Marco Casazza
email: marco.casazza@unimi.it

Alberto Ceselli
email: alberto.ceselli@unimi.it

Iterative exact algorithms for the Maximum Lifetime Tree in Wireless Sensors Networks

Keywords: sensor networks, energy conservation, data aggregation, spanning tree, exact algorithms

We tackle an optimization problem arising in the design of sensor networks: given a set of sensors, only one being connected to a backbone, to establish connection routes from each of them to the sink. Under a shortest path routing protocol, the set of connections form a spanning tree. Energy is required to transmit and receive data, and sensors have limited battery capacity: as soon as one sensor runs out of battery, a portion of the network is disconnected. We therefore search for the spanning tree maximizing the time elapsed before such a disconnection occurs, and therefore maintenance is required. We propose new mathematical formulations for the problem, proving and exploiting theoretical results on its combinatorial structure. On that basis, we design algorithms offering a-priori guarantees of global optimality. We undertake an extensive experimental campaign, showing our algorithms to outperform previous ones from the literature by orders of magnitude. We also identify which instance features have higher impact on network lifetime.

Introduction

A wireless sensor network is composed by a set of low-energy, battery-powered sensor nodes (sensors in the remainder). Sensor networks find many applications [START_REF] Tsiontsiou | Optimal probabilistic energy-aware routing for duty-cycled wireless sensor networks[END_REF]; for instance they are used to collect data from areas having no existing infrastructures, to a single edge node connected to a backbone (sink in the remainder).

Sensors connect one another by means of wireless links of limited range: if the data collection area is wide, the underlying communication network is sparse, preventing a direct connection of all sensors to the sink. Typical protocols from the literature assume each sensor to forward data with a shortest path philosophy, always to a single parent sensor [START_REF] Buragohain | Power aware routing for sensor databases[END_REF] [START_REF] Zhu | An exact algorithm for maximum lifetime data gathering tree without aggregation in wireless sensor networks[END_REF]. Therefore, for each sensor, a route (that is a sequence of sensors) connecting to the sink must be found, such that each sensor of the route has both its predecessor and its successor within the range of its wireless links, thereby allowing transmissions to be possible. The set of all routes origins a spanning tree rooted in the sink node.

A fundamental issue in wireless sensor networks is preserving energy: for a general survey on that matter we remind to [START_REF] Anastasi | Energy conservation in wireless sensor networks: A survey[END_REF]. In fact, sensors have clocks, making them to work in duty cycles: at each cycle the sensor receives data by the set of its children sensors, and transmits data to its parent. Since batteries replenishment is usually impossible or very expensive, the conservation of the battery energy is a critical issue. While sensors consume a negligible amount of energy when in standby, they spend most of the energy during both transmitting and receiving operations. It follows that duty control is critical especially for those sensors belonging to several routes. Researchers have proposed diverse techniques. A line of research aims at saving energy by selectively activating sensors over time (see e.g. [START_REF] Francesco Carrabs | Exact and heuristic approaches for the maximum lifetime problem in sensor networks with coverage and connectivity constraints[END_REF] and references therein). Other recent approaches [START_REF] Castaño | An exact approach to extend network lifetime in a general class of wireless sensor networks[END_REF] propose to adjust sensing ranges by scaling them up or down over time. Mathematical programming algorithms prove useful in many of these contexts.

While effective, specific techniques are not always applicable. For instance, sensing range scaling requires sensors with specialized capabilities, and turning off sensors is not feasible in all contexts (e.g. in smart homes for healthcare).

That is why another stream of research focuses on the management of network topology, and more specifically on a wise design of the routes between inner sensors and sink. A core combinatorial problem arises, that is finding the spanning tree maximizing the lifetime of the network, defined as the number of duty cycles that can be performed without making any sensor run out of battery.

In the literature such a problem is indeed known as Maximum Lifespan Tree Problem (MLTP). It has been studied in [START_REF] Buragohain | Power aware routing for sensor databases[END_REF], where the authors prove the NP-completeness of the problem and provide a routing algorithm with worst case constant factor performance guarantees. In [START_REF] Liang | A maximum lifetime algorithm for data gathering without aggregation in wireless sensor networks[END_REF] an approximation algorithm is proposed for a version of the problem where data is not aggregated during transmission. In [START_REF] Zhu | An exact algorithm for maximum lifetime data gathering tree without aggregation in wireless sensor networks[END_REF] and [START_REF] Ma | Exact algorithms for maximizing lifetime of wsns using integer linear programming[END_REF] two exact algorithms are presented to solve both the MLTP with and without the aggregation of the messages. However, both algorithms are strongly based on a technique that decomposes the network in independent and smaller networks when there exist links that, if removed, leave the network disconnected. It follows that their methodology is strongly dependent from the topology of a network.

Our contributions are the following. We propose new mathematical formulations for the problem, proving and exploiting theoretical results on the combinatorial structure of the MLTP (Section 2). On that basis, we design algorithms offering a-priori guarantees of global optimality (Section 3). We undertake an extensive experimental campaign on both datasets from the literature and new larger networks. We focus on both algorithms efficiency and on the evaluation of features which are more predictive of lifetime (Section 4). We finally collect some conclusions (Section 5).

