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STABILIZATION OF BRESSE SYSTEM WITH THERMODIFFUSION EFFECTS
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We study the stabilization of the the Bresse beam with thermodiffusion effects. An exponential stability is obtained in the case of equal speed of propagation. Otherwise, a polynomial stability is proved. The techniques used is the frequency domain method.

0.1. Introduction.                                                    ρ 1 ϕ tt -k(ϕ x + ψ + lw) x -l k 0 + β 2 2 2
(ω x -lϕ)

-lγ 2 θ 2 -lβ 2 C 2 + µϕ t = 0 in (0, L) × (0, ∞), ρ 2 ψ tt -bψ xx + k(ϕ x + ψ + lω) -γ 1 θ 1x -β 1 C 1x = 0 in (0, L) × (0, ∞), ρ 1 ω tt -k 0 (ω x -lϕ) x + kl(ϕ x + ψ + lω) -γ 1 θ 2x -β 1 C 2x = 0 in (0, L) × (0, ∞),

ρ 3 θ 1t -1 C 1t -m 1 θ 1xx -γ 1 ψ tx = 0 in (0, L) × (0, ∞), C 1t -h 1 (β 1 ψ x + 1 C 1 -1 θ 1 ) xx = 0 in (0, L) × (0, ∞), ρ 4 θ 2t -1 C 2t -m 2 θ 2xx -γ 2 (ω x -lϕ) t = 0 in (0, L) × (0, ∞), C 2t -h 2 β 2 (ω x -lϕ) + 2 C 2 -2 θ 2 xx = 0 in (0, L) × (0, ∞) (0.1) 
P 1 = β 1 ψ x + 1 C 1 -1 θ 1 , P 2 = β 2 (ω x -lϕ) + 2 C 2 -2 θ 2 .
Substituting C 1 and C 2 , (0.1) leads to

                                               ρ 1 ϕ tt -k(ϕ x + ψ + lw)
x -k 0 l(ω x -lϕ) -lγ 21 θ 2 -lγ 22 P 2 +µϕ t = 0 in (0, L) × (0, ∞), ρ 2 ψ tt -α 1 ψ xx + k(ϕ x + ψ + lω) -γ 11 θ 1x -γ 12 P 1x = 0 in (0, L) × (0, ∞), ρ 1 ω tt -α 2 (ω x -lϕ) x + kl(ϕ x + ψ + lω) -γ 21 θ 2x -γ 22 P 2x = 0 in (0, L) × (0, ∞),

c 1 θ 1t + d 1 P 1t -m 1 θ 1xx -γ 11 ψ tx = 0 in (0, L) × (0, ∞), d 1 θ 1t + r 1 P 1t -h 1 P 1xx -γ 12 ψ tx = 0 in (0, L) × (0, ∞), c 2 θ 2t + d 2 P 2t -m 2 θ 2xx -γ 21 (ω x -lϕ) t = 0 in (0, L) × (0, ∞),
d 2 θ 2t + r 2 P 2t -h 2 P 2xx -γ 22 (ω x -lϕ) t = 0 in (0, L) × (0, ∞), (0.2) where

α 1 = b - β 2 1 1 , γ 11 = γ 1 + β 1 1 1 , γ 12 = β 1 1 , c 1 = ρ 3 + 2 1 1 , d 1 = 1 1 , r 1 = 1 1 , α 2 = k 0 - β 2 2 2 , γ 21 = γ 2 + β 2 2 2 , γ 22 = β 2 2 , c 2 = ρ 4 + 2 2 2 , d 2 = 2 2 , r 2 = 1 2 .
The initial conditions for this system are given by: ω(0, .) = ω 0 , ω t (0, .) = ω 1 , ϕ(0, .) = ϕ 0 , ϕ t (0, .) = ϕ 1 , ψ(0, .) = ψ 0 , ψ t (0, .) = ψ 1 on (0, L).

