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) and of a more recent work by the second author on the torus (2019), we consider the Kramers-Fokker-Planck operator (KFP) with an external electromagnetic field on R d . We show a maximal type estimate on this operator using a nilpotent approach for vector field polynomial operators and induced representations of a nilpotent graded Lie algebra. This estimate leads to an optimal characterization of the domain of the closure of the KFP operator and a criterion for the compactness of the resolvent.

Introduction and main results

1.1. Introduction. The Fokker-Planck equation was introduced by Fokker and Planck at the beginning of the twentieth century, to describe the evolution of the density of particles under the Brownian motion. In recent years, global hypoelliptic estimates have led to new results motivated by applications to the kinetic theory of gases. In this direction many authors have shown maximal estimates to deduce the compactness of the resolvent of the Fokker-Planck operator and to have resolvent estimates in order to address the issue of return to the equilibrium. F. Hérau and F. Nier in [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF] have highlighted the links between the Fokker-Planck operator with a confining potential and the associated Witten Laplacian. Later this work has been extended in the book of B. Helffer and F. Nier [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF], and we refer more specifically to their Chapter 9 for a proof of the maximal estimate.

In this article, we continue the study of the model case of the operator of Fokker-Planck with an external magnetic field B e , which was initiated in the case of the torus T d (d = 2, 3) in [START_REF] Karaki | Trend to the equilibrium for the Fokker-Planck system with an external magnetic field[END_REF][START_REF] Karaki | Maximal estimates for the Fokker-Planck operator with magnetic field[END_REF], by considering R d and reintroducing an electric potential as in [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF]. In this context we establish a maximal-type estimate for this model, giving a characterization of the domain of its closed extension and giving sufficient conditions for the compactness of the resolvent. 1.2. Statement of the result. For d = 2 or 3, we consider, for a given external electromagnetic field B e defined on R d with value in R d(d-1)/2 and a real valued electric potentiel V defined on R d , the associated Kramers-Fokker-Planck operator K (in short KFP) defined by:

K = v • ∇ x -∇ x V • ∇ v -(v ∧ B e ) • ∇ v -∆ v + v 2 /4 -d/2, (1) 
where v ∈ R d represents the velocity, x ∈ R d represents the space variable, and the notation (v ∧ B e ) • ∇ v means:

(v ∧ B e ) • ∇ v =          b(x) (v 1 ∂ v2 -v 2 ∂ v1 ) if d = 2 b 1 (x)(v 2 ∂ v3 -v 3 ∂ v2 ) + b 2 (x)(v 3 ∂ v1 -v 1 ∂ v3 ) +b 3 (x)(v 1 ∂ v2 -v 2 ∂ v1 ) if d = 3.
The operator K is initially considered as an unbounded operator on the Hilbert space

L 2 (R d × R d ) whose domain is D(K) = C ∞ 0 (R d × R d ).
We then denote by:

• K min the minimal extension of K where D(K min ) is the closure of D(K) with respect to the graph norm; • K max the maximal extension of K where D(K max ) is given by:

D(K max ) = {u ∈ L 2 (R d × R d ) / Ku ∈ L 2 (T d × R d )}.
We will use the notation K for the operator K min or K Be,V if we want to mention the reference to B e and V .

The existence of a strongly continuous semi-group associated to operator K is shown in [START_REF] Karaki | Trend to the equilibrium for the Fokker-Planck system with an external magnetic field[END_REF] when the magnetic field is regular and V = 0. We will improve this result by considering a much lower regularity. In order to obtain the maximal accretivity, we are led to substitute the hypoellipticity argument by a regularity argument for the operators with coefficients in L ∞ loc , which will be combined with more classical results of Rothschild-Stein in [START_REF] Rothschild | A criterion for hypoellipticity of operators constructed from vector fields[END_REF] for Hörmander operators of type 2 (see [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] for more details of this subject). Our first result is:

Theorem 1.1. If B e ∈ L ∞ loc (R d , R d(d-1)/2 ) and V ∈ W 1,∞ loc (R d ), then K Be,V is maximally accretive.
The theorem implies that the domain of the operator K = K min has the following property:

D(K) = D(K max ) . ( 2 
)
We are next interested in specifying the domain of the operator K introduced in (2). For this goal, we will establish a maximal estimate for K, using techniques which were developed initially for the study of hypoellipticity of invariant operators on nilpotent groups and the proof of the Rockland conjecture. Before we state our main result, we introduce the following functional spaces:

• B 2 (R d ) (or B 2 v
to indicate the name of the variables) denotes the space:

B 2 (R d ) := {u ∈ L 2 (R d ) / ∀(α, β) ∈ N 2d , |α| + |β| ≤ 2 , v α ∂ β v u ∈ L 2 (R d )}, which is equipped with its natural Hilbertian norm. • B2 (R d × R d ) is the space L 2 x ⊗B 2 v (in L 2 (R d × R d ) identified with L 2 x ⊗L 2 v
) with its natural Hilbert norm. We can now state the second theorem of this article: Theorem 1.2. Let d = 2 or 3. We assume that B e ∈ C 1 (R d , R d(d-1)/2 ) ∩ L ∞ and that there exist positive constants C, ρ 0 > 1 3 and γ 0 < 1 3 such that

(3) |∇ x B e (x)| ≤ C < ∇V (x) > γ0 , ( 4 
) |D α x V (x)| ≤ C < ∇V (x) > 1-ρ0 , ∀α s.t. |α| = 2 ,
where

< ∇V (x) >= |∇V (x)| 2 + 1 .
Then there exists C 1 > 0 such that, for all u ∈ C ∞ 0 (R d × R d ), the operator K satisfies the following maximal estimate:

|| |∇V (x)| 2 3 u || + (v • ∇ x -∇ x V • ∇ v -(v ∧ B e ) • ∇ v )u + u B2 ≤ C 1 ( Ku + u ).
(5)

The proofs will combine the previous works of [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] (in the case B e = 0) and [START_REF] Karaki | Maximal estimates for the Fokker-Planck operator with magnetic field[END_REF] (in the case V = 0) with in addition two differences:

• T d is replaced by R d .
• The reference operator in the enveloping algebra of the nilpotent algebra is different.

Notice also that, when B e = 0, our assumptions are weaker than in the book [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] where the property that |∇V (x)| tends to +∞ as |x| → +∞ was used to construct the partition of unity.

Using the density of C ∞ 0 (R d × R d ) in the domain of K, we obtain the following characterization of this domain:

Corollary 1.3. (6) D(K) = {u ∈ B2 (R d × R d ) / (v • ∇ x -∇V • ∇ v -(v ∧ B e ) • ∇ v ) u and |∇V (x)| 2 3 u ∈ L 2 (R d × R d )}.
In particular this implies that under the assumptions of Theorem 1.2 the operator K Be,V has compact resolvent if and only if K Be=0,V has the same property. This is in particular the case (see [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF]) when

|∇V (x)| → +∞ when |x| → +∞ ,
as can also be seen directly from [START_REF] Helffer | Caractérisation des opérateurs hypoelliptiques homogènes[END_REF].

Remark 1.4. For more results in the case without magnetic field we refer to [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] and recent results obtained in 2018 by Wei-Xi Li [START_REF] Li | Compactness of the resolvent for the Witten Laplacian[END_REF] and in 2019 by M. Ben Said [START_REF] Karaki | Kramers-Fokker-Planck operators with homogeneous potentials[END_REF] in connexion with a conjecture of Helffer-Nier relating the compact resolvent property for the (KFP)-operator with the same property for the Witten Laplacian on (0)-forms:

-∆ x,v + 1 4 |∇Φ| 2 -1 2 ∆Φ, with Φ(x, v) = V (x) + v 2 2 .
Its proof involves also nilpotent techniques. One can then naturally ask on results when B e (x) is unbounded. In particular, the existence of (KFP)-magnetic bottles (i.e. the compact resolvent property for the (KFP)-operator) when V = 0 is natural. Here we simply observe that Proposition 5.19 in [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] holds (with exactly the same proof ) for K Be,V when B e and V are C ∞ . Hence there are no (KFP)-magnetic bottles.

