1, 1, 1) + (v4 + v2)(8, 3, 3, 1, 1, 1, 1, 1) + v2(10, 2, 2, 2, 1, 1, 1) + v3(9, 2, 2, 2, 2, 1, 1),
v3(8, 2, 2, 2, 2, 1, 1, 1) + v2(7, 5, 2, 2, 1, 1, 1) + v4(7, 4, 2, 2, 2, 1, 1) + 2v3(7, 3, 3, 2, 1, 1, 1, 1)+
v4(7, 3, 2, 2, 2, 1, 1, 1) + v2(10, 3, 1, 1, 1, 1, 1, 1) + v3(8, 5, 1, 1, 1, 1, 1, 1) + v3(10, 2, 1, 1, 1, 1, 1, 1, 1)+
v3(9, 2, 1, 1, 1, 1, 1, 1, 1, 1) + v4(8, 2, 2, 1, 1, 1, 1, 1, 1, 1) + v3(7, 5, 1, 1, 1, 1, 1, 1, 1) + v4(7, 4, 1, 1, 1, 1, 1, 1, 1, 1)+
2v4(7, 3, 3, 1, 1, 1, 1, 1, 1) + v5(7, 3, 2, 1, 1, 1, 1, 1, 1, 1) + v2(7, 4, 4, 1, 1, 1, 1) + v3(5, 5, 4, 1, 1, 1, 1, 1)+
2v4(5, 5, 3, 2, 1, 1, 1, 1) + 2v4(5, 4, 3, 2, 2, 1, 1, 1) + v4(4, 4, 4, 4, 1, 1, 1) + v5(4, 4, 4, 2, 2, 1, 1, 1)+
v3(6, 3, 3, 2, 2, 1, 1, 1) + v5(5, 3, 3, 3, 2, 1, 1, 1) + v4(6, 3, 3, 1, 1, 1, 1, 1, 1, 1) + v5(5, 5, 3, 1, 1, 1, 1, 1, 1)+
v5(5, 4, 3, 1, 1, 1, 1, 1, 1, 1) + v4(4, 4, 3, 2, 2, 1, 1, 1, 1) + v5(4, 4, 3, 2, 1, 1, 1, 1, 1, 1) + v5(4, 3, 3, 3, 2, 1, 1, 1, 1)+
v6(4, 3, 3, 3, 1, 1, 1, 1, 1, 1)

One can see that it satisfies the hypotheses of Proposition 27. Now, for n = 19, we have three partitions
in C(1) which are µ1 := (6, 5, 3, 2, 2, 1), µ2 = (7, 4, 3, 2, 1, 1, 1) and µ3 = (10, 1, 1, 1, 1, 1, 1, 1, 1). We thus have
dλ,µ1 = 2, dλ,µ2 = 3 and dλ,µ3 = 0. Thus, by Proposition 17, there is no unitriangular p-basic set for A19

and p = 3.
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4 Unitriangular basic sets for symmetric algebras

This section concerns the existence and the construction of unitriangular basic sets in the context of sym-
metric algebras (see the definition in [9] - this thus covers the particular case of finite groups). Given a
unitriangular basic set and an involution on the algebra, we show how one can construct a new unitriangular
basic set which enjoys a nice “stability” property with respect to the involution.

4.1 Setting

In this section and the following one, we will make two hypotheses.

Hypothesis 28. Let A be an integral domain, L be a field, and let θ : A → L be a ring homomorphism.
Let H be an associative symmetric A-algebra.

1. We assume that (B,≤,Ψ) is a unitriangular basic set for (H, θ) with respect to the bijective map
Ψ : B → Irr(LH).

2. We assume that we have an algebra automorphism φ ∈ Aut(H) such that φ2 = IdH.

From this, we will show how one can construct another unitriangular basic set, different from B in general,
and which enjoys nice properties with respect to the automorphism φ. To do this, we first remark the
following.

• If N is a simple KH-module (resp. LH-module), then we can twist this module by φ to obtain a new
simple KH-module (resp. LH-module) Nφ. For λ ∈ Λ, we denote by λ′ the element of Λ such that
(V λ)φ ≃ V λ

′

. For λ ∈ B, we denote by m(λ) the element of B such that Ψ(λ)φ ≃ Ψ(m(λ)).

