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Introduction

Understanding how stochastic gradient descent (SGD) manages to train artificial neural networks with good generalization capabilities by exploring the high-dimensional non-convex loss landscape is one of the central problems in theory of machine learning. A popular attempt to explain this behavior is by showing that the loss landscape itself is simple, with no spurious (i.e. leading to bad test error) local minima. Some empirical evidence instead leads to the conclusion that the loss landscape of state-of-the-art deep neural networks actually has spurious local (or even global) minima and stochastic gradient descent is able to find them [1,2]. Still, the stochastic gradient descent algorithm, initialized at random, leads to good generalization properties in practice. It became clear that a theory that would explain this success needs to account for the whole trajectory of the algorithm. Yet this remains a challenging task, certainly for the state-of-the art deep networks trained on real datasets. Related work -A detailed description of the whole trajectory taken by the (stochastic) gradient descent was so far obtained only in several special cases. First such case are deep linear networks where the dynamics of gradient descent has been analyzed [3,4]. While this line of works has led to very interesting insights about the dynamics, linear networks lack the expressivity of the non-linear ones and the large time behavior of the algorithm can be obtained with a simple spectral algorithm. Moreover, the analysis of dynamics in deep linear networks was not extended to the case of stochastic gradient descent. Second case where the trajectory of the algorithm was understood in detail is the one-pass (online) stochastic gradient descent for two-layer neural networks with a small hidden layer in the teacher-student setting [5][6][7][8][9]. However, the one-pass assumption made in those analyses is far from what is done in practice and is unable to access the subtle difference between the training and test error that leads to many of the empirical mysteries observed in deep learning. A third very interesting line of research that recently provided insight about the behavior of stochastic gradient descent concerns two layer networks with divergingly wide hidden layer. This mean-field limit [10][11][START_REF] Chizat | On the global convergence of gradient descent for overparameterized models using optimal transport[END_REF] maps the dynamics into the space of functions where its description is simpler and the dynamics can be written in terms of a closed set of differential equations. It is not clear yet whether this analysis can be extended in a sufficiently explicit way to deeper or finite width neural networks. The term mean-field has been used in several contexts in machine learning [START_REF] Poole | Exponential expressivity in deep neural networks through transient chaos[END_REF][START_REF] Samuel | Deep information propagation[END_REF][START_REF] Yang | A mean field theory of batch normalization[END_REF][START_REF] Mei | Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit[END_REF][START_REF] Gilboa | Dynamical isometry and a mean field theory of lstms and grus[END_REF][START_REF] Novak | Bayesian deep convolutional networks with many channels are gaussian processes[END_REF]. Note that the term in the aforementioned works refers to a variety of approximations and concepts. In this work we use it with the same meaning as in [START_REF] Mézard | Spin glass theory and beyond[END_REF][START_REF] Georges | Dynamical meanfield theory of strongly correlated fermion systems and the limit of infinite dimensions[END_REF][START_REF] Parisi | Theory of Simple Glasses: Exact Solutions in Infinite Dimensions[END_REF]. Most importantly, the term mean-field in our case has nothing to do with the width of an eventual hidden layer. We refer to [START_REF] Gabrié | Mean-field inference methods for neural networks[END_REF] for a broader methodological review of mean-field methods and their applications to neural networks.

Our present work inscribes in the above line of research offering the dynamical mean-field theory (DMFT) formalism [START_REF] Mézard | Spin glass theory and beyond[END_REF][START_REF] Georges | Dynamical meanfield theory of strongly correlated fermion systems and the limit of infinite dimensions[END_REF][START_REF] Parisi | Theory of Simple Glasses: Exact Solutions in Infinite Dimensions[END_REF] leading to a closed set of integro-differential equations to track the full trajectory of the gradient descent (stochastic or not) from random initial condition in the highdimensional limit for in-general non-convex losses. While in general the DMFT is a heuristic statistical physics method, it has been amenable to rigorous proof in some cases [START_REF] Ben Arous | Symmetric langevin spin glass dynamics[END_REF]. This is hence an important future direction for the case considered in the present paper. The DMFT has been applied recently to a high-dimensional inference problem in [START_REF] Sarao Mannelli | Marvels and pitfalls of the langevin algorithm in noisy highdimensional inference[END_REF][START_REF] Sarao Mannelli | Passed & spurious: Descent algorithms and local minima in spiked matrix-tensor models[END_REF] studying the spiked matrix-tensor model. However, this problem does not allow a natural way to study the stochastic gradient descent or to explore the difference between training and test errors. In particular, the spiked matrix-tensor model does not allow for the study of the so-called interpolating regime, where the loss function is optimized to zero while the test error remains positive. As such, its landscape is intrinsically different from supervised learning problems since in the former the spurious minima proliferate at high values of the loss while the good ones lie at the bottom of the landscape. Instead, deep networks have both spurious and good minima at 100% training accuracy and their landscape resembles much more the one of continuous constraint satisfaction problems [START_REF] Franz | Universality of the sat-unsat (jamming) threshold in non-convex continuous constraint satisfaction problems[END_REF][START_REF] Franz | Jamming in multilayer supervised learning models[END_REF].

