
HAL Id: hal-02983213
https://hal.science/hal-02983213v1

Submitted on 29 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SELA: a Symbolic Expression Leakage Analyzer
Quentin L. Meunier, Inès Ben El Ouahma, Karine Heydemann

To cite this version:
Quentin L. Meunier, Inès Ben El Ouahma, Karine Heydemann. SELA: a Symbolic Expression Leakage
Analyzer. International Workshop on Security Proofs for Embedded Systems, Sep 2020, Visioconfer-
ence, France. �hal-02983213�

https://hal.science/hal-02983213v1
https://hal.archives-ouvertes.fr


This space is reserved for the EPiC Series header, do not use it

SELA: a Symbolic Expression Leakage Analyzer
Quentin L. Meunier1, Inès Ben El Ouahma1, Karine Heydemann1

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France
{quentin.meunier,ines.ben-el-ouahma,karine.heydemann}@lip6.fr

Abstract

Side-channel attacks are a powerful class of attacks targeting cryptographic devices,
which exploit physical quantities during the execution of an algorithm in order to recover
key material. Masking is a popular counter measure to mitigate such attacks, and consists
in splitting a secret into n shares, such that any combination of n − 1 shares or less is
statistically independent from the secret.

If general masking schemes exist in some cases, masked algorithms are often specific and
are required to be verified independently, as the conversion from an unmasked algorithm
is not trivial. Existing tools for verifying masked algorithms either target the algorithmic
level using abstract constructions or hardware descriptions, but show a lack for a generic
tool which can act as a basis for different verification contexts.

In this article, we present SELA, an open-source tool for verifying masked expressions,
provided as a python library. We detail and motivate the design choices made in the
implementation, in particular regarding the simplification rules and strategy used by the
verification algorithm. The internal representation is also compatible with several leakage
models. We show the interest of SELA by verifying existing use-cases from different con-
texts: masked hardware circuits, algorithms and generated assembly code. Besides showing
the versatility of the approach, these use-cases also demonstrate the good accuracy of the
verification and the efficiency of the implementation.

1 Introduction
Side-channel attacks constitute a very powerful class of attacks targeting cryptographic devices.
They aim at recovering key material by the means of recording and analyzing physical quan-
tities during the execution of the algorithm. Many successful side-channel attacks have been
discovered over the past two decades, many of them relying on the analysis of power consump-
tion [18, 6, 7, 19, 12, 17]. Resistance against such attacks has thus become a major concern,
and a lot of research work has been done recently in order to assess such leakages [26, 8, 23].

Masking is a popular countermeasure against such attacks. Masking at order n consists
in splitting a secret, or sensitive data, into n + 1 shares, in such a way that any combination
of n shares or less does not have a statistical dependency with the secret. Masking is usually
boolean, meaning that all the shares need to be xor-ed in order to get the secret, although
arithmetic masking also exists [13]. The higher the n value, the better the resistance is against
attacks. However, high-order masking comes at the price of an increased resulting complexity of
the implementation. Moreover, transforming an algorithm or circuit in a masked equivalent is



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

not trivial, and although some general schemes have been proposed for circuits [16, 21, 22, 14],
it often requires an ad-hoc scheme. The higher the order of sharing, the more costly the
transformation becomes. Besides, sharing at order n does not imply a resistance at order n:
the resistance order inherently models the capabilities of an attacker. Put simply, resistance
at order d is achieved when an attacker that can have access to d internal values in the circuit
or algorithm cannot learn any secret information. The resistance order is different from the
sharing order because the observation of one value could give him information on several shares.
For these reasons, there is a need to assess the achieved security of a masked implementation.

