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Abstract

We present an epistemic language for representing an artificial player’s
beliefs and actions in the context of the Yōkai board game. Yōkai is a co-
operative game which requires a combination of Theory of Mind (ToM),
temporal and spatial reasoning to be played effectively by an artificial
agent. We show that the language properly accounts for these three di-
mensions and that its satisfiability problem is NP-complete. This opens
up the possibility of exploiting SAT techniques for automating reasoning
of an artificial player in the context of the Yōkai board-game.

1 Introduction
When one wishes to model socio-cognitive agents and, in particular, agents
endowed with a Theory of Mind (ToM) who are capable of reasoning about other
agents’ beliefs, some of the privileged tools are epistemic logic (EL) [11, 13] and
its extensions by informative and communicative extensions such as public and
private announcements [12, 18, 3]. The latter belongs to the Dynamic Epistemic
Logic (DEL) family [20].

The major disadvantage of EL and DEL is that they have most of the time a
high complexity thereby making them not very well-suited for practical applica-
tions. In particular, it has been shown that extending multi-agent EL by simple
notions of state eliminating public announcement or arrow eliminating private
announcement does not increase its PSPACE complexity (see, e.g., [17, 7]).
However, the satisfiability problem of full DEL with public, semi-private and
private communicative actions was shown to be NEXPTIME-complete [1]. The
situation is even worse in the context of epistemic planning: it is known that
epistemic planning in public announcement logic (PAL) is decidable, while it
becomes undecidable in full DEL, due to the fact that the epistemic model may
grow as a consequence of a private announcement [6].

In [15, 14], a variant of epistemic logic with a semantics exploiting belief
bases is introduced. It distinguishes explicit belief from implicit belief. The for-
mer is modeled as a fact in an agent’s belief base, while the latter is modeled as
a fact that is deducible from the agent’s explicit beliefs. The main advantages of
the belief base semantics for epistemic logic compared to the standard possible
world semantics based on multi-relational structures (so-called Kripke models)
are (i) its compactness, and (ii) its closeness to the way artificial cognitively-
inspired agents are traditionally modeled in AI and in the area of knowledge
representation and reasoning (KR) by adopting a database perspective [19]. In
[16], it is shown that this variant of epistemic logic provides a valuable abstrac-
tion for modeling multi-robot scenarios in which each robot is endowed with a
ToM whereby being able to ascribe epistemic states to the other robots and to
reason about them.1

1See also [5, 8] for a DEL-based approach to modeling and implementing ToM on social
robots.
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In this paper, we leverage the belief base semantics for epistemic logic to
model interaction in the context of the cooperative board-game Yōkai.2 We
consider its two-player variant in which an artificial agent has to collaborate
with a human agent to win it and to obtain the best score as possible. Yōkai
is an interesting testbed for artificial agents, as it covers a lot of epistemic and
strategic reasoning aspects as well as planning and belief revision aspects. The
idea of testing the performance of artificial agents in the context of cooperative
board-games in which ToM reasoning plays a role is not new. Some works exist
about modeling and implementing artificial players for the card game Hanabi
[4, 10, 9]. Yōkai adds to the ToM dimension, which is central in Hanabi, the
temporal and spatial dimension. First of all, in Yōkai a player’s performance
relies on her/its capacity to remember the cards she/it and the other player
have seen in the past. Secondly, the players must move cards in a shared space
and there are spatial restrictions on card movements that should be taken into
account by the players. More generally, the interesting feature of Yōkai, from
the point view of KR, is the combination of epistemic, temporal and spatial
reasoning that is required to completely apprehend all the game facets and
dimensions.

The main novelty of our approach to modeling artificial board-game players
is the use of SAT-based techniques. Specifically, the language we present for
representing the artificial player’s beliefs about the static and dynamic aspects
of the game as well as about the human player’s beliefs has the same complexity
as SAT and can be polynomially translated into a propositional logic language.
This opens up the possibility of exploiting SAT techniques for automating rea-
soning of the artificial player in the context of the Yōkai board-game.

The paper is organized as follows. In Section 2, we explain the rules of Yōkai
and clarify the representation and reasoning requirements that are necessary for
the artificial player to be able to play the game in a clever way. In Section 3, we
introduce the specification language for modeling the artificial player’s actions
and beliefs about the game properties and about the human player’s beliefs. It
is a timed language for explicit and implicit belief with a semantics exploiting
belief bases. The main novelty compared to the epistemic language presented
in [15] is the temporal component: the artificial player modeled in the language
has knowledge about the current time of the game and beliefs about current and
past beliefs of the human player. Section 4 is devoted to the encoding of the
game in the language. We first model the static aspects, namely, the artificial
agent’s beliefs about the rules and properties of the game. Then, we focus on
the dynamic aspects by modeling the artificial player’s actions and how they
are used for planning a sequence of moves at a given round of the game.