Maximal accretivity for the Kramers-Fokker-Planck operator with a weakly regular electromagnetic field

To prove Theorem 1.1, we will show the Sobolev regularity associated to the following problem

K * f = g with f, g ∈ L 2 loc (R 2d )
, where K * is the formal adjoint of K:

K * = -v • ∇ x -∆ v + (v ∧ B e + ∇ x V ) • ∇ v + v 2 /4 -d/2 . ( 7 
)
The result of Sobolev regularity is the following:

Theorem 2.1. Let d = 2 or 3. We suppose that B e ∈ L ∞ loc (R d , R d(d-1)/2 ) and V ∈ W 1,∞ loc (R d × R d ). Then for all f ∈ L 2 loc (R 2d ), such that K * f = g with g ∈ L 2 loc (R 2d ), then f ∈ H 2 loc (R 2d
) . Before proving Theorem 2.1, we recall the following result :

Proposition 2.2 (Proposition A.3 in [13]). Let c j ∈ L ∞,2 loc (R d × R d ), ∀j = 1, ..., d, where L ∞,2 loc (R d × R d ) = {u ∈ L 2 loc , ∀ϕ ∈ C ∞ 0 (R d × R d ) such that ϕu ∈ L ∞ x (L 2 v )}, such that ∂ vj (c j (x, v)) = 0 in D ′ (R 2d ) , ∀j = 1, .., d . (8) 
Let P 0 be the Kolmogorov operator

P 0 := -v • ∇ x -∆ v . (9) If h ∈ L 2 loc (R 2d ) satisfies (10) 
     P 0 h = d j=1 c j (x, v) ∂ vj h j + g h j , g ∈ L 2 loc (R 2d ), ∀j = 1, ..., d , then ∇ v h ∈ L 2 loc (R 2d , R d ) .
We can now give the proof of Theorem 2.1.

Proof of Theorem 2.1. The proof is similar to that of Theorem A.2 in [START_REF] Karaki | Maximal estimates for the Fokker-Planck operator with magnetic field[END_REF]. In the following, we will only focus on the differences appearing in our case. To show the Sobolev regularity of the problem K * f = g with f and g ∈ L 2 loc (R 2d ), we can reformulate the problem as follows :

         P 0 f = d j=1 c j (x, v) ∂ vj h j + g h j = f ∈ L 2 loc (R 2d ) , g = g -v 2 4 f + d 2 f ∈ L 2 loc (R 2d ), ∀j = 1, ..., d .
Here the coefficients c j are defined by :

c j (x, v) = -(v ∧ B e ) j -∂ xj V ∈ L ∞ (R d , L 2 loc (R d ))
, ∀j = 1, ..., d . We note that the coefficients c j verify the condition (8) of the Proposition 2.2 because

∂ vj (v ∧ B e ) j = 0 and ∂ vj ∂ xj V = 0 , ∀j = 1, .., d . 2.1. Proof of Theorem 1.1.
The accretivity of the operator K is clear. To show that the operator K is maximally accretive, it suffices to show that there exists λ 0 > 0 such that the operator

T = K + λ 0 Id is of dense range in L 2 (R d × R d ).
As in [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF], we take

λ 0 = d 2 + 1 . We have to prove that if u ∈ L 2 (R d × R d ) satisfies u, (K + λ 0 Id) w = 0, ∀w ∈ D(K) , (11) 
then u = 0.

For this we observe that equation [START_REF] Karaki | Équations cinétiques avec champ magnétique[END_REF] implies that

K * u = -( d 2 + 1)u in D ′ (R d × R d ) ,
where K * is the operator defined in [START_REF] Helffer | Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs[END_REF].

Under the assumption that

B e ∈ L ∞ loc (R d , R d(d-1)/2 ), V ∈ W 1,∞ loc (R d ) and u ∈ D(K * ) ⊂ L 2 loc (R d × R d ), Theorem 2.1 shows that u ∈ H 2 loc (R d × R d ). So we have χ(x, v)u ∈ H 2 (R d ×R d ) for any χ ∈ C ∞ 0 (R d ×R d ).
The rest of the proof is standard. The regularity obtained for u allows us to justify the integrations by parts and the cut-off argument given in [4, Proposition 5.5].

Remark 2.3. One can also prove that the operator K = K V,Be is maximally accretive by using the Kato perturbation theory by an unbounded operator but this can only be done under the stronger assumption that

B e ∈ L ∞ (R d , R d(d-1)/2 ) and V ∈ W 1,∞ (R d ).
Under this assumption, one can prove that B = -∇ x V • ∇ v is K Be -bounded operator with a K Be -bound which is strictly smaller than 1.(cf. [START_REF] Karaki | Équations cinétiques avec champ magnétique[END_REF]Section A.4]), where K Be is the same operator with V = 0 already studied in [START_REF] Karaki | Équations cinétiques avec champ magnétique[END_REF]. 