Main contributions -We study a natural problem of supervised classification where the input data come from a high-dimensional Gaussian mixture of several clusters, and all samples in one cluster are assigned to one of two possible output labels. We then consider a single-layer neural network classifier with a general non-convex loss function. We analyze a stochastic gradient descent algorithm in which, at each iteration, the batch used to compute the gradient of the loss is extracted at random, and we define a particular stochastic process for which SGD can be extended to a continuous time limit that we call stochastic gradient flow (SGF). In the full-batch limit we recover the standard Gradient Flow (GF). We describe the high-dimensional limit of the randomly initialized SGF with the DMFT that leads to a description of the dynamics in terms of a self-consistent stochastic process that we compare with numerical simulations. In particular, we show that the finite batch size can have a beneficial effect in the test error and acts as an effective regularization that prevents overfitting.

Setting and definitions

In all what follows, we will consider the high-dimensional setting where the dimension of each point in the dataset is d → ∞ and the size of the training set n = αd, being α a control parameter that we keep of order one. We consider a training set made of n points

X = (x 1 , ...x n ) ∈ R n×d with labels y = (y 1 , ...y n ) ∈ {+1, -1} n (1) 
The patterns x µ are given by

x µ = c µ v * √ d + √ ∆ z µ z µ ∼ N (0, I d ) µ = 1, ...n . (2) 
Without loss of generality, we choose a basis where v * = (1, 1, ...1) ∈ R d .

Two-cluster dataset:

We will illustrate our results on a two-cluster example where the coefficients c µ are taken at random c µ = ±1 with equal probability. Therefore one has two symmetric clouds of Gaussian points centered around two vectors v * and -v * . The labels of the data points are fixed by y µ = c µ . If the noise level ∆ of the number of samples is small enough, the two Gaussian clouds are linearly separable by an hyperplane, as specified in detail in [START_REF] Mignacco | The role of regularization in classification of high-dimensional noisy gaussian mixture[END_REF], and therefore a single layer neural network is enough to perform the classification task in this case. We hence consider learning with the simplest neural network that classifies the data according to ŷµ (w) = sgn[w x µ / √ d].

Three-cluster dataset: We consider also an example of three clusters where a good generalization error cannot be obtained by separating the points linearly. In this case we define c µ = 0 with probability 1/2, and c µ = ±1 with probability 1/2. The labels are then assigned as

y µ = -1 if c µ = 0 , and y µ = 1 if c µ = ±1 . (3) 
One has hence three clouds of Gaussian points, two external and one centered in zero. In order to fit the data we consider a single layer-neural network with the door activation function, defined as

ŷµ (w) = sgn w x µ √ d 2 -L 2 . ( 4 
)
The onset parameter L could be learned, but we will instead fix it to a constant.

Loss function:

We study the dynamics of learning by the empirical risk minimization of the loss

H(w) = n µ=1 y µ φ w x µ √ d + λ 2 w 2 2 , (5) 
where we added a Ridge regularization term. The activation function φ is given by φ(x) = x linear for the two-cluster dataset x 2 -L 2 door for the three-cluster dataset .

The DMFT analysis is valid for a generic loss function . However, for concreteness in the result section we will focus on the logistic loss (v) = ln (1 + e -v ) . Note that in this setting the two-cluster dataset leads to convex optimization, with a unique minimum for finite λ, and implicit regularization for λ = 0 [START_REF] Rosset | Margin maximizing loss functions[END_REF], and was analyzed in detail in [START_REF] Deng | A model of double descent for high-dimensional binary linear classification[END_REF][START_REF] Mignacco | The role of regularization in classification of high-dimensional noisy gaussian mixture[END_REF]. Still the performance of stochastic gradient descent with finite batch size cannot be obtained in static ways. The three-cluster dataset, instead, leads to a generically non-convex optimization problem which can present many spurious minima with different generalization abilities when the control parameters such as ∆ and α are changed. We note that our analysis can be extended to neural networks with a small hidden layer [START_REF] Seung | Query by committee[END_REF], this would allow to study the role of overparametrization, but it is left for future work.

Stochastic gradient-descent training dynamics

Discrete SGD dynamics -We consider the discrete gradient-descent dynamics for which the weight update is given by

w j (t + η) = w j (t) -η λw j (t) + n µ=1 s µ (t)Λ y µ , w(t) x µ √ d x µ,j √ d (7) 
where we have introduced the function Λ(y, h) = (yφ (h)) and we have indicated with a prime the derivative with respect to h, Λ (y, h) = y (yφ (h)) φ (h). We consider the following initialization of the weight vector w(0) ∼ N (0, I d R), where R > 0 is a parameter that tunes the average length of the weight vector at the beginning of the dynamics1 . The variables s µ (t) are i.i.d. binary random variables. Their discrete-time dynamics can be chosen in two ways:

• In classical SGD at iteration t one extracts the samples with the following probability distribution

s µ (t) = 1 with probability b 0 with probability 1 -b (8) 
and b ∈ (0, 1]. In this way for each time iteration one extracts on average B = bn patterns at random on which the gradient is computed and therefore the batch size is given by B. Note that if b = 1 one gets full-batch gradient descent.