2 Game description
In this section, we explain the rule of the Yōkai game. As pointed out in
the introduction, we only consider the two-player variant of the game with an

2https://boardgamegeek.com/boardgame/269146/ykai
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artificial and a human player.

Colored cards and actions. There are 4 types of card, red, yellow, green
and blue cards, and 4 cards for each color. This gives us a total amount of
16 cards. The cards are placed face down in a grid of size 4x4 in a random
way, so that the players cannot see their colors. The goal of the game is to
gather together the cards of the same color. Figure 1a illustrates a winning
configuration of the game.

(a) Winning configuration (b) Illegal move

Figure 1: Examples of game configuration

The players play sequentially in each round of the game. At each round,
each player has to play the following 4 actions in the order she/it prefers:

1. to look at two cards privately (2 actions),

2. to move one card from its current position to a new position adjacent to
another card (that is, linked to the latter by one of its sides) and without
separating the cards into two disjointed groups,

3. either to activate a hint from the set of available hints (see next paragraph)
or to disclose an information by marking one card with an active hint.

Figure 1b portrays an example of illegal move. Indeed, the move will make
the first and second cards on the left bottom corner of the grid separated from
the rest of the cards.

Hints. Three types of hint are available: 1-color, 2-color and 3-color hints.
Specifically, 1-color, 2-color and 3-color hints indicate, respectively, a single
color, two colors and three colors in the set {red, green, blue, yellow}. There
are 14 different hints available, but only seven hints are randomly selected at
the beginning of the game: two occurrences of 1-color hint, three occurrences of
2-color hint and two occurrences of 3-color hint.

A hint can be used after being activated, and only available hints can be
activated. Moreover, it can be used only once throughout the game. The state
of a hint is unique: it is either available, activated, or marking. In particular,
after a hint has been activated and used to mark a card, it is no longer available
or activated. For example, suppose a player just looked at one card and discovers
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it is a red card. She can mark it with an active 2-color hint of type red/green
to inform the other player that it is either a red card or a green card.

A hint is properly used if one of its colors matches with the color of the card
it marks. For example, if a player uses an active 2-color card of type green/blue
to mark a blue card, then the hint is properly used. Conversely, it the player
uses it to mark a red card, then the hint is improperly used. Note that unless
a mistake has been made, hints must be used properly.

Finally, when an active hint marks a card, that card can no longer be moved
or observed.

End of the game. When a player thinks that the goal state is achieved, she/it
can decide to stop the game. Otherwise, the game ends when all hints have been
used by the players. At the end of the game, the cards are turned face up. If the
goal state is achieved, the players win the game. Otherwise, they lose it. In case
of win, the final score is calculated as follows: score = x1−x2 +2x3 +5x4 where
x1 is the number of properly used hints, x2 is the number of improperly used
hints, x3 is the number of activated hints that were not used by the players, and
x4 is the number of non-activated hints. The final score ranges in the interval
[−7, 35].

Requirements. As emphasized in the introduction, in order to be able to
reason about the static and dynamic aspects of the game, a player must have
beliefs about:

• the other player’s actual beliefs (ToM reasoning);

• the current positions of the cards and the executable card movements,
given the current spatial configuration of the game (spatial reasoning);

• the color of the cards she/it observed in the past as well as the other
player’s past observations (temporal reasoning).

3 A timed language for explicit and implicit be-
lief

This section presents a two-agent timed variant of the language and the seman-
tics of the logic of explicit and implicit belief presented in [15]. The two agents
are the artificial agent (or machine) m and the human user h. Agents m and
h are treated asymmetrically. Our language allows us to represent (i) h’s ex-
plicit beliefs at different points in a game sequence, and (ii) m’s actual explicit
and implicit beliefs, namely, m’s explicit and implicit beliefs at the current time
point of the game sequence. Following [15], explicit beliefs are defined to be
beliefs in an agent’s belief base, while implicit beliefs are those beliefs that are
derivable from the agent’s explicit beliefs.
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We first present the static language in which agent m’s beliefs do not change.
Then, we present a dynamic extension in which agent m’s belief base can be
expanded by new information.