Ǩ := K + d 2 .
It is clear that it is equivalent to prove the maximal estimate for Ǩ.

The proof consists in constructing G, a graded and stratified algebra of type 2, and, at any point x ∈ R d , an homogeneous element F x in the enveloping algebra U 2 (G) which satisfies the Rockland condition. We recall that Helffer-Nourrigat's proof is based on maximal estimates which not only hold for the operator but also (and uniformly) for π(F x ) where π is any induced representation of the Lie Algebra. It remains to find

π x such that π x (F x ) = K x + d
2 is a good approximation of K in a suitable ball centered at x and to patch together the estimates through a partition of unity. This strategy was used in [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] in the case B = 0 and in [START_REF] Karaki | Équations cinétiques avec champ magnétique[END_REF][START_REF] Karaki | Trend to the equilibrium for the Fokker-Planck system with an external magnetic field[END_REF] in the case of the torus T d with V = 0. Actually, we first define K x and then look for the Lie Algebra, the operator and the induced representation.

Maximal estimate.

Let us present for simplification the approach when d = 2 (but this restriction is not important). The dependence on x will actually appear through the two parameters (b, w) ∈ R × R 2 where b = B e (x) and w = ∇V (x) .

We then consider the following model:

K x + 1 := K w,b = v • ∇ x -w.∇ v + b(v 1 ∂ v2 -v 2 ∂ v1 ) -∆ v + v 2 /4 , in R 2 × R 2 . ( 12 
)
We would like to have uniform estimates with respect to the parameters b, w. This is the object of the following proposition. Proposition 3.1. For any compact interval I, there exists a constant C such that for any b ∈ I, any w ∈ R 2 , any f ∈ S(R 4 ) we have the maximal estimate (13) |w|

4 3 ||f || 2 +|w| 2 3 ||∇ v f || 2 +|w| 2 3 ||vf || 2 + |α|+|β|≤2 ||v α ∂ β v f || 2 ≤ C ||f || 2 + ||K w,b f || 2 . 3.3. Proof of Proposition 3.1. Step 1.
Following [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF], we consider, after application of the x → ξ partial Fourier transform, the family indexed by w, b, ξ:

Kw,b,ξ = iv • ξ -w.∇ v + b(v 1 ∂ v2 -v 2 ∂ v1 ) -∆ v + v 2 /4, in R 2 × R 2 , (14) 
We denote by σ the symbol of the operator Kw,b,ξ considered as acting in

L 2 (R 2 v ): σ(v, η) = iξ • v -iw • η -ib(v 1 η 2 -v 2 η 1 ) + η 2 + v 2 /4.
We introduce the symplectic map on R 4 associated with the matrix

A =     cos t 1 -sin t 1 0 0 sin t 1 cos t 1 0 0 0 0 cos t 2 -sin t 2 0 0 sin t 2 cos t 2     .
Then there exists (see [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] for an explicit definition) an associate unitary metaplectic operator T acting in L 2 (R 4 ) such that ( 15)

T -1 Kw,b,ξ T = iv • ξ ′ (t) -w ′ (t) • ∇ v + b ′ 1 (t)(v 1 ∂ v2 -v 2 ∂ v1 ) + ib ′ 2 (t)(v 1 v 2 -∂ v1 ∂ v2 ) -∆ v + v 2 /4 , with t = (t 1 , t 2 ) ∈ R 2          w ′ k (t) = w k cos t k -ξ k sin t k ξ ′ k (t) = w k sin t k + ξ k cos t k b ′ 1 (t) = b cos(t 2 -t 1 ) b ′ 2 (t) = b sin(t 2 -t 1 ) (16) 
for k = 1, 2. We now choose t k so that

w ′ k (t) = 0 and ξ ′ k (t) = w 2 k + ξ 2 k := ρ k .
With this choice of t k , this leads by [START_REF] Rothschild | A criterion for hypoellipticity of operators constructed from vector fields[END_REF] to the analysis of a maximal estimate for Ǩρ,b

′ = i v • ρ + b ′ 1 (v 1 ∂ v2 -v 2 ∂ v1 ) + ib ′ 2 (v 1 v 2 -∂ v1 ∂ v2 ) -∆ v + v 2 /4 , (17) 
which is considered, for fixed (ρ, b ′ ), as an operator on S(R 2 ). We notice that |b ′ | = |b|. Hence, if b belongs to a compact interval, then b ′ belongs to a compact set in R 2 . It remains to show that for a suitable Lie Algebra G, this is the image by an induced representation π ρ of an element F b ′ satisfying the Rockland condition. 

