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Uncertainty Quantification With
Sparsely Characterized
Parameters: An Example Applied
to Femoral Stem Mechanics
The advent of state-of-the-art additive manufacturing (AM) processes has facilitated the
manufacturing of complex orthopedic metallic implants such as femoral stems with
porous portions based on lattice structures. These struts often have rough and not smooth
textured surfaces, for which the irregularities may influence mechanical properties. To
make robust predictions about the behavior of this kind of system, the variability effect of
its parameters on the stem stiffness must be considered in the processes of modeling and
design of porous femoral stems. Also, to improve the credibility of computational models
used for hip implant analysis, which involves numerous uncertainties, there is a need for
rigorous uncertainty quantification (UQ) framework for proper model assessment follow-
ing a credible-modeling standard. This work proposes a UQ framework in the presence
of sparsely characterized input parameters using the maximum entropy principle for ana-
lyzing a femoral stem implant model and thus to clarify how uncertainties impact the key
properties of a porous femoral stem. In this study, uncertainties in the strut thickness,
pore size, Young’s modulus, and external forcing are considered. The UQ framework is
validated using experimental results available from literature, following the guidelines
set in an ASME standard. [DOI: 10.1115/1.4048749]

Keywords: femoral stem, uncertainty quantification, lattice structure, maximum entropy
principle, kriging

1 Introduction

The stiffness mismatch between femoral stems and host bone
tissue fuels the need for porous femoral stems which would
improve long-term clinical outcomes of total hip arthroplasty
(THA). THA is one of the most performed surgical procedures,
and despite the satisfactory short-term and long-term outcomes,
several technical issues related to the implant design may lead to
early revision surgeries [1,2]. Fully dense metallic alloys are the
current standard orthopedic implants being used and studies are
constantly being done to improve them due to their high stiffness
when compared to bone. Probabilistic design approaches have
been applied to evaluate the effect of randomness in the design
parameters on the structural integrity of orthopedic implants.
Dopico-Gonz!alez et al. [3] conducted a probabilistic investigation
of an uncemented hip replacement using Monte Carlo and Latin
hypercube simulations in a finite element (FE) model of a femoral
stem. Easley et al. [4] developed a probabilistic FE tool to quan-
tify the effect of uncertainty in the design variables on the per-
formance of orthopedic components. Bah et al. [5] presented a
statistical investigation into the effects of implant positioning on
the initial stability of an uncemented femoral stem. Kharmanda
et al. [6] used shape optimization to produce hollow stems and
applied probabilistic analysis to study the boundary conditions
change in a two-dimensional FE femoral stem model. Nicolella
et al. [7] investigated the effect of three-dimensional prosthesis
shape optimization on the probabilistic response and probability
of failure of a cemented femoral stem. Other relevant probabilistic
methods and analysis techniques commonly used in orthopedic
biomechanics applications were reviewed in Laz and Browne [8].
The above probabilistic studies were performed on fully dense
stems which frequently have mechanical complications like stress

shielding. To overcome these issues, considerable effort is being
made to design more biomechanical compatible orthopedic
implants made of porous materials [9] as it is well known that
porous structures can reduce the stiffness of metallic femoral
stems, as well as facilitate bone cell ingrowth to improve the
implant fixation [10–12].

Recently, several design approaches for complex porous stems
have been proposed based on topology optimization design tech-
niques, finite element modeling, and advanced additive manufac-
turing (AM) technologies [11–14]. However, existing studies have
pointed out that there is a higher chance of introducing uncertain-
ties in the manufacturing of porous structures fabricated by AM
processes [15]. This can result in significant uncertainties in the
models used to predict the mechanical response of the porous
implant, which cannot be handled by conventional deterministic
design approaches [15]. Most of the current probabilistic design
approaches assume probability distributions for their input ran-
dom variables as there is no consensus on how to model this
uncertainty in design parameters. In this context, the maximum
entropy principle (MaxEnt) is a convenient method to estimate
distributions because it minimizes the amount of bias that can be
introduced by prior information [16].

The ASME V&V 40 framework is proposed as a method to
establish the credibility of computational models [17]. This frame-
work has been used by Morrison et al. [18] to establish the credi-
bility of computational fluid dynamics models of a generic
centrifugal pump in different contexts of use (COU). They showed
that the model risk can affect the level of verification and valida-
tion activities needed to establish the credibility of the model. Par-
vinian et al. [19] applied the V&V 40 framework to
computational population models used to test physiological
closed-loop controlled systems. They remarked that to validate
patient models, population differences need to be considered like
the variation in using results from a healthy volunteer to validate a
device to be used in a critically ill patient. To provide a credible
method to evaluate the safety for medical devices, Hariharan et al.
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[20] used a computational fluid dynamics model and proposed a
threshold-based validation approach; in their method, an accep-
tance criterion which provides the level of similarity between sim-
ulation and experimental results for a model to be considered
validated was presented. Pathmanathan et al. [21] proposed a
novel framework to assess the applicability of computational
models for medical devices; the key emphasis of their framework
was to ensure that modifications in COU are accounted for when
related validation and applicability of the model is being
considered.

Struts manufactured from AM processes often have rough and
not smooth textured surfaces [22,23]. Furthermore, when irregu-
larities like structural variations in strut architecture caused by the
manufacturing process are implemented in FE models by using
stochastic models, they are seen to match experimental results
more closely. This suggests structural irregularities influence
mechanical properties [23,24]. Furthermore, the variability of the
mechanical properties and their impact on the stem stiffness still
needs clarification. Moreover, uncertainties must be considered
not only for the geometric properties (e.g., strut thickness, pore
size) but also for morphological properties (e.g., porosity, surface-
to-volume (SV) ratio), and material properties (Young’s modulus)
[15]. Therefore, it is necessary to account for the uncertainties in
FE modeling and design processes of porous femoral stems. Also,
to improve the credibility of computational models used for hip
implant analysis which often involves sparsely characterized
parameters, there is a need for a rigorous uncertainty quantifica-
tion (UQ) approach for proper model assessment through the
ASME V&V 40 standard [18]. Thus, we propose in this paper a
rigorous UQ framework for analyzing the femoral stem implant
model to answer the research question: can the model provide an
acceptable assessment on the stiffness of designed porous hip
stems? This question is answered by considering the following
COU: to use the model as a basic design tool to assess if the
desired porous stem stiffness is being achieved, before its clinical
study. In this study, the numerical testing was based on specific
testing requirements extracted from ISO 7206-4 standard [25].
The proposed UQ framework was validated using experimental
results available from literature which followed the guidelines set
in the same test standard [11].

