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Abstract—The design of systems implementing low precision
neural networks with emerging memories such as resistive
random access memory (RRAM) is a significant lead for reducing
the energy consumption of artificial intelligence. To achieve
maximum energy efficiency in such systems, logic and memory
should be integrated as tightly as possible. In this work, we focus
on the case of ternary neural networks, where synaptic weights
assume ternary values. We propose a two-transistor/two-resistor
memory architecture employing a precharge sense amplifier,
where the weight value can be extracted in a single sense
operation. Based on experimental measurements on a hybrid
130 nm CMOS/RRAM chip featuring this sense amplifier, we
show that this technique is particularly appropriate at low
supply voltage, and that it is resilient to process, voltage, and
temperature variations. We characterize the bit error rate in
our scheme. We show based on neural network simulation on the
CIFAR-10 image recognition task that the use of ternary neural
networks significantly increases neural network performance,
with regards to binary ones, which are often preferred for
inference hardware. We finally evidence that the neural network
is immune to the type of bit errors observed in our scheme, which
can therefore be used without error correction.

Index Terms—Neural Networks, Resistive Memory, Quantized
Neural Networks, Low Voltage Operation, Sense Amplifier.

I. INTRODUCTION

Artificial Intelligence has made tremendous progress in
recent years due to the development of deep neural networks.
Its deployment at the edge, however, is currently limited by the
high power consumption of the associated algorithms [1]. Low
precision neural networks are currently emerging as a solution,
as they allow the development of low power consumption
hardware specialized in deep learning inference [2]. The most
extreme case of low precision neural networks, the Binarized
Neural Network (BNN), also called XNOR-NET, is receiving
particular attention as it is especially efficient for hardware
implementation: both synaptic weights and neuronal activa-
tions assume only binary values [3], [4]. Remarkably, this type
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of neural network can achieve high accuracy on vision tasks
[5]. One particularly investigated lead is to fabricate hardware
BNNs with emerging memories such as resistive RAM or
memristors [6]–[13]. The low memory requirements of BNNs,
as well as their reliance on simple arithmetic operations,
make them indeed particularly adapted for “in-memory” or
“near-memory” computing approaches, which achieve superior
energy-efficiency by avoiding the von Neumann bottleneck
entirely.

Ternary neural networks [14] (TNN, also called Gated
XNOR-NET, or GXNOR-NET [15]), which add the value
0 to synaptic weights and activations, are also considered
for hardware implementations [16]–[19]. They are compara-
tively receiving less attention than binarized neural networks,
however. In this work, we highlight that implementing TNNs
does not necessarily imply considerable overhead with regards
to BNNs. We introduce a two-transistor/two-resistor mem-
ory architecture for TNN implementation. The array uses a
precharge sense amplifier for reading weights, and the ternary
weight value can be extracted in a single sense operation,
by exploiting the fact that latency of the sense amplifier
depends on the resistive states of the memory devices. This
work extends a hardware developed for the energy-efficient
implementation of BNNs [6], where the synaptic weights are
implemented in a differential fashion. We, therefore, show that
it can be extended to TNNs without overhead on the memory
array.

The contribution of this work is as follows. After presenting
the background of the work (section II):

• We demonstrate experimentally, on a fabricated 130 nm
RRAM/CMOS hybrid chip, a strategy for implementing
ternary weights using a precharge sense amplifier, which
is particularly appropriate when the sense amplifier is
operated at low supply voltage (section III).

• We analyze the bit errors of this scheme experimentally
and their dependence on the RRAM programming con-
ditions (section V).

• We verify the robustness of the approach to process,
voltage, and temperature variations (section IV).

• We carry simulations that show the superiority of TNNs
over BNNs on the canonical CIFAR-10 vision task, and
evidence the error resilience of hardware TNNs (sec-
tion VI).
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Fig. 1. (a) Electron microscopy image of a hafnium oxide resistive memory
cell (RRAM) integrated in the backend-of-line of a 130nm CMOS process.
(b) Photograph and (c) simplified schematic of the hybrid CMOS/RRAM test
chip characterized in this work. The white rectangle in (b) materializes a
single PCSA.

• We discuss the results, and compare our approach with
the idea of storing three resistance levels per device.

Partial and preliminary results of this work have been
presented at a conference [20]. This journal version adds the
experimental characterization of bit errors in our architecture,
supported by a comprehensive analysis of the impact on
process, voltage, and temperature variations, and their impact
at the neural network level, together with a detailed analysis
of the use of ternary networks over binarized ones.