3.1 Static language
Assume a countably infinite set of atomic propositions ATM . We define the
language in two steps.

We first define the language L0(ATM ) by the following grammar in BNF:

α ::= pt | 4thα | now≥t | ¬α | α1 ∧ α2 | 4mα,

where p ranges over ATM and t ranges over N. L0(ATM ) is the language for
representing agent h’s timed explicit beliefs and agent m’s actual explicit beliefs.
Specifically, the formula 4thα is read “agent h explicitly believes that α at time
t”, whilst 4m is read “agent m actually has the explicit belief that α”. Atomic
propositions are assumed to be timed: pt is read “atomic proposition p is true
at time t”. Finally, formula now≥t provides information about the current time
point. It is read “the actual time of the game play is at least t”.

Then, we define LT0 (ATM ) to be the subset L0(ATM ) including only timed
formulas, that is:

LT0 (ATM ) ={pt : p ∈ ATM and t ∈ N}∪
{4thα : α ∈ L0(ATM ) and t ∈ N}∪
{now≥t : t ∈ N}.

Elements of LT0 (ATM ) are denoted by x, y, . . .
The language L(ATM ) extends the language L0(ATM ) by a modal operator

of implicit belief for agent m and is defined by the following grammar:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | �mα,

where α ranges over L0(ATM ). For notational convenience we write L0 instead
of L0(ATM ), LT0 instead of LT0 (ATM ) and L instead of L(ATM ), when the
context is unambiguous. The formula �mα is read “agent m actually has the
implicit belief that α”. The other Boolean constructions >, ⊥, ∨, → and ↔ are
defined in the standard way. Notice that only formulas from the sublanguage
L0 can be in the scope of the implicit belief operator �m. Therefore, nesting of
this operator is not allowed (e.g., �m¬�mp

t is not a well-formed formula). As
we will show at the end of the section, this syntactic restriction on our language
is useful to make the complexity of its satisfiability problem the same as the
complexity of SAT.

The interpretation of the language L exploits the notion of belief base. While
the notions of possible world and epistemic alternative are primitive in the
standard Kripke semantics for epistemic logic [11], they are defined from the
primitive concept of belief base in our semantics.
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Definition 1 (State) A state is a tuple S = (B,V ) where (i) B ⊆ L0 is
agent m’s belief base (or, agent m’s subjective view of the actual situation), (ii)
V ⊆ LT0 is the actual situation, and such that, for every t, t′ ∈ N,

now≥0 ∈ V , (1)

if now≥t ∈ V and t′ ≤ t then now≥t
′
∈ V , (2)

now≥t ∈ V iff now≥t ∈ B, and (3)

now≥t 6∈ V iff ¬now≥t ∈ B. (4)

The set of all states is denoted by S.

Conditions (1) and (2) in the previous definition guarantees time consistency,
namely, that the current time should be at least 0 and that if the current time
is at least t and t′ ≤ t, then it should be at least t′. Conditions (3) and (4)
capture agent m’s time-knowledge, namely, the assumption that m has complete
information about the current time.

The sublanguage L0(ATM ) is interpreted w.r.t. states as follows:

Definition 2 (Satisfaction) Let S = (B,V ) ∈ S. Then:

S |= x ⇐⇒ x ∈ V ,

S |= ¬α ⇐⇒ S 6|= α,

S |= α1 ∧ α2 ⇐⇒ S |= α1 and S |= α2,

S |= 4mα ⇐⇒ α ∈ B.

Observe in particular the set-theoretic interpretation of the explicit belief oper-
ator for agent m: agent m actually has the explicit belief that α if and only if
α is included in her actual belief base. This highlights the asymmetry between
agent m and agent h in our semantics. We adopt agent m’s internal perspective,
that is, the point of view of its belief base.3 On the contrary, agent h’s explicit
beliefs are modeled from an external point of view and semantically interpreted
in the same way as the other timed formulas in LT0 (ATM ).

A multi-agent belief model (MAB) is defined to be a state supplemented with
a set of states, called context. The latter includes all states that are compatible
with agent m’s background knowledge.

Definition 3 (Model) A model is a pair (S,Cxt), where S ∈ S and Cxt ⊆ S.
The class of all models is denoted by M.

Note that we do not impose that S ∈ Cxt . When Cxt = S then (S,Cxt) is said
to be complete, since S is conceivable as the complete (or universal) context
which contains all possible states.

3See [2] for an in-depth logical analysis of the internal perspective on modeling knowledge
and belief.
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Definition 4 (Epistemic alternatives) We define R to be the binary rela-
tion on the set S such that, for all S = (B,V ), S′ = (B′,V ′) ∈ S:

SRS′ if and only if ∀α ∈ B : S′ |= α.