As masking is a provable countermeasure [25], verification algorithms and tools have been
proposed to help assess the security of software or hardware implementations of masked algo-
rithms [3, 9, 28]. Existing verification tools target a specific abstraction level or implementation
type, e.g. algorithmic level with abstract constructions, or hardware description language. The
verification algorithms work on trees or graphs representing masked expressions and are based
either on inference rules or a substitution approach to prove the absence of leakage. However,
the published algorithms often hide details which can be of high importance for the performance
and accuracy of the implemented analysis. In particular, verification algorithms often need to
simplify expressions in order to be able to conclude or apply a transformation, but how or when
to apply such simplifications is not necessarily fully reported. Also, the leakage model, which is
critical to security, is often implicitly specified. Last but not least, the existing tools are often
either not available or not open. In order to help face the challenge of masking verification,
we believe that there is a need for an open framework, that acts on plain symbolic expressions
while being general enough so that it can serve as a basis for different implementation types
and abstraction levels. In this paper, we provide such a framework. We also explain the dif-
ferent choices regarding internal data structures and algorithms, and justify our choice using
experimental validation.

We believe that this paper makes 3 contributions:

• It provides an easy-to-use python open-source library implementation of an algorithm
proving statistical independence of an expression w.r.t. secret variables, along with five
leakage models1;

• It details and motivates the design choices of the implementation of the algorithm;
• It shows the interest of the approach on various examples from the literature, in terms of

performance and ease of use.

The rest of the article is organized as follows: Section 2 gives some background on masking
schemes and existing tools for verifying masked expressions; Section 3 presents our tool SELA
in terms of usage and supported operations, internal representation and algorithms. It also
presents the different simplification strategies and the leakage models considered. Section 4
describes the experiments made and the results obtained in terms of performance and accuracy
for the proposed simplification strategies. Finally, Section 5 concludes this paper.

2 Background and Related Works

2.1 Masking Schemes
The first scheme for masking a AND gate at order one, called Trichina AND gate, was proposed
by [27] in the process of masking the AES. It comes in two versions: one which actually leaks,

1The source code is available at https://www-soc.lip6.fr/~meunier/soft/sela.tar

2



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

and one which requires an additional random value during the computation (as opposed to
the random values being required for performing the sharing). Such additional random values
are frequent in masking schemes, and are often called refresh or mask, even if the term mask
can also refer to initial random values used for the sharing. Besides, this scheme suffers from
glitches, i.e. temporary values on wires due to the different propagation times of a gate’s inputs.

In the mean time, the first general hardware masking scheme was introduced in [16], and
consists in decomposing a circuit in AND, NOT and XOR gates, while providing a d-order
resistance implementation for each of these gates. This scheme, called ISW, however did not
consider glitches in a circuit either. A third scheme, called Threshold-Implementation (TI),
was proposed in [21] for boolean functions (and not only AND gates). It removes the glitch
problem and the need for internal random values, but has the drawback to require many more
shares and gates for achieving a given level of security. Almost a decade later, [22] presents how
the previous schemes are related, and based on the characteristics of these schemes, proposes a
General Masking Scheme (GMS) model based on four layers for masking boolean functions. The
gain compared to TI is a reduction in complexity for first order resistance (at the price of using
refresh, i.e. more randomness), and a gain in security for higher orders. Finally, [14] presents
Domain-Oriented Masking (DOM), which uses a similar structure to GMS, but achieves an
identical level of security with a reduced sharing order, namely order d resistance with d shares
for the AND function. This is done by inserting registers inside the computation in order to
stop glitch propagation.

If using a general masking scheme is generally well adapted for a circuit, algorithms – i.e.
software implementations – often require an ad-hoc scheme, e.g. [15, 1]. Such implementations
have no intrinsic guaranties and need to be verified each in a independent manner. Furthermore,
if an algorithm can be proven leakage-free, an implementation, using usually lower-level con-
struction, can be leaky. This shows the need for proving algorithms and their implementation
at different levels.

2.2 Masking Verification

Verifying a masking scheme can be done naively by enumerating all the combinations of the
different variables and checking that an expression has the same distribution w.r.t. the secrets
it contains. This approach, however, quickly shows some limits regarding scalability, either in
terms of number of variables, or variable width.

On the contrary, symbolic methods do not enumerate variable values but reason on variable
types to deduce information on expressions. Several approaches have been proposed for verifying
the security of a masked implementation.