(0.3)
Two type of boundary conditions are considered:

ϕ(t, x) = ψ(t, x) = ω(t, x) = θ 1 (t, x) = P 1 (t, x) = θ 2 (t, x) = P 2 (t, x) = 0, x = 0, L (Dirichlet) (0.4) and ϕ(t, x) = ψ x (t, x) = ω x (t, x) = θ 1 (t, x) = P 1 (t, x) = θ 2 (t, x) = P 2 (t, x) = 0, x = 0, L (Neuman). (0.5)
This work we generalize the study of the Timoshenko beam with thermodiffusion and we and treat the proposed open problem by the authors [START_REF] Aouadi | Existence, Stability and numerical results for a Timoshenko beam with thermodiffusion effects[END_REF]. Indeed, they showed, without assuming the well-known equal wave speeds condition, the lack of exponential stability for the Neumann problem, meanwhile one linear frictional damping is strong enough to guarantee the exponential stability for the Dirichlet problem. Then, they introduced a finite element approximation and they proved that the associated discrete energy decays. In this work, to establish the exponantial stability we use the theorem introduced by J. Prüss [START_REF] Prüss | On the Spectrum of C 0 Semigroups[END_REF] and F. L. Huang [START_REF] Huang | Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces[END_REF]:

Theorem 0.1. A C 0 semigroup e tA of contractions on a Hilbert space H is exponentially stable if and only if

iR ⊂ ρ(A), sup λ∈R (iλ -A) -1 < +∞. (0.6)
However, our result on the polynomial stability, it is based on the Borichev and Tomilov theorem [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]. Theorem 0.2. Let A be the generator of C 0 -semigroup of contractions on a Hilbert space X. Then, iR ⊆ ρ(A), (iλI -A) -1 < C|λ| s , (0.7)

for some s > 0 and for all λ ∈ R if and only if we have

S(t)W 0 X ≤ C t 1/s W 0 D(A) , (0.8) 
and for some constant C > 0 and for all W 0 ∈ D(A).

Well-Posedness

Consider the tow following Hilbert spaces:

H 1 = H 1 0 (0, L) 3 × L 2 (0, L) 7 , H 2 = H 1 0 (0, L) × H 1 * (0, L) 2 × L 2 (Ω) × L 2 * (Ω) 2 × L 2 (Ω) 4 ,
where H 1 * (0, L) and L 2 * (0, L) are given by

H 1 * (0, L) = f ∈ H 1 (0, L); L 0 f (x)dx = 0 and L 2 * (0, L) = f ∈ L 2 (0, L); L 0 f (x)dx = 0 .
Now, let us define the following linear unbounded operators

A j : H j -→ H j (j = 1, 2) by D(A 1 ) = H 1 0 (0, L) ∩ H 2 (0, L) 3 × H 1 0 (0, L) 7 , D(A 2 ) =    (ϕ, ψ, ω, u, v, z, θ 1 , P 1 , θ 2 , P 2 ) ∈ H 2 ; ϕ ∈ H 1 0 (0, L) ∩ H 2 (0, L), ψ, ω ∈ H 1 * (0, L) ∩ H 2 (0, L), ψ x , ω x ∈ H 1 0 (0, L), u ∈ H 1 0 (0, L), v, z ∈ H 1 * (0, L), (θ 1 , P 1 , θ 2 , P 2 ) ∈ H 1 0 (0, L) 4    , and 
A j W =                          u v z k ρ 1 (ϕ xx + ψ x + lω x ) + lk 0 ρ 1 (ω x -lϕ) + lγ 21 θ 2 + lγ 22 P 2 b ρ 2 ψ xx - k ρ 2 (ϕ x + ψ + lω) + γ 11 θ 1x + γ 12 P 1x k 0 ρ 1 (ω xx -lϕ x ) - lk ρ 1 (ϕ x + ψ + lω) + γ 21 θ 2x + γ 22 P 2x δ -1 f 1 m 1 θ 1xx -f 2 h 1 P 1xx + l 1 v n x δ -1 -f 2 m 1 θ 1xx + f 1 h 1 P 1xx + l 2 v n x δ -1 g 1 m 2 θ 2xx -g 2 h 2 P 2xx + h 1 (z n x -lu n ) δ -1 -g 2 m 2 θ 2xx + g 1 h 2 P 2xx + h 2 (z n x -lu n )                         
.

For W = (ϕ, ψ, ω, u, v, z, θ 1 , P 1 , θ 2 , P 2 ), using a classical semigroup theorem, we show easily that the system

W (t) = A j W (t), t > 0 W (0) = W 0 ∈ D(A), . (1.9) 
is well-posed for j = 1, 2, where j = 1, 2 corresponds to the boundary conditions (0.4) and (0.5) respectivement. Here and in the followig, we set that l = nπ L for all n ∈ N 8 when i = 2.