SRS′ means that S′ is an epistemic alternative for the artificial agent m at
S. So m’s set of epistemic alternatives at S, noted R(S) = {S′ ∈ S : SRS′},
includes exactly those states that satisfy m’s explicit beliefs.

Definition 5 extends Definition 2 to the full language L. Its formulas are
interpreted with respect to models. We omit Boolean cases that are defined in
the usual way.

Definition 5 (Satisfaction, cont.) Let (S,Cxt) ∈M. Then:

(S,Cxt) |= α ⇐⇒ S |= α;

(S,Cxt) |= �mϕ ⇐⇒ ∀S′ ∈ Cxt , if SRS′ then (S′,Cxt) |= ϕ.

A formula ϕ ∈ L is valid in the class M, noted |=M ϕ, if and only if
(S,Cxt) |= ϕ for every (S,Cxt) ∈M; it is satisfiable in M if and only if ¬ϕ is
not valid in M. As the following theorem indicates, the satisfiability problem
for L(ATM ) has the same complexity as SAT.

Theorem 1 Checking satisfiability of L(ATM ) formulas in the class M is an
NP-complete problem.

Sketch of Proof. Hardness is clear since L(ATM ) extends the proposi-
tional logic language. As for membership, we can find a polysize satisfiability
preserving translation from L(ATM ) to propositional logic. The translation is
divided in three steps. First, we transform the input formula in L(ATM ) into
negated normal form (NNF). Secondly, we translate the formula in NNF into a
restricted mono-modal language with no nesting of the modal operator. Thirdly,
we translate the latter into a propositional logic language in a way similar to
the standard translation of modal logic into FOL. We take care of translating
a finite theory including axioms corresponding to the four constraints of Def-
inition 1. The axioms have the following form: now≥0, now≥t → now≥t

′
for

t′ ≤ t, now≥t ↔ 4mnow
≥t and ¬now≥t ↔ 4m¬now≥t. The theory is finite

since we only need to consider instances of the axioms whose symbols occur in
the input formula. For example, if t′ ≤ t and both now≥t and now≥t

′
occur

in the input formula, then now≥t → now≥t
′
should be included in the theory,

otherwise not. �

3.2 Dynamic extension
Let us now move from a static to a dynamic perspective by presenting a exten-
sion of the language L(ATM ) with belief expansion operators. Specifically, we
introduce the following language L+(ATM ):

ϕ::=α | ¬ϕ | ϕ1 ∧ ϕ2 | �mα | [+mα]ϕ,
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where α ranges over L0. The formula [+mα]ϕ is read “ϕ holds after agent m
has privately expanded its belief base with α”.

Our extension has the following semantics relative to a model:

Definition 6 (Satisfaction relation, cont.) Let S = (B,V ) ∈ S and (S,Cxt) ∈
M. Then,

(S,Cxt) |= [+mα]ϕ ⇐⇒ (S+mα,Cxt) |= ϕ

with

S+mα = (B+mα,V+mα),

V+mα = V ∪ {now≥t+1 : now≥t ∈ V and now≥t+1 6∈ V },
B+mα = B ∪ {α} ∪ {now≥t+1 : now≥t ∈ B and now≥t+1 6∈ B}.

Intuitively speaking, the expansion of m’s belief base by α simply consists in (i)
adding the information α to m’s belief base, and (ii) moving the objective time
and m’s subjective view of time one step forward.

As the following proposition indicates, the dynamic semantics given in Def-
inition 6 is well-defined, as it guarantees that the structure resulting from a
belief expansion operation belongs to the class M, if the initial structure also
belongs to M.

Proposition 1 Let (S,Cxt) ∈M. Then, (S+mα,Cxt) ∈M.

Interestingly, adding belief expansion operators to the language L does not
increase the complexity of the corresponding satisfiability problem.

Theorem 2 Checking satisfiability of L+(ATM ) formulas in the class M is an
NP-complete problem.

Sketch of Proof. The theorem is a consequence of Theorem 1 and the fact
that we can a find a polysize reduction of the satisfiability problem for L+(ATM )
to the satisfiability problem for L(ATM ). The reduction makes use of reduction
axioms which allow us to eliminate dynamic operators from the input formula
and to obtain a logically equivalent formula in L(ATM ). �

Let EVT = {+mα : α ∈ L0} be the set of belief expansion events. It is
reasonable to assume that such events have executability preconditions that are
specified by the following function P : EVT −→ L(ATM ). So, we can define
the following operator of successful occurrence of an event in EVT :

〈〈+mα〉〉ϕ
def
= P(+mα) ∧ [+mα]ϕ.

The formula 〈〈+mα〉〉ϕ has to be read “agent m can privately expand its belief
base with α and ϕ holds after the occurrence of this belief expansion event”.