• Persistent-SGD is defined by a stochastic process for s µ (t) given by the following probability rules

Prob(s µ (t + η) = 1|s µ (t) = 0) = 1 τ η Prob(s µ (t + η) = 0|s µ (t) = 1) = (1 -b) bτ η, (9) 
where s µ (0) is drawn from the probability distribution (8). In this case, for each time slice one has on average B = bn patterns that are active and enter in the computation of the gradient. The main difference with respect to the usual SGD is that one keeps the same patterns and the same minibatch for a characteristic time τ . Again, setting b = 1 one gets full-batch gradient descent.

Stochastic gradient flow -To write the DMFT we consider a continuous-time dynamics defined by the η → 0 limit. This limit is not well defined for the usual SGD dynamics described by the rule (8) and we consider instead its persistent version described by Eq. ( 9). In this case the stochastic process for s µ (t) is well defined for η → 0 and one can write a continuous time equation as

ẇj (t) = -λw j (t) - n µ=1 s µ (t)Λ y µ , w(t) x µ √ d x µ,j √ d , (10) 
Again, for b = 1 one recovers the gradient flow. We call Eq. ( 10) stochastic gradient flow (SGF).

4 Dynamical mean-field theory for SGF

We will now analyze the SGF in the infinite size limit n → ∞, d → ∞ with α = n/d and b and τ fixed and of order one. In order to do that, we use dynamical mean-field theory (DMFT). The derivation of the DMFT equations is given in the supplementary material, here we will just present the main steps. The derivation extends the one reported in [START_REF] Agoritsas | Out-ofequilibrium dynamical mean-field equations for the perceptron model[END_REF] for the non-convex perceptron model [START_REF] Franz | Universality of the sat-unsat (jamming) threshold in non-convex continuous constraint satisfaction problems[END_REF] (motivated there as a model of glassy phases of hard spheres). The main differences of the present work with respect to [START_REF] Agoritsas | Out-ofequilibrium dynamical mean-field equations for the perceptron model[END_REF] are that here we consider a finite-batch gradient descent and that our dataset is structured while in [START_REF] Agoritsas | Out-ofequilibrium dynamical mean-field equations for the perceptron model[END_REF] the derivation was done for full-batch gradient descent and random i.i.d. inputs and i.i.d. labels, i.e. a case where one cannot investigate generalization error and its properties. The starting point of the DMFT is the dynamical partition function

Z dyn = w(0)=w (0) Dw(t) d j=1 δ -ẇj (t) -λw j (t) - n µ=1 s µ (t)Λ y µ , w(t) x µ √ d x µ,j √ d , (11) 
where Dw(t) stands for the measure over the dynamical trajectories starting from w(0). Since Z dyn = 1 (it is just an integral of a Dirac delta function) [START_REF] De | Technics of field renormalization and dynamics of critical phenomena[END_REF] one can average directly Z dyn over the training set, the initial condition and the stochastic processes of s µ (t). We indicate this average with the brackets • . Hence we can write

Z dyn = Dw(t)D ŵ(t) e S dyn , (12) 
where we have defined

S dyn = d j=1 +∞ 0 dt i ŵj (t) -ẇj (t) -λw j (t) - n µ=1 s µ (t)Λ y µ , w(t) x µ √ d x µ,j √ d . (13) 
and we have introduced a set of fields ŵ(t) to produce the integral representation of the Dirac delta function. The average over the training set can be then performed explicitly, and the dynamical partition function Z dyn is expressed as an integral of an exponential with extensive exponent in d:

Z dyn = DQ Dm e dS(Q,m) , (14) 
where Q and m are two dynamical order parameters defined in the supplementary material. Therefore, the dynamics in the d → ∞ limit satisfies a large deviation principle and we can approximate Z dyn with its value at the saddle point of the action S. In particular, one can show that the saddle point equations for the parameters Q and m can be recast into a self consistent stochastic process for a variable h(t) related to the typical behavior of w(t) z µ / √ d, which evolves according to the stochastic equation:

∂ t h(t) = -(λ + λ(t))h(t) - √ ∆s(t)Λ (y(c), r(t) -Y (t)) + t 0 dt M R (t, t )h(t ) + ξ(t), (15) 
where we have denoted by r(t) = √ ∆h(t) + m(t)(c + √ ∆h 0 ) and m(t) is the magnetization, namely m(t) = w(t) v * /d. The details of the computation are provided in the supplementary material. There are several sources of stochasticity in Eq. ( 15). First, one has a dynamical noise ξ(t) that is Gaussian distributed and characterized by the correlations