2 Methodology

2.1 Porous Stem Model. A CAD model of the Stryker
“Secur-FitTM MAX” 6052 0830A hip stem (Stryker Corporation,
Kalamazoo, MI) was designed using Autodesk Inventor 2017 soft-
ware package as shown in Fig. 1. This model was designed using
limited information (dimensions in Fig. 1(a)). A portion of the
stem body is made to accommodate the porous structure [12]

which was a diamond cubic lattice in this study. Due to the lack
of dimensions, the porous region is approximated based on the
description given in Jett!e et al. [12]. This 3D model is now used
for FE analysis to predict the mechanical response of the femoral
stem. Due to computational limitations, it is not possible to have
the porous stem explicitly represented with the lattice (porous)
structure in it because of the length scale difference between the
implant and pores as pointed out by Simoneau et al. [11]. To alle-
viate this problem, the porous body is represented as a fully dense
material with mechanical properties equivalent to those of the
porous structure as done by Jett!e et al. [12]. For the purposes of
reproducibility, the femoral head used was cone-shaped similar to
that in Ref. [12] as this head shape was added in their work for
experimental purposes.

The FE model of the femoral stem was developed using the
ANSYS Workbench 19 R1 software (ANSYS, Canonsburg, PA) to
calculate the elastic response of the stem for several constant
loads applied to the top of the stem. ANSYS was used without modi-
fication in this study. The setup for the FE analysis of the stem
was made according to the orientations suggested in the ISO
7206-4 standard for fatigue testing of femoral stems [25] although
only static testing was done in this work. The material used for
the stem was Ti-6Al-4V with Young’s modulus for the fully dense
and porous part of the stem of 114 GPa and 8.4 GPa, respectively.
Young’s modulus of the resin was 3.7 GPa and the Poisson ratio
of all the materials was assumed to be 0.3 [12]. Meshes were gen-
erated using quadratic tetrahedral elements with 28,610 elements
and 49,088 nodes. For the sake of simplification, and since there
is no consensus of relative movement occurring at the interface in
such models [26], no friction at any interface was assumed so that
both portions of the stem and the resin have fully bonded contact.
The analysis was done following a similar procedure described in
Jett!e et al. [12] whereby a constant load was applied as a down-
ward vertical force to the top of the femoral stem. The loads were
varied linearly from 0 to 1500 N with steps of 150 N and large
deflection was turned on, while the epoxy resin in which the stem
had been potted was constrained to no movement in any direction.
Note that the maximum force of this study was limited to 1500 N
to be consistent with the force value used by Jett!e et al. [12]
because we intend on using those results to validate our model.

2.2 Uncertainty Quantification Framework

2.2.1 Deterministic Modeling. A schematic illustration of the
deterministic modeling is shown in the flowchart on the left side
of Fig. 2. The input parameters in ANSYS are material properties
(Young’s modulus and Poisson ratio) and the force. For porous
stem designs, Young’s modulus is dependent on the porosity of
the porous region which itself is dependent on the geometric
parameters strut thickness and pore size. Young’s modulus of the
porous region is obtained from a power-law relationship relating,
the porous region elastic modulus with porosity, and the fully
dense material Young’s modulus [12]

EP ¼ EdCð1# uÞn (1)

where EP is the porous region Young’s modulus, Ed is the fully
dense material Young’s modulus, u is porosity, and C and n are
scaling coefficient constants. Displacement is the output obtained
from ANSYS; the stiffness of the stem is calculated as the slope of
the resulting force–displacement curve.

2.2.2 Parametric Probabilistic Approach. Robust predictions
in scenarios subject to several uncertainties, such as the design of
a femoral stem, demand the use of stochastic tools so that families
of responses can be inferred, instead of a single nominal value. In
this way, a parametric probabilistic approach is employed here to
deal with the uncertainties associated with the computational
model input parameters [27,28]. The parametric probabilistic
approach employed in this paper involves three steps: (i)

Fig. 1 Femoral stem: (a) Stryker physical model and (b) CAD
model
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probabilistic modeling; (ii) propagation of uncertainties; and (iii)
statistical inference. An illustration of this UQ framework is
shown in Fig. 2.

2.2.2.1 Probabilistic modeling. In the first stage, the input
parameters of the computational model subject to variability, and
which consequently may affect the model’s response, are identi-
fied and a probabilistic model for their joint-distribution is con-
structed. The following parameters are considered as random
variables: (i) major pore size, (ii) strut thickness, (iii) Young’s
modulus of the stem’s dense part, and (iv) force applied at the
stem head. These four parameters are modeled by the random var-
iables X1, X2, X3, and X4, respectively, for which the joint-
probability distribution is specified according to the general proce-
dure described below.

When a large set of experimental data is available, the most nat-
ural way to construct the probabilistic model (i.e., the joint-distri-
bution) is through classical techniques of statistical inference,
using nonparametric techniques (e.g., kernel density estimator) if
the joint-distribution algebraic formula is not known (the most fre-
quent case), or via parametric techniques (e.g., maximum likeli-
hood estimator) in some special cases where an algebraic
expression for the distribution is known a priori [28]. When exper-
imental data to characterize the variability of the parameters are
not available, any attempt to arbitrate a distribution and assign
values to their parameters can (most likely) lead to a biased proba-
bilistic model, capable of producing predictions that are not reli-
able. The consensus in the UQ field is that arbitrating probability
distributions is a procedure without scientific rigor, which pro-
duces unreliable results [28,29].