In the next section, we will provide a formalization of the Yōkai board-game
with the aid of the language L+(ATM ). We will represent agent m’s actions in
the game as events in EVT affecting m’s beliefs. For every action of m, we will
specify the corresponding executability precondition.
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4 Game modeling
In this section, we first formalize all the static aspects of the game (the different
rules, the initial state of the game, etc.) and then the aspects related to players
actions. Finally, we briefly present some aspects that our language offers for
planning.

4.1 Static aspects
Let be the following sets:

GRID = {1, . . . , 32} × {1, . . . , 32},
IPOS =

{
(l, c) ∈ GRID : l, c ∈ {15, ..., 18}

}
,

COLORS = {r, g,b, y},
HINTS = 2COLORS \

{
{}, {r, g,b, y}

}
,

AvHINTS ⊆ HINTS s.t.


|AvHINTS | = 7,

∃h1, h2 ∈ AvHINTS : |h1| = |h2| = 1,

∃h1, h2, h3 ∈ AvHINTS : |h1| = |h2| = |h3| = 2,

∃h1, h2 ∈ AvHINTS : |h1| = |h2| = 3,

CARDS = {1, . . . , 16} and we note CARDS 4 = {X ∈ 2CARDS : |X| = 4}

There are seven hints at the start of the game, and each player must take
turns activating a hint or using a hint to mark a card. Thus, each player plays
7 times. As each player must take 4 different actions in turn, the game lasts
a maximum of (7 × 4) × 2 = 56 time units (56 actions are executed during a
game). Let N be the set of time points, including initial state of the game at
time 0 (and excluding it for N∗). End of the game is marked by the natural
end ∈ N such that end = 56.

However, each player only performs the action of moving a card once among
the 4 actions she/it must perform during her/its turn. There are therefore a
total of 7 × 2 = 14 card moves. As in the initial state the 16 cards are placed
in a square of 4 × 4 cards, whatever the movements made during a game, the
cards will evolve in a grid of 32 × 32 positions represented by the set GRID ,
and IPOS represents the set of cards positions at the start of the game.

A hint is viewed as a subset of 1, 2 or 3 colors among 4 different colors (r for
red, g for green, b for blue and y for yellow). HINTS is the set of all hints and
|HINTS | = 14. When the game starts, only 7 hints are available for the game
(represented by set AvHINTS ).

Vocabulary. We use the following notations: we denote a card by x ∈ CARDS ,
a color by c ∈ COLORS , a position by p ∈ GRID , a hint by h ∈ HINTS or
h ∈ AvHINTS . Moreover, based on the sets defined above, we define the fol-
lowing set atomic propositions qt (for q ∈ ATM , t ∈ N) such that:

• col tx,c: card x is of color c at time t;
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• postx,p: card x is at position p at time t;

• avail th: hint h is available at time t;

• activeth: hint h is activated at time t;

• mark tx,h: card x is marked with hint h at time t;

• neighborstp,p′ : p and p′ are two adjacent positions (having one side in
common) at time t.

Moreover, we define a function σ : CARDS −→ IPOS that assigns to each
card x a position p in the initial positions set, and a function NEIG : GRID −→
2GRID that assigns to each position (l, c) the set of its neighboring positions in
the grid NEIG(l, c) = {(l + 1, c), (l − 1, c), (l, c+ 1), (l, c− 1)} ∩GRID .

In the following, we consider that belief bases of agents are divided into
two (sub)bases: the core beliefs base (containing all the beliefs that cannot be
modified during the game), and the volatile beliefs base (containing all the belief
that may change). As we want to model the game from m’s perspective, we only
model its beliefs about the facts of the game or about the beliefs of agent h.

Initial volatile beliefs of agent m. Volatile belief base of agent m includes
the fact that initial time is at least 0, each card position is known (we assume
that function σ is known), the cards color is not known, only seven hints are
available, none is activated yet, and none marks a card yet. Moreover, all
adjacent positions of each cell are known:

Σv ⊇

{
now≥0,

∧
x∈CARDS

pos0x,σ(x),
∧

x∈CARDS
c∈COLORS

¬4mcol
0
x,c

∧
h∈AvHINTS

avail0h,
∧

h∈HINTS\AvHINTS

¬avail0h,∧
h∈HINTS

¬active0h,
∧

x∈CARDS
h∈HINTS

¬mark0
x,h,

∧
p∈GRID

p′∈NEIG(p)

neighbors0p,p′ ,
∧

p∈GRID
p′∈GRID\NEIG(p)

¬neighbors0p,p′ ,

}

In addition, we assume that Σv also includes 40
hnow

≥0 and, for each of facts
above of the form

∧
X α, a formula of the form

∧
X 40

hα. (Agent m believes that
the initial state of the game is also known by agent h.)