ξ(t) = 0, ξ(t)ξ(t ) = M C (t, t ) . (16) 
Furthermore, the starting point h(0) of the stochastic process is random and distributed according to

P (h(0)) = e -h(0) 2 /(2R) / √ 2πR. (17) 
Moreover, one has to introduce a quenched Gaussian random variable h 0 with mean zero and average one. We recall that the random variable c = ±1 with equal probability in the two-cluster model, while c = 0, ±1 in the three-cluster one. The variable y(c) is therefore y(c) = c in the two-cluster case, and is given by Eq. ( 3) in the three-cluster one. Finally, one has a dynamical stochastic process s(t) whose statistical properties are specified in Eq. ( 9). The magnetization m(t) is obtained from the following deterministic differential equation

∂ t m(t) = -λm(t) -µ(t), m(0) = 0 + . (18) 
The stochastic process for h(t), the evolution of m(t), as well as the statistical properties of the dynamical noise ξ(t) depend on a series of kernels that must be computed self consistently and are given by

λ(t) = α∆ s(t)Λ (y(c), r(t)) , µ(t) = α s(t) c + √ ∆h 0 Λ (y(c), r(t)) , M C (t, t ) = α∆ s(t)s(t )Λ (y(c), r(t)) Λ (y(c), r(t )) , M R (t, t ) = α∆ δ δY (t ) s(t)Λ (y(c), r(t)) Y =0 . (19) 
In Eq. ( 19) the brackets denote the average over all the sources of stochasticity in the self-consistent stochastic process. Therefore one needs to solve the stochastic process in a self-consistent way. Note that Y (t) in Eq. ( 15) is set to zero and we need it only to define the kernel M R (t, t ). The set of Eqs. ( 15), ( 18) and ( 19) can be solved by a simple straightforward iterative algorithm. One starts with a guess for the kernels and then runs the stochastic process for h(t) several times to update the kernels. The iteration is stopped when a desired precision on the kernels is reached [START_REF] Eissfeller | New method for studying the dynamics of disordered spin systems without finite-size effects[END_REF].

Note that, in order to solve Eqs. ( 15), ( 18) and ( 19), one needs to discretize time. In the result section 5, in order to compare with numerical simulations, we will take the time-discretization of DMFT equal to the learning rate in the simulations. In the time-discretized DMFT, this allows us to extract the variables s(t) either from (8) (SGD) or (9) (Persistent-SGD). In the former case this gives us a SGD-inspired discretization of the DMFT equations.

Finally, once the self-consistent stochastic process is solved, one has access also to the dynamical correlation functions C(t, t ) = w(t) • w(t )/d, encoded in the dynamical order parameter Q that appears in the large deviation principle of Eq. ( 14). C(t, t ) concentrates for d → ∞ and therefore is controlled by the equations

∂ t C(t , t) = -λ(t)C(t, t ) + t 0 ds M R (t, s)C(t , s) + t 0 ds M C (t, s)R(t , s) -m(t ) t 0 dsM R (t, s)m(s) + µ(t) -λ(t)m(t) if t = t , 1 2 ∂ t C(t, t) = -λ(t)C(t, t) + t 0 ds M R (t, s)C(t, s) + t 0 ds M C (t, s)R(t, s) -m(t) t 0 ds M R (t, s)m(s) + µ(t) -λ(t)m(t) , ∂ t R(t, t ) = -λ(t)R(t, t ) + δ(t -t ) + t t ds M R (t, s)R(s, t ), (20) 
where we used the shorthand notation λ(t) = λ + λ(t). We consider the linear response regime, and R(t, t ) = i δw i (t)/δH i (t )/d is a response function that controls the variations of the weights when their dynamical evolution is affected by an infinitesimal local field H i (t). Coupling a local field H i (t) to each variable w i (t) changes the loss function as follows:

H (w(t)) → H (w(t)) - d i=1 H i (t)w i (t)
, resulting in an extra term H i (t) to the right hand side of Eq. ( 10). We then consider the limit H i (t) → 0. It is interesting to note that the second of Eqs. ( 20) controls the evolution of the norm of the weight vector C(t, t) and even if we set λ = 0 we get that it contains an effective regularization λ(t) that is dynamically self-generated [START_REF] Soudry | The implicit bias of gradient descent on separable data[END_REF].

Dynamics of the loss and the generalization error -Once the solution for the self-consistent stochastic process is found, one can get several interesting quantities. First, one can look at the training loss, which can be obtained as

e(t) = α Λ(y, r(t)) , (21) 
where again the brackets denote the average over the realization of the stochastic process in Eq. [START_REF] Yang | A mean field theory of batch normalization[END_REF].