On the other hand, without data, it is difficult to characterize a
probability distribution. In this scenario, a very appealing technique
for specifying a conservative probability distribution based on nom-
inal information only is the MaxEnt, whose formulation incorpo-
rates all the mathematical rigor of information theory
[16,28,30,31]. This inference technique deduces an algebraic for-
mula for the joint distribution of the random variables by maximiz-
ing the entropy function associated with this distribution, respecting
the restrictions imposed by the known statistical information about
such sparsely characterized parameters [16,28,30,31].

Both MaxEnt and maximum likelihood are parametric statisti-
cal techniques, where an algebraic expression is used to represent

the distribution, with the parameters of this formula inferred from
experimental data or theoretical information (single data). In a
sense, both try to seek the best parameterization of the distribution
with the available information [30,31]. The substantial difference
between them is in the way the algebraic formula of the distribu-
tion is obtained. The maximum likelihood works only to identify
the best parameters, the distribution formula being information
provided by the user, thus being subject to possible epistemic
uncertainties (an expert’s judgment error, for example). Con-
versely, in MaxEnt, the algebraic form of the distribution is
deducted from an optimization problem that has all the known
information about a certain parameter as constraints. In this sense,
the form of distribution is inferred from known information, thus
being less subject to epistemic uncertainties. This results in the
most conservative distribution in the absence of experimental data
or the presence of limited experimental data [30,31].

In a scenario of probabilistic modeling with sparse information,
like in this paper, it is common to see in the literature some
approaches that could be considered biased, and thus less rigor-
ous. Bias is commonly introduced by doing hypothesis about the
physical and system statistical properties which are not in agree-
ment with reality. However, it is extremely difficult (almost
impossible) to construct a probabilistic model that is not biased in
a sparse information setting. Literature [28,29] mathematically
shows that the best approach in this case is to construct the proba-
bilistic model that is least biased without making additional
hypothesis about the statistical properties of the quantities of
interest (only the known physical and statistical information must
be considered). Furthermore, it is also shown that the proper math-
ematical tool to deal with this scenario is the information theory
(used in Statistical Mechanics for several decades in much more
complex systems), due to the consistency of its mathematical
framework to take into account limited information about random
parameters [28]. The information theory uses MaxEnt formalism
to infer the least biased distribution for a quantity of interest given
the known information about. This is the procedure we follow in
this paper, so that the notion of rigorous employed in the paper is
related to the use of a consistent mathematical tools to do the
inference of the input probability distribution given a sparse
information.

In the case of this paper, experimental data are not available on
a large scale, so the MaxEnt-based approach is adopted to infer

Fig. 2 Uncertainty quantification framework for porous femoral stem modeling
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the joint-distribution of the sparsely characterized parameters X1,
X2, and X3. The X4 distribution is not obtained by this method
since there is an available expression in the literature for this
parameter and it has been used successfully in contexts with
experimental validation, for which X4 is described as a constant
value plus a Gaussian disturbance [32]. This procedure does not
introduce bias in the modeling, because the external force does
not influence the mechanical properties of the femoral stem sys-
tem, thus evidencing that this random parameter is independent of
the others.

In the case of the other three parameters, in principle, it is rea-
sonable to think that they may have a certain correlation, but there
are no data available to characterize this dependency. Thus, since
no information of mutual correlation between these quantities is
included in the list of known information, the most conservative
procedure from a statistical point of view is to assume that they
are all independent of each other, which is also a consequence of
the MaxEnt formalism if no cross-moment information is
provided.

In mathematical terms, the joint distribution of the random vec-
tor X ¼ ðX1;X2;X3Þ is obtained by maximizing the entropy
function

HX ¼ #
ð

R
pX x1; x2; x3ð Þln pX x1; x2; x3ð Þð Þdx1dx2; dx3 (2)

Subject to constraints based on known statistical information
ð

fk x1; x2; x3ð Þ pX x1; x2; x3ð Þ dx1dx2; dx3 ¼ nk; k ¼ 0; 1;…:;M

(3)

where pX is the probability density function (PDF) of the random
vector X, and fk and nk; respectively, represent known functions
and values that characterize the known information (generally sta-
tistical moments) about X, with f0 x1; x2; x3ð Þ ¼ 1 and n0 ¼ 1. This
problem has an analytical solution for the most common cases of
known statistical information. For further details on the MaxEnt
formalism, the reader can see Refs. [16,28], and [31]. The litera-
ture provides practical limits for the values of X1 and X2, in addi-
tion to a nominal value (mean) and a measure of dispersion
(standard deviation) for each (Table 1). Whereas recognizing that
experimental data is not available for sparsely characterized
parameters X1, X2, and X3, their uncertainty can be modeled using
the pieces of information listed in Table 1 and MaxEnt. The sup-
port and nominal value were extracted from Jett!e et al. [12]. The
standard deviation of X1 and X2 was estimated based on the vari-
ability expected for those parameters from manufacturing errors
(given by the resolution of the additive manufacturing machine).
The standard deviation of X3 was taken as 5% of the nominal
value [34]. Due to physical considerations, it is also known that
the marginal probability distribution of each of these parameters
must fall to zero close to the support limits, as the boundary val-
ues are unlikely. On the other hand, X3 is a strictly positive param-
eter, with a known nominal (mean) value, whose variance is
finite, as well as that of their algebraic inverse [16,28]. Taking this
information into account, the MaxEnt formalism concludes that
the marginal distributions of X1 and X2 are given by a nonstandard

beta distribution and X3 by a gamma distribution [28], as indicated
in Table 1.

2.2.2.2 Uncertainty propagation. Once the probabilistic
model is available, it follows a step of stochastic calculation to
determine the probability distribution of the model output. This is
done with the aid of the classic, but statistically robust, Monte
Carlo method, where the model input uncertainties are propagated
through the computational model using a sampling strategy. This
technique generates samples (scenarios) independent of random
parameters according to the probabilistic model constructed in
Sec. 2.2.2.1 and solves the model equation for each of these, thus
generating a set of output data that are postprocessed in the last
stage of the framework, described in Sec. 2.2.2.3.

The samples generated for parameters the major pore size, d;
and the strut thickness, t; are passed as input to the module that
corresponds to the multiscale simulation where the porosity func-
tion u and the modulus of elasticity Ep of the porous part of the
femoral stem is calculated. The porosity function u is used in
sequence to calculate the surface-to-volume ratio (SV). On the
other hand, the samples of Ep, together with scenarios generated
for Young’s modulus of the stem’s dense part Ed and the force
applied at the stem head, f , are used to calculate the displacement
of the femoral stem tip u. In the sequence, the results for u gener-
ated by the surrogate model (see Sec. 2.2.3), together with the
samples of force f , are used to calculate the equivalent stiffness of
the femoral stem system using the formula

k ¼ f=u (4)

2.2.2.3 Statistical inference. The final step of this framework
is a statistical inference process that uses as information the data
obtained with the Monte Carlo simulation. The distribution of the
following two parameters is of interest: k and SV. As explained
above with regard to Young’s modulus of the dense part of the
stem Ed , a stiffness coefficient k is similarly well modeled by a
gamma distribution, so the parameters of this probabilistic law are
obtained through a parametric process of inference via the maxi-
mum likelihood estimator. In the case of SV, no algebraic form
for the PDF of the distribution is known beforehand, so that the
distribution of this parameter is inferred in a nonparametric way,
using a kernel density estimator.

2.2.3 Surrogate Modeling. The natural way to compute the
stem displacement would be through the FE model, but the com-
putational cost involved in calling this module hundreds or thou-
sands of times (e.g., Monte Carlo simulation) becomes unfeasible.
In this way, a Kriging-based surrogate model is used to accelerate
the calculations [35]. This approximator for the value of u is con-
structed with the aid of data generated within the FE module—in
a procedure of design of experiments (DoE)—which are interpo-
lated by a Gaussian stochastic process with a prescribed correla-
tion function. More specifically, this surrogate uses an
approximation of the form

~u ¼ b0 þ b1f þ b2Ed þ b3Ep þ r2 Z f ;Ed;Epð Þ (5)

where the central tendency (mean) of the Gaussian process is rep-
resented by b0 þ b1f þ b2Ed þ b3Ep; while r2 Z takes into

Table 1 Sparsely characterized parameters d, t, and Ed

Random variable Name Support Nominal value Standard deviation MaxEnt distribution Reference

X1 Pore size [0–1200] lm 800 lm 72.5 lma Nonstandard beta [12]
X2 Strut thickness [0–1000] lm 540 lm 72.5 lma Nonstandard beta [12]
X3 Young’s modulus (0,1) GPa 114 GPa 5.7 GPa Gamma [12]

aThis value is obtained as 1ffiffiffiffi
12
p of the maximum resolution reported by the powder bed fusion additive manufacturing methods (SLS, SLM, 3DP), which is

250 lm [33].
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account statistical fluctuations, where r2 is the variance and Z is
the standard zero-mean unit variance Gaussian process. These
parameters are identified by a statistical learning process, where
the data is generated via computational experiments (design of
experiments—DoE) using the FE model. Due to the excellent
interpolation properties, this technique is very effective in the con-
struction of reduced models with few samples.

2.3 Risk-Informed Credibility Assessment. The procedure
followed to assess the credibility of the proposed model is
described in the ASME V&V 40 standard [17]. This procedure
was adapted from Ref. [18], and the main steps are explained in
Secs. 2.3.1–2.3.4.

2.3.1 Context of Use. The COU defines the scope and specific
role of the computational model in addressing the question of
interest. In this work, the COU is associated with the use of the
model as a basic design tool to assess if the desired porous stem
stiffness is being achieved. It is important to mention that the
model is intended to provide a preclinical assessment of the
mechanical performance of the porous stem to demonstrate its ini-
tial validity for future clinical studies.

2.3.2 Model Risk. The evaluation of the model risk considers
the possibility that the computational model leads to an incorrect
decision that results in patient harm and/or other undesirable
impacts. The risk assessment of the model considers the contribu-
tion of the computational model in decision-making (model influ-
ence) and the consequence of an adverse outcome resulting from
an incorrect decision taken based on the model results (decision
consequence). The model influence and decision consequence are
determined using a three-level scale proposed in Ref. [18], and the
obtained model risk based on the combined individual scores for
the model influence and decision consequence is shown in a risk
assessment matrix (Fig. 3).

Although the model is intended to support design assessments,
the model’s influence on the design sign-off decision is considered
medium since the model’s results will be used as a guideline for
the prototyping phase, which will be ultimately be assessed with
in vitro tests. On the other hand, if the model leads to an incorrect
design (underestimating or overestimating the actual stem stiff-
ness), it could result in clinical issues such as patient injury and
the need for surgery revision, which makes the decision conse-
quence of the model to be classified as high. Therefore, the overall
model risk obtained from the combined scores attributed to the
model influence and decision consequence is medium-high (over-
all risk score 4).

2.3.3 Selection of Credibility Factors and Goals. The next
step in the V&V process is to translate the model risk into credi-
bility goals for several relevant credibility factors established in
the ASME V&V 40 standard [17]. Among the credibility factors
presented in Ref. [17], the ones relevant to this work and their
respective goals are presented in Table 2, for the verification pro-
cess, and Table 3, for the validation and applicability processes.
For the verification process (Table 2), the main objective was to
assess if the mathematical models were solved correctly by con-
sidering the software liability and calculation accuracy, and the
discretization errors (DEs) caused by the computational mesh. In
the validation process, the question to be addressed was if the
model was able to capture the real behavior of a porous stem by
comparing the model results with standard experimental test
results reported in the literature. For the validation process, the
most relevant credibility factors were the test conditions, assess-
ments on the output comparisons, such as the number of outputs
considered, rigor, and agreement of the comparisons. For the
applicability process, the main objective was to determine the
relevance of the validation activities to the context of use by
determining the probabilities of having the model providing
results that underestimate and overestimate the experimental
results. This factor is useful to understand the applicability of the
model and the risks associated with the model capability to over-
predict or underpredict the test results.

2.3.4 Verification & Validation (V&V) Plan. Given the defi-
nitions of the question of interest, COU, model risk assessment,
and credibility factors described above for the proposed problem,
the next step is the definition of the V&V plan. Essentially, the
execution of the V&V plan is performed in four steps:

(1) Mesh sensitivity analysis of the FE model.
(2) Comparison of the FE deterministic model with numerical

results reported in Ref. [12] for the same stem geometry.
(3) Statistical validation of the accuracy of the surrogate

model.
(4) Comparison between the model prediction results and

experimental data reported in Ref. [12] considering
uncertainties.

(5) Assessment of the relevance of the validation results to sup-
port the applicability of the model in the COU.

Steps 1–3 of the V&V plan are used to support the verification
process, whereas steps 4 and 5 are used to support the validation
and applicability processes.

3 Results and Discussion

3.1 Uncertainty Modeling of the Input Parameters. Uncer-
tainty modeling of the major pore size, d, and the strut thickness,
t, of the porous stem is a challenging task through conventional
parametric statistical approaches, due to the lack of experimental
measurements about the variability of the geometric features of
porous stems reported in the literature. Thus, as explained in sec-
tion, the nonstandard beta distribution is the resulting MaxEnt dis-
tribution for d and t after solving Eq. (2) considering the known
information (Table 1) and the physics of the problem. The stand-
ard deviation was calculated as 0.29 dx according to the formula-
tion [37], where dx is the resolution of the AM method used.

Figure 4 shows the PDFs of the input parameters d and t. It can
be observed that the PDFs of the parameters d and t have very
similar behavior and the same curve shape.

Two other model input parameters considered in this work
were Young’s modulus of the dense part of the stem Ed and the
applied force at the stem head, f. It is important to account for
uncertainties in Young’s modulus because different works list dif-
ferent values of Young’s modulus for the same material. Consid-
ering Ed as a random variable accounts for the variability found in
literature; the resulting distribution of Young’s modulus obtained
from MaxEnt is a gamma distribution. The distribution of f is

Fig. 3 Model risk assessment matrix: model risk for COU is
medium-high
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proposed by Yosibach et al. [32] who performed a probabilistic
analysis on hip forces and deduced the forces acting on a hip fol-
low a Gaussian distribution. The force applied on the hip plays an
important role in the life of femoral implants; thus, it is important
to use reliable probabilistic descriptions of such forces.

Figure 5 shows the PDFs of Ed and f.

3.2 Verification. For the verification credibility factors
shown in Table 2, the achieved selected goals are listed in Table 4.
To support the numerical code verification (NCV) process, we

used the FE simulation results reported in Ref. [12] as a base for
comparison with our model. The comparison between the force
and vertical displacement results is shown in Fig. 6. One can
observe a good agreement between our model and Jett!e et al. [12]
for the fully dense stem, whereas for the porous stem, our results
presented a maximum absolute deviation of 16% from Jett!e et al.
[12]. Such deviation is credited to the lack of enough information
on the dimensions of the porous part of the stem, thus based on
the good agreement of the dense stem, our model can be said to
solve the problem correctly.

Table 2 Goals and credibility factors for the verification process

Factor Goals

Code verification Software quality assurance (SQA) (a) Very little or no SQA procedures were specified or followed
(b) SQA procedures were specified and documented
(c) In addition to the previously specified SQA procedures, the

software anomaly list and the software development environ-
ment are fully understood and the impact on the COU is ana-
lyzed and documented; quality metrics are tracked

Numerical code verification (NCV) (a) NCV was not performed
(b) The numerical solution was compared to an accurate bench-

mark solution from another verified code
(c) The numerical solution was compared to an accurate bench-

mark solution, either an analytical solution or using the
method of manufactured solutions (MMS) [36]

Calculation
verification

Discretization error (DE) (a) No mesh convergence analysis performed
(b) Mesh convergence analysis performed; conservation equa-

tions balances not checked
(c) Mesh convergence analysis performed; conservation equa-

tions balances checked; no estimation of DE
(d) Mesh convergence analysis performed; conservation equa-

tions balances checked; DE estimated for problem-specific
quantities of interest

Table 3 Goals and credibility factors for the validation and applicability processes

Factor Goals

Comparator Test conditions (a) Test conditions were qualitatively characterized
(b) Few key characteristics of the test conditions were provided
(c) All key characteristics of the test conditions were provided

Assessment Output comparison Quantity (a) Single output was compared
(b) Multiple outputs were compared

Rigor (a) Only visual comparison was performed
(b) Comparison performed by determining the difference

between computational results and experimental results
(c) Uncertainty in the output of the computational model or the

comparator was used in the output comparison
(d) Uncertainty in the output of the computational model and the

comparator were used in the output comparison
Agreementa (a) Good (relative difference smaller than 5%)

(b) Satisfactory (relative difference between 5% and 20%)
(c) Unsatisfactory (relative difference larger than 20%)

Applicability Relevance of the validation activities to the COU (a) Low probability of overestimating/underestimating the actual
stiffness. Preclinical (in vitro) test for confirmation may not
be needed

(b) High probability of overestimating the actual stiffness/low
probability of underestimating the actual stiffness. Preclinical
(in vitro) test for confirmation may be needed

(c) Low probability of overestimating the actual stiffness/high
probability of underestimating the actual stiffness. Preclinical
(in vitro) test for confirmation may be needed

(d) High probability of overestimating/underestimating the actual
stiffness. Preclinical (in vitro) test for confirmation may be
needed

aThe goals established for this factor are selected arbitrarily for demonstration of the proposed approach only. The rigor of the validation
depends on the intended use of the model predictions and the risks associated with its use.
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The calculation verification was also performed through a mesh
convergence analysis of the FE model and the results are pre-
sented in Table 5. In this work, we used the fully automatic adapt-
ive meshing convergence tool provided by ANSYS Workbench; this
process provides the desired accuracy in the smallest number of
runs possible. The model mesh was set to adapt to the vertical dis-
placement of the model with a convergence criterion of 1% allow-
able variation in the maximum vertical displacement. After three
consecutive runs, the model converged to 0.3% change in vertical
displacement which we consider a satisfactory result for the mesh
convergence analysis based on our predefined convergence crite-
rion. In the second iteration, a refinement factor of 2 was used to
change the element size, while in the third iteration the factor of
1.5 was used. The standard ASME V&V10.1 recommends the fac-
tor be> 1.3 [40]. This mesh convergence study was performed on
displacement while our quantity of interest was the stuffiness.
Since the analysis was within the linear range, it was assumed that
the convergence of stiffness here will be similar to that of
displacement.

The last step of the calculation verification process involves
testing the effectiveness of the Kriging surrogate model in replac-
ing the FE model.

Figure 7 quantitatively compares responses obtained at each
training point. The small deviation of all the points from the

identity line (y ¼ x) demonstrates that there is a very small differ-
ence between the FE simulation and Kriging surrogate model pre-
dictions. Furthermore, the normalized empirical error of the
surrogate model is 6:4& 10#6. The low error coupled with the
good correlation of the FE model to surrogate model results is an
indicator of the robustness of this metamodel and confirms that
the Kriging surrogate model can be generalized to any prediction
point within the valid range thus fully replacing the original FE
model.

The numerical algorithm used to compute the MaxEnt distribu-
tions and draw the corresponding statistical samples, for a given
set of known information, is implemented in MaxEnt—Maximum
Entropy Code, an easy to run MATLAB package with robust routines
and examples for MaxEnt estimation. These routines were verified
by comparison with known analytical expressions in a few spe-
cial, but representative, cases. The code is available at GitHub
[39]. Figure 8 shows a verification test where the MaxEnt distribu-
tion for the given known information is Gamma, the estimated
PDF and cumulative density function (CDF) are both presented
and compared with their counterparts computed with MATLAB rou-
tines. It can be seen that the PDF and CDF estimations are robust.

3.3 Validation and Applicability. The validation and applic-
ability credibility factors for the achieved selected goals are also

Fig. 4 MaxEnt PDFs for sparsely characterized parameters: (a) major pore size, d, and (b) strut thickness, t

Fig. 5 PDFs for input parameters: (a) Young’s modulus of the dense part of the stem, Ed, and (b) applied force at the stem
head, f
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listed in Table 4. The experimental tests were carried out by Jett!e
et al. [12], in which they followed an ISO 7206-4 standard test
procedure described in Ref. [25]. For the output comparison fac-
tors, the rigor of the comparison between the numerical and exper-
imental with uncertainties results, and the level of agreement
between them are supported by the results shown in Fig. 9. This
figure shows the mean values for the experimental and numerical
stiffness and their respective 95% probability confidence interval.
For the numerically calculated stiffness, the confidence interval

was obtained from the distributions shown in Fig. 10. For the
experimental stiffness, the confidence interval was taken from the
variability of the experimental data provided in Ref. [12]. By
comparing the experimental and numerical mean stiffness values
only, one can see that the relative difference between then was
about 11%, which was considered satisfactory (see the selected
goal for the output comparison agreement in Table 4). It is impor-
tant to mention that this criterion was arbitrarily selected for dem-
onstration purposes of the proposed framework only, and that

Table 4 Selected goals for the applied credibility factors

Activities Credibility factor Selected goal Justification

Verification Code Software quality
assurance (SQA)

(a) A rigorous code verification was not performed
since it was out of scope. For the SQA, the code
tests performed by the vendor [38] were used. For
rigorous code verification procedures in commercial
code, see Ref. [36]

Numerical code
verification (NCV)

(b) A code-to-code comparison test was performed by
comparing the porous stem stiffness (quantity of
interest) calculated with the proposed FE model
with the numerical solution presented by Jett!e et al.
[12] for the same problem. For the surrogate model,
the results for the quantity of interest were com-
pared with the original FE model results. The
numerical algorithm used to compute the MaxEnt
distributions and the corresponding statistical sam-
ples was verified with benchmark tests where the
MaxEnt distribution for the given information is
known [39].

Calculation Discretization error
(DE)

(b) In the FE model, a simple grid convergence analysis
was carried out in the porous stem geometry to
determine if the quantity of interest is sensitive to
the mesh parameters. For the surrogate model, the
calculation error was estimated by calculating the
percentage deviation from the original FE model.
Calibration validation. Test statistical validation.
Cost function results

Validation Comparator Test conditions (c) The experimental tests were run by Jett!e et al. [12]
following the ISO 7206-4 standard. Results for the
porous stem stiffness calculated from the force and
displacement diagram followed by their respective
uncertainties were provided

Assessment (Output comparison) Quantity (a) Since the COU of the present model covers only the
stiffness of the porous stem as the quantity of inter-
est, comparisons were drawn only for this quantity

Rigor (d) A comparison considering uncertainties in both
experimental data and model results was carried out
to provide sufficient evidence of the model’s credi-
bility. Throughout uncertainty quantification of the
model is deemed necessary for the COU to provide
more reliable design assessment and reduce the
number of standard physical tests to evaluate the
actual stiffness of porous stems

Agreement (b) The calculated relative difference between the
experimental and numerical mean porous stiffness
was around 11%. This agreement is considered sat-
isfactory for this study.

Applicability Relevance of the vali-
dation activities to the
COU

(c) The model has a probability to overestimate the
actual stiffness below 3%, whereas the probability
to underestimate the actual stiffness was above
95%. However, preclinical (in vitro) tests may be
needed to confirm the model predictions.

Table 5 Results for mesh convergence analysis of the FE model

# of nodes # of elements Maximum vertical displacement (mm) Change in the maximum vertical displacement (%)a

1 16,468 9025 1.059 —
2 33,586 18,409 1.136 7.0
3 49,088 28,610 1.133 0.3

aChange¼ j unþ1#un

un
j & 100; where n¼ 1, 2, 3.
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rigor of the framework validation depends on the intended use of
the model predictions and the risks associated with its use. More-
over, it can be seen from the graph that all the experimental results
for the stiffness of the porous stem fall within the numerically pre-
dicted 95% confidence interval. Thus, the UQ framework can be
considered validated to predict the stiffness of the porous stem,
once the numerical prediction encompasses, very likely, the
experimental results. In addition to the comparison of the numeri-
cal and experimental results shown in Fig. 9, it also includes 2
prediction points. Prediction point 1, is for a mean pore size of
500 lm and point 2 was with a mean pore size of 300 lm. The
model predicted stiffness values of 12916176 N/mm and
13276191 N/mm, respectively, for both prediction points. Based
on the rigor of the proposed UQ framework, the model can be
considered credible enough to predict the stiffness values of a
porous femoral stem as it can be seen that for both prediction
points, the predicted stiffness 95% confidence interval produces
acceptable results for the stiffness of porous stems [12].

Furthermore, considering the limits of the confidence interval
for the experimental results and the probability distribution calcu-
lated for the porous stem stiffness (see Fig. 10), an assessment on
the model applicability the COU was provided based on the goals
established in Table 3. According to the validation results, it was
found that the probabilities of the model overestimate and under-
estimate the stiffness of the actual porous stem are 2.6% and
95.4%, respectively (see Table 4). Since the probability of

underestimation is too high compared to the probability of overes-
timation, the model applicability in the COU may require preclini-
cal in vitro tests to confirm the model predictions. Finally, the
predictability of the uncertainty level in the stiffness of the porous
stem is relevant from a design perspective because it allows the
designer to address more reliable design solutions. Depending on
the design requirements, the statistical parameters of the model
input random variables (e.g., mean and standard deviation) can be
tailored to minimize the risk of the model to overestimate or
underestimate the actual behavior of the porous stem and provide
a more confident design assessment compared to a deterministic
design approach.

3.4 Probability Distributions of Output Parameters. In our
probabilistic analysis, uncertainties in numerical model inputs
were propagated into model equations (Eq. (5)) resulting in proba-
bility distributions of the numerically computed outputs. The vali-
dation of our model means the output values can be considered
generally accepted. These input random variables have been con-
sidered in prior studies and shown to have a role in influencing the
risk of failure of implants [12,41]; other studies have shown that
the output, femoral stem stiffness plays an important role in bone
remodeling and stress shielding [42,43]. The output SV of the
porous stem is an important parameter that affects implant fixa-
tion. Our study shows that the variability of input parameters had
a noticeable effect on the output as introducing variation in d and
t resulted in a stiffness distribution with a mean value of 1263 N/
mm compared to a nominal value of 1316.8 N/mm which was the
result of the deterministic case. So, it is not sufficient to use a sin-
gle value for input variables like is done in deterministic analysis,
but rather a rigorous UQ approach might be needed.

3.4.1 Porosity. In the design of porous implants, the porosity
features are very important and the FDA [44] specified a range of
30–70% for porous structures which are to permit fixation via
bone ingrowth. Porosity is defined as the ratio of the volume of
voids to the total volume of the entire porous region. For this
work, an equation (see Appendix) representing porosity was
approximated from the curve relating d, t, and u presented in the
Jett!e et al. study [12]. Propagating the uncertainties from d and t
into the porosity equation results in the PDF of porosity shown in
Fig. 11(a). The distribution of the porosity is obtained using the
kernel density estimator since there is no known algebraic PDF
for the distribution of porosity. The limits of porosity for our study
are consistent with the FDA recommended range.

The distribution of the porous Young’s modulus is obtained
after propagating uncertainties from porosity, u, into porous

Fig. 6 Force–displacement plots of (a) the fully dense and (b) porous stem

Fig. 7 Calculation verification of the surrogate model
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young’s modulus equation (Eq. (1)). Since it is known that the dis-
tributions of material properties like Young’s modulus follow a
gamma distribution [28], the Ep samples are fitted using the maxi-
mum likelihood method. The gamma distribution fit looks accu-
rate, thus giving us confidence in the Ep values obtained after the

uncertainty propagation process. This distribution is shown in
Fig. 11(b).

3.4.2 Displacement. The model equation of the displacement
was obtained from the surrogate model and the resulting PDF of
displacement is calculated from the propagation of uncertainties
in the force, Young’s modulus of dense regions, and Young’s
modulus of the porous region for the porous stem into Eq. (5).
The distribution of displacement is shown in Fig. 12.

3.4.3 Stiffness. Stiffness is a very important parameter for
femoral stems and since femoral stems replace bone, it would be
ideal if their stiffness value is close to that of bone. In this study,
the stiffness is calculated in the presence of input parameter
uncertainties. Figure 10 shows the PDFs of stiffness for the porous
stem with a range of stiffness values of 1099–1432 N/mm for 95%
confidence interval for the stem. The distribution of the stiffness
follows a gamma distribution as is expected [28]. From the analy-
sis of the force–displacement diagrams of Fig. 6, the stiffness
obtained deterministically was 1316.8 N/mm. This value is within
the 95% confidence interval range for the stiffness probability dis-
tribution with a probability associated with obtaining it. The dis-
tribution gives us the information we otherwise cannot have if the

Fig. 8 Verification of MaxEnt code: (a) PDF and (b) CDF [39]

Fig. 9 Stiffness results for the femoral stem to assess the vali-
dation process

Fig. 10 Probability distribution for porous stem stiffness, k: (a) PDF and (b) CDF
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stiffness is determined only from a deterministic point of view.
Additionally, with the CDF of stiffness (Fig. 10(b)), we can deter-
mine the probability of obtaining desired values of k and as a
result, evaluate the effects considering uncertainties can have on
stem stiffness. For example, considering the result obtained from
the deterministic analysis for, k (1316.8 N/mm), Fig. 10(b) shows
that the probability of obtaining a porous femoral stem stiffness of
1316.8 N/mm and above is about 25% which means getting a stiff-
ness of 1316.8 N/mm is not certain as deterministic studies put it.
But rather there is a probability of obtaining such a value of
stiffness.

3.4.4 Surface-to-Volume Ratio. Studies have found that
porous implants provide a firm bone fixation if the SV of the
porous structure approaches that of bone, which is in the range of
3–5 mm#1 [45,46]. This makes the SV an important property to
evaluate when dealing with porous structures. The SV depends on
the modeling input parameters pore size and struts thickness, and,
therefore, porosity. The PDF of the SV of the stem porous region
can be seen in Fig. 13. For this particular study, i.e., considering
d ¼ 800 lm and t ¼ 540 lm the 95% confidence interval for SV
is 0.95–2.82 mm#1 with a mean value of 1.88 mm#1: The impor-
tance of SV in determining how a porous construct will perform
as an implant for bone fixation makes it important to consider
uncertainties when calculating this value. The SV value in the

scenario considered in this study is low in comparison with that of
bone but this property is highly dependent on d and thus a differ-
ent value of d can result in more acceptable values of SV [12].

4 Contribution and Future Studies

The contribution of this study is the proposed framework for
uncertainty quantification in the presence of sparsely character-
ized parameters using the MaxEnt principle and the integration of
this approach with recent developments in the V&V methodology.
The MaxEnt formalism, which is based on the information theory,
provides an optimal and least-biased approach to specify a con-
sistent probability distribution in a scenario where only a sparse
set of information is available. The proposed UQ framework was
validated using experimental results available from literature
which followed the guidelines set in the ISO 7206-4 standard
[25]. In this paper, rigorous code verification was not performed
since it out of the scope. For future studies, a rigorous verification
is recommended, using, for example, the method of manufactured
solutions (MMSs) that has successfully been applied to commer-
cial finite element code for elastostatic solid mechanics analyses
[36]. Although numerical error estimation was out of the scope of
this paper, it is recommended the future studies involving rigorous
mesh refinement using Richardson extrapolation and calculations
of a grid convergence index should be performed [47].

Fig. 11 PDF for (a) porosity, u, and (b) porous Young’s modulus, Ep

Fig. 12 PDF for displacement
Fig. 13 PDF for surface-to-volume ratio, SV
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5 Conclusions

This study presented a UQ framework to assess the stiffness
and surface-to-volume-ratio of a porous femoral stem model,
which is part of a total hip implant. The objective was to account
for uncertainties in the input parameters and see how this affects
the femoral stem stiffness and surface-to-volume ratio. The proba-
bilistic modeling involved predicting input distribution by use of
the MaxEnt principle which is used in cases with limited informa-
tion like in this study. A Kriging surrogate model for the ANSYS FE
model output displacement was developed using information
obtained from ANSYS DoE. Uncertainties from the input parame-
ters were then propagated into the surrogate model to determine
displacement and eventually stem stiffness. The model and UQ
framework used for the analysis were verified and validated and
further used to demonstrate how PDFs and CDFs can be used by
designers to design implants that satisfy given conditions. Further-
more, the results demonstrated that uncertainties do affect porous
femoral stem output properties like stiffness.

The rigorous UQ framework used to quantify uncertainties in
the porous femoral stem input parameters is based on the limited
information we could find about these parameters in literature.
The MaxEnt was considered as a viable method to provide the
probability distributions for the input parameters. The limitation
of the MaxEnt is that the accuracy of the probability distribution
estimated with the MaxEnt is sensitive to the quality of the infor-
mation available. If poor quality information is available, or if
poor quality experiments were carried out, it may compromise the
quality of the information and lead to poor estimations of the
uncertainties of a random variable using MaxEnt. Although the
UQ framework has been shown to work for femoral stems, there
is a need for probabilistic analysis which is performed on a FE
system made of an implant\bone construct under realistic biome-
chanical loading. In the more realistic FE model (implant\bone
model), the UQ framework and probabilistic methods could be
extended to examine how uncertainties in stem design can affect
other performance metrics like implant micromotion, wear, and
other metrics of interest. The results of this study show that the
UQ framework can deliver more robust design alternatives in a
single analysis which represents an improvement over prior deter-
ministic design analysis.

Nomenclature

AM ¼ additive manufacturing
C ¼ scaling coefficient constant

CDF ¼ cumulative density function
COU ¼ context of use

d ¼ major pore size, lm
DoE ¼ design of experiments

Ed ¼ Young’s modulus of dense portion of the stem, GPa
Ep ¼ Young’s modulus of porous portion of the stem, GPa

f ¼ force, N
FDA ¼ U.S. Food and Drug Administration

FE ¼ finite element
HX ¼ maximizing the entropy function

k ¼ stiffness, N/mm
MaxEnt ¼ maximum entropy principle

n ¼ scaling coefficient constant
PDF ¼ probability density function

SV ¼ surface-to-volume ratio, mm#1

t ¼ strut thickness, lm
THA ¼ total hip arthroplasty

u ¼ displacement, mm
UQ ¼ uncertainty quantification

V&V ¼ verification and validation
Z ¼ standard zero-mean unit

dx ¼ additive manufacturing process resolution
r2 ¼ variance
u ¼ porosity, %

Appendix

This appendix gives complementary information on the regres-
sion curve fitting parameters used to get the porosity and surface-
to-volume ratio of the porous stem. The equation for porosity is a
second-order polynomial of d obtained from nonlinear regression
analysis of data in the literature and the equation is given below
as:

u ¼ Ad2 þ Bd þ C

where u is porosity, d is pore size, and A, B, and C are regression
coefficients. A and B were fitted with an exponential fit as a func-
tion of t, and C had a sinusoidal fit as an of a function of t

A ¼ A0eA1t þ A2eA3t

B ¼ B0eB1t þ B2eB3t

A0, …, A3 and B0, …, B3 are constant coefficients and t is strut
thickness

C ¼ C0 sin C1tþ C2 þ C3 sin C4tþ C5

where C0, …, C5 are constant coefficients and t is strut thickness
(Tables 6 and 7)

To propagate uncertainty from porosity, u, to the surface-to-
volume ratio, SV, a fourth-order polynomial equation was fitted
using a nonlinear regression method from data available in the lit-
erature [12]

Y ¼
X4

n¼0

Pnun

where Y corresponds to SV, u is porosity, and P0, …, P4 are
regression coefficients, which were fitted as linear functions of the
major pore size, l, as

Pn ¼ anlþ bn

in which an and bn are the linear coefficients, and their values can
be found above.
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