• By the definition of decomposition maps, there is a compatibility with the action by automorphisms
on modules, and we thus have, for all λ ∈ Λ and µ ∈ B:

dλ,Ψ(µ) = dλ′,Ψ(m(µ)).

We will need the following two elementary results coming from the above hypotheses (the first one being
an analogue of [2, Prop 4.2] in our context).

Lemma 29. For all λ ∈ B, we have m(λ)′ ≤ λ and λ′ ≤ m(λ).

Proof. For λ ∈ B, we have that dm(λ),Ψ(m(µ)) = 1 and, by the above property:

dm(λ),Ψ(m(λ)) = dm(λ)′,Ψ(λ).

By the definition of unitriangular basic set, this means that m(λ)′ ≤ λ. Now, to conclude, note that m(λ)
is in B and that m2 is the identity.

The following result follows from a direct application of Lemma 29.

Lemma 30. Let λ ∈ B.

1. If λ = m(λ), then we have λ ≥ λ′.

2. If λ = λ′, then we have m(λ) ≥ λ.
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4.2 Constructing new unitriangular basic sets

We keep the notation of the previous section. We first define a new total order on the set Λ by setting λ � µ
if:

• λ = µ,

• or λ = µ′ and µ ≤ µ′,

• or if
Max≤(λ, λ

′) < Max≤(µ, µ
′).

We now define a map:
Θ : B → Λ

λ 7→ Max�{λ,m(λ)′}.

In other words, by Lemma 29, we have:

Θ(λ) =

{
λ if m(λ) ≤ λ,
m(λ)′ if m(λ) > λ.

Proposition 31. The map Θ is injective.

Proof. Assume that (λ, µ) ∈ B2 satisfies Θ(λ) = Θ(µ). If Θ(λ) = λ and Θ(µ) = µ, or if Θ(λ) = m(λ)′

and Θ(µ) = m(µ)′, we directly obtain that λ = µ, so we may assume that we have Θ(µ) = m(µ)′ so that
µ < m(µ), and Θ(λ) = λ so that λ ≥ m(λ). We thus have m(µ)′ = λ. We show that this case is not possible.

Indeed, by Lemma 29, we have µ ≥ m(µ)′ so m(µ) > m(µ)′. On the other hand, as λ ≥ m(λ), we have
m(µ)′ ≥ m(m(µ)′). Now, by Lemma 29, since λ = m(µ)′ is in B, we have m(m(µ)′) ≥ m(µ) and thus
m(µ) ≤ m(µ)′, which is a contradiction. We must thus have λ = µ, and Θ is injective.

From this, we can prove the main result of this section.

Theorem 32. Under the Hypothesis 28, set B̃ := Θ(B) and

Ψ̃ : B̃ → Irr(LH)

such that, for all λ ∈ B̃, we have Ψ̃(λ) = Ψ(Θ−1(λ)). Then (B̃,�, Ψ̃) is a unitriangular basic set for (H, θ).

Proof. Assume that λ ∈ B.

• Assume that Θ(λ) = Max�(λ,m(λ)′) = λ. This means that we have

Max≤(λ, λ
′) ≥ Max≤(m(λ),m(λ)′).

As λ is in B, we already know that dλ,Ψ(λ) = 1. In addition, we have dµ,Ψ(λ) = 0 unless µ ≤ λ. We
also have dν,Ψ(m(λ)) = 0 unless ν ≤ m(λ).

Assume that dµ,Ψ̃(λ) 6= 0. We then have Ψ̃(λ) = Ψ(λ), so dµ,Ψ(λ) 6= 0. We need to show that µ � λ.
We have µ ≤ λ, and thus µ ≤ Max≤(λ, λ′). We also have dµ′,Ψ(m(λ)) 6= 0, and thus µ′ ≤ m(λ). But we
have m(λ) ≤ Max≤(λ, λ′). Thus the result follows in this case.

• Assume on the other hand that

Θ(λ) = Max�(λ,m(λ)′) = m(λ)′.

This means that we have Max≤(λ, λ′) ≤ Max≤(m(λ),m(λ)′). We already know dm(λ),Ψ(m(λ)) = 1
because m(λ) is in B, and thus that dm(λ)′λ = 1.