The training accuracy is given by

a(t) = 1 -θ(-yφ(r(t))) (22) 
and, by definition, it is equal to one as soon as all vectors in the training set are correctly classified. Finally, one can compute the generalization error. At any time step, it is defined as the fraction of mislabeled instances:

ε gen (t) = 1 4 E X,y,xnew,ynew (y new -ŷnew (w(t))) 2 , (23) 
where {X, y} is the training set, x new is an unseen data point and ŷnew is the estimator for the new label y new . The dependence on the training set here is hidden in the weight vector w(t) = w(t, X, y).

In the two-cluster case one can easily show that

ε gen (t) = 1 2 erfc m(t) 2∆ C(t, t) . ( 24 
)
Conversely, for the door activation trained on the three-cluster dataset we get

ε gen (t) = 1 2 erfc L 2∆C(t, t) + 1 4 erf L -m(t) 2∆C(t, t) + erf L + m(t) 2∆C(t, t) . (25) 

Results

In this section, we compare the theoretical curves resulting from the solution of the DMFT equations derived in Sec. 4 to numerical simulations. This analysis allows to gain insight into the learning dynamics of stochastic gradient descent and its dependence on the various control parameters in the two models under consideration. The left panel of Fig. 1 shows the learning dynamics of the Persistent-SGD in the two-cluster model without regularization λ = 0. We clearly see a good match between the numerical simulations and the theoretical curves obtained from DMFT, notably also for small values of batchsize b and dimension d = 500. The figure shows that there exist regions in control parameter space where Persistent-SGD is able to reach 100% training accuracy, while the generalization error is bounded away from zero. Remarkably, we observe that the additional noise introduced by decreasing the batch size b results in a shift of the early-stopping minimum of the generalization error at larger times and that, on the time window we show, a batch size smaller than one has a beneficial effect on the generalization error at long times. The right panel illustrates the role of regularization in the same model trained with full-batch gradient descent, presenting that regularization has a similar influence on the learning curve as small batch-size but without the slow-down incurred by Persistent-SGD.

The influence of the batch size b and the regularization λ for the three-cluster model is shown in Fig. 2. We see an analogous effect as for the two-clusters in Fig. 1. In the inset of Fig. 2, we show the norm of the weights as a function of the training time. Both with the smaller mini-batch size and larger regularization the norm is small, testifying further that the two play a similar role in this case. One difference between the two-cluster an the three-cluster models we observe concerns the behavior of the generalization error at small times. Actually, for the three-cluster model, good generalization is reached because of finite-size effects. Indeed, the corresponding loss function displays a Z 2 symmetry according to which for each local minimum w there is another one -w with exactly the same properties. Note that this symmetry is inherited from the activation function φ (6), which is even. This implies that if d → ∞, the generalization error would not move away from 0.5 in finite time. However, when d is large but finite, at time t = 0 the weight vector has a finite projection on v * which is responsible for the dynamical symmetry breaking and eventually for a low generalization error at long times. In order to obtain an agreement between the theory and simulations, we initialize m(t) in the DMFT equations with its corresponding finite-d average value at t = 0. In the left panel of Fig. 3, we show that while this produces a small discrepancy at intermediate times that diminishes with growing size, at long times the DMFT tracks perfectly the evolution of the algorithm.

The right panel of Fig. 3 summarizes the effect of the characteristic time τ in the Persistent-SGD, i.e. the typical persistence time of each pattern in the training mini-batch. When τ decreases, the Persistent-SGD algorithm is observed to be getting a better early-stopping generalization error and the dynamics gets closer to the usual SGD dynamics. As expected, the τ → 0 limit of the Persistent-SGD converges to the SGD. It is remarkable that the SGD-inspired discretization of the DMTF equations, that is in principle an ad-hoc construction as the corresponding flow-limit in which the derivation holds does not exist, shows a perfect agreement with the numerics.

Fig. 4 presents the influence of the weight norm at initialization R on the dynamics, for the two-cluster (left) and three-cluster (right) model. For the two-cluster case, the gradient descent algorithm with all-zeros initialization "jumps" on the Bayes-optimal error at the first iteration as derived in [START_REF] Mignacco | The role of regularization in classification of high-dimensional noisy gaussian mixture[END_REF], and in this particular setting the generalization error is monotonically increasing in time. As R increases the early stopping error gets worse. At large times all the initializations converge to the same value of the error, as they must, since this is a full-batch gradient descent without regularization that at large times converges to the max-margin estimator according to [START_REF] Rosset | Margin maximizing loss functions[END_REF]. For the three-cluster model we observe a qualitatively similar behavior. 

Broader Impact

Our work is theoretical in nature, and as such the potential societal consequence are difficult to foresee. We anticipate that deeper theoretical understanding of the functioning of machine learning systems will lead to their improvement in the long term.
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A Derivation of the dynamical mean-field equations

The derivation of the self-consistent stochastic process discussed in the main text can be obtained using tools of statistical physics of disordered systems. In particular, it has been done very recently for a related model, the spherical perceptron with random labels, in [1]. Our derivation extends the known DMFT equations by including • structure in the data;

• a stochastic version of gradient descent as discussed in the main text;

• the relaxation of the spherical constraint over the weights and the introduction of a Ridge regularization term.