Exponential stability

Let us start by proving the first member in(0.6). Indeed, D(A) has a compact embedding into H, then A -1 is compact in H. Hence, it is sufficient to check that A has no pure imaginary eigenvalue. Then, suppose that there exists λ ∈ R * such that iλ is an eigenvalue and W = (ϕ, ψ, ω, u, v, z, θ 1 , P 1 , θ 2 , P 2 ) be the normalized eigenfunction, i.e. AW = iλW.

(2.10) Therefore, we have

u(x) = iλϕ(x), x ∈ (0, L), (2.11) 
v(x) = iλψ(x), x ∈ (0, L), (2.12 
)

z(x) = iλω(x), x ∈ (0, L), (2.13) 
λ 2 ϕ + k ρ 1 (ϕ xx + ψ x + lω x ) + lk 0 ρ 1 (ω x -lϕ) + l γ 21 ρ 1 θ 2 + l γ 22 ρ 1 P 2 = 0, x ∈ (0, L)(2.14) λ 2 ψ + b ρ 2 ψ xx - k ρ 2 (ϕ x + ψ + lω) + γ 11 ρ 2 θ 1x + γ 12 ρ 2 P 1x = 0, x ∈ (0, L)(2.15) λ 2 ω + k 0 ρ 1 (ω xx -lϕ x ) - lk ρ 1 (ϕ x + ψ + lω) + γ 21 ρ 1 θ 2x + γ 22 ρ 1 P 2x = 0, x ∈ (0, L)(2.16) -iλθ 1 (x) + δ -1 f 1 m 1 θ 1xx -f 2 h 1 P 1xx + l 1 v n x = 0, x ∈ (0, L)(2.17) -iλP 1 (x) + δ -1 -f 2 m 1 θ 1xx + f 1 h 1 P 1xx + l 2 v n x = 0, x ∈ (0, L)(2.18) -iλθ 2 (x) + δ -1 g 1 m 2 θ 2xx -g 2 h 2 P 2xx + h 1 (z n x -lu n ) = 0, x ∈ (0, L)(2.19) -iλP 2 (x) + δ -1 -g 2 m 2 θ 2xx + g 1 h 2 P 2xx + h 2 (z n x -lu n ) = 0, x ∈ (0, L)(2.20)
By (2.10), we have

Re AW, W Hj = Re iλ W 2 H = -θ 1x 2 -P 1x 2 -θ 2x 2 -P 1x 2 = 0. (2.21)
Therefore, by straightforward calculation we conclude that W = 0. This is a contradiction. It remains to complete the proof of the exponential stability by applying the theorem 1.2 by establishing that

lim λ-→∞ (iλI -A) -1 < +∞. (2.22)
Let us decompose this proof into several steps for clarification.

Step 1. Let us argue by contradiction. Then, we suppose that the condition (3.5) is false. There exists a real sequence (λ n ) and a squence

W n = (ϕ n , ψ n , ω n , u n , v n , z n , θ n 1 , P n 1 , θ n 2 , P n 2 ) ∈ D(A j ) such that |λ n | -→ +∞, W n Hj = 1 j = 1, 2, (2.23 
) and

(iλ n -A j )W n = (f 1 n , f 2 n , ... , f 10 ) -→ 0 dans H j j = 1, 2. (2.24) Recall that W n 2 Hj = ρ 1 u n 2 + ρ 2 v n 2 + ρ 1 z n 2 + b ψ n x + k ϕ n x + ψ n + lω n 2 +k 0 ω n x -lϕ n 2 + L 0 Λ     θ n 1 P n 1 θ n 2 P n 2     •     θ n 1 P n 1 θ n 2 P n 2     dx, j = 1, 2,
where

Λ =     c 1 d 1 0 0 d 1 r 1 0 0 0 0 c 2 d 2 0 0 d 2 r 2     is a definite-positive matrix.
Then, thanks to (3.4), we have

iλ n ϕ n -u n = f 1 n -→ 0 in H 1 0 (0, L), (2.25 
)

iλ n ψ n -v n = f 2 n -→ 0 in H 1 0 (0, L) pour j = 1 H 1 * (0, L) pour j = 2 , (2.26) iλ n ω n -z n = f 3 n -→ 0 in H 1 0 (0, L) pour j = 1 H 1 * (0, L) pour j = 2 .
(2.27)