Mathematical formulations

Let us be given the set of n sensors N = {1 . . . n}. We model the MLTP as a problem on a directed graph G = (N 0 , A), where N 0 = {0} ∪ N is a set of nodes representing the n sensors, together with a sink node 0, while A ⊆ N 0 × N 0 is a set of arcs, each representing a link between a pair of sensors within the range of communication.

For each node i ∈ N 0 we are also given a battery capacity b i > 0, that we assume infinite for the sink (b 0 = +∞). When a message is transmitted from a sensor to another, the transmitter consumes e t > 0 energy units of its battery, while the receiver consumes e r > 0. We assume that the payload of all the transmitted messages is of equal size at each duty cycle. No sensor can send or receive messages if its battery is empty, and we define as lifetime of a sensor node the number of duty cycles before its battery is fully drained.

A feasible solution to MLTP is a spanning tree T = {D 0 , D 1 , . . . , D n } rooted in node 0, where D i is the set of descendants of node i, with D 0 = N , D i = ∅ if i is a leaf, and D i = ∪ j ({j} ∪ D j) for all children j of i otherwise. An example of a solution is depicted in Figure 1.

A feasible solution T is also optimal if it maximizes the lifetime of the tree l(T), computed as the minimum lifetime over all nodes, that is

l(T) = min i∈N b i (e t + e r) • |D i | + e t . (1
) (a) (b)
Figure 1: Example of a solution to MLTP: in (a) a graph with 7 sensor nodes and a single sink (node 0) is given. Dotted lines represent the potential connections between sensor nodes. In (b) the set of the solid arcs represent a feasible solution defining the spanning tree that connects all the sensor nodes and the flow of data going from the sensor nodes to the sink. The MLTP can be formulated as an integer programming problem (IP) as follows:

max min i∈N b i (e t + e r) • y i + e t (2)
s.t.

(j,i)∈A

z ji = 1 if i = 0 0 otherwise ∀i ∈ N 0 (3)
x ij ≥ y j + 1 -|N | • (1 -z ij) ∀(i, j) ∈ A (4)
y i = (i,j)∈A z ij ∀i ∈ N 0 (5)
z ij ∈ B ∀(i, j) ∈ A (6)
x ij ∈ N 0 ∀(i, j) ∈ A (7)
y i ∈ N 0 ∀i ∈ N 0 (8)
where variable z ij is set to 1 if arc (i, j) is selected in the tree, and 0 otherwise, variable x ij is the number of messages travelling arc (i, j) at each duty cycle, while variable y i is the number of descendants of node i in the tree, that is the number of messages collected by i at each duty cycle. The objective function (2) maximizes the minimum lifespan. Constraints (3) ensure that each node but the root has exactly one incoming arc. When z ij = 0, constraints (4) have no effect; when z ij = 1, they enforce x ij to take the number of messages going through arc (i, j). Constraints (5) force y i to be set to the number of descendants of node i. Subtours are avoided by the combination of (4) and [START_REF] Francesco Carrabs | Exact and heuristic approaches for the maximum lifetime problem in sensor networks with coverage and connectivity constraints[END_REF].

As stressed in [START_REF] Zhu | An exact algorithm for maximum lifetime data gathering tree without aggregation in wireless sensor networks[END_REF], such a formulation is nonlinear because the objective function include (a) a min operator, (b) a floor operator, and (c) variables at the denominator.

However, let us be given the lifetime of a tree l(T) and the fractional lifetime of the same tree l(T), computed as follows: l(T) = min

i∈N b i (e t + e r) • |D i | + e t . (9)
We observe that l(T) = l(T) , and that our objective function is

max ∀T l(T) = max ∀T l(T) . (10)
Therefore, our MLTP can be solved as the problem of maximizing the fractional lifetime, thus simplifying the mathematical programming model. Also, we can further observe that max ∀T l(T) = min ∀T 1 l(T) [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF] and it follows that our objective function in Equation (1) is equivalent to

min ∀T max i∈N (e t + e r) • |D i | + e t b i . (12
)
We therefore propose to obtain an equivalent linear formulation by introducing a continuous variable v that is the reciprocal of the lifetime, and the following set of constraints

v ≥ (e t + e r) • y i + e t b i , ∀i ∈ N (13)
and by changing the objective function to min v. (14)

Flow formulation

We now propose an improved formulation based on network flows: let G = (N 0 , A) be a directed graph that extends G with an additional terminal node t. In details, N 0 = N 0 ∪ {t} and A = {(j, i) : (i, j) ∈ A} ∪ {(i, t), ∀i ∈ N }.