There are at least two ways to write the DMFT equations. One is by using field theoretical techniques; otherwise one can employ a dynamical version of the so-called cavity method [2]. Here we opt for the first option that is generically very compact and immediate and it has a form that resembles very much a static treatment of the Gibbs measure of the problem [3]. We use a supersymmetric (SUSY) representation to derive the dynamical mean-field (DMFT) equations [1,4]. We do not report all the details, that can be found in [1] along with an alternative derivation based on the cavity method, but we limit ourselves to provide the main points. We first consider the dynamical partition function, corresponding to Eq. ( 11) in the main text

Z dyn = dw (0) (2π) d 2 e -1 2 w (0) 2 2 w(0)=w (0) Dw(t) × d j=1 δ -ẇj (t) -λw j (t) - n µ=1 s µ (t)Λ y µ , w(t) x µ √ d x µ,j √ d , (A.1)
where the brackets • stand for the average over s µ (t), y µ and the realization of the noise in the training set. The average over the initial condition is written explicitly. Note that we choose an initial condition that is Gaussian, but we could have chosen a different probability measure over the initial configuration of the weights. The equations can be generalized to other initial conditions as soon as they do not depend on quenched random variables that enter in the stochastic gradient descent (SGD) dynamics and their distribution is separable. As observed in the main text, we have that Z dyn = Z dyn = 1. We can write the integral representation of the Dirac delta function in Eq. A.1 by introducing a set of fields ŵ(t)

Z dyn = Dw(t)D ŵ(t) e S dyn , (A.2)
where the dynamical action S dyn is defined as in Eq. ( 13) of the main text 

S
θ 2 = θ2 = θ θ + θθ = 0, dθ = d θ = 0, dθ θ = d θ θ = 1, ∂ θ g(θ) = dθ g(θ)
for a generic function g,

(A.5) it follows that da f (w(a)) = +∞ 0 dt a i ŵ(t a )f (w(t a )) . (A.6)
We can use Eq. (A.6) to rewrite S dyn . We obtain 1. We start from a random guess of the kernels, that we use to sample the stochastic process (A.20) several times; 2. We compute the averages over these multiple realizations to obtain the updates of the auxiliary functions (A.21) and kernels (A.22), along with the magnetization (A.23); 3. We use these new guesses to sample again multiple realizations of the stochastic process; 4. We repeat steps 2. and 3. until the kernels reach a fixed point.

S dyn = - 1 
As in all iterative solutions of fixed point equations, it is natural to introduce some damping in the update of the kernels to avoid wild oscillations. Note that the DMFT fixed point equations are deterministic, hence at given initial condition the solution is unique. Indeed, the kernels computed by DMFT are causal and a simple integration scheme of the equations is just extending them progressively in time starting from their initial value, which is completely deterministic given the initial condition for the stochastic process. This procedure has been first implemented in [6,7] and recently developed further in other applications [8,9]. However, DMFT has a long tradition in condensed matter physics [10] where more involved algorithms have been developed.

B Generalization error

The generalization error at any time step is defined as the fraction of mislabeled instances:

ε gen (t) ≡ 1 4 E X,y,xnew,ynew (y new -ŷnew (w(t))) 2 , (B.1)
where {X, y} is the training set, x new is an unseen data point and ŷnew is the estimator for the new label y new . The dependence on the training set here is hidden in the weight vector w(t) = w(t, X, y).

B.1 Perceptron with linear activation function

In this case, the estimator for a new label is ŷnew (w(t)) = sign w(t) x new . The generalization error in the infinite dimensional limit d → ∞ has been computed in [11] 

C Oracle error

We call oracle error the classification error made by an ideal oracle that has access to the vector v * that characterizes the centers of the clusters in the two models under consideration (see Sec. and

P ŷO new = -1|y new = 1 = P 1 -ρ > ρe -1 2∆ cosh c new ∆ + 1 √ ∆d z new v * = P 1 -ρ > ρe -1 2∆ cosh c new ∆ + ζ new √ ∆ = 1 2     erf     ∆ arccosh (1-ρ) ρ e 1/2∆ + 1 √ 2∆     + erf     ∆ arccosh (1-ρ) ρ e 1/2∆ -1 √ 2∆         , (C.6)
where z new ∼ N (0, I d ), ζ new ∼ N (0, 1), and c new = ±1 with probability 1 2 . Finally, we obtain that the oracle error is (C.7)

Figure 1 :Figure 2 :

 12 Figure 1: Left: Generalization error as a function of the training time for Persistent-SGD in the twocluster model, with α = 2, ∆ = 0.5, λ = 0, 1/τ = 0.6 and different batch sizes b = 1, 0.3, 0.1. The continuous lines mark the numerical solution of DMFT equations, while the symbols are the results of simulations at d = 500, η = 0.2, and R = 0.01. The dashed grey line marks the Bayes-optimal error from [28]. Right: Generalization error as a function of the training time for full-batch gradient descent in the two-cluster model with different regularization λ = 0, 0.1, 1 and the same parameters as in the left panel. In each panel, the inset shows the training accuracy as a function of the training time.