A first approach, [3] proposed an algorithm for verifying the absence of leakage of an expres-
sion. The property verified, called Non-Interference (NI), states that the joint distribution of a
set of expressions is independent from the secrets values contained in the expression. The algo-
rithm is based on the fact that a sub-expression m ⊕ e in which m is a mask (uniform random
value) can be replaced by m in the expression if m does not appear anywhere else in the expres-
sion. This algorithm was first implemented in the EasyCrypt tool [5], but not made accessible.
This algorithm was then implemented for the verification of hardware circuit in a tool called
maskVerif [2], which takes as input an annotated verilog file containing the circuit to verify.
The verification algorithm inside maskVerif was later improved in [4], which notably removed
the condition that m should not appear anywhere in the expression by a weaker condition. This
improved algorithm constitutes one of the basis of this work.

Another approach, [9] introduced a symbolic analysis based on inference. Inference permits

3



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

1 m = symbol(’m’, ’M’, 4) # 4-bit variable named ’m’ and of type Mask
2 k = symbol(’k’, ’S’, 4) # 4-bit variable named ’k’ and of type Secret
3 e = (m ^ k) & m # expression computation
4 res = checkNIVal(e) # check for leakage in the expression value

Figure 1: Simple example of SELA program

reusing the results of sub-expressions for determining the result of the current expression, while
the previous approaches must start from zero at each new expression, even if it is a combination
of already analyzed expressions. The advantage of this property is patent since algorithms, like
circuits, can be decomposed as a succession of operations re-utilizing the results of previous
operations. On the other hand, the inference rules may not be able to conclude in some cases
in which the algorithm of [4] could. Besides, the inference approach is currently limited to first-
order resistance analysis. This inference technique was used as a basis in several works: it was
first implemented in a somewhat similar way in a tool called SCInfer [28], then improved in the
QMSInfer tool [11]. Finally, support for arithmetic operators was added in the QMVerif tool
in [10]. However, none of these tools was made available. Although inference-based algorithms
have not been considered in this work, combining both non-inference based and inference based
approaches is clearly an axis for future work.

Both symbolic approaches, inference-based or not, are incomplete, although none of them
can give false negatives, i.e. no leakage can be missed. However, they can both be completed
with a symbolic approach having an opposite strategy, giving false negatives only, and aiming at
guaranteeing the presence of leakages in some cases. Finally, these approaches can be combined
with an enumerative approach, as in [10] for cases in which they cannot conclude.

To the best of the authors’ knowledge, there does not exist an open, easily usable tool for
verifying the absence of leakage in a masked expression. This is what SELA aims at providing.

3 SELA

3.1 Overall Presentation

SELA is a python library for checking the absence of leakage of symbolic masked expressions.
We chose python due to its wide usage as well as its its ease-of-use. SELA provides a large
set of constructions for creating symbolic expressions with symbolic variables, constants and
operations on expressions. A symbolic variable has no concrete value and represents a set of
values. In SELA, variables must have a type among the three following ones: secret variable,
mask variable, or public variable. Besides, all variables and constants must have a specified
size expressed as a bit width. The library then permits checking the NI property of created
expressions – i.e. statistical independence of the expression w.r.t. the secrets – by providing an
implementation of the algorithm described in [4] and different leakage models to be considered
for the verification.

Figure 1 shows a simple example of expression construction comprising two occurrences of
a mask and one occurrence of a secret, along with the check of the NI property in the value
leakage model.

The verification algorithm iteratively replaces masked sub-expressions with the mask itself,
until there are no more occurrences of secrets in the expression. Algorithm 1 recalls the NI
verification algorithm from [4]. In this algorithm, the simplification of sub-expressions occurs
at most once (Alg. 1 Lines 11-14) for performance reason as mentioned by the authors [4].

4



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

Algorithm 1 Non-Interference Algorithm, described in [4]
Require: V = (v1, ..., vn) n symbolic expressions
Ensure: False is returned if all expressions do not satisfy the NI property; otherwise, True is probably

returned
1: masksTaken ← ∅
2: alreadySimplified ← false
3: while True do
4: if there is no secret occurrence in any expression in V then
5: return True
6: Select a mask r such that r /∈ masksTaken, and such that there exists a sub-expression w in a

vi bijective w.r.t. r
7: if r 6= ∅ then
8: for all i ∈ [1;n] do
9: Replace r with w in vi

10: masksTaken ← masksTaken ∪ {r}
11: else if alreadySimplified = false then
12: alreadySimplified ← true
13: for all i ∈ [1;n] do
14: Simplify vi