Our flow formulation (F M) reads as follows:

min v (15) s.t.
(i,j)∈A

x ij -

(j,i)∈A x ji =      |N |, if i = 0 -|N |, if i = t 0, otherwise ∀i ∈ N 0 (16) v ≥ ((e t + e r) • ((j,i)∈A x ji -1) + e t)/b i ∀i ∈ N (17) x ij ≤ 1, if j = t |N | • z ij , otherwise ∀(i, j) ∈ A (18) (j,i)∈A z ji ≤ 1 ∀i ∈ N 0 (19
)
x ij ≥ 0 ∀(i, j) ∈ A (20) z ij ∈ B ∀(i, j) ∈ A (21) v ≥ 0 (22)
where each variable x ij is the flow traversing arc (i, j) (i.e. the number of descendants of node j), and each variable z ij is set to 1 if any unit of flow traverses arc (i, j), and 0 otherwise. Variable v is the reciprocal of the lifetime. The objective function (15) still minimizes the reciprocal of the lifetime, therefore maximizing the lifetime. Constraints (16) ensure flow conservation. Constraints (17) force l to take the maximum reciprocal of the nodes lifetime. Constraints (18) impose that no flow can traverse (i, j) unless z ij = 1 (except for the terminal). Constraints (19) impose single source conditions.

Symmetry reduction

In order to improve our formulation, we study additional valid inequalities that help to reduce symmetries of feasible solutions.

First, it is easy to prove that:

Observation 1. For any feasible instance of MLTP it always exists an optimal solution where z 0i = 1 for all nodes i ∈ N such that (0, i) ∈ A .

In fact, connecting a sensor node i directly to the sink 0 avoids additional battery consumption on the parent of i, since 0 has an infinite battery. An example is provided in Figure 2.

Second, when sensor nodes can share a parent, we have that:

Observation 2. For any feasible instance of MLTP, given a clique of three nodes i, j, k ∈ N 0 such that (k, i), (k, j), (j, i) ∈ A , there always exists an optimal solution where

z kj + z ji ≤ 1. (23
)
Proof. Let us be given an optimal solution where z kj = z ji = 1, meaning that k is parent of j and j is parent of i in the spanning tree that is solution to MLTP. Such a solution implies that all the messages of i will pass though both j and k, consuming the batteries of both nodes. However, since arc (k, i) exists and k can be parent of i, we can always obtain a solution with z kj = z ki = 1 and z ji = 0, in such a way that the battery consumption of both nodes i and k is unaltered, while the one of node j is reduced. As none of the batteries consumption increase, the solution obtained is still optimal. An explanatory example is depicted in Figure 3. Observation 2 can be generalized into:

Observation 3. For any feasible instance of MLTP, given three nodes i, j, k ∈ N 0 , if there exists a path p = {(k, m 1), (m 1 , m 2), . . . , (m |p|-1 , j)} from k to j in G and (k, i), (j, i) ∈ A , there always exists an optimal solution where

z ji + (m,m)∈p z m,m ≤ |p|. (24
)
Proof. The proof follows directly from the prof of Observation 2: if all the arcs travelled in path p are selected in a solution, then connecting i to j would increase the battery consumption of all the nodes in path p, including node k. Instead, connecting i directly to k would decrease the battery consumption of all sensor nodes in p (excluding k).

An example is represented in Figure 4. Finally, let δ -(i) be the set of ingoing arcs in node i of graph G , we first prove that:

Observation 4. For any feasible instance of MLTP, given two sensor nodes i, j ∈ N sharing the same neighbourhood, that is

δ -(i) \ {j} = δ -(j) \ {i}, (25)
then there always exists an optimal solution where

z ij = z ji = 0. (26
)
Proof. In fact, if (25) is verified, then for any node k belonging to the shared neighbourhood of i and j, we can apply Observation 2. This means that given a solution where j is parent of i (resp. i is parent of j) we can transform such a solution into one where i is connected directly to the parent of j (resp. j is connected directly to the parent of i) reducing the battery consumption of j (resp. i). and6). In general, node 5 could have either the same parent as 4 or a different one in their neighbourhood, but we can always forbid to select arcs (4, 5) and [START_REF] Francesco Carrabs | Exact and heuristic approaches for the maximum lifetime problem in sensor networks with coverage and connectivity constraints[END_REF][START_REF] Anastasi | Energy conservation in wireless sensor networks: A survey[END_REF] in a solution as in (b). This restriction is stronger than the inequality of Observation 2.

An example is depicted in Figure 5. Furthermore, we can prove that:

Observation 5. For any feasible instance of MLTP, given an arc (i, j) ∈ A and a node k ∈ δ -(i) \ (δ -(j) ∪ {j}), there always exists an optimal solution where either

z ij = 0 or z ij = z ki = 1.
In other words, if the a node i is parent of node j, then the parent of i must be a node outside the neighbourhood of j, otherwise we know from Observation 2 that we can reduce the battery consumption on i by connecting j to k directly. Therefore, it follows that the following inequalities

z ij ≤ k∈δ -(i)\δ -(j)\{j} z ki , ∀(i, j) ∈ A (27)
are valid for MLTP. An example is represented in Figure 6.

Exact algorithm

In this section we propose three approaches that make use of model (FM) to solve MLTP with optimality guarantees.

Our approaches are inspired by the one in [START_REF] Ma | Exact algorithms for maximizing lifetime of wsns using integer linear programming[END_REF], where the authors perform a binary search over all the feasible lifetimes and check whether their model if each lifetime allows a feasible solution.

