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Null controllability and finite-time stabilization in minimal time of one-dimensional first-order 2 × 2 linear hyperbolic systems

Long Hu, Guillaume Olive

Introduction and main result 1.Problem description

In this paper we are interested in the characterization of the minimal time needed for the controllability of the following class of one-dimensional rst-order 2 × 2 linear hyperbolic systems:

                
∂y 1 ∂t (t, x) + λ 1 (x) ∂y 1 ∂x (t, x) = a(x)y 1 (t, x) + b(x)y 2 (t, x), ∂y 2 ∂t (t, x) + λ 2 (x) ∂y 2 ∂x (t, x) = c(x)y 1 (t, x) + d(x)y 2 (t, x), y 1 (t, 1) = u(t), y 2 (t, 0) = 0, y 1 (0, x) = y 0 1 (x), y 2 (0, x) = y 0 2 (x), t ∈ (0, +∞), x ∈ (0, 1). (1) Such systems appear in linearized versions of various physical models of balance laws, see e.g.

[BC16, Chapter 1]. For instance, the telegrapher equations of Heaviside form a linear system of the form (1) for some parameters (see e.g. [BC16, Section 1.2 and (1.20)] with -1 + λR 0 C = 0).

In (1), (y 1 (t, •), y 2 (t, •)) is the state at time t, (y 0 1 , y 0 2 ) is the initial data and u(t) is the control at time t. We assume that the speeds λ 1 , λ 2 ∈ C 0,1 ([0, 1]) are such that λ 1 (x) < 0 < λ 2 (x), ∀x ∈ [0, 1].

a b c d

will also be referred in the sequel to as the internal coupling matrix).

We recall that the system (1) is well-posed: for every u ∈ L 2 loc (0, +∞) and (y 0 1 , y 0 2 ) ∈ L 2 (0, 1) 2 , there exists a unique solution (y 1 , y 2 ) ∈ C 0 ([0, +∞); L 2 (0, 1) 2 ) to the system (1). By solution we mean solution along the characteristics or broad solution (see e.g. [CHOS21, Appendix A]).

The same statement remains true if, in the boundary condition at x = 1, u is replaced by

u(t) = 1 0 (f 1 (ξ)y 1 (t, ξ) + f 2 (ξ)y 2 (t, ξ)) dξ, (2) 
for any f 1 , f 2 ∈ L ∞ (0, 1). The relation (2) is called the feedback law.

Let us now introduce the notions of controllability that we are interested in:

Denition 1.1. Let T > 0. We say that the system (1) is:

• nite-time stable with settling time T if, for every y 0 1 , y 0 2 ∈ L 2 (0, 1), the corresponding solution to the system (1) with u = 0 satises y 1 (T, •) = y 2 (T, •) = 0.

(3)

• nite-time stabilizable with settling time T if there exist f 1 , f 2 ∈ L ∞ (0, 1) such that, for every y 0 1 , y 0 2 ∈ L 2 (0, 1), the corresponding solution to the system (1) with u given by

(2) satises (3).

• null controllable in time T if, for every y 0 1 , y 0 2 ∈ L 2 (0, 1), there exists u ∈ L 2 loc (0, +∞)

such that the corresponding solution to the system (1) satises (3).

Obviously, nite-time stability implies nite-time stabilization, which in turn implies null controllability.

Remark 1.2. As we are trying to bring the solution of the system (1) to the state zero, let us rst mention that, in general, u = 0 does not work. Not only this, but in fact any static boundary output feedback laws, that is of the form u(t) = ky 2 (t, 1) with k ∈ R, does not work either in general. A simple example is provided by the following 2 × 2 system with constant coecients (see also [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF]Section 5.6] when y 2 (t, 0) = y 1 (t, 0)):

                 ∂y 1 ∂t (t, x) - ∂y 1 ∂x (t, x) = πy 2 (t, x), ∂y 2 ∂t (t, x) + ∂y 2 ∂x (t, x) = πy 1 (t, x), y 1 (t, 1) = ky 2 (t, 1), y 2 (t, 0) = 0, y 1 (0, x) = y 0 1 (x), y 2 (0, x) = y 0 2 (x), t ∈ (0, +∞), x ∈ (0, 1). (4) 
Indeed, for this system we can always construct a smooth initial data (y 0 1 , y 0 2 ) which is an eigenfunction of the operator associated with (4) and whose corresponding eigenvalue σ is a positive real number, which makes the system (4) exponentially unstable. This can be done as follows.

We take

y 0 1 (x) = 1 π σy 0 2 (x) + ∂y 0 2 ∂x (x) ,
(so that the second equation in (4) will always be satised) and

• If k < 1 + 1/π, then we take σ = π √ 1 -θ 2 and y 0 2 (x) = sin(θπx), where θ ∈ (0, 1) is any solution to the equation

√ 1 -θ 2 + θ cot(θπ) = k.
• If k = 1 + 1/π, then we take σ = π and y 0 2 (x) = πx.

• If k > 1 + 1/π, then we take σ = π √ 1 + θ 2 and y 0 2 (x) = 2 sinh(θπx), where θ > 0 is any solution to the equation

√ 1 + θ 2 + θ coth(θπ) = k.
The goal of this work is to establish a necessary and sucient condition on the time T for the system (1) to be null controllable in time T (resp. nite-time stabilizable with settling time

T ).
Let us now introduce some notations that will be used all along the rest of this article. Let

φ 1 , φ 2 ∈ C 1,1 ([0, 1]) be the increasing functions dened for every x ∈ [0, 1] by φ 1 (x) = x 0 1 -λ 1 (ξ) dξ, φ 2 (x) = x 0 1 λ 2 (ξ)
dξ.

(
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We then denote by

T 1 (Λ) = φ 1 (1) = 1 0 1 -λ 1 (ξ) dξ, T 2 (Λ) = φ 2 (1) = 1 0 1 λ 2 (ξ)
dξ.

Finally, we set

T opt (Λ) = max {T 1 (Λ), T 2 (Λ)} , T unif (Λ) = T 1 (Λ) + T 2 (Λ). (6) 
The naming of the notations in (6) will be explained in Remark 1.8 below.

Literature

Boundary null controllability and stabilization of hyperbolic systems of balance laws have attracted numerous attention of both mathematicians and engineers during the last decades. In the pioneering work [START_REF]Controllability and stabilizability theory for linear partial dierential equations: recent progress and open questions[END_REF], the author established the null controllability of general n × n coupled linear hyperbolic systems of the form (1) in a control time that is given by the sum of the two largest times from the states convecting in opposite directions ([Rus78b, Theorem 3.2]).

It was also observed that this time can be shorten in some cases ([Rus78b, Proposition 3.4]), and the problem to nd the minimal control time for hyperbolic partial dierential equations (PDEs) was then raised ([Rus78b, Remark p. 656]).

For systems of linear conservation laws (i.e. when no internal coupling matrix is present in the system), this problem was completely solved few years later in [START_REF] Weck | A remark on controllability for symmetric hyperbolic systems in one space 452 dimension[END_REF], where the minimal control time has been characterized in terms of the boundary coupling matrix, that is the matrix coupling the equations at the boundary on the uncontrolled side. For systems of balance laws, the story is far from over. A rst improvement of the control time of [START_REF]Controllability and stabilizability theory for linear partial dierential equations: recent progress and open questions[END_REF] was recently obtained in [START_REF]Optimal time for the controllability of linear hyperbolic systems in onedimensional space[END_REF] thanks to the introduction of some rank condition on the boundary coupling matrix. However, this was rst done for some generic internal coupling matrices or under rather stringent conditions ([CN19b, Theorem 1.1 and 1.5]). The same authors were then able to remove some of these restrictions in [START_REF] Coron | Null-controllability of linear hyperbolic systems in one dimensional space[END_REF]. For the present paper it is especially important to emphasize that the new time introduced in [START_REF]Optimal time for the controllability of linear hyperbolic systems in onedimensional space[END_REF][START_REF] Coron | Null-controllability of linear hyperbolic systems in one dimensional space[END_REF] is only shown to be sucient for the null controllability in these works. On the other hand, the minimal control time needed to achieve the exact controllability property (that is when we want to reach any nal data and not only zero), was completely characterized in [ for a complementary state of the art on this method. This technique turned out to be a powerful tool to stabilize general coupled hyperbolic systems, moreover in nite time. In [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] the authors adapted this technique to obtain the rst nite-time stabilization result for 2 × 2 linear hyperbolic system. This method was then developed, notably with a more careful choice of the target system, to treat 3 × 3 systems in [START_REF] Hu | Finite-time backstepping boundary stabilization of 3 × 3 hyperbolic systems[END_REF] and then to treat general n × n systems in [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Hu | Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems[END_REF]. However, the control time obtained in these works was larger than the one in [START_REF]Controllability and stabilizability theory for linear partial dierential equations: recent progress and open questions[END_REF] and it was only shown in [ADM16, CHO17] that we can stabilize with the same time as the one of [START_REF]Controllability and stabilizability theory for linear partial dierential equations: recent progress and open questions[END_REF]. These works have recently been generalized to time-dependent systems in [START_REF] Coron | Boundary stabilization in nite time of one-dimensional linear hyperbolic balance laws with coefcients depending on time and space[END_REF]. Finally, let us also mention the two recent works [CN20a, CN20b] concerning the nite-time stabilization of homogeneous quasilinear systems, with the same control time as in [START_REF]Optimal time for the controllability of linear hyperbolic systems in onedimensional space[END_REF][START_REF] Coron | Null-controllability of linear hyperbolic systems in one dimensional space[END_REF].

In spite of quite a number of contributions dealing with these two problems (controllability and stabilization), we see that there are no references concerning the optimality of the control time for systems of linear balance laws with spatial-varying internal coupling matrix, especially when null and exact controllability are not equivalent, so that the results in [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF][START_REF] Hu | Minimal time for the exact controllability of onedimensional rst-order linear hyperbolic systems by one-sided boundary controls[END_REF] cannot be considered. This is of course a nontrivial task and it requires the addition of new techniques as we shall see below. The goal of this article is to ll this gap, at least for 2 × 2 systems. We will provide an explicit formula of the minimal control time for any 2 × 2 system of linear balance laws with spacial-varying internal coupling matrix. We will see that one of the main dierences between null and exact controllability is that such a critical time is sensitive to the behavior of the internal coupling matrix for the null controllability, whereas it is known to never be the case for the exact controllability ([CVKB13, HO19]).

Main result and comments

The important quantity in the present work is the following:

Denition 1.3. For ε > 0 and a function f : (0, ε) -→ R, we denote by

ε (f ) = sup I ε (f ) if I ε (f ) = ∅, 0 otherwise, where I ε (f ) = { ∈ (0, ε) | f = 0 a.e. in (0, )}.
The quantity ε (f ) is the length of the largest interval of the form (0, ) where the function

f vanishes. Example 1.4. (E1) The simplest example of function f with ε (f ) = ( ∈ [0, ε]) is obviously the step function f (x) = 0 if x ≤ , 1 if x > . (E2) If f ∈ C k ([0, ε)) (k ∈ N) and satises f (k) (0) = 0, then ε (f ) = 0.
In particular, if f has an analytic extension in a neighborhood of x = 0, then ε (f ) = 0. (E3) An example of smooth function f with ε (f ) = 0 but that does not satisfy the previous conditions is

f (x) =      0 if x ≤ 0, exp - 1 x if x > 0. (7) 
The main result of this article is the following complete characterization of the controllability properties of the system (1):

Theorem 1.5. Let T > 0.

(i) If the system (1) is null controllable in time T , then necessarily

T ≥ max T opt (Λ) , 1 x Λ (c) 1 -λ 1 (ξ) + 1 λ 2 (ξ) dξ , (8) 
where x Λ ∈ (0, 1) is the unique solution to

φ 1 (x Λ ) + φ 2 (x Λ ) = T 2 (Λ) (= φ 2 (1)).
(ii) If the time T satises (8), then the system (1) is nite-time stabilizable with settling time T .

Note in particular that the system (1) is then null controllable in time T if, and only if, it is nite-time stabilizable with settling time T .

Example 1.6. For c satisfying the properties in (E2) or given by the function in (E3), this result shows that the time T unif (Λ) cannot be improved. This is not trivial, especially when c is given by the function in (E3).

Remark 1.7. When λ 1 , λ 2 do not depend on space, the condition (8), in the situation T opt (Λ) ≤

T < T unif (Λ), simply becomes c = 0 in 0, 1 - T T unif (Λ)
.

In particular, we see that we can possibly obtain any intermediate time between T opt (Λ) and T unif (Λ). Moreover, note that the value T opt (Λ) is reachable even when c is not identically equal to zero.

Remark 1.8. As we shall see in the proof below, the most dicult part of this result is the necessary condition, that is the item (i). It is also thanks to this part that we can call the time on the right-hand side of (8) the minimal control time. It is sometimes nd in the literature that the time T unif (Λ) is the theoretical lower bound for control time or the optimal time.

However, the failure of the controllability before this time is never proved in these works (and, in fact, it cannot be in general), which brings some confusion to our point of view. This is why we carefully introduced a dierent naming and use the notations

• T unif (Λ) as uniform time, for the smallest time after which all the systems of the form

(1) are null controllable,

• T opt (Λ) as optimal time, for the smallest control time that can be obtained among all the possible control times for the systems of the form (1).

Remark 1.9. Let us comment other possibilities for the boundary conditions at x = 0:

(i) When the boundary condition y 2 (t, 0) = 0 is replaced by y 2 (t, 0) = qy 1 (t, 0) with boundary coupling matrix q = 0, the result [CVKB13, Theorem 3.2] shows that the time T unif (Λ)

is the minimal control time (more precisely, it is shown that the system (1) with such a boundary condition is equivalent to the same system with no internal coupling matrix, for which T unif (Λ) is clearly minimal). However, when q = 0, we see that our time is smaller than the one obtained in this reference.

(ii) When a second control is applied at the boundary x = 0, i.e. the boundary condition Therefore, combining the previous results of the literature with the new results of the present paper, we see that all the following possibilities for the boundary conditions have been handled: y 1 (t, 1) = py 2 (t, 1) + ru(t), y 2 (t, 0) = qy 1 (t, 0) + sv(t), p, q, r, s ∈ R with (r, s) = (0, 0).

y 2 (t, 0) = 0 is replaced by y 2 (t, 0) = v(t) with v ∈ L 2 loc (0,
The rest of this article is organized as follows. In Section 2, we use the backstepping method to show that our initial system (1) is equivalent to a canonical system from a controllability point of view. In Section 3 we use the Titchmarsh convolution theorem to completely characterize the minimal control time for this canonical system. In Section 4 we characterize this time in terms of the parameters of the initial system. Finally, in Section 5 we discuss possible extensions to systems with more than two equations.

2 Reduction to a canonical form

In this section, we perform some changes of unknown to transform our initial system (1) into a new system whose controllability properties will be simpler to study, this is the so-called backstepping method for PDEs. The content of section is quite standard by now, we refer for instance to [CVKB13, Section 3.2] for more details on the computations below.

First of all, we remove the diagonal terms in the system (1). Using the invertible spatial transformation (seen as an operator from L 2 (0, 1) 2 onto itself )

ỹ1 (t, x) = e 1 (x)y 1 (t, x), ỹ2 (t, x) = e 2 (x)y 2 (t, x), (9) 
with

e 1 (x) = exp - x 0 a(ξ) λ 1 (ξ) dξ , e 2 (x) = exp - x 0 d(ξ) λ 2 (ξ) dξ , (10) 
we easily see that the system (1) is null controllable in time T (resp. nite-time stabilizable with settling time T ) if, and only if, so is the system

                 ∂ ỹ1 ∂t (t, x) + λ 1 (x) ∂ ỹ1 ∂x (t, x) = b(x)ỹ 2 (t, x), ∂ ỹ2 ∂t (t, x) + λ 2 (x) ∂ ỹ2 ∂x (t, x) = c(x)ỹ 1 (t, x), ỹ1 (t, 1) = ũ(t), ỹ2 (t, 0) = 0, ỹ1 (0, x) = ỹ0 1 (x), ỹ2 (0, x) = ỹ0 2 (x), t ∈ (0, +∞), x ∈ (0, 1), (11) 
where

b(x) = b(x) e 1 (x) e 2 (x) , c(x) = c(x) e 2 (x) e 1 (x) . (12) 
Let us now remove the coupling term on the rst equation of (11) thanks to a second transformation. Set

T = {(x, ξ) ∈ (0, 1) × (0, 1) | x > ξ} . Let k 11 , k 12 , k 21 , k 22 ∈ L ∞ (T ). Using the spatial transformation        ŷ1 (t, x) = ỹ1 (t, x) - x 0 (k 11 (x, ξ)ỹ 1 (t, ξ) + k 12 (x, ξ)ỹ 2 (t, ξ)) dξ, ŷ2 (t, x) = ỹ2 (t, x) - x 0 (k 21 (x, ξ)ỹ 1 (t, ξ) + k 22 (x, ξ)ỹ 2 (t, ξ)) dξ, (13) 
which is invertible since it is a Volterra transformation of the second kind (see e.g. [Hoc73, Chapter 2, Theorem 5]), we see that the system (11) is null controllable in time T (resp. nitetime stabilizable with settling time T ) if, and only if, so is the system

                 ∂ ŷ1 ∂t (t, x) + λ 1 (x) ∂ ŷ1 ∂x (t, x) = 0, ∂ ŷ2 ∂t (t, x) + λ 2 (x) ∂ ŷ2 ∂x (t, x) = g(x)ŷ 1 (t, 0), ŷ1 (t, 1) = û(t), ŷ2 (t, 0) = 0, ŷ1 (0, x) = ŷ0 1 (x), ŷ2 (0, x) = ŷ0 2 (x), t ∈ (0, +∞), x ∈ (0, 1), (14) 
with g given by

g(x) = -k 21 (x, 0)λ 1 (0), (15) 
provided that the kernels k 11 , k 12 , k 21 , k 22 satisfy the so-called kernel equations:

                     λ 1 (x) ∂k 11 ∂x (x, ξ) + ∂k 11 ∂ξ (x, ξ)λ 1 (ξ) + k 11 (x, ξ) ∂λ 1 ∂ξ (ξ) + k 12 (x, ξ)c(ξ) = 0, λ 1 (x) ∂k 12 ∂x (x, ξ) + ∂k 12 ∂ξ (x, ξ)λ 2 (ξ) + k 11 (x, ξ) b(ξ) + k 12 (x, ξ) ∂λ 2 ∂ξ (ξ) = 0, k 11 (x, 0) = 0, k 12 (x, x) = b(x) λ 1 (x) -λ 2 (x) , (x, ξ) ∈ T , (16) 
and

               λ 2 (x) ∂k 21 ∂x (x, ξ) + ∂k 21 ∂ξ (x, ξ)λ 1 (ξ) + k 21 (x, ξ) ∂λ 1 ∂ξ (ξ) + k 22 (x, ξ)c(ξ) = 0, λ 2 (x) ∂k 22 ∂x (x, ξ) + ∂k 22 ∂ξ (x, ξ)λ 2 (ξ) + k 21 (x, ξ) b(ξ) + k 22 (x, ξ) ∂λ 2 ∂ξ (ξ) = 0, k 21 (x, x) = c(x) λ 2 (x) -λ 1 (x) , (x, ξ) ∈ T . ( 17 
)
Note that ( 16) and ( 17) are not coupled.

From [CVKB13, Theorem A.1], we know that the kernel equations ( 16)-( 17) have a solution.

More precisely, we have the following result:

Theorem 2.1. For every k 0 ∈ L ∞ (0, 1), there exists a unique solution (k 11 , k 12 , k 21 , k 22 ) ∈ L ∞ (T ) 4 to the kernel equations ( 16)-( 17) with k 22 (x, 0) = k 0 (x), x ∈ (0, 1).

In the aforementioned reference this result is stated in a C 0 framework (assuming that a, b, c, d ∈ C 0 ([0, 1])) but its proof readily shows that it is valid in L ∞ as well. As before, the notion of solution is to be understood in the sense of solution along the characteristics. The boundary terms such as k 21 (x, 0), which denes g (see (15)), or k 11 (1, ξ), k 12 (1, ξ), that will appear shortly below in our feedback law (see (19)), etc. are also understood in this sense. We refer for instance to the formula (42) below for the precise meaning of k 21 (x, 0).

Study of the canonical system

We call the system (14) the control canonical form of the system (1) or canonical system in short, by analogy with [START_REF] Brunovský | A classication of linear controllable systems[END_REF][START_REF] Russell | Canonical forms and spectral determination for a class of hyperbolic distributed parameter control systems[END_REF] and since we will see in this section that we are able to directly read its controllability properties (a task that seems impossible on the initial system

(1)).

The goal of this section is to establish the following result:

Theorem 3.1. Let T > 0 and g ∈ L ∞ (0, 1).

(i) If the system (14) is null controllable in time T , then necessarily

T ≥ max T 1 (Λ) + 1 1 (g) 1 λ 2 (ξ) dξ, T 2 (Λ) . ( 18 
)
(ii) If the time T satises (18), then the system ( 14) is nite-time stable with settling time T .

Let us emphasize once again that the dicult point is the rst item.

Remark 3.2. Since û = 0 stabilizes the canonical system ( 14) by (ii) of Theorem 3.1, we see from the formula (9) and (13) that our feedback for the system (1) is then

u(t) = 1 0 k 11 (1, ξ)e 1 (ξ) e 1 (1) y 1 (t, ξ) dξ + 1 0 k 12 (1, ξ)e 2 (ξ) e 1 (1) y 2 (t, ξ) dξ. ( 19 
)
Note that u ∈ C 0 ([0, +∞)).

The characteristics

Before proving Theorem 3.1 we need to introduce the characteristic curves associated with the system (14) and recall some useful properties.

First of all, it is convenient to extend λ 1 , λ 2 to functions of R (still denoted by the same)

such that λ 1 , λ 2 ∈ C 0,1 (R) and λ 1 (x) ≤ -ε < 0 < ε < λ 2 (x), ∀x ∈ R, (20) 
for some ε > 0 small enough. Since all the results of the present paper depend only on the values of λ 1 , λ 2 in [0, 1], they do not depend on such an extension.

In what follows, i ∈ {1, 2}. Let χ i be the ow associated with λ i , i.e. for every (t, x) ∈ R × R,

the function s -→ χ i (s; t, x) is the solution to the ODE    ∂χ i ∂s (s; t, x) = λ i (χ i (s; t, x)), ∀s ∈ R, χ i (t; t, x) = x. (21) 
The existence and uniqueness of a (global) solution to the ODE (21) follows from the (global)

Cauchy-Lipschitz theorem (see e.g. [Har02, Theorem II.1.1]). The uniqueness also yields the important group property χ i (σ; s, χ i (s; t, x)) = χ i (σ; t, x), ∀σ, s ∈ R.

(
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By classical regularity results on ODEs (see e.g. [Har02, Theorem V.3.1]), we have

χ i ∈ C 1 (R 3 ) and ∂χ i ∂t (s; t, x) = -λ i (χ i (s; t, x)), ∂χ i ∂x (s; t, x) = λ i (χ i (s; t, x)) λ i (x) . ( 23 
)
Let us now introduce the entry and exit times s in i (t, x), s out i (t, x) ∈ R of the ow χ i (•; t, x) inside the domain [0, 1], i.e. the respective unique solutions to

χ 1 (s in 1 (t, x); t, x) = 1, χ 1 (s out 1 (t, x); t, x) = 0, χ 2 (s in 2 (t, x); t, x) = 0, χ 2 (s out 2 (t, x); t, x) = 1.
Their existence and uniqueness are guaranteed by the condition (20). It readily follows from (22) and the uniqueness of s in i that

s in i (s, χ i (s; t, x)) = s in i (t, x), ∀s ∈ R. ( 24 
)        ∂s in 1 ∂t (t, x) > 0, ∂s in 1 ∂x (t, x) > 0, ∂s in 2 ∂t (t, x) > 0, ∂s in 2 ∂x (t, x) < 0. (25) 
Combined with the group property (24), this yields the following inverse formula for every s, t ∈ R:

s < s out 1 (t, 1) ⇐⇒ s in 1 (s, 0) < t, s < s out 2 (t, 0) ⇐⇒ s in 2 (s, 1) < t. (26) 
Finally, since λ i does not depend on time, we have an explicit formula for the inverse function θ -→ χ -1 i (θ; t, x). Indeed, it solves

     ∂(χ -1 i ) ∂θ (θ; t, x) = 1 ∂χi ∂s χ -1 i (θ; t, x); t, x = 1 λ i (θ) , ∀θ ∈ R, χ -1 i (x; t, x) = t, which gives χ -1 i (θ; t, x) = t + θ x 1 λ i (ξ) dξ. (27) 
This also yields an explicit formula for s in 1 , s in 2 and s out 1 , s out 2 and, in particular,

T 1 (Λ) = s out 1 (0, 1), T 2 (Λ) = s out 2 (0, 0).

Proof of Theorem 3.1

First of all, the solution of the canonical system ( 14) is explicitly given by:

ŷ1 (t, x) = ŷ0 1 (χ 1 (0; t, x)) if s in 1 (t, x) < 0, û s in 1 (t, x) if s in 1 (t, x) > 0, (28) and ŷ2 (t 
, x) =          ŷ0 2 (χ 2 (0; t, x)) + t 0 g (χ 2 (s; t, x)) ŷ1 (s, 0) ds if s in 2 (t, x) < 0, t s in 2 (t,x) g (χ 2 (s; t, x)) ŷ1 (s, 0) ds if s in 2 (t, x) > 0. (29) 
Next, we show a uniform lower bound for the control time:

Lemma 3.3. Let T > 0. If the system (14) is null controllable in time T , then necessarily

T ≥ T opt (Λ) .
This result states that the control time cannot be better than the one of the case g = 0.

Proof. For i ∈ {1, 2}, let ω i be the open subset dened by

ω i = x ∈ (0, 1) s in i (T, x) < 0 . T ≥ T i (Λ) ⇐⇒ ω i = ∅. (30) 
Therefore, if T < T 1 (Λ), then we see from (28) that ŷ0 1 can be chosen so that ŷ1 (T, x) = 0 for x ∈ ω 1 , whatever û is. On the other hand, if T < T 2 (Λ) and if the system (14) is null controllable in time T , then for every ŷ0 2 ∈ L 2 (0, 1), there exists û ∈ L 2 (0, T ) such that, for a.e. x ∈ ω 2 , we have 0 = ŷ0 2 (χ 2 (0; T, x)) + T 0 g (χ 2 (s; T, x)) ŷ1 (s, 0) ds.

Since x ∈ ω 2 -→ χ 2 (0; T, x) is bijective (it is increasing by (23) and ω 2 is an interval by ( 25)), this implies that the bounded linear operator K :

L 2 (0, T ) -→ L 2 (ω 2 ) dened by (Kh)(x) = - T 0 g (χ 2 (s; T, x)) h(s) ds,
is surjective. This is impossible since its range is clearly a subset of L ∞ (ω 2 ), which is a proper subset of L 2 (ω 2 ) (alternatively, one could note that K is compact and therefore it cannot be surjective over an innite dimensional space, see e.g. [Rud91, Theorem 4.18 (b)]).

The proof of the item (i) of Theorem 3.1 crucially relies on the Titchmarsh convolution theorem [Tit26, Theorem VII] (see also [START_REF] Mikusi | Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften[END_REF] Chapter XV]):

Theorem 3.4. Let α, β ∈ L 1 (0, τ ) (τ > 0). We have τ 0 α(τ -σ)β(σ) dσ = 0, a.e. 0 < τ < τ , (31) 
if, and only if,

τ (α) + τ (β) ≥ τ .
Remark 3.5. The diculty in the proof of this result is the necessary condition, i.e. the implication =⇒, just like it is the case for our main result. Let us however mention that its proof is easy in case α satises the condition in (E2) of Example 1.4 (by taking derivatives of (31) and using the injectivity of Volterra transformations of the second kind). It does not seem trivial for functions of the form (7) though.

We are now ready to prove the main result of Section 3:

Proof of Theorem 3.1.

1) Thanks to Lemma 3.3, we can assume that T ≥ T 1 (Λ) and T ≥ T 2 (Λ). This means that s in 1 (T, x) > 0 and s in 2 (T, x) > 0 for every x ∈ (0, 1) (see ( 30) and ( 25)). It then follows from the explicit formula (28) and (29) that ŷ1 (T, •) = 0 if, and only if,

û s in 1 (T, x) = 0, 0 < x < 1, (32) 
and ŷ2 (T, •) = 0 if, and only if, T s in 2 (T,x)

g (χ 2 (s; T, x)) ŷ1 (s, 0) ds = 0, 0 < x < 1.

(33) 1 (g) ≥ χ2 s out 1 (0, 1) -s in 2 (T, 1); 0 = χ 2 s out 1 (0, 1); s in 2 (T, 1), 0 = χ 2 s out 1 (0, 1); T, 1 (by (22) with s = s in 2 (T, 1)).

Since s -→ χ 2 (s; T, 1) is increasing, this is also equivalent to χ -1 2 ( 1 (g) ; T, 1) ≥ s out 1 (0, 1) = T 1 (Λ).

Using the explicit expression (27), we then obtain the desired condition T ≥ T 1 (Λ) +

1 1 (g) 1 λ2(ξ) dξ.
4) Conversely, assume that T satises this condition and T ≥ T 2 (Λ). Then, (36) holds by the previous equivalences. Taking û = 0, we see that α = 0 in (0, T -T 1 (Λ)), which yields

τ (α) + τ (β) ≥ T -T 1 (Λ) + s out 1 (0, 1) -s in 2 (T, 1) = T -s in 2 (T, 1) = τ .
This implies (35) (here we only use the easy part of the Titchmarsh convolution theorem)

and thus ŷ2 (T, •) = 0. Finally, note that û = 0 also obviously satises (32) and thus ŷ1 (T, •) = 0 as well.

Remark 3.6. Let us point out that the space dependence of the speeds brings up more technical diculties than the case of constant speeds (especially the step 2)).

Proof of the main result

In this section we show how to deduce our main result from Theorem 3.1.

Proof of Theorem 1.5.

1) First of all, let us recall that the initial system (1) is null controllable in time T (resp. nite-time stabilizable with settling time T ) if, and only if, so is the canonical system (14) (with g given by (15)). Therefore, thanks to Theorem 3.1 it suces to show that

T ≥ T 1 (Λ) + 1 1(g) 1 λ 2 (ξ) dξ ⇐⇒ T ≥ 1 x Λ (c) 1 -λ 1 (ξ) + 1 λ 2 (ξ)
dξ, which amounts to characterize 1 (g) in terms of xΛ (c) (we recall that x Λ is dened in the statement of Theorem 1.5). To this end, we are going to prove the identity

φ 2 ( 1 (g)) = φ 1 ( xΛ (c)) + φ 2 ( xΛ (c)), (37) 
where we recall that φ 1 , φ 2 ∈ C 1,1 ([0, 1]) are dened in (5).

2) We recall that g(x) = -k 21 (x, 0)λ 1 (0), where k 21 is the solution in T to

       λ 2 (x) ∂k 21 ∂x (x, ξ) + ∂k 21 ∂ξ (x, ξ)λ 1 (ξ) + k 21 (x, ξ) ∂λ 1 ∂ξ (ξ) + k 22 (x, ξ)c(ξ) = 0, k 21 (x, x) = c(x) λ 2 (x) -λ 1 (x) , (38) 
and where c is dened in ( 12) and (10) (note that ε (c) = ε (c) for any ε ∈ (0, 1]). Let s -→ χ(s; x) be the associated characteristic passing through (x, ξ) = (x, 0), i.e. the solution to the ODE

   ∂χ ∂s (s; x) = λ 1 (χ(s; x)) λ 2 (s) , ∀s ∈ R, χ(x; x) = 0, (39) 
(we recall that λ 1 , λ 2 have been extended to R in Section 3.1). We have χ ∈ C 1 (R 2 ) by classical regularity results on ODEs with ∂χ ∂x

(s; x) = -λ 1 (χ(s; x)) λ 2 (x) > 0.
Since f : s -→ s -χ(s; x) is continuous and increasing with lim s→∓∞ f (s) = ∓∞, there exists a unique solution s in (x) ∈ R to χ s in (x); x = s in (x).

Besides, for every x ∈ (0, 1), we have 0 < s in (x) < x and (s, χ(s; x)) ∈ T , ∀s ∈ (s in (x), x).

By the implicit function theorem we have s in ∈ C 1 (R) with, for every x ∈ R,

(s in ) (x) = ∂χ ∂x (s in (x); x) 1 -∂χ ∂s (s in (x); x) > 0. (40) 
In particular, the inverse function (s in ) -1 : [0, s in (1)] -→ [0, 1] exists. We are going to show that s in (1) (c) = s in ( 1 (g)).

(41)

Along the characteristics, the solution to (38) satises, for s ∈ s in (x), x ,

         d ds k 21 (s, χ(s; x)) = -∂λ1 ∂ξ (χ(s; x)) λ 2 (s) k 21 (s, χ(s; x)) + -k 22 (s, χ(s; x)) λ 2 (s) c(χ(s; x)), k 21 s in (x), s in (x) = c(s in (x)) λ 2 (s in (x)) -λ 1 (s in (x)) . Consequently, k 21 (x, 0) = r(x)c(s in (x)) + x s in (x) h(x, σ)c (χ(σ; x)) dσ, (42) with r 
(x) = exp x s in (x) -∂λ1 ∂ξ (χ(s; x)) λ 2 (s) ds 1 λ 2 (s in (x)) -λ 1 (s in (x)) , and h(x, σ) = exp x σ -∂λ1 ∂ξ (χ(s; x)) λ 2 (s) ds -k 22 (σ, χ(σ; x)) λ 2 (σ) . 1 r(x) k 21 (x, 0) = c(s in (x)) + x 0 h(x, θ)c s in (θ) dθ, with kernel h(x, θ) = 1 r(x) h x, χ -1 (s in (θ); x) (s in ) (θ) ∂χ ∂s (χ -1 (s in (θ); x); x)
.

We can check that h ∈ L ∞ (T ) (recall (40)). It follows from the injectivity of Volterra transformations of the second kind that

1 (g) = 1 c • s in ,
which is equivalent to (41) since s in is increasing with s in (0) = 0.

3) To conclude the proof, it remains to observe that the solution to the ODE (39) satises

φ 1 (χ(s; x)) = φ 2 (x) -φ 2 (s),
for every x ∈ [0, 1] and s ∈ [s in (x), x]. Taking x = 1 and s = s in (1), we see that s in (1) = x Λ (by uniqueness of the solution to the equation φ 1 (x Λ ) + φ 2 (x Λ ) = φ 2 (1)). Taking then

x = 1 (g) and s = s in ( 1 (g)) = xΛ (c) (recall (41)), we obtain the desired identity (37).

Remark 4.1. In the proof of Theorem 1.5, we have not used the apparent freedom for the boundary data of k 22 provided by Theorem 2.1.

Extensions and open problems

The results of this paper can be partially extended to systems of more than 2 equations. More precisely, we can consider the following n × n systems (n ≥ 2):

                
∂y 1 ∂t (t, x) + λ 1 (x) ∂y 1 ∂x (t, x) = a(x)y 1 (t, x) + B(x)y + (t, x), ∂y + ∂t (t, x) + Λ + (x) ∂y + ∂x (t, x) = C(x)y 1 (t, x) + D(x)y + (t, x), y 1 (t, 1) = u(t), y + (t, 0) = Qy 1 (t, 0), y 1 (0, x) = y 0 1 (x), y + (0, x) = y 0 + (x), t ∈ (0, +∞), x ∈ (0, 1). (43)

In ( 43), (y 1 (t, •), y + (t, •)) ∈ R×R n-1 is the state at time t, (y 0 1 , y 0 + ) is the initial data and u(t) ∈ R

is the control at time t. We assume that we have one negative speed λ 1 ∈ C 0,1 ([0, 1]) and n -1 positive speeds λ 2 , . . . , λ n ∈ C 0,1 ([0, 1]) such that:

λ 1 (x) < 0 < λ 2 (x) < • • • < λ n (x), ∀x ∈ [0, 1], (44) 
and we use the notation Λ + = diag(λ 2 , . . . , λ n ). Finally, a ∈ L ∞ (0, 1), B ∈ L ∞ (0, 1) 1×(n-1) , C ∈ L ∞ (0, 1) n-1 , D ∈ L ∞ (0, 1) (n-1)×(n-1) couple the equations of the system inside the domain and the constant matrix Q ∈ R n-1 couples the equations of the system on the boundary x = 0.

T 1 (Λ) = 1 0 1 -λ 1 (ξ) dξ, T i (Λ) = 1 0 1 λ i (ξ)
dξ, ∀i ∈ {2, . . . , n} .

Note that T n (Λ) < . . . < T 2 (Λ) by (44).

It was established in [START_REF] Di Meglio | Stabilization of a system of n + 1 coupled rst-order hyperbolic linear PDEs with a single boundary input[END_REF] and [HDMVK16, Lemma 3.1] that the system (43) is nitetime stabilizable with setting time T if T ≥ T unif (Λ), where T unif (Λ) is still given by (6).

Using the backstepping method (see e.g. [HVDMK19, Section 2.2]), it can be shown as before that the system (43) is null controllable in time T (resp. nite-time stabilizable with settling time T ) if, and only if, so is the system

                 ∂ ŷ1 ∂t (t, x) + λ 1 (x) ∂ ŷ1 ∂x (t, x) = 0, ∂ ŷ+ ∂t (t, x) + Λ + (x)
∂ ŷ+ ∂x (t, x) = G(x)ŷ 1 (t, 0), ŷ1 (t, 1) = û(t), ŷ+ (t, 0) = Qŷ 1 (t, 0), ŷ1 (0, x) = ŷ0 1 (x), ŷ+ (0, x) = ŷ0 + (x), t ∈ (0, +∞), x ∈ (0, 1),

for some G ∈ L ∞ (0, 1) n-1 depending on all the parameters λ 1 , Λ + , a, B, C, D and Q.

By mimicking the proof of Theorem 3.1, we can obtain the following result:

Theorem 5.1. Let T > 0.

(i) If the system (45) is null controllable in time T , then necessarily T ≥ max T 1 (Λ) + max i∈{2,...,n} T (λ i , g i-1 , q i-1 ), T 2 (Λ) ,

where T (λ i , g i-1 , q i-1 ) =

     1 1(gi-1 ) 1 λ i (ξ)
dξ if q i-1 = 0, T i (Λ) if q i-1 = 0.

(ii) If the time T satises (46), then the system (45) is nite-time stable with settling time T . However, we are unable so far to deduce from this result some explicit condition for the initial system (43). The main technical problem is that G is heavily coupled on the parameters λ 1 , Λ + , a, B, C, D and Q (see e.g. [HVDMK19, Section 2.2]). We leave it as an open problem that could be investigated in future works.

  +∞) a second control at our disposal, then the time T opt (Λ) is the minimal control time. The null controllability for T ≥ T opt (Λ) can be shown using for instance the well-known constructive method developed in [Li10, Theorem 3.1]. On the other hand, the failure of the null controllability for T < T opt (Λ) follows from the backstepping method (by means of Volterra transformation of the second kind) and a simple adaptation of Lemma 3.3 below.
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2) Let us focus on the second condition (33). Writing x = χ 2 (T ; t, 0), which belongs to (0, 1) for t ∈ (s in 2 (T, 1), T ) (recall in particular (26)), and using the group properties ( 22) and

(24) with the identity s in 2 (t, 0) = t, we obtain that ŷ2 (T, •) = 0 if, and only if, T t g (χ 2 (s; t, 0)) ŷ1 (s, 0) ds = 0, s in 2 (T, 1) < t < T.

(34)

Now we use the fact that g (χ 2 (s; t, 0)) is actually a function of s -t. Indeed, by uniqueness to the solution to the ODE (21), we see that the characteristics take the form

where s -→ χi (s; x) is the unique solution to

Using the change of variables σ = s -t and introducing

where τ = T -s in 2 (T, 1).

3) Applying the Titchmarsh convolution theorem (Theorem 3.4) we deduce that (35) is equivalent to

From the explicit expression (28) and the inverse formula (26), we see that

Therefore, we can choose ŷ0

for some 0 < ε < s out 1 (0, 1). This yields the bound τ (α) ≤ T -s out 1 (0, 1).

Consequently, we necessarily have τ (β) ≥ s out 1 (0, 1) -s in 2 (T, 1).

(36)