Figure 3 :

 3 Figure 3: Left: Generalization error as a function of the training time for full-batch gradient descent and Persistent-SGD with 1/τ = b = 0.3 in the three-cluster model, at fixed α = 2, ∆ = 0.05, L = 0.7 and λ = 0. The continuous lines mark the numerical solution of DMFT equations, the symbols represent simulations at η = 0.2, R = 1, and increasing dimension d = 500, 1000, 5000, 10000. Error bars are plotted for d = 10000. The dashed lines mark the oracle error (see supplementary material). Right: Generalization error as a function of the training time for Persistent-SGD with different activation rates 1/τ = 0.15, 0.3, 0.6 and classical SGD in the two-cluster model, both with b = 0.3, α = 2, ∆ = 0.5, λ = 0, η = 0.2, R = 0.01. The continuous lines mark the numerical solution of DMFT equations (in case of SGD we use the SGD-inspired discretization), while the symbols represent simulations at d = 500. The dashed lines mark the Bayes-optimal error from [28]. In each panel, the inset displays the training accuracy as a function of time.

Figure 4 :

 4 Figure 4: Left: Generalization error as a function of training time for full-batch gradient descent in the two-cluster model, at fixed α = 2, ∆ = 0.5, λ = 0, η = 0.2, and different initialization variances R = 0, 0.01, 0.1, 1, 5. The continuous lines mark the numerical solution of DMFT equations, while the symbols represent simulations at d = 500. The dashed lines mark the Bayes-optimal error from [28]. The y-axis is cut for better visibility. Right: Generalization error as a function of training time for full-batch gradient descent in the three-cluster model, at fixed α = 3, ∆ = 0.1, λ = 0, η = 0.1 and different initialization variances R = 0.01, 0.5, 5. The continuous lines mark the numerical solution of DMFT equations, while the symbols represent simulations at d = 1000. The dashed grey line marks the oracle error (see supplementary material). In each panel, the inset shows the training accuracy as a function of time.

2 (A. 9 )

 29 dadb K(a, b)w(a) w(b) -n µ=1 da s µ (a) Λ (y µ , h µ (a)) , (A.7) where we have defined h µ (a) ≡ w(a) x µ / √ d and we have implicitly defined the kernel K(a, b) such that -1 2 dadb K(a, b)w(a) w(b) = d j=1 +∞ 0 dt i ŵj (t) (-ẇj (t) -λw j (t)) . (A.8) By inserting the definition of h µ (a) in the partition function, we have Z dyn = Dw(a)Dh µ (a)D ĥµ (a) exp -1 2 dadb K(a, b)w(a) w(b) -n µ=1 da s µ (a) Λ (y µ , h µ (a)) exp n µ=1 da i ĥµ (a) h µ (a) -w(a) x µ √ d .Let us consider the last factor in the integral in (A.9). We can perform the average over the random vectors z µ ∼ N (0, I d ), denoted by an overline, as exp n µ=1 da i ĥµ (a) h µ (a) -w(a) x µ √ d = exp n µ=1 da i ĥµ (a) h µ (a) -c µ m(a) -∆ d w(a) z µ = exp n µ=1 da i ĥµ (a) (h µ (a) -c µ m(a)) -∆ 2 n µ=1 da db Q(a, b) ĥµ (a) ĥµ (b) , (A.10)

1 2∆ x new - cnew √ d v * 2 2 (C. 2 ) 2 = e - 1 2∆ xnew 2 2 ( 1 -

 1222121 2 in the main text). We define the oracle's estimator ŷO new given a new data point x new as ŷO new = arg max ỹnew p (ỹ new |x new ) , (C.1)where the prior over the label ỹnew and the coefficient cnew along with the channel distribution p (x new |c new ) ∝ expare known. We can rewrite the probability in Eq. (C.1) asp (ỹ new |x new ) ∝ cnew=0,±1 p (ỹ new , cnew ) p (x new |c new ) = (1 -ρ)δ(ỹ new + 1)e -ρ)δ(ỹ new + 1) + ρδ(ỹ new -1)e -is then ε O gen = P ŷO new = y new = (1 -ρ) P ŷO new = 1|y new = -1 + ρ P ŷO new = -1|y new = 1 . (C.4) We can compute the two terms in the above equation separately P ŷO new = 1|y new = -1 = P ρe -1 2∆ cosh 1 √ ∆d z new v * > 1 -ρ = P ρe -
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  The dynamical action S dyn (A.3) can be rewritten in a supersymmetric form, by extending the time coordinate to include two Grassman coordinates θ and θ, i.e. t a → a = (t a , θ a , θa ). The dynamic variable w(t a ) and the auxiliary variable i ŵ(t a ) are encoded in a super-field w(a) = w(t a ) + i θ a θa ŵ(t a ).