′ = X 1,2 - 2 k=1 (X ′ k,1 ) 2 + 1 4 (X ′′ k,1 ) 2 ) -ib ′ 1 X ′ 1,1 X ′′ 2,1 -X ′ 2,1 X ′′ 1,1 -ib ′ 2 X ′′ 1,1 X ′′ 2,1 + X ′ 1,1 X ′ 2,1 , (18) 
which are given by ( 19)

X ′ 1,1 = ∂ v1 , X ′′ 1,1 = iv 1 , X ′ 2,1 = ∂ v2 , X ′′ 2,1 = iv 2 , X 1,2 = i v • ρ .
We now look at the Lie algebra generated by these five operators and their brackets. This leads us to introduce three new elements that verify the following relations :

X 2,2 := [X ′ 1,1 , X ′′ 1,1 ] = [X ′ 2,1 , X ′′ 2,1 ] = i , X 1,3 := [X 1,2 , X ′ 1,1 ] = -iρ 1 , X 2,3 := [X 1,2 , X ′ 2,1 ] = -iρ 2 .
We also observe that we have the following properties:

[X ′ 1,1 , X ′ 2,1 ] = [X ′′ 1,1 , X ′′ 2,1 ] = 0 , [X ′ j,1 , X k,3 ] = [X ′′ j,1 , X k,3 ] = [X k,3 , X 2,2 ] = ... = 0 , ∀j, k = 1, 2 .
We then construct a graded Lie algebra G verifying the same commutator relations. More precisely, G is stratified of type 2, nilpotent of rank 3, its underlying vector space is R 8 , and G 1 is generated by four elements Y 

Y 2,2 := [Y ′ 1,1 , Y ′′ 1,1 ] = [Y ′ 2,1 , Y ′′ 2,1 ], Y 1,3 := [Y 1,2 , Y ′ 1,1 ] , Y 2,3 := [Y 1,2 , Y ′ 2,1 ] , and [Y ′ 1,1 , Y ′ 2,1 ] = [Y ′′ 1,1 , Y ′′ 2,1 ] = 0 , [Y ′ j,1 , Y k,3 ] = [Y ′′ j,1 , Y k,3 ] = [Y k,3 , Y 2,2 ] = ... = 0 , ∀j, k = 1, 2 .
We note that G is the same graded Lie algebra given in [START_REF] Karaki | Maximal estimates for the Fokker-Planck operator with magnetic field[END_REF] and is indeed independent of the parameters (ρ, b ′ ).

We have to check that for a given ρ = (ρ 1 , ρ 2 ) the representation π (with the convention that if ⋄ = ∅ there is no exponent) defined on its basis by

π(Y ⋄ i,j ) = X ⋄ i,j with i = 1, 2, j = 1, 2, 3 and ⋄ ∈ {∅, ′, ′′}. (20)
defines an induced representation of the Lie algebra G. By applying the same steps given in [13, page 11] (following the techniques of [START_REF] Helffer | Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs[END_REF]), we actually obtain π = π ℓ,H with

(21) H = Vect(Y ′′ 1,1 , Y ′′ 2,1 , Y 1,2 , Y 2,2 , Y 1,3 , Y 2,3
), and ℓ ρ ∈ G * defined by 0 for the elements of the basis of G except

(22) ℓ ρ (Y 1,3 ) = -ρ 1 , ℓ ρ (Y 2,3 ) = -ρ 2 and ℓ ρ (Y 2,2 ) = 1 .
With (18) in mind, we introduce

F b ′ = Y 1,2 - 2 k=1 (Y ′ k,1 ) 2 + 1 4 (Y ′′ k,1 ) 2 ) (23) -ib ′ 1 Y ′ 1,1 Y ′′ 2,1 -Y ′ 2,1 Y ′′ 1,1 -ib ′ 2 Y ′′ 1,1 Y ′′ 2,1 + Y ′ 1,1 Y ′ 2,1
and get