II. BACKGROUND

The main equation in conventional neural networks is the
computation of the neuronal activation Aj = f (

∑
iWjiXi) ,

where Aj , the synaptic weights Wji, and input neuronal
activations Xi assume real values, and f is a non-linear
activation function. Binarized neural networks (BNNs) are a
considerable simplification of conventional neural networks, in
which all neuronal activations (Aj , Xi) and synaptic weights

Wji can only take binary values meaning +1 and −1. Neu-
ronal activation then becomes:

Aj = sign

(∑
i

XNOR (Wji, Xi)− Tj

)
, (1)

where sign is the sign function, Tj is a threshold associated
with the neuron, and the XNOR operation is defined in
Table I. Training BNNs is a relatively sophisticated operation,
during which each synapse needs to be associated with a
real value in addition to its binary value (see Appendix).
Once training is finished, these real values can be discarded,
and the neural network is entirely binarized. Due to their
reduced memory requirements, and reliance on simple arith-
metic operations, BNNs are especially appropriate for in- or
near- memory implementations. In particular, multiple groups
investigate the implementation of BNN inference with resistive
memory tightly integrated at the core of CMOS [6]–[13].
Usually, resistive memory stores the synaptic weights Wji.
However, this comes with a significant challenge: resistive
memory is prone to bit errors, and in digital applications, is
typically used with strong error-correcting codes (ECC). ECC,
which requires large decoding circuits [21], goes against the
principles of in- or near- memory computing. For this reason,
[6] proposes a two-transistor/two-resistor (2T2R) structure,
which reduces resistive memory bit errors, without the need
for ECC decoding circuit, by storing synaptic weights in a
differential fashion. This architecture allows the extremely effi-
cient implementation of BNNs, and using the resistive memory
devices in very favorable programming conditions (low energy,
high endurance). It should be noted that systems using this
architecture function with row-by-row read operations, and
do not use the in-memory computing technique of using the
Kirchhoff current law to perform the sum operation of neural
networks, while reading all devices at the same time [22],
[23]. This choice limits the parallelism of such architectures,
while at the same time avoiding the need of analog-to-digital
conversion and analog circuits such as operational amplifiers,
as discussed in detail in [24].

In this work, we show that the same architecture can be
used for a generalization of BNNs – ternary neural networks
(TNNs)1, where neuronal activations and synaptic weights Aj ,
Xi, and Wji can now assume three values: +1, −1, and 0.
Equation (1) now becomes:

Aj = φ

(∑
i

GXNOR (Wji, Xi)− Tj

)
. (2)

GXNOR is the “gated” XNOR operation that realizes the
product between numbers with values +1, −1 and 0 (Table I).
φ is an activation function that outputs +1 if its input is greater
than a threshold ∆, −1 if the input is lesser than −∆ and 0
otherwise. We show experimentally and by circuit simulation
in sec. III how the 2T2R BNN architecture can be extended
to TNNs with practically no overhead, in sec. V its bit errors,
and in sec. VI the corresponding benefits in terms of neural
network accuracy.

1In the literature, the name “Ternary Neural Networks” is sometimes also
used to refer to neural networks where the synaptic weights are ternarized,
but the neuronal activations remain real or integer [25], [26].
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TABLE I
TRUTH TABLES OF THE XNOR AND GXNOR GATES

Wji Xi XNOR
−1 −1 1
−1 1 −1
1 −1 −1
1 1 1

Wji Xi GXNOR
−1 −1 1
−1 1 −1
1 −1 −1
1 1 1
0 X 0
X 0 0

III. THE OPERATION OF A PRECHARGE SENSE AMPLIFIER
CAN PROVIDE TERNARY WEIGHTS
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Fig. 2. Schematic of the precharge sense amplifier fabricated in the test chip.
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Fig. 3. Circuit simulation of the precharge sense amplifier of Fig. 2 with a
supply voltage of 1.2V, using thick oxide transistors (nominal voltage of 5V)

, if the two devices are programmed in an (a) LRS / HRS
(5kΩ/350kΩ) or (b) HRS/HRS (320kΩ/350kΩ) configuration.

In this work, we use the architecture of [6], where synap-
tic weights are stored in a differential fashion. Each bit is
implemented using two devices programmed either as low
resistance state (LRS) / high resistance state (HRS) to mean
weight +1 or HRS/LRS to mean weight −1. Fig. 1 presents

the test chip used for the experiments. This chip cointegrates
130nm CMOS and resistive memory in the back-end-of-line,
between levels four and five of metal. The resistive memory
cells are based on 10nm thick hafnium oxide (Fig. 1(a)). All
devices are integrated with a series NMOS transistor. After an
initial forming step (consisting in the application of a voltage
ramp from zero volts to 3.3V at a rate of 1000V/s, and with
a current limited to a compliance of 200µA), the devices can
switch between high resistance state (HRS) and low resistance
state (LRS), through the dissolution or creation of conductive
filaments of oxygen vacancies. Programming into the HRS is
obtained by the application of a negative RESET voltage pulse
(typically between 1.5V and 2.5V during 1µs). Programming
into the LRS is obtained by the application of a positive SET
pulse (also typically between 1.5V and 2.5V during 1µs), with
current limited to a compliance current through the choice of
the voltage applied on the transistor gate through the word
line. This test chip is designed with highly conservative sizing,
allowing the application of a wide range of voltages and
electrical currents to the RRAM cells. The area of each bit
cell is 6.6× 6.9µm2. More details on the RRAM technology
are provided in [24].

Our experiments are based on a 2, 048 devices array in-
corporating all sense and periphery circuitry, illustrated in
Fig. 1(b-c). The ternary synaptic weights are read using on-
chip precharge sense amplifiers (PCSA), presented in Fig. 2,
and initially proposed in [27] for reading spin-transfer magne-
toresistive random access memory. Fig. 3(a) shows an electri-
cal simulation of this circuit to explain its working principle,
using the Mentor Graphics Eldo simulator. These first simula-
tions are presented in the commercial 130nm ultra-low leakage
technology, used in our test chip, with a low supply voltage of
1.2V [28], with thick oxide transistors (the nominal voltage
in this process for thick oxide transistor is 5V). Since the
technology targets ultra-low leakage applications the threshold
voltages are significantly high (around 0.6V), thus a supply
voltage of 1.2V significantly reduces the overdrive of the
transistors (VGS − VTH ).

In the first phase (SEN=0), the outputs Q and Qb are
precharged to the supply voltage VDD. In the second phase
(SEN=VDD), each branch starts to discharge to the ground.
The branch that has the resistive memory (BL or BLb) with
the lowest electrical resistance discharges faster and causes its
associated inverter to drive the output of the other inverter to
the supply voltage. At the end of the process, the two outputs
are therefore complementary and can be used to tell which
resistive memory has the highest resistance and therefore the
synaptic weight. We observed that the convergence speed of
a PCSA depends heavily on the resistance state of the two
resistive memories. This effect is particularly magnified when
the PCSA is used with a reduced overdrive, as presented here:
the operation of the sense amplifier is slowed down, with re-
gards to nominal voltage operation, and the convergence speed
differences between resistance values become more apparent.
Fig. 3(b) shows a simulation where the two devices, BL and
BLb, were programmed in the HRS. We see that the two
outputs converge to complementary values in more than 200ns,
whereas less than 50ns were necessary in Fig. 3(a), where the
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Fig. 4. Two devices have been programmed in four distinct programming
conditions, presented in (a), and measured using an on-chip sense amplifier.
(b) Proportion of read operations that have converged in 50ns, over 100 trials.

devices are programmed in complementary LRS/HRS states.
These first simulations suggest a technique for implement-

ing ternary weights using the memory array of our test chip.
Similarly to when this array is used to implement BNN, we
propose to program the devices in the LRS/HRS configura-
tion to mean the synaptic weight 1, and HRS/LRS to mean
the synaptic weight −1. Additionally, we use the HRS/HRS
configuration to mean synaptic weight 0, while the LRS/LRS
configuration is avoided. The sense operation is performed
during a duration of 50ns. If at the end of this period, outputs
Q and Qb have differentiated, causing the output of the XOR
gate to be 1, output Q determines the synaptic weight (1 or
−1). Otherwise, the output of the XOR gate is 0, and the
weight is determined to be 0.

This type of coding is reminiscent to the one used by the
2T2R ternary content-addressable memory (TCAM) cell of
[29], where the LRS/HRS combination is used for coding 0,
the HRS/LRS combination for coding 1, and the HRS/HRS
combination for coding “don’t care” (or X).

Experimental measurements on our test chip confirm that
the PCSA can be used in this fashion. We first focus on one
synapse of the memory array. We program one of the two
devices (BLb) to a resistance of 100kΩ. We then program its
complementary device BL to several resistance values, and for
each of them perform 100 read operations of duration 50ns,
using on-chip PCSAs.

These PCSAs are fabricated using thick-oxide transistors,
designed for a nominal supply voltage of 5V , and here used
with a supply voltage of 1.2V , close to their threshold voltage
(0.6V ), to reduce their overdrive, and thus to exacerbate
the PCSA delay variations. In the test chip, they are sized
conservatively with a total area of 290µm2. The use of thick
oxide transistors in this test chip allows us to investigate the

Fig. 5. For 109 device pairs programmed with multiple RBL/RBLb

configuration, value of the synaptic weight measured by the on-chip sense
amplifier using the strategy described in body text and 50ns reading time.

behavior of the devices at high voltages, without the concern
of damaging the CMOS periphery circuits. Fig. 4 plots the
probability that the sense amplifier has converged during the
read time. In 50ns, the read operation is only converged if the
resistance of the BL device is significantly lower than 100kΩ.

To evaluate this behavior in a broader range of program-
ming conditions, we repeated the experiment on 109 devices
and their complementary devices of the memory array pro-
grammed, every 14 times, with various resistance values in the
resistive memory, and performed a read operation in 50ns with
an on-chip PCSA. The memory array of our test chip features
one separate PCSA per column. Therefore, 32 different PCSAs
are used in our results. Fig. 5(a) shows, for each couple of
resistance values RBL and RBLb if the read operation was
converged with Q = VDD (blue), meaning a weight of 1,
converged with Q = 0 (red), meaning a weight of −1, or not
converged (grey) meaning a weight of 0.

The results confirm that LRS/HRS or HRS/LRS configura-
tions may be used to mean weights 1 and −1, and HRS/HRS
for weight 0. When both devices are in HRS (resistance higher
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than 100kΩ, the PCSA never converges within 50ns (weight
of 0). When one device is in LRS (resistance lower than
10kΩ, the PCSA always converges within 50ns (weight of
±1). The separation between the 1 (or −1) and 0 regions is
not strict, and for intermediate resistance values, we see that
the read operation may or may not converge in 50ns. Fig. 5(b)
summarizes the different operation regimes of the PCSA.

TABLE II
ERROR RATES ON TERNARY WEIGHTS MEASURED EXPERIMENTALLY

Programming Type 1 Type 2 Type 3
Conditions (1←→ −1) (±1→ 0) (0→ ±1)
Fig. 7(a) < 10−6 < 1% 6.5%
Fig. 7(b) < 10−6 < 1% 18.5%

IV. IMPACT OF PROCESS, VOLTAGE, AND TEMPERATURE
VARIATIONS

We now verify the robustness of the proposed scheme to
process, voltage, and temperature variation. For this purpose,
we performed extensive circuit simulations of the operation
of the sense amplifier, reproducing the conditions of the
experiments of Fig. 5, using the same resistance values for the
RRAM devices, and including process, voltage, and temper-
ature variations. The results of the simulations are processed
and plotted using the same format as the experimental results
of Fig. 5, to ease comparison.

These simulations are obtained using the Monte Carlo
simulator provided by the Mentor Graphics Eldo tool with
parameters validated on silicon, provided by the design kit
of our commercial CMOS process. Each point in the graphs
of Fig. 6 therefore features different transistor parameters.
We included global and local process variations, as well as
transistor mismatch, in order to capture the whole range of
transistor variabilities observed in silicon. In order to assess
the impact of voltage and temperature variations, these simu-
lations are presented in three conditions: slow transistors (0◦C
temperature, and 1.1V supply voltage, Fig. 6(a)), experimen-
tal conditions (27◦C temperature, and 1.2V supply voltage,
Fig. 6(b)), and fast transistors (60◦C temperature, and 1.3V
supply voltage, Fig. 6(c)). The RRAM devices are modeled
by resistors. Their process variations are naturally included
through the use of different resistance values in Fig. 6. The
impact of voltage variation on RRAM is naturally included
through Ohm’s law, and the impact of temperature variation,
which is smaller than on transistors, is neglected.