	d j=1	0	+∞	dt i ŵj (t) -ẇj (t) -λw j (t) -	n µ=1	s µ (t)Λ y µ ,	w(t) x µ √ d	x µ,j √ d	. (A.3)
	A.1 SUSY formulation					
									(A.4)
	From the properties of Grassman variables [5]					

dyn =

  In this case, the estimator for a new label is ŷnew (w(t)) = sign 1 d (w(t) x new ) 2 -L 2 . From Eq. (B.1), we have that E X,y,xnew,ynew [y new • ŷnew (w(t))]) . (B.3)We consider the second term of (B.3)E X,y,xnew,ynew [y new • ŷnew (w(t))] = E X,y,xnew sign y new d (w(t) x new ) 2 -y new L 2 . (B.4)In the high dimensional limit, the overlap between weight vector and data point at each time step Therefore, we obtainE X,y,xnew,ynew [y new • ŷnew (w(t))]E cnew,z,ynew sign y new c new m(t) + ∆C(t, t) z and the generalization error in the infinite dimensional limit d → ∞ is

	ε gen (t) = B.2 Perceptron with door activation function 1 2 erfc ε gen (t) = 1 2 (1 -concentrates w(t) x new √ d = w(t) √ d c new v * √ d + √ ∆ z new where z ∼ N (0, 1). ε gen (t) = (1-ρ)erfc L 2∆C(t, t) + ρ 2 erf	and reads c new m(t) + ∆C(t, t) z, 2∆ C(t, t) m(t) . → d→∞ L -m(t) 2∆C(t, t) + erf L + m(t) 2∆C(t, t)	(B.2) (B.5) . (B.7)

2

-

y new L 2 = P y new c new m(t) + ∆C(t, t) z 2 ≥ y new L 2 -P y new c new m(t) + ∆C(t, t) z 2 < y new L 2 (B.6)

The DMFT equations we derive can be easily generalized to the case in which the initial distribution over w is different. We only need it to be separable and independent of the dataset.
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(A.13)

We have used that the samples are i.i.d. and removed the index µ = 1, ...n. The brackets denote the average over the random variable c, that has the same distribution as the c µ , over y, distributed as y µ , and over the random process of s(t), defined by Eq. ( 9) in the main text. If we perform the change of variable

where the effective local action S loc is given by

) ĥ(a) ĥ(b) -∆ 2 da ĥ(a)m(a)

2 + da i ĥ(a) (h(a) -cm(a))da s(a) Λ (y, h(a)) .

(A.15)

Performing a Hubbard-Stratonovich transformation on exp -∆ 2 da ĥ(a)m(a)

and a set of transformations on the fields h(a), we obtain that we can rewrite Z as

Dh(a)D ĥ(a) exp -1 2 dadb Q(a, b) ĥ(a) ĥ(b)

A.2 Saddle-point equations

We are interested in the large d limit of Z dyn , in which, according to Eq. (A.12), the partition function is dominated by the saddle-point value of S(Q, m):

The saddle-point equation for m(a) is instead

It can be easily shown by exploiting the Grassmann structure of Eqs. (A.18)-(A. [START_REF] Mézard | Spin glass theory and beyond[END_REF]) that they lead to a self consistent stochastic process described by

where the initial condition is drawn from P (h(0)) ∼ e -h(0) 2 /(2R) / √ 2π, and r(t

We have defined the auxiliary functions

and kernels

In addition, from (A. [START_REF] Mézard | Spin glass theory and beyond[END_REF] , one can derive an ordinary differential equation for the magnetization

The brackets in the previous equations denote, at the same time, the average over the label y, the process s(t), as well as the average over the noise ξ(t) and both h 0 and h(0), whose probability distributions are given by P (h(0)) and P 0 (h 0 ) respectively. In other words, one has a set of kernels, such as M R (t, t ) and M C (t, t ), that can be obtained as average over the stochastic process for h(t) and therefore must be computed self-consistently.

Finally, Eq. (A.18) gives rise to Eq. ( 20) of the main text while Eq. (A. [START_REF] Mézard | Spin glass theory and beyond[END_REF] gives rise to the equation for the evolution of the magnetization. Note that the norm of the weight vector w(t) can be also computed by sampling the stochastic process

from which one gets C(t, t ) = w(t) 2 . (A.25)

A.3 Numerical solution of DMFT equations

The algorithm to solve the DMFT equations that are summed up in Eq. (A.20) is the most natural one. It can be understood in this way. The outcome of the DMFT is the computation of the kernels and functions appearing in it, namely m(t), M C (t, t ) and so on. They are determined as averages over the stochastic process that is defined through them. Therefore, one needs to solve the system of equations in a self-consistent way. The straightforward way to do that is to proceed by iterations: