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Null controllability and �nite-time stabilization in minimal1

time of one-dimensional �rst-order 2× 2 linear hyperbolic2

systems3

Long Hu∗ Guillaume Olive†4

October 29, 20205

Abstract6

The goal of this article is to present the minimal time needed for the null controllability7

and �nite-time stabilization of one-dimensional �rst-order 2 × 2 linear hyperbolic systems.8

The main technical point is to show that we cannot obtain a better time. The proof combines9

the backstepping method with the Titchmarsh convolution theorem.10
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ping method, Titchmarsh convolution theorem12
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1 Introduction and main result14

1.1 Problem description15

In this paper we are interested in the characterization of the minimal time needed for the con-16

trollability of the following class of one-dimensional �rst-order 2× 2 linear hyperbolic systems:17



∂y1

∂t
(t, x) + λ1(x)

∂y1

∂x
(t, x) = a(x)y1(t, x) + b(x)y2(t, x),

∂y2

∂t
(t, x) + λ2(x)

∂y2

∂x
(t, x) = c(x)y1(t, x) + d(x)y2(t, x),

y1(t, 1) = u(t), y2(t, 0) = 0,

y1(0, x) = y0
1(x), y2(0, x) = y0

2(x),

t ∈ (0,+∞), x ∈ (0, 1). (1)18

Such systems appear in linearized versions of various physical models of balance laws, see e.g.19

[BC16, Chapter 1]. For instance, the telegrapher equations of Heaviside form a linear system of20

the form (1) for some parameters (see e.g. [BC16, Section 1.2 and (1.20)] with −1+λR0C` = 0).21

In (1), (y1(t, ·), y2(t, ·)) is the state at time t, (y0
1 , y

0
2) is the initial data and u(t) is the control

at time t. We assume that the speeds λ1, λ2 ∈ C0,1([0, 1]) are such that

λ1(x) < 0 < λ2(x), ∀x ∈ [0, 1].
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Finally, a, b, c, d ∈ L∞(0, 1) couple the equations of the system inside the domain (the matrix22 (
a b
c d

)
will also be referred in the sequel to as the internal coupling matrix).23

We recall that the system (1) is well-posed: for every u ∈ L2
loc(0,+∞) and (y0

1 , y
0
2) ∈ L2(0, 1)2,24

there exists a unique solution (y1, y2) ∈ C0([0,+∞);L2(0, 1)2) to the system (1). By solution we25

mean �solution along the characteristics� or �broad solution� (see e.g. [CHOS21, Appendix A]).26

The same statement remains true if, in the boundary condition at x = 1, u is replaced by27

u(t) =

∫ 1

0

(f1(ξ)y1(t, ξ) + f2(ξ)y2(t, ξ)) dξ, (2)28

for any f1, f2 ∈ L∞(0, 1). The relation (2) is called the �feedback law�.29

Let us now introduce the notions of controllability that we are interested in:30

De�nition 1.1. Let T > 0. We say that the system (1) is:31

• �nite-time stable with settling time T if, for every y0
1 , y

0
2 ∈ L2(0, 1), the corresponding32

solution to the system (1) with u = 0 satis�es33

y1(T, ·) = y2(T, ·) = 0. (3)34

• �nite-time stabilizable with settling time T if there exist f1, f2 ∈ L∞(0, 1) such that,35

for every y0
1 , y

0
2 ∈ L2(0, 1), the corresponding solution to the system (1) with u given by36

(2) satis�es (3).37

• null controllable in time T if, for every y0
1 , y

0
2 ∈ L2(0, 1), there exists u ∈ L2

loc(0,+∞)38

such that the corresponding solution to the system (1) satis�es (3).39

Obviously, �nite-time stability implies �nite-time stabilization, which in turn implies null40

controllability.41

Remark 1.2. As we are trying to bring the solution of the system (1) to the state zero, let42

us �rst mention that, in general, u = 0 does not work. Not only this, but in fact any static43

boundary output feedback laws, that is of the form u(t) = ky2(t, 1) with k ∈ R, does not work44

either in general. A simple example is provided by the following 2 × 2 system with constant45

coe�cients (see also [BC16, Section 5.6] when y2(t, 0) = y1(t, 0)):46 

∂y1

∂t
(t, x)− ∂y1

∂x
(t, x) = πy2(t, x),

∂y2

∂t
(t, x) +

∂y2

∂x
(t, x) = πy1(t, x),

y1(t, 1) = ky2(t, 1), y2(t, 0) = 0,

y1(0, x) = y0
1(x), y2(0, x) = y0

2(x),

t ∈ (0,+∞), x ∈ (0, 1). (4)47

Indeed, for this system we can always construct a smooth initial data (y0
1 , y

0
2) which is an eigen-

function of the operator associated with (4) and whose corresponding eigenvalue σ is a positive
real number, which makes the system (4) exponentially unstable. This can be done as follows.
We take

y0
1(x) =

1

π

(
σy0

2(x) +
∂y0

2

∂x
(x)

)
,

(so that the second equation in (4) will always be satis�ed) and48
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• If k < 1 + 1/π, then we take σ = π
√

1− θ2 and y0
2(x) = sin(θπx), where θ ∈ (0, 1) is any49

solution to the equation
√

1− θ2 + θ cot(θπ) = k.50

• If k = 1 + 1/π, then we take σ = π and y0
2(x) = πx.51

• If k > 1 + 1/π, then we take σ = π
√

1 + θ2 and y0
2(x) = 2 sinh(θπx), where θ > 0 is any52

solution to the equation
√

1 + θ2 + θ coth(θπ) = k.53

The goal of this work is to establish a necessary and su�cient condition on the time T for54

the system (1) to be null controllable in time T (resp. �nite-time stabilizable with settling time55

T ).56

Let us now introduce some notations that will be used all along the rest of this article. Let57

φ1, φ2 ∈ C1,1([0, 1]) be the increasing functions de�ned for every x ∈ [0, 1] by58

φ1(x) =

∫ x

0

1

−λ1(ξ)
dξ, φ2(x) =

∫ x

0

1

λ2(ξ)
dξ. (5)59

We then denote by

T1(Λ) = φ1(1) =

∫ 1

0

1

−λ1(ξ)
dξ, T2(Λ) = φ2(1) =

∫ 1

0

1

λ2(ξ)
dξ.

Finally, we set60

Topt (Λ) = max {T1(Λ), T2(Λ)} , Tunif (Λ) = T1(Λ) + T2(Λ). (6)61

The naming of the notations in (6) will be explained in Remark 1.8 below.62

1.2 Literature63

Boundary null controllability and stabilization of hyperbolic systems of balance laws have at-64

tracted numerous attention of both mathematicians and engineers during the last decades. In65

the pioneering work [Rus78b], the author established the null controllability of general n × n66

coupled linear hyperbolic systems of the form (1) in a control time that is given by the sum of67

the two largest times from the states convecting in opposite directions ([Rus78b, Theorem 3.2]).68

It was also observed that this time can be shorten in some cases ([Rus78b, Proposition 3.4]), and69

the problem to �nd the minimal control time for hyperbolic partial di�erential equations (PDEs)70

was then raised ([Rus78b, Remark p. 656]).71

For systems of linear conservation laws (i.e. when no internal coupling matrix is present in72

the system), this problem was completely solved few years later in [Wec82], where the minimal73

control time has been characterized in terms of the boundary coupling matrix, that is the matrix74

coupling the equations at the boundary on the uncontrolled side. For systems of balance laws,75

the story is far from over. A �rst improvement of the control time of [Rus78b] was recently76

obtained in [CN19b] thanks to the introduction of some rank condition on the boundary coupling77

matrix. However, this was �rst done for some generic internal coupling matrices or under rather78

stringent conditions ([CN19b, Theorem 1.1 and 1.5]). The same authors were then able to79

remove some of these restrictions in [CN19a]. For the present paper it is especially important80

to emphasize that the new time introduced in [CN19b, CN19a] is only shown to be su�cient81

for the null controllability in these works. On the other hand, the minimal control time needed82

to achieve the exact controllability property (that is when we want to reach any �nal data and83

not only zero), was completely characterized in [HO19, Theorem 1.9] by a simple and calculable84

formula. It is also pointed out that null and exact controllability are equivalent properties if85
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the boundary coupling matrix has a full row rank. For quasilinear systems, it has been shown86

in [Li10, Theorem 3.2] that the time of [Rus78b] yields the (local) exact controllability of such87

systems if the boundary coupling matrix has a full row rank in a neighborhood of the state88

zero. For homogeneous quasilinear systems, a smaller control time was then obtained in [Hu15,89

Theorem 1.1].90

Concerning now the stabilization property, the �rst works seem [GL84, Qin85] for the expo-91

nential stabilization of homogeneous quasilinear hyperbolic systems in a C1 framework by using92

the method of characteristics. To the best of our knowledge, the weakest su�cient condition93

using this technique can be found in [Li94, Theorem 1.3, p. 173]. This condition was then im-94

proved in [CBdN08, Theorem 2.3] in a H2 framework thanks to the construction of an explicit95

strict Lyapunov function. In all the previous references, the feedback laws were static boundary96

output feedback laws (that is, depending only on the state values at the boundaries). However,97

due to the locality of such kind of feedback laws, these two strategies may not be e�ective to deal98

with general systems of balance laws ([BC16, Section 5.6] and Remark 1.2). Another method99

was then used to address this problem, the backstepping method. For PDEs, this method now100

consists in transforming our initial system into another system - called target system - for which101

the stabilization properties are simpler to study. The transformation used is usually a Volterra102

transformation of the second kind. One can refer to the tutorial book [KS08] to design boundary103

feedback laws stabilizing systems modeled by various PDEs and to the introduction of [CHOS21]104

for a complementary state of the art on this method. This technique turned out to be a powerful105

tool to stabilize general coupled hyperbolic systems, moreover in �nite time. In [CVKB13] the106

authors adapted this technique to obtain the �rst �nite-time stabilization result for 2× 2 linear107

hyperbolic system. This method was then developed, notably with a more careful choice of the108

target system, to treat 3 × 3 systems in [HDM15] and then to treat general n × n systems in109

[HDMVK16, HVDMK19]. However, the control time obtained in these works was larger than110

the one in [Rus78b] and it was only shown in [ADM16, CHO17] that we can stabilize with the111

same time as the one of [Rus78b]. These works have recently been generalized to time-dependent112

systems in [CHOS21]. Finally, let us also mention the two recent works [CN20a, CN20b] con-113

cerning the �nite-time stabilization of homogeneous quasilinear systems, with the same control114

time as in [CN19b, CN19a].115

In spite of quite a number of contributions dealing with these two problems (controllability116

and stabilization), we see that there are no references concerning the optimality of the control117

time for systems of linear balance laws with spatial-varying internal coupling matrix, especially118

when null and exact controllability are not equivalent, so that the results in [CVKB13, HO19]119

cannot be considered. This is of course a nontrivial task and it requires the addition of new120

techniques as we shall see below. The goal of this article is to �ll this gap, at least for 2 × 2121

systems. We will provide an explicit formula of the minimal control time for any 2 × 2 system122

of linear balance laws with spacial-varying internal coupling matrix. We will see that one of the123

main di�erences between null and exact controllability is that such a critical time is sensitive to124

the behavior of the internal coupling matrix for the null controllability, whereas it is known to125

never be the case for the exact controllability ([CVKB13, HO19]).126

1.3 Main result and comments127

The important quantity in the present work is the following:128

De�nition 1.3. For ε > 0 and a function f : (0, ε) −→ R, we denote by

`ε (f) =

{
sup Iε(f) if Iε(f) 6= ∅,
0 otherwise,
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where Iε(f) = {` ∈ (0, ε) | f = 0 a.e. in (0, `)}.129

The quantity `ε (f) is the length of the largest interval of the form (0, `) where the function130

f vanishes.131

Example 1.4.132

(E1) The simplest example of function f with `ε (f) = ` (` ∈ [0, ε]) is obviously the step function

f(x) =

{
0 if x ≤ `,
1 if x > `.

(E2) If f ∈ Ck([0, ε)) (k ∈ N) and satis�es f (k)(0) 6= 0, then `ε (f) = 0. In particular, if f has133

an analytic extension in a neighborhood of x = 0, then `ε (f) = 0.134

(E3) An example of smooth function f with `ε (f) = 0 but that does not satisfy the previous135

conditions is136

f(x) =


0 if x ≤ 0,

exp

(
− 1

x

)
if x > 0.

(7)137

The main result of this article is the following complete characterization of the controllability138

properties of the system (1):139

Theorem 1.5. Let T > 0.140

(i) If the system (1) is null controllable in time T , then necessarily141

T ≥ max

{
Topt (Λ) ,

∫ 1

`xΛ
(c)

(
1

−λ1(ξ)
+

1

λ2(ξ)

)
dξ

}
, (8)142

where xΛ ∈ (0, 1) is the unique solution to φ1(xΛ) + φ2(xΛ) = T2(Λ) (= φ2(1)).143

(ii) If the time T satis�es (8), then the system (1) is �nite-time stabilizable with settling time144

T .145

Note in particular that the system (1) is then null controllable in time T if, and only if, it is146

�nite-time stabilizable with settling time T .147

Example 1.6. For c satisfying the properties in (E2) or given by the function in (E3), this148

result shows that the time Tunif (Λ) cannot be improved. This is not trivial, especially when c is149

given by the function in (E3).150

Remark 1.7. When λ1, λ2 do not depend on space, the condition (8), in the situation Topt (Λ) ≤
T < Tunif (Λ), simply becomes

c = 0 in

(
0, 1− T

Tunif (Λ)

)
.

In particular, we see that we can possibly obtain any intermediate time between Topt (Λ) and151

Tunif (Λ). Moreover, note that the value Topt (Λ) is reachable even when c is not identically equal152

to zero.153
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Remark 1.8. As we shall see in the proof below, the most di�cult part of this result is the154

necessary condition, that is the item (i). It is also thanks to this part that we can call the time155

on the right-hand side of (8) the minimal control time. It is sometimes �nd in the literature156

that the time Tunif (Λ) is �the theoretical lower bound for control time� or �the optimal time�.157

However, the failure of the controllability before this time is never proved in these works (and,158

in fact, it cannot be in general), which brings some confusion to our point of view. This is why159

we carefully introduced a di�erent naming and use the notations160

• Tunif (Λ) as �uniform time�, for the smallest time after which all the systems of the form161

(1) are null controllable,162

• Topt (Λ) as �optimal time�, for the smallest control time that can be obtained among all163

the possible control times for the systems of the form (1).164

Remark 1.9. Let us comment other possibilities for the boundary conditions at x = 0:165

(i) When the boundary condition y2(t, 0) = 0 is replaced by y2(t, 0) = qy1(t, 0) with boundary166

coupling �matrix� q 6= 0, the result [CVKB13, Theorem 3.2] shows that the time Tunif (Λ)167

is the minimal control time (more precisely, it is shown that the system (1) with such a168

boundary condition is equivalent to the same system with no internal coupling matrix, for169

which Tunif (Λ) is clearly minimal). However, when q = 0, we see that our time is smaller170

than the one obtained in this reference.171

(ii) When a second control is applied at the boundary x = 0, i.e. the boundary condition172

y2(t, 0) = 0 is replaced by y2(t, 0) = v(t) with v ∈ L2
loc(0,+∞) a second control at our173

disposal, then the time Topt (Λ) is the minimal control time. The null controllability for T ≥174

Topt (Λ) can be shown using for instance the well-known constructive method developed175

in [Li10, Theorem 3.1]. On the other hand, the failure of the null controllability for T <176

Topt (Λ) follows from the backstepping method (by means of Volterra transformation of the177

second kind) and a simple adaptation of Lemma 3.3 below.178

Therefore, combining the previous results of the literature with the new results of the present
paper, we see that all the following possibilities for the boundary conditions have been handled:

y1(t, 1) = py2(t, 1) + ru(t), y2(t, 0) = qy1(t, 0) + sv(t),

p, q, r, s ∈ R with (r, s) 6= (0, 0).

The rest of this article is organized as follows. In Section 2, we use the backstepping method179

to show that our initial system (1) is equivalent to a canonical system from a controllability point180

of view. In Section 3 we use the Titchmarsh convolution theorem to completely characterize the181

minimal control time for this canonical system. In Section 4 we characterize this time in terms182

of the parameters of the initial system. Finally, in Section 5 we discuss possible extensions to183

systems with more than two equations.184

2 Reduction to a canonical form185

In this section, we perform some changes of unknown to transform our initial system (1) into186

a new system whose controllability properties will be simpler to study, this is the so-called187

backstepping method for PDEs. The content of section is quite standard by now, we refer for188

instance to [CVKB13, Section 3.2] for more details on the computations below.189
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First of all, we remove the diagonal terms in the system (1). Using the invertible spatial190

transformation (seen as an operator from L2(0, 1)2 onto itself)191 {
ỹ1(t, x) = e1(x)y1(t, x),

ỹ2(t, x) = e2(x)y2(t, x),
(9)192

with193

e1(x) = exp

(
−
∫ x

0

a(ξ)

λ1(ξ)
dξ

)
, e2(x) = exp

(
−
∫ x

0

d(ξ)

λ2(ξ)
dξ

)
, (10)194

we easily see that the system (1) is null controllable in time T (resp. �nite-time stabilizable with195

settling time T ) if, and only if, so is the system196 

∂ỹ1

∂t
(t, x) + λ1(x)

∂ỹ1

∂x
(t, x) = b̃(x)ỹ2(t, x),

∂ỹ2

∂t
(t, x) + λ2(x)

∂ỹ2

∂x
(t, x) = c̃(x)ỹ1(t, x),

ỹ1(t, 1) = ũ(t), ỹ2(t, 0) = 0,

ỹ1(0, x) = ỹ0
1(x), ỹ2(0, x) = ỹ0

2(x),

t ∈ (0,+∞), x ∈ (0, 1), (11)197

where198

b̃(x) = b(x)
e1(x)

e2(x)
, c̃(x) = c(x)

e2(x)

e1(x)
. (12)199

Let us now remove the coupling term on the �rst equation of (11) thanks to a second trans-
formation. Set

T = {(x, ξ) ∈ (0, 1)× (0, 1) | x > ξ} .

Let k11, k12, k21, k22 ∈ L∞(T ). Using the spatial transformation200 
ŷ1(t, x) = ỹ1(t, x)−

∫ x

0

(k11(x, ξ)ỹ1(t, ξ) + k12(x, ξ)ỹ2(t, ξ)) dξ,

ŷ2(t, x) = ỹ2(t, x)−
∫ x

0

(k21(x, ξ)ỹ1(t, ξ) + k22(x, ξ)ỹ2(t, ξ)) dξ,

(13)201

which is invertible since it is a Volterra transformation of the second kind (see e.g. [Hoc73,202

Chapter 2, Theorem 5]), we see that the system (11) is null controllable in time T (resp. �nite-203

time stabilizable with settling time T ) if, and only if, so is the system204 

∂ŷ1

∂t
(t, x) + λ1(x)

∂ŷ1

∂x
(t, x) = 0,

∂ŷ2

∂t
(t, x) + λ2(x)

∂ŷ2

∂x
(t, x) = g(x)ŷ1(t, 0),

ŷ1(t, 1) = û(t), ŷ2(t, 0) = 0,

ŷ1(0, x) = ŷ0
1(x), ŷ2(0, x) = ŷ0

2(x),

t ∈ (0,+∞), x ∈ (0, 1), (14)205

with g given by206

g(x) = −k21(x, 0)λ1(0), (15)207
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provided that the kernels k11, k12, k21, k22 satisfy the so-called kernel equations:208 

λ1(x)
∂k11

∂x
(x, ξ) +

∂k11

∂ξ
(x, ξ)λ1(ξ) + k11(x, ξ)

∂λ1

∂ξ
(ξ) + k12(x, ξ)c̃(ξ) = 0,

λ1(x)
∂k12

∂x
(x, ξ) +

∂k12

∂ξ
(x, ξ)λ2(ξ) + k11(x, ξ)b̃(ξ) + k12(x, ξ)

∂λ2

∂ξ
(ξ) = 0,

k11(x, 0) = 0,

k12(x, x) =
b̃(x)

λ1(x)− λ2(x)
,

(x, ξ) ∈ T , (16)209

and210 

λ2(x)
∂k21

∂x
(x, ξ) +

∂k21

∂ξ
(x, ξ)λ1(ξ) + k21(x, ξ)

∂λ1

∂ξ
(ξ) + k22(x, ξ)c̃(ξ) = 0,

λ2(x)
∂k22

∂x
(x, ξ) +

∂k22

∂ξ
(x, ξ)λ2(ξ) + k21(x, ξ)b̃(ξ) + k22(x, ξ)

∂λ2

∂ξ
(ξ) = 0,

k21(x, x) =
c̃(x)

λ2(x)− λ1(x)
,

(x, ξ) ∈ T . (17)211

Note that (16) and (17) are not coupled.212

From [CVKB13, Theorem A.1], we know that the kernel equations (16)-(17) have a solution.213

More precisely, we have the following result:214

Theorem 2.1. For every k0 ∈ L∞(0, 1), there exists a unique solution (k11, k12, k21, k22) ∈
L∞(T )4 to the kernel equations (16)-(17) with

k22(x, 0) = k0(x), x ∈ (0, 1).

In the aforementioned reference this result is stated in a C0 framework (assuming that215

a, b, c, d ∈ C0([0, 1])) but its proof readily shows that it is valid in L∞ as well. As before,216

the notion of solution is to be understood in the sense of solution along the characteristics. The217

boundary terms such as k21(x, 0), which de�nes g (see (15)), or k11(1, ξ), k12(1, ξ), that will ap-218

pear shortly below in our feedback law (see (19)), etc. are also understood in this sense. We219

refer for instance to the formula (42) below for the precise meaning of k21(x, 0).220

3 Study of the canonical system221

We call the system (14) the �control canonical form of the system (1)� or �canonical system� in222

short, by analogy with [Bru70, Rus78a] and since we will see in this section that we are able223

to directly read its controllability properties (a task that seems impossible on the initial system224

(1)).225

The goal of this section is to establish the following result:226

Theorem 3.1. Let T > 0 and g ∈ L∞(0, 1).227

(i) If the system (14) is null controllable in time T , then necessarily228

T ≥ max

{
T1(Λ) +

∫ 1

`1(g)

1

λ2(ξ)
dξ, T2(Λ)

}
. (18)229
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(ii) If the time T satis�es (18), then the system (14) is �nite-time stable with settling time T .230

Let us emphasize once again that the di�cult point is the �rst item.231

Remark 3.2. Since û = 0 stabilizes the canonical system (14) by (ii) of Theorem 3.1, we see232

from the formula (9) and (13) that our feedback for the system (1) is then233

u(t) =

∫ 1

0

k11(1, ξ)e1(ξ)

e1(1)
y1(t, ξ) dξ +

∫ 1

0

k12(1, ξ)e2(ξ)

e1(1)
y2(t, ξ) dξ. (19)234

Note that u ∈ C0([0,+∞)).235

3.1 The characteristics236

Before proving Theorem 3.1 we need to introduce the characteristic curves associated with the237

system (14) and recall some useful properties.238

First of all, it is convenient to extend λ1, λ2 to functions of R (still denoted by the same)239

such that λ1, λ2 ∈ C0,1(R) and240

λ1(x) ≤ −ε < 0 < ε < λ2(x), ∀x ∈ R, (20)241

for some ε > 0 small enough. Since all the results of the present paper depend only on the values242

of λ1, λ2 in [0, 1], they do not depend on such an extension.243

In what follows, i ∈ {1, 2}. Let χi be the �ow associated with λi, i.e. for every (t, x) ∈ R×R,244

the function s 7−→ χi(s; t, x) is the solution to the ODE245 
∂χi
∂s

(s; t, x) = λi(χi(s; t, x)), ∀s ∈ R,

χi(t; t, x) = x.
(21)246

The existence and uniqueness of a (global) solution to the ODE (21) follows from the (global)247

Cauchy-Lipschitz theorem (see e.g. [Har02, Theorem II.1.1]). The uniqueness also yields the248

important group property249

χi (σ; s, χi(s; t, x)) = χi(σ; t, x), ∀σ, s ∈ R. (22)250

By classical regularity results on ODEs (see e.g. [Har02, Theorem V.3.1]), we have χi ∈ C1(R3)251

and252

∂χi
∂t

(s; t, x) = −λi(χi(s; t, x)),
∂χi
∂x

(s; t, x) =
λi(χi(s; t, x))

λi(x)
. (23)253

Let us now introduce the entry and exit times sin
i (t, x), sout

i (t, x) ∈ R of the �ow χi(·; t, x)
inside the domain [0, 1], i.e. the respective unique solutions to{

χ1(sin
1 (t, x); t, x) = 1, χ1(sout

1 (t, x); t, x) = 0,

χ2(sin
2 (t, x); t, x) = 0, χ2(sout

2 (t, x); t, x) = 1.

Their existence and uniqueness are guaranteed by the condition (20). It readily follows from (22)254

and the uniqueness of sin
i that255

sin
i (s, χi(s; t, x)) = sin

i (t, x), ∀s ∈ R. (24)256
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By the implicit function theorem we have sin
i ∈ C1(R2) with (using (23))257 

∂sin
1

∂t
(t, x) > 0,

∂sin
1

∂x
(t, x) > 0,

∂sin
2

∂t
(t, x) > 0,

∂sin
2

∂x
(t, x) < 0.

(25)258

Combined with the group property (24), this yields the following inverse formula for every s, t ∈259

R:260 {
s < sout

1 (t, 1) ⇐⇒ sin
1 (s, 0) < t,

s < sout
2 (t, 0) ⇐⇒ sin

2 (s, 1) < t.
(26)261

Finally, since λi does not depend on time, we have an explicit formula for the inverse function
θ 7−→ χ−1

i (θ; t, x). Indeed, it solves
∂(χ−1

i )

∂θ
(θ; t, x) =

1
∂χi

∂s

(
χ−1
i (θ; t, x); t, x

) =
1

λi(θ)
, ∀θ ∈ R,

χ−1
i (x; t, x) = t,

which gives262

χ−1
i (θ; t, x) = t+

∫ θ

x

1

λi(ξ)
dξ. (27)263

This also yields an explicit formula for sin
1 , s

in
2 and sout

1 , sout
2 and, in particular,

T1(Λ) = sout
1 (0, 1), T2(Λ) = sout

2 (0, 0).

3.2 Proof of Theorem 3.1264

First of all, the solution of the canonical system (14) is explicitly given by:265

ŷ1(t, x) =

{
ŷ0

1 (χ1(0; t, x)) if sin
1 (t, x) < 0,

û
(
sin

1 (t, x)
)

if sin
1 (t, x) > 0,

(28)266

and267

ŷ2(t, x) =


ŷ0

2 (χ2(0; t, x)) +

∫ t

0

g (χ2(s; t, x)) ŷ1(s, 0) ds if sin
2 (t, x) < 0,∫ t

sin2 (t,x)

g (χ2(s; t, x)) ŷ1(s, 0) ds if sin
2 (t, x) > 0.

(29)268

Next, we show a uniform lower bound for the control time:269

Lemma 3.3. Let T > 0. If the system (14) is null controllable in time T , then necessarily

T ≥ Topt (Λ) .

This result states that the control time cannot be better than the one of the case g = 0.270

Proof. For i ∈ {1, 2}, let ωi be the open subset de�ned by

ωi =
{
x ∈ (0, 1)

∣∣ sin
i (T, x) < 0

}
.
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From (26) and (25), we see that271

T ≥ Ti(Λ) ⇐⇒ ωi = ∅. (30)272

Therefore, if T < T1(Λ), then we see from (28) that ŷ0
1 can be chosen so that ŷ1(T, x) 6= 0 for

x ∈ ω1, whatever û is. On the other hand, if T < T2(Λ) and if the system (14) is null controllable
in time T , then for every ŷ0

2 ∈ L2(0, 1), there exists û ∈ L2(0, T ) such that, for a.e. x ∈ ω2, we
have

0 = ŷ0
2 (χ2(0;T, x)) +

∫ T

0

g (χ2(s;T, x)) ŷ1(s, 0) ds.

Since x ∈ ω2 7−→ χ2(0;T, x) is bijective (it is increasing by (23) and ω2 is an interval by (25)),
this implies that the bounded linear operator K : L2(0, T ) −→ L2(ω2) de�ned by

(Kh)(x) = −
∫ T

0

g (χ2(s;T, x))h(s) ds,

is surjective. This is impossible since its range is clearly a subset of L∞(ω2), which is a proper273

subset of L2(ω2) (alternatively, one could note that K is compact and therefore it cannot be274

surjective over an in�nite dimensional space, see e.g. [Rud91, Theorem 4.18 (b)]).275

276

The proof of the item (i) of Theorem 3.1 crucially relies on the Titchmarsh convolution277

theorem [Tit26, Theorem VII] (see also [Mik78, Chapter XV]):278

Theorem 3.4. Let α, β ∈ L1(0, τ̄) (τ̄ > 0). We have279 ∫ τ

0

α(τ − σ)β(σ) dσ = 0, a.e. 0 < τ < τ̄ , (31)280

if, and only if,
`τ̄ (α) + `τ̄ (β) ≥ τ̄ .

Remark 3.5. The di�culty in the proof of this result is the necessary condition, i.e. the281

implication �=⇒�, just like it is the case for our main result. Let us however mention that its282

proof is easy in case α satis�es the condition in (E2) of Example 1.4 (by taking derivatives of283

(31) and using the injectivity of Volterra transformations of the second kind). It does not seem284

trivial for functions of the form (7) though.285

We are now ready to prove the main result of Section 3:286

Proof of Theorem 3.1.287

1) Thanks to Lemma 3.3, we can assume that T ≥ T1(Λ) and T ≥ T2(Λ). This means that288

sin
1 (T, x) > 0 and sin

2 (T, x) > 0 for every x ∈ (0, 1) (see (30) and (25)). It then follows from289

the explicit formula (28) and (29) that ŷ1(T, ·) = 0 if, and only if,290

û
(
sin

1 (T, x)
)

= 0, 0 < x < 1, (32)291

and ŷ2(T, ·) = 0 if, and only if,292 ∫ T

sin2 (T,x)

g (χ2(s;T, x)) ŷ1(s, 0) ds = 0, 0 < x < 1. (33)293
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2) Let us focus on the second condition (33). Writing x = χ2(T ; t, 0), which belongs to (0, 1)294

for t ∈ (sin
2 (T, 1), T ) (recall in particular (26)), and using the group properties (22) and295

(24) with the identity sin
2 (t, 0) = t, we obtain that ŷ2(T, ·) = 0 if, and only if,296 ∫ T

t

g (χ2(s; t, 0)) ŷ1(s, 0) ds = 0, sin
2 (T, 1) < t < T. (34)297

Now we use the fact that g (χ2(s; t, 0)) is actually a function of s− t. Indeed, by uniqueness
to the solution to the ODE (21), we see that the characteristics take the form

χi(s; t, x) = χ̃i(s− t;x),

where s 7−→ χ̃i(s;x) is the unique solution to
∂χ̃i
∂s

(s;x) = λi(χ̃i(s;x)), ∀s ∈ R,

χ̃i(0;x) = x.

Using the change of variables σ = s− t and introducing

α(θ) = ŷ1(−θ + T, 0), β(θ) = g (χ̃2(θ; 0)) , 0 < θ < T − sin
2 (T, 1),

we see that (34) is equivalent to (setting τ = T − t)298 ∫ τ

0

α(τ − σ)β(σ) dσ = 0, 0 < τ < τ̄ , (35)299

where
τ̄ = T − sin

2 (T, 1).

3) Applying the Titchmarsh convolution theorem (Theorem 3.4) we deduce that (35) is equiv-
alent to

`τ̄ (α) + `τ̄ (β) ≥ τ̄ .

From the explicit expression (28) and the inverse formula (26), we see that

α(θ) =

{
ŷ0

1 (χ1(0;−θ + T, 0)) if θ > T − sout
1 (0, 1),

û
(
sin

1 (−θ + T, 0)
)

if θ < T − sout
1 (0, 1).

Therefore, we can choose ŷ0
1 so that

α(θ) 6= 0, ∀θ ∈
(
T − sout

1 (0, 1), T − sout
1 (0, 1) + ε

)
,

for some 0 < ε < sout
1 (0, 1). This yields the bound

`τ̄ (α) ≤ T − sout
1 (0, 1).

Consequently, we necessarily have300

`τ̄ (β) ≥ sout
1 (0, 1)− sin

2 (T, 1). (36)301
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Since s 7−→ χ̃2(s; 0) is increasing with χ̃2(0; 0) = 0, this is equivalent to

`1 (g) ≥ χ̃2

(
sout

1 (0, 1)− sin
2 (T, 1); 0

)
= χ2

(
sout

1 (0, 1); sin
2 (T, 1), 0

)
= χ2

(
sout

1 (0, 1);T, 1
)

(by (22) with s = sin
2 (T, 1)).

Since s 7−→ χ2(s;T, 1) is increasing, this is also equivalent to

χ−1
2 (`1 (g) ;T, 1) ≥ sout

1 (0, 1) = T1(Λ).

Using the explicit expression (27), we then obtain the desired condition T ≥ T1(Λ) +302 ∫ 1

`1(g)
1

λ2(ξ) dξ.303

4) Conversely, assume that T satis�es this condition and T ≥ T2(Λ). Then, (36) holds by the
previous equivalences. Taking û = 0, we see that α = 0 in (0, T − T1(Λ)), which yields

`τ̄ (α) + `τ̄ (β) ≥ T − T1(Λ) + sout
1 (0, 1)− sin

2 (T, 1) = T − sin
2 (T, 1) = τ̄ .

This implies (35) (here we only use the �easy part� of the Titchmarsh convolution theorem)304

and thus ŷ2(T, ·) = 0. Finally, note that û = 0 also obviously satis�es (32) and thus305

ŷ1(T, ·) = 0 as well.306

307

Remark 3.6. Let us point out that the space dependence of the speeds brings up more technical308

di�culties than the case of constant speeds (especially the step 2)).309

4 Proof of the main result310

In this section we show how to deduce our main result from Theorem 3.1.311

Proof of Theorem 1.5.312

1) First of all, let us recall that the initial system (1) is null controllable in time T (resp.
�nite-time stabilizable with settling time T ) if, and only if, so is the canonical system (14)
(with g given by (15)). Therefore, thanks to Theorem 3.1 it su�ces to show that

T ≥ T1(Λ) +

∫ 1

`1(g)

1

λ2(ξ)
dξ ⇐⇒ T ≥

∫ 1

`xΛ
(c)

(
1

−λ1(ξ)
+

1

λ2(ξ)

)
dξ,

which amounts to characterize `1 (g) in terms of `xΛ (c) (we recall that xΛ is de�ned in the313

statement of Theorem 1.5). To this end, we are going to prove the identity314

φ2(`1 (g)) = φ1(`xΛ
(c)) + φ2(`xΛ

(c)), (37)315

where we recall that φ1, φ2 ∈ C1,1([0, 1]) are de�ned in (5).316

2) We recall that g(x) = −k21(x, 0)λ1(0), where k21 is the solution in T to317 
λ2(x)

∂k21

∂x
(x, ξ) +

∂k21

∂ξ
(x, ξ)λ1(ξ) + k21(x, ξ)

∂λ1

∂ξ
(ξ) + k22(x, ξ)c̃(ξ) = 0,

k21(x, x) =
c̃(x)

λ2(x)− λ1(x)
,

(38)318
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and where c̃ is de�ned in (12) and (10) (note that `ε (c̃) = `ε (c) for any ε ∈ (0, 1]). Let319

s 7−→ χ(s;x) be the associated characteristic passing through (x, ξ) = (x, 0), i.e. the320

solution to the ODE321 
∂χ

∂s
(s;x) =

λ1(χ(s;x))

λ2(s)
, ∀s ∈ R,

χ(x;x) = 0,

(39)322

(we recall that λ1, λ2 have been extended to R in Section 3.1). We have χ ∈ C1(R2) by
classical regularity results on ODEs with

∂χ

∂x
(s;x) =

−λ1(χ(s;x))

λ2(x)
> 0.

Since f : s 7−→ s − χ(s;x) is continuous and increasing with lims→∓∞ f(s) = ∓∞, there
exists a unique solution sin(x) ∈ R to

χ
(
sin(x);x

)
= sin(x).

Besides, for every x ∈ (0, 1), we have 0 < sin(x) < x and

(s, χ(s;x)) ∈ T , ∀s ∈ (sin(x), x).

By the implicit function theorem we have sin ∈ C1(R) with, for every x ∈ R,323

(sin)′(x) =
∂χ
∂x (sin(x);x)

1− ∂χ
∂s (sin(x);x)

> 0. (40)324

In particular, the inverse function (sin)−1 : [0, sin(1)] −→ [0, 1] exists. We are going to325

show that326

`sin(1) (c̃) = sin(`1 (g)). (41)327

Along the characteristics, the solution to (38) satis�es, for s ∈
(
sin(x), x

)
,

d

ds
k21(s, χ(s;x)) =

−∂λ1

∂ξ (χ(s;x))

λ2(s)
k21(s, χ(s;x)) +

−k22(s, χ(s;x))

λ2(s)
c̃(χ(s;x)),

k21

(
sin(x), sin(x)

)
=

c̃(sin(x))

λ2(sin(x))− λ1(sin(x))
.

Consequently,328

k21(x, 0) = r(x)c̃(sin(x)) +

∫ x

sin(x)

h(x, σ)c̃ (χ(σ;x)) dσ, (42)329

with

r(x) = exp

(∫ x

sin(x)

−∂λ1

∂ξ (χ(s;x))

λ2(s)
ds

)
1

λ2(sin(x))− λ1(sin(x))
,

and

h(x, σ) = exp

(∫ x

σ

−∂λ1

∂ξ (χ(s;x))

λ2(s)
ds

)
−k22(σ, χ(σ;x))

λ2(σ)
.

14



Using the change of variable θ = (sin)−1(χ(σ;x)), we obtain

1

r(x)
k21(x, 0) = c̃(sin(x)) +

∫ x

0

h̃(x, θ)c̃
(
sin(θ)

)
dθ,

with kernel

h̃(x, θ) =
1

r(x)
h
(
x, χ−1(sin(θ);x)

) (sin)′(θ)
∂χ
∂s (χ−1(sin(θ);x);x)

.

We can check that h̃ ∈ L∞(T ) (recall (40)). It follows from the injectivity of Volterra
transformations of the second kind that

`1 (g) = `1
(
c̃ ◦ sin

)
,

which is equivalent to (41) since sin is increasing with sin(0) = 0.330

3) To conclude the proof, it remains to observe that the solution to the ODE (39) satis�es

φ1(χ(s;x)) = φ2(x)− φ2(s),

for every x ∈ [0, 1] and s ∈ [sin(x), x]. Taking x = 1 and s = sin(1), we see that sin(1) = xΛ331

(by uniqueness of the solution to the equation φ1(xΛ) + φ2(xΛ) = φ2(1)). Taking then332

x = `1 (g) and s = sin(`1 (g)) = `xΛ
(c̃) (recall (41)), we obtain the desired identity (37).333

334

Remark 4.1. In the proof of Theorem 1.5, we have not used the apparent freedom for the335

boundary data of k22 provided by Theorem 2.1.336

5 Extensions and open problems337

The results of this paper can be partially extended to systems of more than 2 equations. More338

precisely, we can consider the following n× n systems (n ≥ 2):339



∂y1

∂t
(t, x) + λ1(x)

∂y1

∂x
(t, x) = a(x)y1(t, x) +B(x)y+(t, x),

∂y+

∂t
(t, x) + Λ+(x)

∂y+

∂x
(t, x) = C(x)y1(t, x) +D(x)y+(t, x),

y1(t, 1) = u(t), y+(t, 0) = Qy1(t, 0),

y1(0, x) = y0
1(x), y+(0, x) = y0

+(x),

t ∈ (0,+∞), x ∈ (0, 1). (43)340

In (43), (y1(t, ·), y+(t, ·)) ∈ R×Rn−1 is the state at time t, (y0
1 , y

0
+) is the initial data and u(t) ∈ R341

is the control at time t. We assume that we have one negative speed λ1 ∈ C0,1([0, 1]) and n− 1342

positive speeds λ2, . . . , λn ∈ C0,1([0, 1]) such that:343

λ1(x) < 0 < λ2(x) < · · · < λn(x), ∀x ∈ [0, 1], (44)344

and we use the notation Λ+ = diag(λ2, . . . , λn). Finally, a ∈ L∞(0, 1), B ∈ L∞(0, 1)1×(n−1),345

C ∈ L∞(0, 1)n−1, D ∈ L∞(0, 1)(n−1)×(n−1) couple the equations of the system inside the domain346

and the constant matrix Q ∈ Rn−1 couples the equations of the system on the boundary x = 0.347
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Let us now introduce the times de�ned by

T1(Λ) =

∫ 1

0

1

−λ1(ξ)
dξ, Ti(Λ) =

∫ 1

0

1

λi(ξ)
dξ, ∀i ∈ {2, . . . , n} .

Note that Tn(Λ) < . . . < T2(Λ) by (44).348

It was established in [DMVK13] and [HDMVK16, Lemma 3.1] that the system (43) is �nite-349

time stabilizable with setting time T if T ≥ Tunif (Λ), where Tunif (Λ) is still given by (6).350

Using the backstepping method (see e.g. [HVDMK19, Section 2.2]), it can be shown as before351

that the system (43) is null controllable in time T (resp. �nite-time stabilizable with settling352

time T ) if, and only if, so is the system353 

∂ŷ1

∂t
(t, x) + λ1(x)

∂ŷ1

∂x
(t, x) = 0,

∂ŷ+

∂t
(t, x) + Λ+(x)

∂ŷ+

∂x
(t, x) = G(x)ŷ1(t, 0),

ŷ1(t, 1) = û(t), ŷ+(t, 0) = Qŷ1(t, 0),

ŷ1(0, x) = ŷ0
1(x), ŷ+(0, x) = ŷ0

+(x),

t ∈ (0,+∞), x ∈ (0, 1), (45)354

for some G ∈ L∞(0, 1)n−1 depending on all the parameters λ1,Λ+, a,B,C,D and Q.355

By mimicking the proof of Theorem 3.1, we can obtain the following result:356

Theorem 5.1. Let T > 0.357

(i) If the system (45) is null controllable in time T , then necessarily358

T ≥ max

{
T1(Λ) + max

i∈{2,...,n}
T (λi, gi−1, qi−1), T2(Λ)

}
, (46)359

where

T (λi, gi−1, qi−1) =


∫ 1

`1(gi−1)

1

λi(ξ)
dξ if qi−1 = 0,

Ti(Λ) if qi−1 6= 0.

(ii) If the time T satis�es (46), then the system (45) is �nite-time stable with settling time T .360

However, we are unable so far to deduce from this result some explicit condition for the initial361

system (43). The main technical problem is that G is heavily coupled on the parameters λ1,Λ+,362

a,B,C,D and Q (see e.g. [HVDMK19, Section 2.2]). We leave it as an open problem that could363

be investigated in future works.364
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