Assume that dµ,Ψ̃(Θ(λ)) 6= 0. We thus have dµ,Ψ(λ) 6= 0, and then we need to show that µ � Θ(λ),
or in other words that µ � m(λ). We must have µ ≤ λ, which implies that µ ≤ Max≤(λ, λ′) ≤
Max≤(m(λ),m(λ)′). On the other hand, we have dµ′,Ψ(m(λ)) 6= 0, and thus µ′ ≤ m(λ), which implies
that µ′ ≤ Max≤(m(λ),m(λ)′). This means that µ � m(λ), whence the result.
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This proves the claim.

Let us now give some consequences of the above theorem. First, we get a new classification of the set of
simple modules for LH:

Irr(LH) := {Ψ̃(λ) | λ ∈ B̃}.

For λ ∈ B̃, we denote by m̃(λ) the element of B̃ such that Ψ̃(λ)φ ≃ Ψ̃(m̃(λ)).

• Assume that M ∈ Irr(LH) is such that Mφ ≃ M . Set λ := Φ−1(M). Then m(λ) = λ, and thus
Θ(λ) = λ.

• Assume that M ∈ Irr(LH) is such that Mφ is not isomorphic to M . Set λ := Φ−1(M). Then
Θ(m(λ)) = Θ(λ)′.

As a conclusion, if λ ∈ B̃, then we have

m̃(λ) =

{
λ if Ψ̃(λ)φ ≃ Ψ̃(λ) ( ⇐⇒ m(λ) = λ),
λ′ otherwise.

Note that, in the latter case, we have λ′ 6= λ by Lemma 30, but that we have also λ′ 6= λ in the first case in
general.

Thus, the basic set B̃ allows a parametrization of the set of simple LH-modules where the twist by the
involution is more convenient to understand on the parametrization. In terms of B, we have:

B̃ = {λ | λ ∈ B, m(λ) < λ} ∪ {λ′ | λ ∈ B, m(λ) < λ} ∪ {λ | λ ∈ B, m(λ) = λ}.

We present a number of applications below.

5 Consequences for symmetric groups and their Hecke algebras

The aim of this section is to apply the previous section to the case of the Hecke algebra of type A, and to
the case of the symmetric and alternating groups.

5.1 General case

We now apply our result to the case of the Hecke algebra of the symmetric group. This will be a first
application of Theorem 32.

Let n be a positive integer. We write H for the Hecke algebra of the symmetric group Sn over a
commutative ring R with unit, and let q ∈ R be invertible. We have a presentation of H by:

• generators: Ts, where s ∈ S := {s1, . . . , sn−1};

• relations: TsiTsj = TsjTsi if |i − j| > 1, TsiTsi+1
Tsi = Tsi+1

TsiTsi+1
for all i ∈ {1, . . . , n− 2}, and the

relation (Ti − q)(Ti + 1) = 0 for all i = 1, . . . , n− 1.

We assume that we have a specialization θ : R → L, where L is a field. We denote

e := min(i ∈ N | 1 + θ(q) + . . .+ θ(q)i−1 = 0),

and assume that e ∈ N>1. In this case, we are in the setting of the previous section.

• It is known that the H-simple modules are naturally indexed by the set Λ of all partitions of rank n,
that is, non increasing sequences λ = (λ1, . . . , λr) of integers of total sum n.

• B is the set Re
n of e-regular partitions, that is, the set of partitions λ = (λ1, . . . , λr) of n such that

there exist no i ∈ N such that λi = . . . = λi+e−1 6= 0.
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• ≤ is any refinement of the dominance order on partitions; for example, take ≤ to be the lexicographic
order on partitions.

• φ is the algebra automorphism sending Ti to −Ti + (q − 1) for all i = 1, . . . , n− 1.

• For λ ∈ Λ, it is well-known that λ′ is the usual conjugate partition of λ, that is, the partition obtained
by reflecting the Young diagram of the partition λ along its main diagonal.

• Finally, m is known as the Mullineux involution, which we still denote by m. It can be computed using
different recursive algorithms which we don’t recall here [2, 12, 15].

Applying the main result of the previous section thus yields the following result:

Proposition 33. (H, θ) admits a unitriangular basic set (B̃,�, Ψ̃), where � is defined from ≤ in (4.2),

Ψ̃ = Ψ ◦Θ−1, and

B̃ = {λ ∈ Rp
n | m(λ) < λ} ⊔ {λ′ | λ ∈ Rp

n, m(λ) < λ} ⊔ {λ ∈ Rp
n | m(λ) = λ}.

We thus obtain a new classification of the set of simple modules. Comparing to the usual classifica-
tion given by the e-regular partitions, the main advantage of this classification is that the twist by the
automorphism is easy to read on it.

• Assume that e = 2. In this case, we have, for all 2-regular partitions, m(λ) = λ, because the involution
m is the identity. This happens for example when q = 1 and L is a field of characteristic 2. In this
case, the Hecke algebra is nothing but the group algebra of the symmetric group over this field. We
see in this case that B = B̃. However, the orders ≤ and � are of course different.

• The most interesting case is the case where e 6= 2. Indeed, the sign representation is labeled by the
partition (1, . . . , 1), and this label lies in B̃ as in the semisimple case. However, if we want to obtain
an explicit description of B̃, we need to compute the Mullineux involution for each e-regular partition,
which is a long, recursive and non-trivial problem. It would thus be desirable to describe the e-regular
partitions satisfying m(λ) ≤ λ and m(λ) = λ without computing m(λ). We hope to come back to this
problem in future work.

The above result can in particular be applied to the case where q = 1 and R is a field of characteristic p > 2,
so that e = p. The algebra H is then nothing but the group algebra of the symmetric group over a field of
characteristic p. It is now natural to ask if the unitriangular basic set satisfies the hypothesis of Theorem
12. It should not be the case, otherwise we would always have a unitriangular basic set for the alternating
groups, and we have already seen that this is not the case. The problem comes from the fact that our basic
set is not stable with respect to the sign representation. In fact, from Lemma 30, we deduce:

• if λ 6= m(λ), then both λ and λ′ are in the basic set B̃, and we do have Ψ̃(λ′) = ε⊗ Ψ̃(λ);

• if λ = m(λ), then λ′ is not in B̃.

Example 34. Take p = 3 and n = 5. Then the set of 3-regular partitions of n is:

B = {(2, 2, 1), (3, 1, 1), (3, 2), (4, 1), (5)}.

Here we consider the lexicographic order on partitions. For each of these partitions, we compute the image
under the Mullineux involution to find our new basic set B̃ (computed with respect to the lexicographic
order). We have m(2, 2, 1) = (4, 1) > (2, 2, 1), so that (4, 1) ∈ B̃ and (2, 1, 1, 1) = (4, 1)′ ∈ B̃. We have
m(3, 1, 1) = (3, 1, 1) ∈ B̃. And m(3, 2) = (5) > (3, 2), so that (5) ∈ B̃ and (1, 1, 1, 1, 1) = (5)′ ∈ B̃. We get:

B̃ = {(5), (1, 1, 1, 1, 1), (3, 1, 1), (4, 1), (2, 1, 1, 1)}.

We can see that, in this particular case, the unitriangular basic set is stable with respect to the sign and
ε-equivariant.
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Example 35. Take p = 3 and n = 8. Again using the lexicographic order, we get:

B̃ = {(4, 2, 1, 1), (2, 2, 2, 1, 1), (2, 2, 1, 1, 1, 1), (3, 1, 1, 1, 1, 1), (3, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1),

(5, 2, 1), (5, 3), (6, 1, 1), (6, 2), (7, 1), (8)}.

Note that the conjugate of (4, 2, 1, 1) is not in the basic set. Thus, the unitriangular basic set isn’t stable
with respect to tensoring by the sign character.

Remark 36. In this section, we have considered the lexicographic order for our examples, but we can in
fact choose any total order which is compatible with the dominance order. For example, we can take the
following one. For (λ, µ) ∈ Λ2

λ ≤′ µ ⇐⇒ λ′ ≥ µ′,

where ≥ is the lexicographic order. Quite remarkably, this order gives a different basic set in general. For
example, the partition λ = (6, 2, 2, 1, 1) is in the basic set associated with the lexicographic order when p = 3,
because this is a 3-regular partition and we have m(λ) = (5, 3, 2, 2). So we have m(λ) ≤ λ. However we see
that m(λ) ≥′ λ so that (5, 3, 2, 2) (and its conjugate) are in the unitriangular basic set associated with ≤′,
while (6, 2, 2, 1, 1) is not.

Of course, all of the above results make sense if we restrict ourselves to blocks of the symmetric group.
Let γ be a p-core and assume that we have constructed our unitriangular basic set (B̃γ ,�, Ψ̃) with respect
to an order associated to the block Bγ of the symmetric group. Then we have :

B̃γ = B̃1
γ ⊔ B̃

2
γ ,

where
B̃1
γ = {λ ∈ Rp

n | m(λ) < λ} ⊔ {λ′ | λ ∈ Rp
n, m(λ) < λ}

and B̃2
γ = {λ ∈ Rp

n | m(λ) = λ}.

In the final two subsections, we will discuss two favorable cases which allow the construction of a unitriangular
basic set respecting the hypotheses of Theorem 12:

• Subsection 5.2 concerns a case where B̃2
γ = ∅.

• In Subsection 5.3, we study a case where there exists a bijection

ρ : B̃2
γ → Gγ ,

where Gγ is the set of self-conjugate partitions whose diagonal p-hooks have length not divisible by p,
satisfying the following two properties:

– For all µ ∈ B̃2
γ , we have dρ(µ),µ = 1.

– For all µ ∈ B̃2
γ and for all λ ∈ B̃γ such that ρ(µ) ≺ λ ≺ µ, we have dρ(µ),λ = 0.

Then, in this case, by [1], it follows from the form of the decomposition matrix that (B̃′
γ ,�, Ψ̃

′) is a
unitriangular p-basic set for Bγ , where

B̃′
γ = B̃1

γ ⊔ ρ(B̃
2
γ),

and, for all λ ∈ B̃′
γ , we have:

Ψ̃′(λ) =

{
Ψ̃(λ) if λ ∈ B̃1

γ ,

Ψ̃(ρ−1(λ)) if λ ∈ ρ(B̃2
γ).

From this, one can deduce a unitriangular p-basic set for bγ by Theorem 12.

Of course, the above unitriangular basic set B̃ satisfies the assumptions of Theorem 12 if no self-Mullineux
e-regular partition exists. This is exactly what happens for the blocks considered in the next subsection.
There is another way to obtain the desired unitriangular basic set which is explained in [1].
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5.2 Blocks with odd weight

Theorem 37. Let p be an odd prime number. If bγ is a p-block of An with an odd p-weight, then bγ has a
unitriangular p-basic set.

Proof. Let Bγ be the p-block of Sn covering bγ . We only have to consider the case where Bγ is ε-stable.
First, we remark that

Bγ ∩ T = ∅.

Indeed, any character χλ ∈ Bγ ∩ T satisfies λ(p) = γ and λ(p) ∈ Cγ . In particular, if w is the p-weight of
Bγ , then

w =

p∑

i=1

|λi| = 2

(p−1)/2∑

i=1

|λi|,

which contradicts the hypothesis that w is odd. If then (B̃γ ,�, Ψ̃) is a unitriangular basic set constructed from
the unitriangular p-basic set indexed by the p-regular partitions (using for example the lexicographic order),
then B̃γ = B̃1

γ , whence, by the above discussion, this unitriangular p-basic set restricts to a unitriangular
basic set of bγ , as required.

Remark 38. The condition of Theorem 37 is not necessary. Indeed, we see in Example 14 that the principal
3-block of A6, which has 3-weight 2, has a unitriangular 3-basic set.

5.3 The case of S23 and p = 3

We now consider the case n = 23 and p = 3, and the p-block associated to the 3-core (3, 1, 1). We also
consider the order on partitions given in Remark 36 (this is thus not the lexicographic order).

The unitriangular basic set of the block of the symmetric group with core (3, 1, 1) in Proposition 33
contains 65 characters:

• 31 characters labeled by the 3-regular partitions λ such that λ > m(λ),

• 31 characters labeled by the conjugates of the above partitions,

• 3 characters labeled by the partitions which are stable with respect to the Mullineux involution; these
are (12, 6, 5), (10, 4, 4, 3, 1, 1) and (9, 6, 3, 3, 1, 1).

We denote by B̃1
(3,1,1) the partitions labeling the characters of the first two sets of characters above, and by

B̃2
(3,1,1) the partitions labeling the three characters of the last set, so that

B̃2
(3,1,1) = {(12, 6, 5), (10, 4, 4, 3, 1, 1), (9, 6, 3, 3, 1, 1)}.

We now focus on the elements of IPrp(G) labeled by these last three partitions. As in section 3.2.2, we
consider the following element of the Fock space Fv:

A(9, 6, 3, 3, 1, 1) = F2F
(2)
1 F 2

0F
(3)
2 F1F

2
0F2F

(2)
1 F2F

(2)
0 F1F

(2)
2 F0F1F2F0.∅,
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which gives the following element of the Fock space:

A(9, 6, 3, 3, 1, 1) = (9, 6, 3, 3, 1) + v(8, 7, 3, 3, 1, 1) + v(9, 5, 4, 3, 1, 1) + v2(8, 5, 5, 3, 1, 1) + v2(7, 7, 4, 3, 1, 1))
+ v(9, 4, 4, 3, 2, 1) + (v3 + v)(8, 4, 4, 3, 2, 2) + v2(9, 4, 3, 3, 3, 1) + v2(8, 4, 3, 3, 3, 2) + v3(7, 4, 4, 3, 3, 2)
+ v4 + v2)(8, 4, 4, 3, 1, 1, 1, 1) + v2(6, 6, 5, 3, 2, 1) + (v4 + v2)(6, 6, 4, 3, 2, 2) + v3(6, 6, 3, 3, 3, 2)
+ v4(6, 5, 4, 3, 3, 2) + v3(6, 6, 5, 3, 1, 1, 1) + (v5 + v3)(6, 6, 4, 3, 1, 1, 1, 1) + v3(6, 4, 4, 3, 3, 2, 1)
+ v(9, 6, 2, 2, 2, 2) + v2(8, 7, 2, 2, 2, 2) + v2(9, 4, 4, 2, 2, 2) + v3(9, 4, 2, 2, 2, 2, 2) + v3(8, 4, 2, 2, 2, 2, 2, 1)
+ v3(6, 6, 5, 2, 2, 2) + v4(6, 6, 2, 2, 2, 2, 2, 1) + v4(6, 4, 4, 3, 2, 2, 2) + v5(6, 4, 4, 2, 2, 2, 2, 1)
+ v3(8, 7, 2, 2, 1, 1, 1, 1) + v2(9, 5, 2, 2, 1, 1, 1, 1, 1) + v3(7, 7, 2, 2, 1, 1, 1, 1, 1) + v3(9, 4, 4, 2, 1, 1, 1, 1)+
+ v3(8, 4, 3, 3, 1, 1, 1, 1, 1) + v4(7, 4, 4, 3, 1, 1, 1, 1, 1) + v4(9, 4, 2, 2, 2, 1, 1, 1, 1) + v4(8, 4, 2, 2, 2, 2, 1, 1, 1)
+ v4(6, 6, 3, 3, 1, 1, 1, 1, 1) + v4(6, 5, 5, 2, 1, 1, 1, 1, 1) + v5(6, 5, 4, 3, 1, 1, 1, 1, 1) + v5(6, 6, 2, 2, 2, 2, 1, 1, 1)
+ v6(6, 4, 4, 2, 2, 2, 1, 1, 1) + v2(9, 4, 4, 3, 1, 1, 1) + v3(6, 5, 5, 3, 3, 1) + v4(6, 4, 4, 3, 3, 1, 1, 1)
+ v3(7, 6, 5, 3, 1, 1) + v2(9, 6, 2, 2, 1, 1, 1, 1) + v3(9, 4, 3, 2, 1, 1, 1, 1, 1) + v3(9, 4, 3, 2, 1, 1, 1, 1, 1)
+ v2(9, 6, 2, 2, 1, 1, 1, 1) + v4(6, 6, 5, 2, 1, 1, 1, 1) + v5(6, 4, 4, 3, 2, 1, 1, 1, 1) + v3(7, 6, 5, 3, 1, 1).

The assumptions of Proposition 27 are satisfied. This means in particular that the decomposition number
d(6,5,5,3,3,1),(9,6,3,3,1,1) is 1. Note that (6, 5, 5, 3, 3, 1) is in G(3,1,1).