In all three conditions, the simulation results appear very
similar to the experiments. Three clear regions are observed:
non-convergence of the sense amplifier within 50ns for de-
vices in HRS/HRS, and convergence within this time to a
+1 or −1 value for devices in LRS/HRS and HRS/LRS,
respectively. However, the frontier between these regimes is
much sharper in the simulations than in the experiments.
As the different data points in Fig. 6 differ by process and
mismatch variations, this suggests that process variation does

not cause the stochasticity observed in the experiments of
Fig. 5, and that they have little impact in our scheme.

We also see that the frontier between the different sense
regimes in all three operating conditions remains firmly within
the 10− 100kΩ range, suggesting that even high variations of
voltage (±0.1V ) and temperature (±30◦C) do not endanger
the functionality of our scheme. Logically, in the case of fast
transistors, the frontier is shifted toward higher resistances,
whereas in the case of slow transistors, it is shifted toward
lower resistances. Independent simulations allowed verifying
that this change is mostly due to the voltage variations: the
temperature variations have an almost negligible impact on the
proposed scheme.

We also observed that the impact of voltage variations
increased importantly when reducing the supply voltage. For
example, with a supply voltage of 0.7V instead of the 1.2V
value considered here, variations of the supply voltage of
±0.1V can impact the mean switching delay of the PCSA,
by a factor two. The thick oxide transistors used in this work
have a nominal voltage of 5V , and a typical threshold voltage
of approximately 0.6V . Therefore, although our scheme is es-
pecially appropriate for supply voltages far below the nominal
voltage, it is not necessarily appropriate for voltages in the
subthreshold regime, or very close to the threshold voltage.

V. PROGRAMMABILITY OF TERNARY WEIGHTS

To ensure reliable functioning of the ternary sense operation,
we have seen that devices in LRS should be programmed
to electrical resistance below 10kΩ, and devices in HRS to
resistances above 100kΩ (Fig. 5(b)). The electrical resistance
of resistive memory devices depends considerably on their
programming conditions [24], [30]. Fig. 7 shows the distri-
butions of LRS and HRS resistances using two programming
conditions, over the 2, 048 devices of the array, differentiating
devices connected to bit lines and to bit lines bar. We see
that in all cases, the LRS features a tight distribution. The
SET process is indeed controlled by a compliance current that
naturally stops the filament growth at a targeted resistance
value [31]. An appropriate choice of the compliance current
can ensure LRS below 10kΩ in most situations.

On the other hand, the HRS shows a broad statistical
distribution. In the RESET process, the filament indeed breaks
in a random process, making it extremely hard to control
the final state [31], [32]. The use of stronger programming
conditions leads to higher values of the HRS.

This asymmetry between the variability of LRS and HRS
means that in our scheme, the different ternary weight values
feature different error rates naturally. The ternary error rates
in the two programming conditions of Fig. 7(a) are listed in
Table II. Errors of Type 1, where weight values of 1 and −1
are inverted are the least frequent. Errors of Type 2, where
a weight value of 1 or −1 is replaced by a weight value
of 0 are infrequent as well. On the other hand, due to the
large variability of the HRS, weight values 0 have a significant
probability to be measured as 1 or −1 (Type 3 errors): 6.5%
in the conditions of Fig. 7(a), and 18.5% in the conditions of
Fig. 7(b).
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Fig. 6. Three Monte Carlo SPICE-based simulation of the experiments of Fig. 5, in three situations: (a) slow transistors (0◦C temperature, 1.1V supply
voltage), (b) experimental conditions (27◦C temperature, 1.2V supply voltage), (c) fast transistors (60◦C temperature, 1.3V supply voltage). The simulations
include local and global process variations, as well as transistor mismatch, in a way that each point in the Figure is obtained using different transistor
parameters. All results are plotted in the same manner and with the same conventions as Fig. 5.

Fig. 7. Distribution of the LRS and HRS states programmed with a SET
compliance of 200µA, RESET voltage of 2.5V and programming pulses of
(a) 100µs and (b) 1µs. Measurements are performed 2, 048 RRAM devices,
separating bit line (full lines) and bit line bar (dashed lines) devices.

Some resistive memory technologies with large memory
windows, such as specifically optimized conductive bridge
memories [33], would feature lower Type 3 error rates. Simi-
larly, program-and-verify strategies [34]–[36] may reduce this
error rate. Nevertheless, the higher error rate for zeros than for
1 and −1 weights is an inherent feature of our architecture.
Therefore, in the next section, we assess the impact of these
errors on the accuracy of neural networks.

VI. NETWORK-LEVEL IMPLICATIONS

We first investigate the accuracy gain when using ternarized
instead of binarized networks. We trained BNN and TNN
versions of networks with Visual Geometry Group (VGG) type
architectures [37] on the CIFAR-10 task of image recognition,
consisting in classifying 1,024 pixels color images among
ten classes (airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck) [38]. Simulations are performed using
PyTorch 1.1.0 [39] on a cluster of eight Nvidia GeForce RTX
2080 GPUs.

The architecture of our networks consists of six convolu-
tional layers with kernel size three. The number of filters at
the first layer is called N and is multiplied by two every two
layers. Maximum-value pooling with kernel size two is used
every two layers and batch-normalization [40] every layer. The
classifier consists of one hidden layer of 512 units. For the
TNN, the activation function has a threshold ∆ = 5 · 10−2

(as defined in section II). The training methods for both the
BNN and the TNN are described in the Appendix. The training
is performed using the AdamW optimizer [41], [42], with
minibatch size 128. The initial learning rate is set to 0.01, and
the learning rate schedule from [42], [43] (Cosine annealing
with two restarts, for respectively 100, 200, 400 epochs) is
used, resulting in a total of 700 epochs. Training data is
augmented using random horizontal flip, and random choice
between cropping after padding and random small rotations.

No error is added during the training procedure, as our
device is meant to be used for inference. The synaptic weights
encoded by device pairs would be set after the model has been
trained on a computer.

Fig. 8 shows the maximum test accuracy resulting from
these training simulations, for different sizes of the model.
The error bars represent one standard deviation of the training
accuracies. TNNs always outperform BNNs with the same
model size (and, therefore, the same number of synapses). The
most substantial difference is seen for smaller model size, but
a significant gap remains even for large models. Besides, the
difference in the number of parameters required to reach a
given accuracy for TNNs and BNNs increases with higher
accuracies. There is, therefore, a definite advantage to use
TNNs instead of BNNs.

Fig. 8 compared fully ternarized (weights and activations)
with regards to fully binarized (weights and activations) ones.
Table III lists the impact of weight ternarization for different
types of activations (binary, ternary, and real activation). All
results are reported on a model of size N = 128, trained
on CIFAR-10, and are averaged over five training procedures.
We observe that for BNNs and TNNs with quantized acti-
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Fig. 8. Simulation of the maximum test accuracy reached during one training
procedure, averaged over five trials, for BNNs and TNNs with various model
sizes on the CIFAR-10 dataset. Error bar is one standard deviation.

Fig. 9. Simulation of the impact of Bit Error Rate on the test accuracy at
inference time for model size N = 128 TNN in (a) and BNN in (b). Type
1 errors are sign switches (e.g. +1 mistaken for −1), Type 2 errors are ±1
mistaken for 0, and Type 3 errors are 0 mistaken for ±1, as described in the
inset schematics. Errors are sampled at each mini batch and the test accuracy
is averaged over five passes through the test set. Error bars are one standard
deviation. The bit error rate is given as an absolute rate.

vations, the accuracy gains provided by ternary weights over
binary weights are 0.84 and 0.86 points and are statistically
significant over the standard deviations. This accuracy gain is
more important than the gain provided by ternary activations
over binary activations, which is about 0.3 points. This bigger
impact of weight ternarization over ternary activation may
come from the ternary kernels having a better expressing
power over binary kernels, which are often redundant in
practical settings [3]. The gain of ternary weights drops to
0.26 points if real activation is allowed (using rectified linear
unit, or ReLU, as activation function, see appendix), and is not
statistically significant considering the standard deviations.

Quantized activations are vastly more favorable in the con-
text of hardware implementations, and in this situation, there
is thus a statistically significant benefit provided by ternary
weights over binary weights.

TABLE III
COMPARISON OF THE GAIN IN TEST ACCURACY FOR A N = 128 MODEL
SIZE ON CIFAR-10 OBTAINED BY WEIGHT TERNARIZATION INSTEAD OF

BINARIZATION FOR THREE TYPES OF ACTIVATION QUANTIZATION.

Activations
Binary Ternary Full Precision

Weights
Binary 91.19± 0.08 91.51± 0.09 93.87± 0.19
Ternary 92.03± 0.12 92.35± 0.05 94.13± 0.10
Gain of ternarization 0.84 0.86 0.26

We finally investigate the impact of bit errors in BNNs and
TNNs to see if the advantage provided by using TNNs in our
approach remains constant when errors are taken into account.
Consistently with the results reported in section V, three types
of errors are investigated: Type 1 errors are sign switches, e.g.,
+1 mistaken for −1, Type 2 errors are only defined for TNNs
and correspond to ±1 mistaken for 0, and Type 3 errors are
0 mistaken for ±1, as illustrated in the inset schematic of
Fig. 9(a).

Fig. 9(a) shows the impact of these errors on the test
accuracy for different values of the error rate at inference time.
These simulation results are presented on CIFAR-10 with a
model size of N = 128. Errors are randomly and artificially
introduced in the weights of the neural network . Bit errors are
included at the layer level and sampled at each mini-batch of
the test set. Type 1 errors switch the sign of a synaptic weight
with a probability equal to the rate of type 1 errors. Type 2
errors set a non-zero synaptic weight to 0 with a probability
equal to the type 2 error rate. Type 3 errors set a synaptic
weight of 0 to ±1 with a probability equal to the type 3 error
rate, the choice of the sign (+1 or −1) is made with 0.5
probability. Fig. 9 is obtained by averaging the test accuracy
obtained for five passes through the test set for increasing bit
error rate.

Type 1 errors have the most impact on neural network
accuracy. As seen in Fig. 9(b), the impact of these errors is
similar to the impact of weight errors in a BNN. On the other
hand, Type 3 errors have the least impact, with bit error rates
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as high as 20% degrading surprisingly little the accuracy. This
result is fortunate, as we have seen in section V that Type 3
errors are the most frequent in our architecture.

We also performed simulations considering all three types
of error at the same time, with error rates reported in Table II
corresponding to the programming conditions of Fig. 7(a) and
7(b). For Type 1 and Type 2 errors, we considered the upper
limits listed in Table II. For the conditions of Fig. 7(a) (Type 3
error rate of 6.5%), the test accuracy was degraded from 92.2%
to 92.05 ± 0.14%, and to 92.02 ± 0.17% for the conditions
of 7(b) (Type 3 error rate of 18.5%), where the average and
standard deviation is performed over 100 passes through the
test set. We found that the slight degradation on CIFAR-10
test accuracy was mostly due to the Type 2 errors, although
Type 3 errors are much more frequent.

The fact that mistaking a 0 weight for a ±1 weight (Type 3
error) has much less impact than mistaking a ±1 weight for
a 0 weight (Type 2 error) can seem surprising. However, it
is known, theoretically and practically, that in BNNs, some
weights have little importance to the accuracy of the neural
networks [44]. They typically correspond to synapses that
feature a 0 weight in a TNN, whereas synapses with ±1
weights in a TNN correspond to “important” synapses of a
BNN. It is thus understandable that errors on such synapses
have more impact on the final accuracy of the neural network.

VII. COMPARISON WITH THREE-LEVEL PROGRAMMING

An alternative approach to implementing ternary weights
with resistive memory can be to program the individual devices
into there separate levels. This idea is feasible, as the resistance
level of the LRS can to a large extent be controlled through
the choice of the compliance current during the SET operation
in many resistive memory technologies [24], [31].

The obvious advantage of this approach is that it requires
a single device per synapse. This idea also brings several
challenges. First, the sense operation has to be more complex.
The most natural technique is to perform two sense operations,
comparing the resistance of a device under test to two different
thresholds. Second, this technique is much more prone to bit
errors than our technique, as states are not programmed in a
differential fashion [24]. Additionally, this approach does not
feature the natural resilience to Type 1 and Type 2 errors, and
Type 2 and Type 3 errors will typically feature similar rates.
Finally, unlike ours, this approach is prone to resistive drift,
inherent to some resistive memory technologies [45].

These comments suggest that the choice of a technique
for storing ternary weights should be dictated by technology.
Our technique is especially appropriate for resistive memories
not supporting single-device multilevel storage, with high
error rates, or resistance drift. The three-levels per devices
approach would be the most appropriate with devices with
well controlled analog storage properties.

VIII. CONCLUSION

In this work, we revisited a differential memory archi-
tecture for BNNs. We showed experimentally on a hybrid
CMOS/RRAM chip that, its sense amplifier can differentiate

not only the LRS/HRS and HRS/LRS states, but also the
HRS/HRS states in a single sense operation. This feature
allows the architecture to store ternary weights, and to provide
a building block for ternary neural networks. We showed by
neural network simulation on the CIFAR-10 task the benefits
of using ternary instead of binary networks, and the high
resilience of TNNs to weights errors, as the type of errors
observed experimentally in our scheme is also the type of
errors to which TNNs are the most immune. This resilience
allows the use of our architecture without relying on any
formal error correction. Our approach also appears resilient
to process, voltage, and temperature variation if the supply
voltage remains reasonably higher than the threshold voltage
of the transistors.

As this behavior of the sense amplifier is exacerbated at
supply voltages below the nominal voltage, our approach es-
pecially targets extremely energy-conscious applications such
as uses within wireless sensors or medical applications. This
work opens the way for increasing the edge intelligence
in such contexts, and also highlights that the low voltage
operation of circuits may sometimes provide opportunities for
new functionalities.
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APPENDIX: TRAINING ALGORITHM OF BINARIZED AND
TERNARY NEURAL NETWORKS

During the training of BNNs and TNNs, each quantized
(binary or ternary) weight is associated with a real hidden
weight. This approach to training quantized neural network
was introduced in [3] and is presented in Algorithm 1.

The quantized weights are used for computing neuron values
(equations (1) and (2)), as well as the gradients values in
the backward pass. However, training steps are achieved by
updating the real hidden weights. The quantized weight is
then determined by applying to the real value the quantizing
function Quantize, which is φ for ternary or sign for binary
as defined in section II. The quantization of activations is
done by applying the same function Quantize, except for real
activation, which is done by applying a rectified linear unit
(ReLU(x) = max(0, x)).

Quantized activation functions (φ or sign) have zero deriva-
tives almost everywhere, which is an issue for backpropagating
the error gradients through the network. A way around this
issue is the use of a straight-through estimator [46], which
consists in taking the derivative of another function instead of
the almost everywhere zero derivatives. Throughout this work,
we take the derivative of Hardtanh, which is 1 between -1
and 1 and 0 elsewhere, both for binary and ternary activations.

The simulation code used in this work is available publicly
in the Github repository: https://github.com/Laborieux-Axel/
Quantized VGG

https://github.com/Laborieux-Axel/Quantized_VGG
https://github.com/Laborieux-Axel/Quantized_VGG
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Algorithm 1 Training procedure for binary and ternary neural
networks. W h are the hidden weights, θBN = (γl, βl) are
Batch Normalization parameters, UW and Uθ are the param-
eter updates prescribed by the Adam algorithm [41], (X, y)
is a batch of labelled training data, and η is the learning
rate. “cache” denotes all the intermediate layers computations
needed to be stored for the backward pass. Quantize is either
φ or sign as defined in section II. “ · ” denotes the element-
wise product of two tensors with compatible shapes.
Input: W h, θBN = (γl, βl), UW , Uθ, (X, y), η.
Output: W h, θBN, UW , Uθ.

1: WQ ← Quantize(W h) . Computing quantized weights
2: A0 ← X . Input is not quantized
3: for l = 1 to L do . For loop over the layers
4: zl ←WQ

l Al . Matrix multiplication
5: Al ← γl · zl−E(zl)√

Var(zl)+ε
+ βl .

Batch Normalization [40]
6: if l < L then . If not the last layer
7: Al ← Quantize(Al) . Activation is quantized
8: end if
9: end for

10: ŷ ← AL
11: C ← Cost(ŷ, y) . Compute mean loss over the batch
12: (∂WC, ∂θC)← Backward(C, ŷ,WQ, θBN, cache) .

Cost gradients
13: (UW , Uθ)← Adam(∂WC, ∂θC,UW , Uθ)
14: W h ←W h − ηUW
15: θBN ← θBN − ηUθ
16: return W h, θBN, UW , Uθ
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Université Paris-Sud, France, in 2017, where he is
currently pursuing the Ph.D. degree in electrical
engineering. His research interest includes designing
intelligent memory-chip for low energy hardware
data processing using bio-inspired concepts as a
probabilistic approach to brain function and more
conventional neural network approaches.

Jacques-Olivier Klein Jacques-Olivier Klein
(M’90) received the Ph.D. degree from the
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