Initial core beliefs of agent m. Core belief base includes all the agent m’s
beliefs that cannot change during the game. It concerns both integrity con-
straints (that describe rules of the game) and successor state axioms (SSAs)
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that describe the building of the belief base after the execution of an action.
SSAs describe both what changes in the new state, and what do not (thanks
to frame axioms). So, for every t ∈ N, t′ ∈ N∗ we define the following integrity
constraints (IC):

Σc ⊇

{ ∧
x∈CARDS

∨
p∈GRID

postx,p , (ICP1)

∧
x∈CARDS

p,p′∈GRID:p6=p′

¬(postx,p ∧ postx,p′) , (ICP2)

∧
p∈GRID

x,x′∈CARDS :x 6=x′

¬(postx,p ∧ postx′,p) , (ICP3)

∧
x∈CARDS

∨
c∈COLORS

col tx,c , (ICC4)

∧
x∈CARDS

c,c′∈COLORS :c 6=c′

¬(col tx,c ∧ col tx,c′) , (ICC5)

∧
c∈COLORS

∨
X∈CARDS4

∧
x∈X

col tx,c , (ICC6)

∧
h∈HINTS

x,x′∈CARDS
x 6=x′

¬(mark t
x,h ∧mark t

x′,h) , (ICH7)

∧
h∈AvHINTS

(avail th ∨ activet
h ∨

∨
x∈CARDS

mark t
x,h) , (ICH8)

∧
h∈HINTS

¬(avail th ∧ activet
h) , (ICH9)

∧
x∈CARDS
h∈HINTS

(
¬(activet

h ∧mark t
x,h) ∧ ¬(avail th ∧mark t

x,h)
)}

(ICH10)

ICP1 and ICP2 mean that each card has at least one, and at most one, position
respectively ; ICP3 means that each position can only accommodate one card.
In the same way, ICC4 and ICC5 means that each card has at least one, and
at most one, color respectively. ICC6 means (together with ICC5) that there
are 4 cards of each color. ICH7 means a hint cannot marks two different cards.
ICH8 means each hint must be either available, or activated, or marking a card.
ICH9 and ICH10 mean that the state of a hint is unique: it is either available,
activated, or marking.

Frame axioms (FA) describe the facts that does not change after the execu-
tion of an action. For convenience, we define the following FA abbreviations (for

11



every C ⊆ COLORS , X ⊆ CARDS , H ⊆ HINTS , P ⊆ GRID , and t ∈ N∗):

posFAt
X

def
=

∧
x∈CARDS\X

p∈GRID

(postx,p ↔ post−1
x,p )

colFAt
X

def
=

∧
x∈CARDS\X
c∈COLORS

(
(col tx,c ↔ col t−1

x,c ) ∧ (¬4mcol
t
x,c ↔ ¬4mcol

t−1
x,c )

)

hintFAt
H

def
=

∧
h∈HINTS\H

(
(avail th ↔ avail t−1

h ) ∧ (activet
h ↔ activet−1

h )
)
∧

∧
x∈CARDS

h∈HINTS\H

(mark t
x,h ↔ mark t−1

x,h )

posFAtXP (resp. colFAtXC) reads “the position (resp. color) of every cards except
those in X is preserved from time t − 1 to t”. hintFAtXH reads “the status
(available, active, or marking) of every hints except those in H is preserved
from time t− 1 to t”.

Finally, we define the following successor state axioms (for every t ∈ N,
t′ ∈ N∗):

Σc ⊇

{ ∧
p,p′∈GRID

p 6=p′

(neighborstp,p′ ↔ neighborst−1
p,p′) , (SSA11)

∧
x∈CARDS
p∈GRID

(post
′

x,p ∧ ¬pos
t′−1
x,p → posFAt′

{x} ∧ colFAt′

∅ ∧ hintFAt′

∅ ) , (SSA12)

∧
x∈CARDS
c∈COLORS

(col t
′
x,c ∧ ¬4mcol

t′−1
x,c → posFAt′

∅ ∧ colFAt′

{x} ∧ hintFAt′

∅ ) , (SSA13)

∧
h∈HINTS

(activet′
h ∧ ¬activet′−1

h → posFAt′

∅ ∧ colFAt′

∅ ∧ hintFAt′

{h}) , (SSA14)