(24) π ℓρ,H (F b ′ ) = Ǩρ,b ′ .
The verification of the Rockland condition is the same as in [START_REF] Karaki | Maximal estimates for the Fokker-Planck operator with magnetic field[END_REF]. For any non trivial irreducible representation π, we consider a C ∞ -vector of the representation such that π(F b ′ )u = 0 and write ℜ π(F b ′ )u , u = 0. By using that the operator π(Y ) is a formally skew-adjoint operator for all Y ∈ G (see [13, Proposition 2.7]), we first get that π(Y )u = 0 for any Y ∈ G 1 and by difference π(Y 1,2 )u = 0. Observing that G is the algebra generated by G 1 and Y 12 , we get π(Y )u = 0 for any Y ∈ G, which implies, π being non trivial, that u = 0 . Therefore, according to Helffer-Nourrigat theorem [START_REF] Helffer | Hypoellipticité pour des groupes nilpotents de rang de nilpotence 3[END_REF] the operator F b ′ is maximal hypoelliptic and this implies also that π(F b ′ ) satisfies a maximal estimate for any induced representation π with a constant which is independent of π. By applying this argument to Ǩρ,b ′ = π ℓ,H (F b ′ ), we obtain for any compact

K 0 ⊂ R 2 the existence of C > 0 such that, ∀b ′ ∈ K 0 , ∀ρ ∈ R 2 and ∀u ∈ S(R 2 ), X 1,2 u 2 + 2 k=1 (X ′ k,1 ) 2 u 2 + (X ′′ k,1 ) 2 u 2 + 2 k,ℓ=1 X ′ k,1 X ′′ ℓ,1 u 2 ≤ C Ǩρ,b ′ u 2 + u 2 . ( 25 
)
Notice here that we first prove the inequality for fixed b ′ and then show the local uniformity with respect to b ′ . In particular, we have

(26) (v • ρ) u 2 + |α|+|β|≤2 ||v α ∂ β v u|| 2 ≤ C Ǩρ,b ′ u 2 + u 2 .
Using the treatment of the operator introduced in (V5.52) in [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF], there exists Č, such that, ∀ρ ∈ R 2 and ∀u ∈ S(R 2 ), we have

(27) |ρ| 4 3 ||u|| 2 ≤ Č(||(-∆ + v • ρ)u)|| 2 ) .
Combining ( 26) and ( 27), we finally obtain, for any compact 

K 0 ⊂ R 2 the existence of Ĉ > 0 such that, ∀b ′ ∈ K 0 , ∀ρ ∈ R 2 and ∀u ∈ S(R 2 ), ( 28 
) (v • ρ) u 2 + |ρ| 4 3 ||u|| 2 + |α|+|β|≤2 ||v α ∂ β v u|| 2 ≤ Ĉ || Ǩρ,b ′ u|| 2 + u 2 .
) ||f || 2 + || Kw,b,ξ f || 2 ≥ 1 C   |w| 4 3 ||f || 2 + |α|+|β|≤2 ||v α ∂ β v f || 2   , ∀f ∈ S(R 2 ), 29 
Note that by complex interpolation, this implies also for f ∈ S(R 2 ) :

(30) ||f || 2 +|| Kw,b,ξ f || 2 ≥ 1 C   |w| 2 3 ||vf || 2 + |w| 2 3 ||∇ v f || 2 + |α|+|β|≤2 ||v α ∂ β v f || 2   .
This achieves the proof of the proposition.

3.6. Proof of Theorem 1.2.

3.6.1.

Step 1: construction of the partition of unity.

We start with the following lemma Lemma 3.2. Let V satisfies (4) for some ρ 0 ∈ ( 1 3 , 1) and, for s > 0, let us define

(31) r(x) :=< ∇ x V (x) > -s .
Then there exists δ 0 > 0 such that if |x -y| ≤ δ 0 r(x) then

δ 0 ≤ r(x) r(y) ≤ 1 δ 0 .
Proof. For c > 0, let v(x, c) := sup |x-y|≤cr(x) < ∇V (y) >. Using our assumptions, there exists C 0 , such that, for any c > 0, we have

v(x, c) ≤< ∇V (x) > +C 0 c r(x)v(x, c) 1-ρ0 . Hence v(x,c) <∇V (x)> ≤ 1 + C 0 c < ∇V (x) > -1-s v(x, c) 1-ρ0 ≤ 1 + C 0 c ( v(x,c)
<∇V (x)> ) 1-ρ0 . This inequality implies for all c > 0 the existence of

C 1 (c) such that, ∀x ∈ R 2 , 1 ≤ v(x, c) < ∇V (x) > ≤ C 1 (c) ,
and in particular:

< ∇V (y) > < ∇V (x) > ≤ C 1 (c) , for |x -y| ≤ cr(x) .
To get the reverse inequality, we fix some c 0 and consider c ∈ (0, c 0 ). We then get for |x -y| ≤ cr(x)|,

< ∇V (x) > ≤< ∇V (y) > +C 0 c |∇V (x)| -s C 1 (c 0 ) |∇V (x)| 1-ρ0 ≤< ∇V (y) > +C 0 c C 1 (c 0 ) |∇V (x)| .
Choosing c small enough, we obtain

< ∇V (x) >≤ (1 -C 0 c C 1 (c 0 )) -1 |∇V (y)| .
Hence we have found c 1 ∈ (0, c 0 ) and

C 2 > 1 such that |x -y| ≤ c 1 r(x)|, (32) 1 C 2 ≤ < ∇V (y) > < ∇V (x) > ≤ C 2 .
It is then easy to get the lemma for δ 0 ∈ (0, c 1 ) small enough.

The parameter δ 0 is now fixed by the lemma and we now consider δ ∈ (0, δ 0 ) and r(x, δ) = δ r(x). According to Lemma 18.4.4 (and around this lemma in Section 8.4) in [START_REF] Hörmander | The Analysis of Linear Partial Differential Equations[END_REF], one can now introduce, for any δ ∈ (0, δ 0 ], a δ-dependent partition of unity φ j in the x variable corresponding to a covering by balls B(x j , r(x j , δ)) (with the property of uniform finite intersection N δ ) where, for r > 0 and x ∈ R 2 , the ball B(x, r) is defined by B(x, r) := {x ∈ R 2 / |x -x| < r} . So the support of each φ j is contained in B(x j , δr(x j )) and we have (33

) j φ 2 j (x) = 1 ,

and

(34)

|∇φ j (x)| ≤ C δ < ∇V (x j ) > s ≤ Ĉδ < ∇V (x) > s .
This implies (using the finite intersection property)

(35) j |∇φ j (x)| 2 ≤ Čδ < ∇V (x) > 2s . 3.6.2. Step 2.
The proof is inspired by the Chapter 9 of [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF] but different due to the presence of the magnetic field and the absence of the assumption

|∇V (x)| → +∞ at infinity. We start, for u ∈ C ∞ 0 (R 2 × R 2 ) , from || Ǩu|| 2 = j ||φ j Ǩu|| 2 = j || Ǩφ j u|| 2 - j ||[ Ǩ, φ j ]u|| 2 = j || Ǩφ j u|| 2 - j ||(X 0 φ j )u|| 2 = j || Ǩφ j u|| 2 - j ||(∇φ j ) • v u|| 2 ≥ j || Ǩφ j u|| 2 -Čδ || < ∇V > s vu|| 2 .
For the analysis of || Ǩφ j u|| 2 let us now write, with w j = ∇V (x j ) and b j = B e (x j ), Ǩ = Ǩ -K wj ,bj + K wj ,bj .

We verify that, by using the construction of the partition of unity and the assumptions of Theorem 1.2

||( Ǩ -K wj ,bj )φ j u|| 2 ≤ 2||φ j (x)(∇V (x) -w j ) • ∇ v u|| 2 + 2||φ j (x)(B e (x) -b j )(v 1 ∂ v2 -v 2 ∂ v1 )u|| 2 ≤ Cδ 2 || |∇V | 1-ρ0-s φ j ∇ v u|| 2 + || |∇V | -s+γ0 φ j (v 1 ∂ v2 -v 2 ∂ v1 )u|| 2 .
These errors have to be controlled by the main term. We note that by using the inequality (30), we have

||φ j u|| 2 + ||K wj ,bj φ j u|| 2 ≥ 1 C || |∇V | 2 3 φ j u|| 2 + 1 C || |∇V | 1 3 φ j ∇ v u|| 2 + 1 C || |∇V | 1 3 φ j vu|| 2 + 1 C |α|+|β|≤2 ||v α ∂ β v φ j u|| 2 .
Finally, we observe that

|| Ǩφ j u|| 2 ≥ 1 2
||K wj ,bj φ j u|| 2 -||( Ǩ -K wj ,bj )φ j u|| 2 .

We now choose (36) max( 2 3 ρ 0 , γ 0 ) < s < 1 3 .