However, our approaches differ in four aspects: first, to solve feasibility subproblems, we use the mathematical programming formulation (FM) which is stronger than those from the literature; second, we integrate in the formulation our inequalities to further reduce the search space; third, we use the value of the lifetime set at each iteration to tighten the value of the coefficients in constraints (18), thereby incrementally strengthening the formulation; fourth, we design an enhanced search strategy.

First, let us rewrite constraints (18) as follows:

x ij ≤ 1, if j = t (d j + 1) • z ij , otherwise , ∀(i, j) ∈ A (28)
where d j is an upper bound to the number of descendants of node j that is initially set to n in constraints (18). Let d = {d 1 , d 2 , . . . , d n } be the vector of the descendant upper bounds used as big-M coefficients in Equation (28), and let F M d be the formulation F M using those values in d as coefficients in Equation (28). We remark that:

Remark 1. Given two flow models F M d and F M d such that d ≤ d , then F M d is a relaxation of F M d .
In fact, any feasible solution to F M d is feasible to F M d , but the opposite may be false, and an optimal solution to F M d is at least as good as an optimal solution to F M d . Now, let µ(i, l(T)) be the function computing the maximum number of descendants that a node i can have to allow a lifetime l(T), that is:

µ(i, l(T)) = b i /l(T) -e t e t + e r . (29
)
We prove that:

Theorem 1. If we are given a solution T * d , which is optimal for model F M d when setting

d i = µ(i, l(T * d)), (30)
then T * d is optimal for any other model F M d with d < d .

Proof. By way of contradiction, let us assume that it exists an optimal solution

T * d to F M d that is better than T * d , that is l(T * d) > l(T * d).
Then, for each node i, T * d would allow a number of descendants that is at most the one of

T * d . In fact, if l(T * d) > l(T * d) we have that b i /l(T * d) -e t e t + e r < b i /l(T * d) -e t e t + e r , ∀i ∈ N (31) b i /l(T * d) -e t e t + e r ≤ b i /l(T * d) -e t e t + e r , ∀i ∈ N (32) µ(i, l(T * d)) ≤ µ(i, l(T * d)), ∀i ∈ N. (33)
However, we also know that µ(i, l(T

d i = µ(i, l(T * d)), (34
)
then T * d is optimal for FM and therefore for MLTP. Also, we observe that: Observation 6. If we are given two lifetime values L and L , with L < L , and two vectors d and d such that

d i = µ(i, L), d i = µ(i, L) (35)
then if F M d is feasible and F M d is infeasible, an optimal solution T * must exists such that L > l(T *) ≥ L.

And therefore, we can prove that:

Theorem 2. If we are given a lifetime L and two vectors d and d such that

d i = µ(i, L -1), d i = µ(i, L) (36)
then if F M d is feasible and F M d is infeasible, any feasible solution for F M d is also optimal for MLTP.

Proof. First, if F M d is infeasible, any other F M d with d < d is infeasible too. Therefore, is no solution can be found with lifetime L , no solution can be found with lifetime higher than L , since that would mean to decrease the number of descendants for at least one node. Because of that, if a solution with lifetime L -1 exists, then such solution must be also optimal. However, any feasible solution for F M d provides a lifetime that is at least L -1, because d values are computed starting from L -1. Thus, any solution that is feasible for F M d is also optimal for F M d and because of Corollary 1 is also optimal for MLTP.

Sequential search

In our first approach we exploit Theorem 2 to design the following iterative algorithm.

Let us be given a sequence L of all the nodes lifetime, that is

L = { b i /(e t + (e t + e r) • k) : ∀i ∈ N, k = 0 . . . n} (37)
and let us assume that L is ordered from the biggest lifetime to the lowest. We have that

L = {L 1 , L 2 , . . . , L, . . . , L * 1 , . . . } (38)
where L is an upper bound to the value of the optimal lifetime L * . Our algorithm works as follows: we compute an upper bound L, for example by solving the continuous relaxation of F M , and then we compute a vector d such that d i = µ(i, L). We then solve F M d : if a feasible solution can be found, such a solution is also optimal to MLTP because of Theorem 2, as no solution with higher lifetime than L exists, and the algorithm ends. Otherwise lifetime L is too optimistic and we enter a search process that will lead to a new upper bound L, smaller than L.

Such an upper bound is found by moving to a new value in L such that L > L ≥ L * . When moving to a new lifetime, at least one value of vector d must increase. Therefore, we select L such that

L = max i∈N b i e t + (e t + e r) • (d i + 1) , (39)
that is the best lifetime we can obtain if we allow one more descendant for at least one node. In such a way we never skip a lifetime value during our search. Then, we solve again model F M d with d i = µ(i, L) and start again the process until the model is feasible. The pseudocode of our Sequential Search Algorithm (SSA) is sketched in Algorithm 1.

Algorithm 1 Sequential Search Algorithm L ← solve continuous relaxation of F M do d i ← µ(i, L) for all i ∈ N L * ← solve F M d until a feasible solution is found if problem is feasible then return L * is optimal else L ← max i∈N bi et+(et+er)•(di+1)
end if while problem is infeasible

Binary search

In our second approach we perform a binary search in the sequence of L values as in [START_REF] Ma | Exact algorithms for maximizing lifetime of wsns using integer linear programming[END_REF] but using our FM formulation to test the feasibility and starting our search from different bounds. First, let us be given our sequence L such that

L = {L 1 , L 2 , . . . , L, . . . , L * 1 , . . . , L, . . . } (40)
where L and L are upper and lower bounds to the value of the optimal lifetime L * , respectively. At each iteration of the algorithm we compute L = (L + L)/2 and consequently compute vector d as d i = µ(i, L). We then verify if formulation F M d allows a feasible solution: we then repeat the process after either changing the value of L or L accordingly with the result of our validation.

The pseudocode of our Binary Search Algorithm (BSA) is sketched in Algorithm 2.

Algorithm 2 Binary Search Algorithm

L ← solve continuous relaxation of F M L ← find a primal bound loop L ← (L + L)/2 d i ← µ(i, L) for all i ∈ N L * ← solve F M d until a feasible solution is found if problem is feasible then if L = L then return L * is optimal end if L ← L else L ← L -1 end if end loop
We remark that both an upper and a lower bound to L * could be found, for example, by solving F M to optimality by means of generic branch-and-bound, but stopping at the root node of the branching tree.

Hybrid Search

In our last approach we alternate the Sequential Search algorithm and the Binary Search algorithm in such a way that a variant of the first is run to find a feasible solution whose value is near the upper bound, and then the latter is run to close the gap.

The Hybrid Search works as follows: first we find an upper bound L, set vector d and solve F M d as in the Sequential Search algorithm. Once the model is solved, if a feasible solution is found then it is also optimal. Otherwise we look for a lower bound L: similarly to the Sequential Search Algorithm we search L by allowing more descendants than the ones tested at the last iteration. Given an integer positive parameter ∆, we compute L as:

L = max i∈N b i e t + (e t + e r) • (d i + ∆) . (41)
and we iterate. When a feasible solution is found, it is used to set values L and L for initializing the Binary Search Algorithm. The pseudocode of our Hybrid Search Algorithm (HSA) is sketched in Algorithm 3.

Algorithm 3 Hybrid Search Algorithm L ← solve continuous relaxation of F M L ← L search ← SEQU EN T IAL loop if search = SEQU EN T IAL then d i ← µ(i, L) for all i ∈ N L * ← solve F M d until a feasible solution is found if problem is feasible then search ← BIN ARY else L ← L -1 L ← max i∈N bi et+(et+er)•(di+∆) end if else L ← (L + L)/2 d i ← µ(i, L) for all i ∈ N L * ← solve F M d until a feasible solution is found if problem is feasible then if L == L then return L * is optimal end if L ← L else L ← L -1 end if end if end loop
We remark that if ∆ = 1 the Hybrid Algorithm actually performs a Sequential Search. After preliminary results we found to be profitable to set ∆ = 4.

Experimental analysis and conclusions

We implemented our models and algorithms in Python 3, and we used the branch-and-cut algorithms of IBM ILOG CPLEX [START_REF] Development | IBM ILOG CPLEX optimization studio: CPLEX user's manual -version 12 release 6[END_REF] version 12.6.3 to solve all the mathematical programming formulations.

As a benchmark we considered two different datasets: the first dataset, called ZTD, is kindly provided by the authors of [START_REF] Zhu | A Branch and Bound Algorithm for Building Optimal Data Gathering Tree in Wireless Sensor Networks -Computational Results[END_REF], and it consists of 300 instances having number of nodes n that goes from 30 to 100 in steps of 5. Nodes are dispatched in a 100 × 100 square, and each of them has a battery capacity b i that is randomly drawn in the range [START_REF] Tsiontsiou | Optimal probabilistic energy-aware routing for duty-cycled wireless sensor networks[END_REF][START_REF] Zhu | A Branch and Bound Algorithm for Building Optimal Data Gathering Tree in Wireless Sensor Networks -Computational Results[END_REF]. The energy consumption e t and e r are set to 6.66e -4 and 3.33e -4, respectively, and the communication radius of two nodes is set to 20. We further produced a second, more challenging, dataset, called CCD. That consists of 540 instances with number of nodes n ∈ {50, 75, 100}; similarly to dataset ZTD the nodes of each instance of CCD are distributed in a 100 × 100 square, but their battery capacities are randomly drawn in the range [γ, 10], with γ = 0, 5, 8, 9, 9.5, 10. Furthermore, we set e t = 6.66e -4 and e r = 3.33e -4 as in ZTD, but we increased the radius of communication to 25, 30, and 35. This settings led to more dense graphs, which in turn yield more difficult instances.

A summary of the features of the two datasets is reported in Table 2.

All tests have been conducted on a PC equipped with AMD Ryzen 1950X 3.4GHz CPU and 32 GB of memory. In CPLEX we kept the default settings although we set single thread execution. A time limit of 600s of computing time has been set for each run.

Comparison of models

At first we evaluate the performance of our formulations IP , F M , and F M with the additional inequalities described in Subsection 2.2 that we call F M I.

In Figure 7 we show the average computing time required by the three formulations to solve MLTP with optimality guarantees. The results show that the time required by F M and F M I is negligible for instances with up to 60 nodes, while IP struggles even for instances of limited size. We can also observe that our inequalities have a substantial impact on the performance of our models: not only the average computing times of F M I are the smallest, but F M I is the only model that solves all the instances with up to 85 nodes.

Figure 8 shows the number of instances solved to optimality by the three models. We observe that at 45 nodes the IP formulation solves only half of the instances, and that such a number decreases rapidly as the size of the instances increases. F M and F M I instead always solve more than half of the instances for each size of the network; in particular, F M I succeeds in solving all instances but 5, whose number of nodes is higher than 85.

Finally, Figure 9 shows the performance profile [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF] of IP , F M and F M I. In details, for each hypothetical running time limit value (x axis), the charts report the fraction of instances in the dataset solved to proven optimality within that time limit (y axis). That is, the steepest increasing lines, the better. It is easy to observe that the gap between the two flow based formulations and IP is substantial.

A more detailed summary of the performance of these three models is reported in Table 3. Each row of such table corresponds at a different size of the networks, for which we report the average number of arcs, and the number of instances solved to optimality and the average computing times of the three formulations. However, in Table 3 we only report the average computing time of those instances that are solved to optimality only. A "-" symbol in the time column signal that the model of the corresponding column could not solve any instance.

Comparison against literature

In a second run of experiments we compared the results obtained by our F M I model against the state of the art methods from the literature. In particular, we considered as a benchmark the best results of improved versions of [START_REF] Ma | Exact algorithms for maximizing lifetime of wsns using integer linear programming[END_REF] and [START_REF] Zhu | An exact algorithm for maximum lifetime data gathering tree without aggregation in wireless sensor networks[END_REF]. Although the details of their new algorithms have not been published (nor disclosed) yet, the authors kindly sent us the link to their repository where their latest computational results can be found [START_REF] Zhu | A Branch and Bound Algorithm for Building Optimal Data Gathering Tree in Wireless Sensor Networks -Computational Results[END_REF]. These results are available on instances with up to 85 nodes only.

In our test for each instance of dataset ZTD we always considered the best result among the ones obtained and reported in their repository by any of their approaches. In the following we will refer to their best result as Literature Best (LiB).

In Figure 10 we report the average computing time of both our F M I and the benchmark LiB when the size of the network increases. We observe that computing times are negligible for instances with up to 50 nodes. Even for instances of bigger size, the average computing time of F M I never grows over 15s, while LiB struggles to solve instances with 80 and 85 nodes. In fact, we observe from Figure 11 that the number of instances solved to optimality by LiB is almost halved when the size of the network reaches 80 nodes.

In Table 4 we show a detailed summary of the number of instances solved to optimality by F M I and LiB, and the average computing time. Similarly to Table 3 the average time reported is computed considering only those instances solved to optimality: that is why the computing time of LiB looks smaller than the one reported in Figure 10. Restricting to the instances solved to proven optimality by both F M I and LiB, we found F M I to be always faster, except on small instances which could be solved in less than 1s by both methods.

The performance profile in Figure 12 show the substantial gap that exists between the two approaches.

Iterative exact algorithms

In a third run of tests we compared the performance of our iterative algorithms SSA, BSA, and HSA when solving instances of dataset ZTD.

From Figure 13 we observe that the three algorithms solved all of the instances of dataset ZTD within the time limit. The average computing times were smaller than 10 seconds. Also, each instance was solved by BSA and HSA in less than 10s: SSA was the only algorithm that took more than one minute to solve an instance.

From Figure 14 BSA seems to dominate the other two algorithms, although in Table 5, where we report the average number of iterations, the number of instances solved to optimality, and the average computing time, we observe that the average computing time of HSA is usually close and sometimes better than BSA. Also, the average numbers of iterations are close meaning that the main difference between the performance of the two approaches is the time required by CPLEX either to detect the infeasibility of the problem or to find a feasible solution.

SSA performances seem to be far from the the ones of BSA and HSA, as the former requires many more iterations to solve MLTP.

Increasing graph density

In a fourth run of tests we compared the performance of our algorithms SSA, BSA, and HSA on dataset CCD. Even though such a dataset was built to be more challenging, our algorithms were still able to solve all the instances, although requiring higher computing times.

In Figure 15 we observe that the average computing time required to solve instances in dataset CCD is higher than the one required to solve those of ZTD, even though it remains smaller than one minute on average. The performance profile in Figure 16 shows that on dataset CCD the three algorithms behave more similarly than they do on dataset ZTD.

In Table 6 we observe that even though the average computing time increases, the average number of iterations remains similar to the one obtained on dataset ZTD. This behaviour suggests that dataset CCD is more challenging because it is harder for CPLEX to detect whether an instance is feasible or not. Therefore, the performance of our algorithms might be further improved by the use of ad hoc procedures to detect the infeasibility or fast heuristics to rapidly find primal solutions.

Still concerning the computing time, although SSA generally performs worse than its two competitors, we observe that for instances generated with γ either very small or very large, SSA performs better. Those cases might be the ones where the dual bound provided by F M I is very close to the optimal value, and therefore the number of iterations required by SSA is very small. In order to investigate such a phenomenon we present, in Figures 17,18, and 19, scatter plots. Each point is an instance; its number of arcs (resp. sensor battery standar deviation) define the y coordinate (resp. x coordinate) value. The size of the point is proportional to the computing time required to solve the corresponding instance. In general, we observe that the distribution of the battery capacities influences the performance of our algorithms more than the connectivity of the networks. For instance, in Figure 17 we observe that when the standard deviation of the battery is 0, meaning that all sensors have the same battery capacity, SSA performs well. The same holds even when the standard deviation of the battery is large.

Lifetime

Finally, we study how sensor network features like size, connectivity, and battery capacities influence the lifetime of the network. First, in Figures 20, 21 and 22 we plot one point for each instance: their y coordinates are number of nodes, arcs and average node degree, respectively; their x coordinates are always average sensor battery; their size is the optimal lifetime value.

The size of a network does not significantly impact on its lifetime, which instead is highly dependent on the capacity of the batteries, as one could expect. However, Figure 22 shows that there is at least one other feature of the network that has an impact on the lifetime, that is the average degree of the sensor nodes. In fact we observe that when the average degree of the nodes increases, higher lifetime values are more frequent. A dense graph with an average degree of 15 can provide a lifetime that is higher than a sparse graph, even when the latter has 30% more battery capacity.

Conclusions

The MLTP is known in the literature for both its practical relevance and its theoretical interest. Our investigation on mathematical modelling and combinatorial properties helps in understanding its structure, clarifying key features of optimal solutions, and allowing for better resolution techniques.

In fact we could exploit these new results, and in particular the flow structure underlying the MLTP and the existence of symmetries between solutions, to design effective algorithms. Besides a strong mathematical programming formulation, inequalities reducing these symmetries, and the iterative tightening of problem coefficients, we found the search strategy to be the factor needed to complement structural results in a computationally effective framework. Through an exhaustive experimental campaign we showed that our models are more effective than previous ones from the literature, and that our additional inequalities have a substantial impact.

Overall, our algorithms experimentally outperform earlier ones from the literature by two orders of magnitude, allowing to optimize (and prove optimality) of several open instances.

We studied the correlation between network features and the lifetime that can be achieved, showing that the degree of the nodes is at least as important as the battery capacities to achieve a higher network lifetime.

We could also enlarge the datasets from the literature, including much larger networks, still obtaining fast computations, thereby proving our methods to be suitable as a basis for tools tackling real sized networks.

Figure 2 :Figure 3 :

 23 Figure 2: Example of Observation 1: in (a) sensor node 3 is a child of sensor node 1 but it could be connected directly to the sink 0. Connecting sensor node 3 to the sink as done in (b) reduces the number of descendants of sensor node 1.

Figure 4 :

 4 Figure4: Example of Observation 4: in (a) a path connects node 7 to node 1. However, node 7 can be connected directly to node 1 reducing the number of descendants for nodes 6, 5, 4, and 3 as depicted in (b). Since node 7 was already a descendant of node 1, the lifetime of node 1 is unaltered.

Figure 5 :

 5 Figure 5: Example of Observation 3: in (a) nodes 4 and 5 share the same neighbourhood (nodes3 and 6). In general, node 5 could have either the same parent as 4 or a different one in their neighbourhood, but we can always forbid to select arcs (4, 5) and[START_REF] Francesco Carrabs | Exact and heuristic approaches for the maximum lifetime problem in sensor networks with coverage and connectivity constraints[END_REF][START_REF] Anastasi | Energy conservation in wireless sensor networks: A survey[END_REF] in a solution as in (b). This restriction is stronger than the inequality of Observation 2.

Figure 6 :

 6 Figure 6: Observation 5 forbids solutions as in (a) imposing that node 4 has a parent outside the neighbourhood of 5 when arc (4, 5) is selected. Although Observation 5 and Observation 2 are equivalent when integrality conditions are satisfied, they are complementary while solving the continuous relaxation of MLTP.

Figure 7 :

 7 Figure 7: Average computing time of formulations IP , F M , and F M I on dataset ZTD with a time limit of 600s.

Figure 8 :Figure 9 :

 89 Figure 8: Number of instances solved to optimality by formulations IP , F M , and F M I on dataset ZTD with a time limit of 600s.

Figure 10 :Figure 11 :

 1011 Figure 10: Average computing time of LiB and F M I on dataset ZTD with a time limit of 600s.

Figure 12 :Figure 13 :

 1213 Figure 12: Performance profile of model F M I and the best result of LiB on dataset ZTD with a time limit of 600s.

Figure 14 :

 14 Figure 14: Performance profile of algorithms SSA, BSA and HSA on dataset ZTD with a time limit of 600s.

Figure 15 :

 15 Figure 15: Average computing time of algorithms SSA, BSA and HSA on dataset CCD with a time limit of 600s.

Figure 16 :Figure 17 :Figure 18 :Figure 19 :

 16171819 Figure16: Performance profile of algorithms SSA, BSA and HSA on dataset CCD with a time limit of 600s.

Figure 20 :

 20 Figure 20: Lifetime of networks of varying nodes and battery capacity.

Figure 21 :

 21 Figure 21: Lifetime of networks of varying arcs and battery capacity.

Table 1 :

 1 Mathematical notation.

	directed graph

N = {1, . . . , n} set of sensor nodes N 0 = N ∪ {0} set of nodes including the sink node

A ⊆ N 0 × N 0 set of arcs G = (N 0 , A)

 * d)) ≤ d i for all nodes i because of constraints (28) of model F M d . Therefore, the solution T * d would allow a number of descendants for each node i that is feasible also for F M d , and therefore T Corollary 1. If we are given a solution T * d , which is optimal with respect to model F M d when setting

	It follows that:

* d would be feasible for F M d , improving T * d for problem F M d , thereby contradicting our initial assumption.

Table 2 :

 2 Summary of datasets parameters.

	Dataset Nodes	Batteries		Transmission	Reception	en-	Communication
						energy	ergy	radius
	ZTD	30 to 100 in	in [1, 10]		6.66e -4	3.33e -4	20
		steps of 5					
	CCD	50, 75, and 100	in		[γ, 10]	6.66e -4	3.33e -4	25, 30, 35
			with	γ	=		
			0, 5, 8, 9, 9.5, 10		

Table 3 :

 3 Summary of number of instances solved to optimality and average computing time of solved instances for formulations IP , F M , and F M I on dataset ZTD with a time limit of 600s.

Table 4 :

 4 Number of instances solved to optimality and average computing time of the best LiB approach and F M I model on dataset ZTD with a time limit of 600s.

	n avg. |A|	FMI		LiB	
			#sol. time (s) #sol. time (s)
	30	105.8	20	0.5	20	0.0
	35	131.6	20	0.5	20	0.0
	40	170.9	20	0.5	20	0.0
	45	218.0	20	0.6	20	0.6
	50	266.0	20	0.6	20	0.2
	55	315.2	20	0.9	20	4.5
	60	375.6	20	1.0	20	16.0
	65	459.5	20	1.2	18	4.9
	70	507.5	20	1.4	18	23.2
	75	588.4	20	1.6	19	12.6
	80	659.6	20	14.7	12	32.5
	85	756.3	20	3.7	13	28.8

Table 5 :

 5 Average number of iterations, number of instances solved to optimality, and average computing time of algorithms BSA, HSA, and SSA on dataset ZTD with a time limit of 600s.

	n	γ avg. |A|		BSA			HSA		SSA	
				#iter. #sol. time (s) #iter. #sol. time (s) #iter. #sol. time (s)
	51	0.0	541.3	1.7	30	0.4	1.4	30	0.6	2.3	0.4
	51	5.0	541.3	5.0	30	0.9	5.9	30	1.9	33.9	2.8
	51	8.0	541.3	5.8	30	1.0	6.0	30	2.0	36.4	3.1
	51	9.0	541.3	6.4	30	1.0	6.2	30	2.0	36.7	3.2
	51	9.5	541.3	7.3	30	1.1	7.1	30	2.1	33.0	2.9
	51 10.0	541.3	6.6	30	1.0	7.3	30	1.8	2.3	0.6
	76	0.0	1212.0	1.8	30	1.1	1.6	30	1.1	3.5	1.2
	76	5.0	1212.0	5.4	30	10.2	5.5	30	14.1	42.2	16.9
	76	8.0	1212.0	5.6	30	10.8	5.6	30	9.7	44.7	32.4
	76	9.0	1212.0	6.2	30	8.6	6.3	30	11.5	46.0	35.5
	76	9.5	1212.0	6.3	30	10.7	6.4	30	12.9	38.8	29.3
	76 10.0	1212.0	4.4	30	10.3	4.6	30	12.4	2.0	2.9
	101	0.0	2134.6	1.2	30	1.5	1.1	30	1.5	1.0	1.4
	101	5.0	2134.6	5.7	30	11.4	5.9	30	10.4	50.9	17.3
	101	8.0	2134.6	5.9	30	21.8	6.1	30	18.8	57.0	30.4
	101	9.0	2134.6	5.9	30	13.6	6.6	30	14.9	53.2	26.7
	101	9.5	2134.6	7.0	30	17.5	6.8	30	16.0	43.8	21.2
	101 10.0	2134.6	3.4	30	4.0	3.8	30	4.5	2.0	3.0

Table 6 :

 6 Number of instances solved to optimality, average number of iterations, and average computing time of algorithms BSA, HSA, and SSA on dataset CCD with a time limit of 600s.

	20

Acknowledgments

Partially funded by Regione Lombardia, grant agreement n. E97F17000000009, Project AD-COM, and "Piano Sostegno alla Ricerca 2019-20", Università degli Studi di Milano.

We are grateful to the authors of [10] for sharing their experimental data and computational results.