∧
x∈CARDS
h∈HINTS

(mark t′
x,h ∧ ¬mark t′−1

x,h → posFAt′

∅ ∧ colFAt′

∅ ∧ hintFAt′

{h}) , (SSA15)

}

SSA11 means that every neighboring positions of a position p never change.
(Note it is a pure frame axiom because neighboring positions are never affected
by any actions.) SSA12 means that if card x has a new position p at time t′,
the position of others cards, the color of every cards, and the status of all hints,
remain unchanged from t′−1 to t′. SSA13 means that if card x has a new color
c at time t′, the position of every cards, the color of every other cards, and the
status of all hints, remain unchanged from t′− 1 to t′. SSA14 and SSA15 mean
that if a hint becomes active (resp. marks a card) between time t′ − 1 and t′

then neither positions and colors of cards did change nor the status of other
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hints. Moreover, we assume that at least one action is performed at each time
point. Formally, this is represented by the disjunction of antecedents of SSA12
to SSA15.

Finally, we suppose that agent m believes that all the fact in its core belief
base are also known by the other agent h.

4.2 Dynamic aspects
Vocabulary. For convenience, we define the action set ACT ⊆ EVT of agent
m (for every t < end , x ∈ CARDS , p ∈ GRID , h ∈ HINTS ):

+m colt+1
x,c

def
= +m

(
col t+1

x,c ∧ (4t+1
h

∨
c′∈COLORS

4t+1
m col t+1

x,c′) ∧4
t+1
h now≥t+1

)
+m post+1

x,p
def
= +m(post+1

x,p ∧4t+1
h post+1

x,p ∧4t+1
h now≥t+1)

+m actHintt+1
h

def
= +m(activet+1

h ∧4t+1
h activet+1

h ∧4t+1
h now≥t+1)

+m markHintt+1
x,h

def
= +m(mark t+1

x,h ∧4
t+1
h mark t+1

x,h ∧4
t+1
h now≥t+1)

As each action entails a new time point, each action execution entails the fact
that the agent learns not only that time increases (which is taken into account
directly in the semantics, see Definition 1), but also that time increases for
agent h (so, 4t+1

h now≥t+1 must be added to m’s belief base). Finally, each
action about a fact also informs agent m that h believes this fact.

The separation constraint. When moving a card from a position p to a
position p′, it is forbidden to create two separate groups of cards (see Figure 1b).
In other words, there must be a path between a given card x and all the other
cards y, which automatically ensures that there is a path between any two
different cards y′ and y′′ of the game. So, for every p, p′ ∈ GRID : p 6= p′, t ∈ N,
and S ⊆ GRID : p, p′ 6∈ S:

linkedtp,p′,S
def
=

 ∨
1≤i≤|S|

patht(p,p′),p′,i

 ∧ ∧
p′′∈S\NEIG(p)

¬patht(p,p′),p′′,1

∧
∧

2≤i≤|S|
p′′∈S

patht(p,p′),p′′,i →
∨

p′′′∈NEIG(p′′)

patht(p,p′),p′′′,i−1


that reads: “there is a path in S from position p to position p′ iff: (1) p′ is
reachable in at most |S| steps, (2) no position which is not a neighbor of p in
S is reachable from p in 1 step, (3) any position p′′ in the path is reachable
from p within i steps only if there is at least a neighbor p′′′ of p′′ in S which is
reachable in i− 1 steps.”
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Finally, for t ∈ N, p ∈ GRID , x ∈ CARDS :

emptp
def
=

∧
x∈CARDS

¬postx,p

OPOS t = {p ∈ GRID : ¬emptp}

legMovtx,p
def
=

∨
p′′∈GRID
p′′ 6=p

(
postx,p′′ ∧ emptp ∧

∧
p′∈NEIG(p′′)

linkedtp,p′,OPOSt\{p′′}

)

emptp reads “the position p is empty”; OPOS t is the set of positions occupied
by a card at time t; legMovtx,p reads “the move of card x towards position p at
time t is authorized by the rules of the game iff p is currently an empty position
and there is a sequence of adjacent positions between p and any other occupied
positions (except the initial position p′′ of card x) through the set of currently
occupied positions (excluding p′′).