Summing up over j, we have obtained the existence of a constant C such that for all u ∈ C ∞ 0 (R 2 × R 2 )

||u|| 2 + || Ǩu|| 2 ≥ 1 C || |∇V | 2 3 u || 2 + 1 C || |∇V | 1 3 ∇ v u || 2 + 1 C || |∇V | 1 3 vu || 2 + 1 C |α|+|β|≤2 ||v α ∂ β v u|| 2 -Cδ 2 || |∇V | 1-s-ρ0 ∇ v u || 2 -Cδ 2 || |∇V | -s+γ0 (v 1 ∂ v2 -v 2 ∂ v1 )u|| 2 (37) -C R d Ω(R) |∇V | 2s |∇ v u| 2 dxdv + R d Ω(R) c |∇V | 2s |∇ v u| 2 dxdv -Ĉ R d Ω(R) |∇V | 2s |vu| 2 dxdv + R d Ω(R) c |∇V | 2s |vu| 2 dxdv -Cδ 2 (||vu|| 2 + ||u|| 2 + ||∇ v u|| 2 )
where Ω(R) is defined by Ω(R) = {x ∈ R d / |∇V (x)| < R} and Ω(R) c := R d \ Ω(R) is the complement of Ω(R) in R d . Using the definition of Ω(R) and the assumption that s < 1 3 , we obtain

R d Ω(R) |∇V | 2s |∇ v u| 2 dxdv ≤ R 2s R d Ω(R) |∇ v u| 2 dxdv, R d Ω(R) c |∇V | 2s |∇ v u| 2 dxdv ≤ R 2s-2 3 R d Ω(R) c
|∇V | We can achieve the proof by observing our conditions on s, ρ 0 , γ 0 and by choosing fist δ small enough and then R large enough. With this choice of δ and R, we obtain

3 . 2 3. 1 .

 321 Proof of Theorem 1.General strategy. For technical reasons, it is easier to work with

3. 4 .

 4 Nilpotent techniques for the analysis of Ǩρ,b ′ . We construct a graded Lie algebra G of type 2, a subalgebra H, for b ′ ∈ R 2 an element F b ′ in U 2 (G), and for ρ ∈ R 2 a linear form ℓ ρ ∈ G * such that ℓ ρ ([H, H|) = 0 and π ℓρ,H (F b ′ ) = Ǩρ,b ′ . Ǩρ,b ′ can be written as a ρ-independent polynomial of five differential operators Ǩρ,b

  , G 2 is generated by Y 1,2 and Y 2,2 and G 3 is generated by Y 1,3 and Y 2,3 .

3. 5 .

 5 End of the proof of Proposition 3.1. Coming back to the initial coordinates, we get for a new constant C > 0, (

2 3 3 R 2 3 3 R 4 3 2 3 1 3 1 3 vu || 2 + ( 1 C -Cδ 2 ) 2 -

 232342112122 |∇ v u| 2 dxdv , andR d Ω(R) |∇V | 2s |vu| 2 dxdv ≤ R 2s R d Ω(R) |vu| 2 dxdv, R d Ω(R) c |∇V | 2s |vu| 2 dxdv ≤ R 2s-2 d Ω(R) c |∇V | |vu| 2 dxdv . Similarly for || |∇V | 1-s-ρ0 ∇ v u || 2 , we have, for 1 > s + ρ 0 > 2 d Ω(R) |∇V | 2-2s-2ρ0 |∇ v u| 2 dxdv ≤ R 2-2s-2ρ0 R d Ω(R) |∇ v u| 2 dxdv, R d Ω(R) c |∇V | 2-2s-2ρ0 |∇ v u| 2 dxdv ≤ R -2s-2ρ0 R d Ω(R) c |∇V | |∇ v u| 2 dxdv ,By combining the previous inequalities in (37), we obtain for a possibly new larger C > 0 and a (δ, R) dependent constant||u|| 2 + || Ǩu|| 2 ≥ ∇ v u || 2 + |∇V | ||(v 1 ∂ v2v 2 ∂ v1 )u|| C δ,R (||∇ v u|| 2 + ||vu|| 2 + ||u|| 2 ) .

the existence of a constant C > 0 such that

Combining this inequality with the standard inequality

) , we can achieve the proof of the theorem, keeping in mind that the maximal estimate for Ǩ is equivalent to the maximal estimate for K.