Now let us consider

A(10, 4, 4, 3, 1, 1) = F1F2f
3
1F0F

(4)
3 F1F

(2)
0 F

(2)
1 F

(2)
2 F

(2)
0 F

(2)
1 F2F0.∅,

which gives the following element of the Fock space:

A(10, 4, 4, 3, 1, 1) = (10, 4, 4, 3, 1, 1) + v(9, 5, 4, 3, 1, 1) + v2(9, 4, 4, 4, 1, 1) + v3(9, 4, 4, 3, 2, 1) + v4(9, 4, 4, 3, 1, 1, 1)
+ v(7, 6, 5, 3, 1, 1) + v2(6, 6, 6, 3, 1, 1) + v3(6, 6, 5, 4, 1, 1) + v4(6, 6, 5, 3, 2, 1) + v5(6, 6, 5, 3, 1, 1, 1)
+ v(7, 4, 4, 3, 3, 2) + v2(6, 5, 4, 3, 3, 2) + v3(6, 4, 4, 4, 3, 2) + v4(6, 4, 4, 3, 3, 3) + v5(6, 4, 4, 3, 3, 2, 1)
+ v(10, 4, 2, 2, 1, 1, 1, 1, 1) + v2(9, 5, 2, 2, 1, 1, 1, 1, 1) + v3(9, 4, 3, 2, 1, 1, 1, 1, 1) + v4(9, 4, 2, 2, 2, 1, 1, 1, 1)
+ v5(9, 4, 2, 2, 1, 1, 1, 1, 1, 1) + v2(7, 4, 4, 3, 1, 1, 1, 1, 1) + v3(6, 5, 4, 3, 1, 1, 1, 1, 1) + v5(6, 4, 4, 3, 2, 1, 1, 1, 1)
+ v5(6, 4, 4, 3, 2, 1, 1, 1, 1) + v6(6, 4, 4, 3, 1, 1, 1, 1, 1) + v5(6, 4, 4, 3, 2, 1, 1, 1, 1).

Again, the assumptions of Proposition 27 are satisfied. This means in particular that the decomposition
number d(9,4,3,2,1,1,1,1,1),(10,4,4,3,1,1) is 1 and (9, 4, 3, 2, 1, 1, 1, 1, 1) is in G(3,1,1).

Now, let us consider the partition (12, 6, 5) and the partition (12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) which is in
G(3,1,1). Note that the regularization of this last partition is exactly given by (12, 6, 5), so that the associated
decomposition number d(12,1,1,1,1,1,1,1,1,1,1,1),(12,6,5) is also 1.

Now, we will use the same argument as the one used in [1], and already explained in §5.1. Let µ be one
of the above three 3-regular partitions fixed by the Mullineux involution. For each of them, we have found
an element ρ(µ) := ν ∈ C(3,1,1) such that dν,Ψ̃(µ) = 1. Assume that, for all λ in B̃ such that ν ≺ λ ≺ µ, we
have dν,Ψ̃(λ) = 0. Here, we have ρ(12, 6, 5) = (12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), ρ(9, 6, 3, 3, 1, 1) = (6, 5, 5, 3, 3, 1)

and ρ(10, 4, 4, 3, 1, 1) = (9, 4, 3, 2, 1, 1, 1, 1, 1). Then, by [1], we have that

(B̃1 ⊔ {(9, 4, 3, 2, 1, 1, 1, 1, 1), (12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (6, 5, 5, 3, 3, 1)},�, Ψ̃′)

gives a unitriangular basic set for the block which satisfies the assumption of Theorem 12. Indeed, in the three
cases, the decomposition number dν,Ψ̃(λ) is dν,Ψ(λ) if λ is p-regular and λ ≥ m(λ), and dν,Ψ(m(λ′)) = dν,Ψ(λ′)

otherwise. It is zero if λ does not dominate ν or λ′ does not dominate ν. This property is always satisfied,
which can be seen using a direct computation, except in the case where ν = (6, 5, 5, 3, 3, 1), µ = (9, 6, 3, 3, 1, 1)
and λ = (10, 4, 4, 3, 1, 1). But we know the decomposition number dν,Ψ(λ) (see above) in this case, and we
see that it is zero.

It thus gives a unitriangular basic set for the associated block of the group A23. Furthermore, by [4], the
blocks of the symmetric group with the same weights are all derived equivalent. The above result together
with the example studied in §3.2.1 show that the set of conditions of Theorem 12 is not an invariant under
this equivalence.
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