We also have the following convergence in L 2 (0, L):

   iλ n u n - k ρ 1 (ϕ n xx + ψ n x + lω n x ) - lk 0 ρ 1 (ω n x -lϕ n ) + lγ 21 θ 2 + lγ 22 P 2 = f 4 n -→ 0,
(2.28)

iλ n v n - b ρ 2 ψ n xx + k ρ 2 (ϕ n x + ψ n + lω n ) + γ 11 ρ 2 θ n 1x + γ 12 ρ 2 P n 1x = f 5 n -→ 0, (2.29 
)

iλ n z n - k 0 ρ 1 (ω n xx -lϕ n x ) + lk ρ 1 (ϕ n x + ψ n + lω n ) + γ 21 ρ 1 θ n 2x + γ 22 ρ 1 P n 2x = f 6 n -→ 0, (2.30) iλ n θ n 1 -δ -1 f 1 m 1 θ n 1xx -f 2 h 1 P n 1xx + l 1 v n x = f 7 n -→ 0, (2.31 
)

iλ n P n 1 -δ -1 -f 2 m 1 θ 1xx + f 1 h 1 P 1xx + l 2 v n x = f 8 n -→ 0, (2.32) iλ n θ n 2 -δ -1 g 1 m 2 θ 2xx -g 2 h 2 P 2xx + h 1 (z n x -lu n ) = f 9 n -→ 0, (2.33) 
and

iλ n P n 2 -δ -1 -g 2 m 2 θ 2xx + g 1 h 2 P 2xx + h 2 (z n x -lu n ) = f 10 n -→ 0. (2.34)
Due to (3.4), we have 

Re iλ n -A j W n , W n Hj = -Re A j U n , U n Hj = θ n 1x 2 + P n 1x 2 + θ n 2x 2 + P n 2x 2 j = 1,
i θ n 1 , ψ n x + δ -1 f 1 m 1 θ n 1x , ψ n xx λ n -δ -1 f 1 m 1 1 λ n θ n 1x (x)ψ n x (x) L 0 -δ -1 f 2 h 1 P n 1x , ψ n xx λ n + δ -1 f 2 h 1 1 λ n P n 1x (x)ψ n x (x) L 0 + il 1 ψ n x 2 -→ 0.
( Analogously, the fourth term tends to zero due to (2.36). The boundary terms vanish in the case when j = 2. However, in the case when j = 1, using the Gagliardo-Nirenberg inequality, for x = 0, L we have

1 λ n θ n 1x (x)ψ n x (x) ≤ K θ n 1x 1 2 θ n 1xx λ n 1 2 P n 1x 1 2 P n 1xx λ n 1 2
for some K > 0. Dividing ( x = 0, L. Repeating same arguments leads to 1 λ n P n 1x (x)ψ n x (x) also converges to zero for x = 0, L. Consequently, in the two cases (j = 1 or j = 2), the expression (2.38) implies that

ψ n x -→ 0 in L 2 (0, L). (2.39)
Repeating the same procedures by eliminating z n in (2.30) by (3.8), we obtain

ω n x -lϕ n -→ 0 in L 2 (0, L).
(2.40)

Step 2. In the case when j = 1, we shall prove that

ψ n x (0), ψ n x (L) -→ 0.. ( 2 

.41)

We start by multiplying (2.29) by v n λ n . Then taking the inner product of the resulting equation with in L 2 (0, L), integrating by parts, and using the fact that v n ∈ H 1 0 (0, L), we obtain

i v n 2 + b ρ 2 ψ n x , v n x λ n + k ρ 2 ϕ n x + ψ n + lω n , v n λ n + γ 11 ρ 2 θ n 1x , v n λ n + γ 12 ρ 2 P n 1x , v n λ n -→ 0, (2.42) 
By (2.26) and (2.39), v n x λ n -→ 0. Moreover, v n λ n -→ 0 since v n is bounded and λ n -→ +∞. Thus, due to the boundedness of the terms ψ n x , ϕ n x + ψ n + lω n and due to (2.36), the last four terms in (2.42) converges to zero. Thereby,

v n -→ 0 in L 2 (0, L).
(2.43) Therefore, thanks to (2.26), we get 

λ n ψ n -→ 0 in L 2 (0, L). ( 2 
Re -λ 2 n ψ n , (L -x)ψ n x - b ρ 2 ψ n xx , (L -x)ψ n x + k ρ 2 (ϕ n x + ψ n + lω n ), (L -x)ψ n x + γ 11 ρ 2 θ n 1x , (L -x)ψ n x + γ 12 ρ 2 P n 1x , (L -x)ψ n x = Re f 5 n , (L -x)ψ n x + i λ n f 2 n , (L -x)ψ n x .
(2.45)

Next, we have

Re λ n f 2 n , (L -x)ψ n x = Re -λ n f 2 nx , (L -x)ψ n + λ n f 2 n , ψ n + λ n f 2 n (L -x)ψ n L 0 -→ 0 (2.46) because f 2 n , f 2 nx -→ 0 in L 2 (0, L), (ψ n ), (λ n ψ n
) are bounded and ψ n 0,L = 0. Also, we have

Re (L -x)f 5 n , ψ n x -→ 0 (2.47)
because f 5 n -→ 0 in L 2 (0, L) and (ψ n x ) is bounded. Consequently, using (2.46) and (2.47) in (2.45), we conclude

             - 1 2 λ n ψ n 2 - b 2ρ 2 ψ n x 2 + bL 2ρ 2 |ψ n x (0)| 2 + k ρ 2 Re (L -x)(ϕ n x + ψ n + lω n ), ψ n x + γ 11 ρ 2 θ n 1x , (L -x)ψ n x + γ 12 ρ 2 P n 1x , (L -x)ψ n x -→ 0.
(2.48)

Thanks to (2.39), the last three terms in (2.48) converge to zero. Therefore, using (2.44) and (2.39) in (2.48) gives

ψ n x (0) -→ 0.
Repeating the same arguments by multiplying (2.29) by xψ n x , we show that

ψ n x (L) -→ 0.
Step 3. The claim here is the showing that

ϕ n x 2 -→ 0. (2.49)
First, eliminating v n in (3.10) by (3.7), taking the inner product of the resulting equation with ϕ n x in L 2 (0, L), and then integrating by parts, we get

Re -λ 2 n ψ n , ϕ n x + b ρ 2 ϕ n xx , ψ n x - b ρ 2 ϕ n x ψ n x L 0 + k ρ 2 ϕ n x 2 + k ρ 2 ϕ n x , ψ n + lk ρ 2 ϕ n x , ω n + γ 11 ρ 2 θ n 1x , ϕ n x + γ 12 ρ 2 P n 1x , ϕ n x = Re f 5 n , ϕ n x + i f 2 n , λ n ϕ n x .
(2.50)

The term in the right side from the expression (2.50) can be written as

Re f 5 n , ϕ n x -i f 2 nx , λ n ϕ n + i f 2 n λ n ϕ n L 0 . Since λ n -→ +∞, f 5 n , f 2 n , f 2 nx -→ 0, (λ n ϕ n
) and (ϕ n x ) are bounded, and ϕ n 0,L = 0, we deduce that

Re f 5 n , ϕ n x + i f 2 n , λ n ϕ n x -→ 0. (2.51)
Next, using (2.51) in (2.50), we get

Re -λ 2 n ψ n , ϕ n x + b ρ 2 ϕ n xx , ψ n x - b ρ 2 ϕ n x ψ n x L 0 + k ρ 2 ϕ n x 2 + k ρ 2 ϕ n x , ψ n + lk ρ 2 ϕ n x , ω n + γ 11 ρ 2 θ n 1x , ϕ n x + γ 12 ρ 2 P n 1x , ϕ n x -→ 0.
(2.52)

On the other hand, the sequence (ϕ n x (L)) is bounded. Indeed, eliminating u n in (2.28) by (2.25), taking the inner product of the resulting equation with ρ 1 xϕ n x in L 2 (0, L), and then integrating by parts, we obtain

ρ 1 2 λ n ϕ n 2 + k 2 ϕ n x 2 - k 2 L|ϕ n x (L)| 2 +Re k xψ n x , ϕ n x -lk xω n x , ϕ n x -lk 0 xω n x , ϕ n x + l 2 k 0 2 ϕ n 2 + lγ 21 θ n 2 , xϕ n x +lγ 22 P n 2 , xϕ n x -→ 0. (2.53) Hence, (ϕ n x (L)) is bounded because (λ n ϕ n ), (ϕ n x ), (ψ n x ), (ω n x ), (θ n 2 )
, and (P n 2 ) are bounded. By the same way, we prove that (ϕ n x (0)) is bounded by multiplying (2.28) by ρ 1 (L -x)ϕ n

x . Therefore, due to (2.41), the boundary terms in (2.53) converge to zero. Moreover, the convergences (2.36) and (2.37), and the boundedness of (ϕ n x ) made the last fourth terms in (2.53) converge to zero. Consequently, (2.53) gives

Re -λ 2 n ψ n , ϕ n x + b ρ 2 ϕ n xx , ψ n x + k ρ 2 ϕ n x 2 -→ 0. (2.54)
Now, eliminating u n in (3.9) by (3.6), taking the inner product of the resulting equation with ψ n x in L 2 (0, L), and then integrating by parts, we get

Re λ 2 n ϕ n x , ψ n + k ρ 1 + k ρ 1 ϕ n xx , ψ n x - k ρ 1 ψ n x 2 - kl ρ 1 ω n x , ψ n x - lk 0 ρ 1 ω n x , ψ n x + k 0 l 2 ρ 1 ϕ n , ψ n x = Re f 4 n , ψ n x + i λ n f 1 n , ψ n x .
(2.55)

The second term in the right side of (2.55) can be expressed as

λ n f 1 n , ψ n x = -f 1 nx , λ n ψ n + λ n f 1 n ψ n L 0 .
Hence,

Re f 4 n , ψ n x + i λ n f 1 n , ψ n x = Re f 4 n , ψ n x -i f 1 nx , λ n ψ n + λ n f 1 n ψ n L 0 . Since f 1 n , f 1 nx -→ 0, (λ n ψ n ), (ψ n x ) are bounded and f 1 n 0,L = 0, we have Re λ n f 1 n , ψ n x -→ 0. (2.56) 
In addition, the fact that f 4 n -→ 0 and (ψ n x ) is bounded imply

Re f 4 n , ψ n x -→ 0.
(2.57) Therefore, using (2.56) and (2.57) in (2.55), we get

Re λ 2 n ϕ n x , ψ n + k ρ 1 ϕ n xx , ψ n x - k ρ 1 ψ n x 2 - kl ρ 1 ω n x , ψ n x - lk 0 ρ 1 ω n x , ψ n x + k 0 l 2 ρ 1 ϕ n , ψ n x -→ 0.
(2.58) By (2.39), the last four terms in (2.58) converge to zero. Thereby, (2.58) gives

Re λ 2 n ϕ n x , ψ n + k ρ 1 ϕ n xx , ψ n x -→ 0. (2.59) In view of k ρ 1 = b ρ 2
and combining (2.54) and (2.59), we get (2.49).

To finish and complete the proof and get a contradiction with (2.23), it remains to show that

u n , z n -→ 0 in L 2 (0, L).
Indeed, multiplying (2.27) by u n λ n . Then taking the inner product of the resulting equation with in L 2 (0, L), integrating by parts, and using the fact that u n ∈ H 1 0 (0, L), we obtain

i u n 2 + k ρ 1 ϕ n x + ψ n + lω n , u n x λ n - k ρ 1 1 λ n (ϕ n x + ψ n + lω n )u n L 0 - lk 0 ρ 1 ω n x -lϕ n , u n λ n + lγ 21 θ 2 , u n λ n + lγ 22 P 2 , u n λ n -→ 0.
(2.60) Next, u n x λ n due to (2.26) and (2.49). In addition, u n λ n -→ 0 since u n is bounded and λ n -→ +∞. Thus, due to the boundedness of the terms ϕ n x + ψ n + lω n and ω n

x -lϕ n , and due to (2.36), the second and the last three terms in (2.60) converges to zero. The boundary terms converge to zero in the case when j = 1. However, in the case when j = 2, x = 0, L, we have

1 λ n (ϕ n x + ψ n + lω n )(x)u n (x) ϕ n x + ψ n + lω n 1 2 (ϕ n x + ψ n + lω n ) x λ n 1 2 u n 1 2 u n x λ n 1 2
-→ 0 due to (2.37), (2.49), and the boundedness of 

(ϕ n x + ψ n + lω n ) x λ n , u n ,
W n Hj -→ 0 j = 1, 2
which contradicts (2.23). So, the proof is achieved.

Polynomial stability

The polynomial stabilisation is summarized in the following theorem.

Theorem 3.1. If k ρ 1 = b ρ 2
then there exists a positive constant C > 0 such that

A j (t)W 0 H ≤ C t 1/2 W 0 D(Aj ) , (3.1) 
for all W 0 ∈ D(A j ). j = 1, 2

Proof. To apply the theorem 0.2, it will be sufficient to show only the second member in (0.7), because the first member is proved in the previous section, that is we must prove that

lim λ-→∞ 1 λ 16 (iλI -A) -1 < +∞. (3.2) 
Let us argue by contradiction. Then, we suppose that the condition (3.2) is false. There exists a real sequence (λ n ) and a squence

W n = (ϕ n , ψ n , ω n , u n , v n , z n , θ n 1 , P n 1 , θ n 2 , P n 2 ) ∈ D(A j ) such that |λ n | -→ +∞, W n Hj = 1 j = 1, 2, (3.3) 
and

λ 16 n (iλ n -A j )W n = (f 1 n , f 2 n , ... , f 10 ) -→ 0 dans H j j = 1, 2. (3.4) 
Then, thanks to (3.4), we have

λ 16 n iλ n ϕ n -u n = f 1 n -→ 0 in H 1 0 (0, L), (3.5) 
λ 16 n iλ n ψ n -v n = f 2 n -→ 0 in H 1 0 (0, L) pour j = 1 H 1 * (0, L) pour j = 2 , (3.6) 
λ 16 n iλ n ω n -z n = f 3 n -→ 0 in H 1 0 (0, L) pour j = 1 H 1 * (0, L) pour j = 2 . (3.7)
We also have the following convergence in L 2 (0, L):

   λ 16 n iλ n u n - k ρ 1 (ϕ n xx + ψ n x + lω n x ) - lEh ρ 1 (ω n x -lϕ n ) + lγ 21 θ 2 + lγ 22 P 2 = f 4 n -→ 0, (3.8) 
λ 16 n iλ n v n - b ρ 2 ψ n xx + k ρ 2 (ϕ n x + ψ n + lω n ) + γ 11 ρ 2 θ n 1x + γ 12 ρ 2 P n 1x = f 5 n -→ 0, (3.9) λ 16 n iλ n z n - k 0 ρ 1 (ω n xx -lϕ n x ) + lk ρ 1 (ϕ n x + ψ n + lω n ) + γ 21 ρ 1 θ n 2x + γ 22 ρ 1 P n 2x = f 6 n -→ 0, (3.10) 
λ 16 n iλ n θ n 1 -δ -1 f 1 m 1 θ n 1xx -f 2 h 1 P n 1xx + l 1 v n x = f 7 n -→ 0, (3.11) 
λ 16 n iλ n P n 1 -δ -1 -f 2 m 1 θ 1xx + f 1 h 1 P 1xx + l 2 v n x = f 8 n -→ 0, (3.12 
)

λ 16 n iλ n θ n 2 -δ -1 g 1 m 2 θ 2xx -g 2 h 2 P 2xx + h 1 (z n x -lu n ) = f 9 n -→ 0, (3.13) 
and

λ 16 n iλ n P n 2 -δ -1 -g 2 m 2 θ 2xx + g 1 h 2 P 2xx + h 2 (z n x -lu n ) = f 10 n -→ 0. (3.14)
Due to (3.4), we have ). The boundary terms vanish in the case when j = 2. However, in the case when j = 1, using the Gagliardo-Nirenberg inequality, for x = 0, L we have Remark 3.1. If the Bresse system is damped by only a thermodiffusion effects on the bending moment i.e. the system is in the form

Re (λ 16 n iλ n -A j ) W n , W n Hj = -Re A j U n , U n Hj = (|λ 8 n θ n 1x | 2 + |λ 8 n P n 1x | 2 + |λ 8 n θ n 2x | 2 + |λ 8 n P n 2x | 2 )dx j = 1, 2. ( 3 
i λ 4 n θ n 1 , ψ n x + δ -1 f 1 m 1 λ 3 n θ n 1x , ψ n xx λ n -δ -1 f 1 m 1 λ 3 n θ n 1x (x)ψ n x (x) L 0 -δ -1 f 2 h 1 λ 3 n P n 1x , ψ n xx λ n + δ -1 f 2 h 1 λ 3 n P n 1x (x)ψ n x (x) L 0 + il 1 λ 2 n ψ n x 2 -→ 0. ( 3 
λ 3 n θ n 1x (x)ψ n x (x) ≤ K λ 8 n θ n 1x 
                           ρ 1 ϕ tt -k(ϕ x + ψ + lw)
x -k 0 l(ω x -lϕ) + µϕ t = 0 in (0, L) × (0, ∞), ρ 2 ψ tt -α 1 ψ xx + k(ϕ x + ψ + lω) -γ 1 θ x -γ 2 P x = 0 in (0, L) × (0, ∞), ρ 1 ω tt -α 2 (ω x -lϕ) x + kl(ϕ x + ψ + lω) = 0 in (0, L) × (0, ∞), cθ t + dP t -mθ xx -γ 1 ψ tx = 0 in (0, L) × (0, ∞), dθ t + rP t -h 1 P xx -γ 2 ψ tx = 0 in (0, L) × (0, ∞), (3.22) 

( 3 .ϕ n x 2 -

 32 20)The first term converges to zero by(3.18). The second term can be written as ψ nx -→ 0 due to(3.18). The boundary terms converges to zero sinceλ n ψ n x (0), λ n ψ n x (L) -→ 0. Consequently, → 0..(3.21)Therefore, (3.18),(3.19), and (3.21) imply that W n j -→ 0. This is a contradiction.

  Moreover, due to the boundedness of u n , v n , and z n and the fact that λ n -→ 0, we get from the dividing of (2.25), (2.26), and (2.27) by λ n , respectively, ϕ n , ψ n , ω n -→ 0 in L 2 (0, L).

	Therefore, due to (2.24) et (3.16), on a
			θ n 1x , θ n 2x , P n 1x , P n 2x -→ 0, in L 2 (0, L).	(2.36)
				(2.37)
	Now, eliminating v n in (2.29) by (2.26), taking the inner product of the resulting
	equation with	ψ n x λ n	in L 2 (0, L), and then integrating by parts, we obtain
			2.	(2.35)

  2.38) Using (2.36), the first term in (2.38) converges to zero since ψ n x is bounded by (2.23). On the other hand, dividing (2.29) by λ n , we conclude that ψ n

xx λ n is bounded because all the other terms in the resulting equation are bounded due to (2.23).

  also converges to zero for x = 0, L. Consequently, in the two cases (j = 1 or j = 2), the expression (2.38) implies thatλ 2 n ψ n x -→ 0 in L 2 (0, L). (3.18)Repeating the same procedures by eliminating z n in (2.30) by (3.8), we obtainλ 2 n (ω n x -lϕ n ) -→ 0 in L 2 (0, L). (3.19)Next, repeating the same arguments in the step 3. in the previous section by

							1 2	θ n 1xx λ n	1 2	P n 1x	1 2	λ n P n 1xx	1 2
	for some K > 0. Dividing (2.31) and (2.32) by λ 17 n , we obtain the boundedness of θ n 1xx λ n and P n 1xx λ n . So, (3.8) implies that 1 θ n 1x (x)ψ n x (x) converges to zero for λ n x = 0, L. Repeating same arguments leads to 1 λ n P n 1x (x)ψ n x (x) multiplying (3.9) by ϕ n x n λ 16 , we get
	Re -λ 2 n ψ n , ϕ n x +	b ρ 2	ϕ n xx , ψ n x -	b ρ 2	ϕ n x ψ n x	L 0 +	k ρ 2	ϕ n x	2
	+	k ρ 2	ϕ n x , ψ n +	lk ρ 2	ϕ n x , ω n +	γ 11 ρ 2	θ n 1x , ϕ n x +	γ 12 ρ 2	P n 1x , ϕ n x	-→ 0.

we prove the exponential and the polynomial stability in the same ways as the prevoius section. Similarly, If the Bresse system is damped by only a thermodiffusion effects on the axial force i.e.