Action preconditions. We assume now that the operators in ACT have the
following executability preconditions, for t ∈ N such that t < end , x ∈ CARDS ,
c ∈ COLORS , h ∈ AvHINTS and now tm

def
= �mnow

≥t ∧ ¬�mnow
≥t+1:

P(+mcol
t+1
x,c )

def
= now tm ∧�m

∧
h∈HINTS

¬mark tx,h

P(+mpos
t+1
x,p )

def
= now tm ∧�m

∧
h∈HINTS

¬mark tx,h ∧�mlegMovtx,p

P(+mactHint
t+1
h )

def
= now tm ∧�mavail

t
h

P(+mmarkHintt+1
x,h )

def
= now tm ∧�mactive

t
h ∧�m

∨
c∈h

col tx,c ∧

�m

∧
h′∈HINTS
h′ 6=h

¬mark tx,h′

P(+mcol
t+1
x,c ) reads “agent m explicitly believes that time is currently equal to

t and also explicitly believes that no hint marks card x”; P(+mpos
t+1
x,p ) reads

“agent m explicitly believes that time is currently equal to t and also explicitly
believes that no hint marks card x and that it is currently authorized, w.r.t.
rules of the game, to move cards x to position p”; P(+mactHint

t+1
h ) reads “agent

m explicitly believes that time is currently equal to t and also explicitly believes
that hint h is currently available”; P(+mmarkHintt+1

x,h ) reads “agent m explicitly
believes that time is currently equal to t, that hint h is currently active, that h
includes the colors of card x, and that no other hint h′ already marks card x”.

4.3 Planning a game round for the artificial agent
At each round of m at time t we consider a planning task which consists in
finding a sequence of four relevant actions from ACT to achieve a goal αG. The
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Figure 2: Example of game states

initial belief state of agent m is given by its core beliefs Σc and an expansion
of its volatile beliefs Σv after the execution of the actions of the last round of
agent h. The construction of the goal αG as a conjunction of subgoals is driven
by a game strategy. For example, a strategy could provide a subgoal αG1 which
is intended to maximize the number of cards with a neighbor of the same color.
αG1 states that, from the point of view of m, there is a card x whose color is
known and having no neighbors of the same color, and there exists another card
x′′ of the same color as x such that card x was moved to a previously unoccupied
neighboring position at the end of the round:

αG1 =
∨

x∈CARDS
c∈COLORS
p∈OPOSt

(
postx,p ∧ col tx,c∧

∧
p′∈NEIG(p)

x′∈CARDS\{x}

(
postx,p′ → ¬col

t
x′,c ∨ ¬4mcol

t
x′,c

)
∧

∨
x′′∈CARDS
p′′∈OPOSt

p′′′∈NEIG(p′′)\OPOSt

(
postx′′,p′′ ∧ col tx′′,c ∧ post+4

x,p′′′
))

Figure 2 shows an example of game states at the beginning of a round of m.
On this example, we consider that agent m knows that card 7 is green, and that
h knows that m knows the color of this card:

Σv ⊇ {col t7,g,4th
∨

c∈COLORS

4tmcol
t
7,c}.

At previous round, h just looked at cards 2 and 7, and then moved card 2 near
card 7 and marked card 2 with the hint {b, g}. This leads to an expansion of
Σv:

Σv ⊇ {
∨

c∈COLORS

4thcol
t
2,c,

∨
c∈COLORS

4thcol
t
7,c,

neighborst2,7 ∧ ¬neighbors
t−1
2,7 ,mark t2,{b,g} ∧ ¬mark t−12,{b,g}}
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Hence, thanks to a rule in core beliefs Σc ⊇ {col t7,g ∧ 4th
(∨

c∈COLORS 4tmcol
t
7,c

)
∧
(∨

c∈COLORS 4thcol
t
2,c

)
∧
(∨

c∈COLORS 4thcol
t
7,c

)
→ col t2,g} given by the game

strategy, m implicitly deduces that card 2 is green: Σv |= �mcol
t
2,g. Then,

subgoal αG1
leads agent m to move card 13 near card 7 or card 2 (+mpos

t+1
13,p

where p ∈ NEIG(7) or p ∈ NEIG(2)) which are better choices than moving card
7 near card 13 avoided by the latter implicit belief.

5 Conclusion
We have introduced a simple epistemic language for representing an artificial
player’s knowledge and actions in the context of the cooperative board-game
Yōkai. We have shown that this game requires a combination of Theory of
Mind (ToM), temporal and spatial reasoning to be played effectively by the
artificial agent. Our approach relies on SAT given the existence of a polysize
satisfiability preserving translation of the epistemic language into propositional
logic.

Future work will be organized in two steps. First, we intend to specify a belief
revision module for the artificial player which spells out how it should change
its beliefs after the human player’s moves. Secondly, we plan to implement an
artificial player based on our formalization and to use existing SAT solvers for
automating the reasoning and planning for the artificial player during the game
play. We plan to formalize and implement a variety of game strategies for the
artificial player, in line with the methodology sketched in Section 4.3, and to
the test their performances experimentally.
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