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We consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1)

where v is complex-valued,

v ∈ C∞
c (Rd), (2)

where C∞
c denotes infinitely smooth compactly supported functions.

For equation (1) we consider the scattering solutions ψ+(x, k) = eikx + ψsc(x, k),
k ∈ Rd, k2 = E, where ψsc satisfies the Sommerfeld radiation condition:

|x|(d−1)/2(
∂

∂|x|
− i|k|)ψsc(x, k) → 0 as |x| → +∞ (3)

uniformly in x/|x|. This implies that

ψsc(x, k) =
ei|k||x|

|x|(d−1)/2
f1(k, |k|

x

|x|
) +O

( 1

|x|(d+1)/2

)
, |x| → +∞, (4)

where f1 is the scattering amplitude for equation (1). For more details about definitions
of ψ+ and f1, see, e.g., [BSh], [N2] and references therein.

It is convenient to represent f1 as follows

f1 = c(d, |k|)f(θ, ω,E), (θ, ω) ∈ Sd−1 × Sd−1, where (5)

c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2, θ = k/|k|, ω = x/|x|.

In order to formulate our results we also use the following notations:

v̂(p) = (2π)−d

∫
Rd

eipxv(x)dx, p ∈ Rd, (6)

ω⊥ = {p ∈ Rd : pω = 0}, ω ∈ Sd−1, (7)

θ(p, ω,E) = E−1/2(p+ (E − p2)1/2ω), p ∈ ω⊥, ω ∈ Sd−1, E1/2 > 0, (8)
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αj(ξ⃗) =

j−1∏
i=1

(ξj − ξi) for 1 < j ≤ n, α1(ξ⃗) = 1,

βn,j(ξ⃗) =
n∏

i=j+1

(ξi − ξj) for 1 ≤ j < n, βn,n(ξ⃗) = 1,

(9)

where ξ⃗ = (ξ1, . . . , ξn).

Theorem 1. Let v satisfy (2). Then the following formulas hold:

v̂(p) =
n∑

j=1

(−1)n−j(s+ τj)
n−1f(θj(s), ω, Ej(s))

αj(τ⃗)βn,j(τ⃗)
+O(s−n) as s→ +∞,

θj(s) = θ(p, ω,Ej(s)), Ej(s) = (s+ τj)
2, s > 0,

τ⃗ = (τ1, . . . , τn), τ1 = 0, τj1 < τj2 for j1 < j2,

(10a)

v̂(p) =
n∑

j=1

(−1)n−jλn−1
j f(θj(s), ω, Ej(s))

αj(λ⃗)βn,j(λ⃗)
+O(s−n) as s→ +∞,

θj(s) = θ(p, ω,Ej(s)), Ej(s) = (λjs)
2, s > 0,

λ⃗ = (λ1, . . . , λn), λ1 = 1, λj1 < λj2 for j1 < j2,

(10b)

where p ∈ ω⊥, ω ∈ Sd−1 (and ω, p are fixed).
Formulas (10a), (10b) are explicit asymptotic formulas for finding the Fourier trans-

form v̂(p) at fixed p ∈ Rd, d ≥ 2, from the scattering amplitude f at n points at high
energies E1, . . . , En. The precision of these formulas is O(s−n) as s → +∞ and in this
sense is proportional to n. To our knowledge these formulas are new for n ≥ 2. For n = 1,
formulas (10a), (10b) are a known variation of the Born formula at high energies for smooth
v; see, e.g., Proposition 3.4 of [M] and formula (5.1) of [N1]. (For n = 1, formulas (10a)
and (10b) coincide.)

Formulas (10a) and (10b) follow from Proposition 3.4 of [M] about the asymptotic
expansion of f(θ, ω, s2) as s → +∞, for s(θ − (θω)ω) = p, and from applying to this
expansion Theorems 3.1 and 3.2 of [N2].
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