15: else
16: return False

Moreover, no detail is given about the simplification algorithm used. In the opposite case, in
Section 3.5, we present our simplification rules and the different simplification strategies that we
experimentally evaluate in Section 3.5. The ability of this algorithm to conclude is also related
to the selection of the mask and associated bijective sub-expression (Alg. 1 Line 6). The authors
in [4] state that they choose the mask by increasing multiplicative depth in the expression tree.
In SELA, two parameters are considered for the selection: the number of occurrences of the
mask and its depth w.r.t. the root of the expression graph. Algorithm 2 describes how the
selection operates in SELA. The function returns two nodes in the expression graph: a mask
node (maskNode) and an operation node bijective w.r.t the mask node (bijectNode). These
nodes are selected in order to minimize first the number of occurrences of maskNode, and then
the depth of bijectNode, so as to minimize the number of replacements and the expression
complexity.

We can notice that the selection of a mask candidate for a replacement (line 8 of Algorithm 2)
requires us to be able to determine the mask occurrences. These occurrences are also needed
when a replacement of a sub-expression masked with m is performed since other potential
occurrences of m must also be replaced with the original sub-expression (line 10 of Algorithm 1).
In both cases, it would be prohibitive to go through the entire expression searching for mask
occurrences. Hence, an efficient implementation of the algorithm for checking non-interference
requires to operate on a representation of the expression in which it is possible to access to
all parents of a leaf. These considerations motivated the design choices made regarding the
internal representation used in SELA, as explained in the next section.

3.2 Internal Representation of Expressions

z3 is a SAT solver which can be used, along with its front-end z3py [24], for manipulating
symbolic expressions. It handles large expressions particularly well, which makes it a good
candidate for our intended goal. Unfortunately, it is not possible to access the parent of a

5



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

Algorithm 2 SELA selection algorithm
1: Inputs: M the set of masks; R the set of masks already taken
2: Returns: a mask node maskNode, and bijectNode, a sub-expression bijective w.r.t. maskNode.
3: nbMaskOccurrences ← ∅
4: for m ∈ M such that m /∈ R do
5: nbMaskOccurrences[len(m.parents)].add(m)
6: possibleOpNodes ← map()
7: for m ∈ M such that m /∈ R do
8: possibleOpNodes[m] ← map()
9: for parent ∈ m.parents such that parent.op is a bijective operator do

10: parentKO ← False
11: for p ∈ m.parents \{parent} do:
12: if p is in a sub-expression of parent then
13: parentKO ← True
14: break
15: if !parentKO then
16: depth ← computeDepth(parent) . depth from parent up the the root of the expression
17: if len(possibleOpNodes[m]) = 0 or depth < possibleOpNodes[m][’depth’] then
18: possibleOpNodes[m] ← (parent, depth)
19: bijectNode ← ∅
20: for nbOcc ∈ nbMaskOccurrences.keys().sort() do
21: for m ∈ nbMaskOccurrences[nbOcc] do
22: if len(possibleOpNodes[m]) 6= 0 and possibleOpNodes[m][’depth’] < minDepth then
23: bijectNode, minDepth ← possibleOpNodes[m]
24: maskNode ← m
25: if bijectNode 6= ∅ then
26: break
27: return maskNode, bijectNode

node in a z3 expression, and as a result, we excluded this possibility. Instead, we used our own
representation for implementing graphs modeling expressions on which the Algorithms 1 and
2 are executed, using python classes. Note that graphs modeling expressions are not directly
manipulated by the user. Users only manipulate objects of a class which internally gathers
two graphs for the current expression: one modeling the expression at the word level (the word
graph), and one modeling the expression at the bit level (the bit graph). Both graphs are built
in parallel for each operator encountered. The interest of having a word graph is that some
expressions can be proven leakage-free independently from their size, which results in a faster
verification process as the number of nodes is reduced. However, when this verification fails,
SELA can take advantage of the more precise bit graph to verify it and conclude in more cases.
Figure 2 shows the two graphs associated to the example expression in Figure 1.

The internal implementation of SELA expressions returns a new expression every time an
operator is used, which requires us to copy the operands of the operator. For large expressions,
this technique makes the time spent for copying non negligible. For a given set of expressions,
the memory footprint of a SELA internal expression is also greater than the one required for a
z3py equivalent expression. For limiting memory footprint and reduce the time spent in copying
expressions, using z3py for internal expression representation is also supported in SELA: the
user can configure which internal representation he wants to use via a configuration file. This
choice is transparently handled by SELA : the same code can be run using one representation
or the other (except for array accesses). In the following, these internal representations will be

6



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

(b)(a)

Symbol: m [M]

Op: &

Op: ^

Symbol: k [S]

Op: ^

Symbol: m#0 [M] Symbol: k#0 [S]

Op: &

Op: ^

Symbol: m#1 [M] Symbol: k#1 [S]

Op: & Op: &

Op: ^

Symbol: m#3 [M] Symbol: k#3 [S]Symbol: k#2 [S]

Op: ^

Symbol: m#2 [M]

Op: &

Figure 2: Word graph (a) and bit graph (a) associated to the expression (m ˆ k)
& m. The bit graph contains four roots corresponding to the four bits of the expression. s#b
designates bit b of symbol s, while [S] and [M] designate respectively secret and mask nodes.

referred to as SELA Ex and SELA z3.
It is important to note that even in the case of using SELA z3, the expression is still

translated in the form of a graph in the native SELA representation but only once before
launching the verification algorithm on it. If having two possible expression representations
is not ideal, results in the experimental section show that SELA Ex is more efficient on small
programs and concludes on more cases with some strategies, while SELA z3 is more scalable.

3.3 Supported Operations

In order to make SELA programs work easily with both types of underlying representation,
operators names and parameters order are those of z3py. Currently, the following operations
are supported:

• &, |, ˆ, ~: bitwise logical AND, OR, XOR and NOT
• +, -: arithmetic addition and subtraction
• >>: arithmetical shift right
• <<: logical shift left
• LShR(e, n): logical shift right of expression e of n bits
• Extract(msb, lsb, e): extraction in expression e of the bits starting at index lsb up to

index msb included (msb, lsb: naturals, msb ≥ lsb)
• Concat(e, f): concatenation of expressions e and f
• ZeroExt(nz, e): concatenation of nz zeros at the left of expression e
• SignExt(nz, e): concatenation of the most significant bit (sign bit) of e nz times at the

left of expression e

3.4 Leakage Models

Verifying the statistical independence of an expression to a secret variable makes the assumption
that the value of the expression is leaking. This corresponds to the first order probing security
property, as defined in [4]. However, it is often not sufficient: indeed, at a low-level, power
consumption is mainly affected by the change of state of transistors [20]. Therefore, transitions
between expressions are highly relevant to the leakage of a system, if they can be known,
whether between variables or registers.

To this end, SELA implements the verification for five leakage models, a value-based one
and four transition-based ones. They are described as follows, along with the implementation
technique used for performing the corresponding verification using Algorithm 1.

7



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

• Value. This leakage model considers the value of a single expression. The expression is
passed directly to Algorithm 1.

• Transition. This leakage model considers the most general notion of transition. Infor-
mally, it considers that the two expressions which compose the transition can leak any
operation combining these expressions. As such, it reasons on the product of the distri-
bution of the two expressions. It is implemented by verifying the set made of the two
expressions with the NI algorithm. Since this leakage model is very general, it may not
translate into real leakages, while it is harder to make a system secure w.r.t. this model.
This motivated the definition of the following weaker models.

• TransXor. As in hardware the power consumption is highly related to bits changing of
state, a meaningful power consumption model in hardware consists in the exclusive-or, or
“xor”, of two consecutive expressions appearing in a hardware component. The verification
in this leakage model thus considers two expressions that the user thinks are consecutive
in hardware, and calls Algorithm 1 on the resulting xor.

• TransBit. This leakage model is similar to the Transition model, but for each bit
individually. A leakage found in this model should result in a more easily observable
physical leakage. The verification is made by calling Algorithm 1 n times for two n-bit
expressions, each time on a set of two single-bit expressions.

• TransXorBit. This leakage model is a combination of the TransBit and TransXor models.
The verification is carried out independently on each bit of the expression resulting from
the xor of two consecutive expressions.

Figure 3 shows how these different leakage models are linked together, while Figure 4 shows
various examples of 2-bit expressions and their resistance to the five leakage models presented.

Transition

TransXorBit

Value TransBitTransXor

Figure 3: Graph of relations of the different leakage models implemented in SELA.
A model at the origin of an arrow is stronger than the model at the end of the arrow. No
leakage in a given model implies no leakage in the weaker models. A leakage in a given model
implies a leakage in the stronger models.

3.5 Simplifications Rules and Strategies
SELA implements a simplify() function on graphs which is applied starting from the leaves, and
up to the root. This section describes the main simplifications implemented by this function.
Constant propagation is made whenever possible, as long as merging a node with its children
for associative operators. Although we do not formally describe the simplification algorithm,
Table 1 presents the simplification rules.

The description of Algorithm 1 makes only one simplification of the expression: in case
of a failure, the expression is simplified and the verification algorithm is then re-executed.

8



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

k0

k1

m0

m1

(c)

k0

k1

m0

m0

(b)

k0⊕m0

k1⊕m0

m1

m1

(d)

k0⊕m0

k1⊕m0

m1

m2

(e)

k0⊕m0

k1⊕m1

m0

m2

(f)

k0⊕m0

k1⊕m1

m1

m0

(g)

k0⊕m0

k1⊕m1

(h)

k2⊕m2

k3⊕m0

k0⊕m0

k0⊕m0

(i)

m1

m1

k0⊕m0

k1⊕m1

(j)

k2⊕m2

k3⊕m3

0

m0

k0

m1

(a)

Leakage Model (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Value(1) 5 5 5 5 5 3 3 3 3 3

Transition 5 5 5 5 5 5 5 5 3 3

TransBit 5 5 5 3 3 5 3 3 3 3

TransXor 5 5 3 5 3 5 5 3 3 3

TransXorBit 5 3 3 3 3 5 3 3 3 3

Figure 4: Examples of 2-bit expressions and their resistance to the different leakage
models. Each horizontal line corresponds to one bit, and the dashed line separates the two
consecutive values for each bit. Variables with name starting with m are mask variables, while
variables with name starting with k are secret variables. A check symbol indicates resistance
for the considered leakage model, while a cross indicates a leakage. (1) For the value leakage
model, resistance is considered w.r.t. both expressions, i.e. before and after the dashed line.

The rationale behind is that finding a mask verifying the constraint of the algorithm can fail
because the expression is not in its most simplified form. On the other hand, calling the simplify
function takes time which is potentially unnecessary. Therefore, we decided to explore different
strategies for calling the simplify function, and compare them on an execution time basis as
well as on the leakage analysis results. A point which is not mentioned in [4] is if simplifications
occur or not between calls to the Algorithm 1, when verifying expressions used as parts of larger
expressions. Since this algorithm is destructive regarding the verified expression, the expression
must be copied before verification; therefore, we cannot take advantage of a simplification at
the start of the verification algorithm in the rest of the user algorithm.

Basically, it is possible to categorize the strategies according to four criteria:

• Simplify or not the expression in the user algorithm (User). With SELA z3, it uses the z3
simplify function with default parameters, as we tried different values for some of them
and observed no change in the results.

• Simplify or not the expression at the beginning of the verification algorithm (Starting).
For SELA Ex, it is useless if User is already used, but it can be useful with SELA z3 in
some cases.

• Simplify or not the expression after a replacement, since the expression graph has changed
(Replacement)

• Simplify or not the expression upon failure and retry verification, if it is the first failure
or if the expression has changed since the last retry (Failure).

These criteria can be combined in order to make seven different strategies, as summarized

9



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

Table 1: SELA simplification rules. For all rules, constant 1 refers to the n-bit constant
composed of ’1’ only (2n-1), n being the operator width. Ext stands for ZeroExt or SignExt.
In all rules, e, f and g are expressions, while l, m, n, p, q are positive integers.
e ˆ 0→ e e ˆ 1→ ~e e ˆ e→ 0 e & 0→ 0 e & 1→ e e & e→ e e | 0→ e

e | 1→ 1 e | e→ e ~(~e)→ e −(−e)→ e e− e→ 0 ~e ˆ ~f ˆ ~g → ~(e ˆ f ˆ g)

For op ∈ { &, |, ˆ}:

Ext(n, e) op Ext(n, f)→ Ext(n, e op f)

Extract(m, l, e) op Extract(m, l, f)→ Extract(m, l, e op f)

Concat(Extract(m,n, e), Extract(n− 1, p, e))→ Extract(m, p, e) (m ≥ n ≥ p)

Extract(p, q, Ext(n, e))→ 0 if q ≥ width(e)

→ Extract(p, q, e)) if p ≤ width(e)

→ Ext(p - width(e), e) if q = 0 and p ≥width(e)
→ e if q = 0 and p = width(e) - 1

Extract(p, q, Concat(en, ..., e0)): remove all ei which are not included by the indexes p and q;

remove Concat if p and q are indexes in the same ei; and remove Extract if both p and q

coincide respectively with the MSB and the LSB of two internal expressions

Table 2: Link between simplification strategies and criteria. User means that the
expression is simplified gradually in the user algorithm. Starting means that simplify is called
at the beginning of the verification. Replacement means that simplification is made after each
replacement. Failure means that when a verification fails, the expression is simplified and the
verification is retried. (1) The number of simplifications is limited to one in case of failure.

Simplification strategy

none u u+s u+r u+f u+s+r u+s+f f1

User • • • • • •
Starting • • •
Replacement • •
Failure • • •(1)

in Table 2. We omitted some combinations which we considered not relevant, while the f1
strategy corresponds to the best of our understanding of the strategy in [4].

3.6 Access to array elements

Accessing an array using as index a symbolic expression is problematic in the general case
for performing a verification, since it is not possible to determine which element is accessed.
However, in the event of an array implementing a permutation, the access does not change the
expression distribution. SELA currently does not support a high-level construct for arrays, but
supports an array-type node in graphs: this node type blocks any simplification from occurring
between both sides, and otherwise does not change the verification process. In the tested
benchmarks, only the AES has array accesses.

10



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

Table 3: Experimental Results of SELA analyses

Benchmark # Exps # Leakages Found Execution Time
Analysed SELA Ex SELA z3 SELA Ex SELA z3

First Order Resistance
Trichina AND gate v1 10 2 2 0.03s 0.09
Trichina AND gate v2 13 0 0 0.03s 0.09
ISW AND gate 2-sh w/o rand 12 0 0 0.03s 0.08
ISW AND gate 2-sh w/ rand 18 0 0 0.03s 0.10
ISW AND gate 3-sh w/o rand 27 0 0 0.04s 0.11s
ISW AND gate 3-sh w/ rand 45 0 0 0.05s 0.14s
TI AND gate 3-sh 21 0 0 0.04s 0.10s
TI AND gate 4-sh balanced 34 0 0 0.04s 0.10s
GMS AND gate 3-sh 27 0 0 0.04s 0.11s
GMS AND gate 5-sh 72 0 0 0.07s 0.20s
SecMult 359 0 0 6.6s 8.0s
Goubin Conversion 7 0 0 0.07 0.30
AES (KS + 2 rounds) 1050 0 0 – 7m02s
Arm Assembly SecMult 313 0 0 19s 15s
Second Order Resistance
ISW AND gate 3-sh w/o rand 351 0 0 0.15s 0.83
ISW AND gate 3-sh w/ rand 990 0 0 0.40s 3.0s
GMS AND gate 5-sh 2775 0 0 1.0s 8.3s

4 Experiments

Experiments are composed of three types of benchmarks: circuit masking schemes, masked
algorithms and assembly code execution modeled at ISA level. Circuits are composed of the
following benchmarks: Trichina AND gate [27] without (v1) and with (v2) additional random;
ISW AND gate [16] with two (2-sh) or three (3-sh) shares, and with (w/) or without (w/o) an
extra random for computing the terms aibj ; TI AND gate [21] with three shares (unbalanced)
and four shares (balanced); GMS AND gate [22] with three (3-sh) and five (5-sh) shares. The
verification is made on each wire, considering a probing security attacker model (i.e without
glitches). Second order verification is made by considering all the couples of wire expressions.

Masked algorithms ware are composed of the SecMult program [25], Goubin conversion
algorithm [13], and the first two rounds of the masked AES [15]. The result of every operation
is checked for leakage in the Value model.

Finally, a version of SecMult has been compiled into Arm assembly code, manually translated
into SELA data structures, and the effect of each instruction emulated on an ISA model of the
processor. For each instruction executed, the leakage was searched for each of the five leakage
models presented in Section 3.4 considering the general purpose registers of the processor.

For all experiments, the timeout is set to two hours, noted ‘–’ in tables containing results.
All these benchmarks are directly available inside SELA source code archive.

4.1 Leakage Assessment and Performance

Results using the strategy u+s+r are shown in Table 3. The column # Exps Analysed displays
the number of expressions analysed, while the column # Leakages Found shows the number of
analyses which could not conclude, i.e. the number of potential sources of leakages. These

11



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

Table 4: Breakdown of the experimental results of the assembly version of SecMult.
Number of instructions found leaking for each register in the algorithm. The leakages found were
verified to be real leakages w.r.t. their leakage model. Results obtained with the start_replace
simplify strategy, both for SELA Ex and SELA z3.

Register / reg 0 reg 1 reg 2 reg 3 reg 4 reg 5 reg 6 reg 7 reg 8 reg 9 reg 12 reg 14
Leakage Model
Value 0/26 0/9 0/59 0/93 0/26 0/17 0/4 0/10 0/17 0/9 0/17 0/26
Transition 0/26 0/9 2/59 0/93 1/26 0/17 0/4 1/10 0/17 0/9 0/17 1/26
TransBit 0/26 0/9 1/59 0/93 1/26 0/17 0/4 1/10 0/17 0/9 0/17 1/26
TransXor 0/26 0/9 2/59 0/93 0/26 0/17 0/4 1/10 0/17 0/9 0/17 1/26
TransXorBit 0/26 0/9 1/59 0/93 0/26 0/17 0/4 0/10 0/17 0/9 0/17 1/26

columns show that the simplification algorithm and strategy are efficient since the only two
potential leakages found are real leakages2. Even large code without mask refresh like AES
(key schedule and two rounds) and SecMult could be entirely proven leakage-free. Columns
Execution Time show the execution time on a Intel(R) Xeon(R) E5 2637 v2 @ 3.5GHz for
SELA Ex and SELA z3. They show that SELA z3 is more scalable with large expressions
(assembly SecMult, AES), but can also slow down the process for small programs, especially
when the number of expressions to verify is high. These differences highlight the importance of
the internal representation used.

Finally, Table 4 shows the breakdown of the leakages per register and leakage model for
the Assembly SecMult. We can observe that the results differ for four of the five models,
demonstrating that the choice of the model can have a real impact on the conclusion of the
analysis. In the future, we intend to make measurements on a real Arm processor executing
this code in order to determine which leakage model is the most relevant in this case, or the
sensitivity of each of them, i.e, the number of required traces to exhibit a leakage found by the
model.

4.2 Simplification Strategies
We evaluated the different simplification strategies on several representative benchmarks, which
do not contain any leakage in the Value leakage model. Results regarding the number of false
positives found are presented in Table 5, while execution times are presented in Table 6.

Results from Table 5 show that the simplification strategy has an impact on the number of
false positives found. In particular, the most prominent conclusion is that simplifying after a
replacement or a failure is mandatory to avoid numerous false positives: strategies none, u and
u+s have a lot of false positives for each benchmarks. Then, we can see that only two strategies
have no false positive: u+s+r and u+s+f. Finally, we can notice that simplifying gradually can
increase the number of false positives when using SELA z3 (because the z3 simplifications do
not always transform the expression in a helpful way regarding verification), while the strategy
f1 can also lead to false positives or timeouts.

Results from Table 6 show that the simplification strategy should include a gradual simpli-
fication in order to avoid a performance loss possibly resulting in a timeout. Other than that,
the simplification strategy does not influence the execution time much, except for f1 which can
be significantly slower with SELA z3. With the exception of AES on SELA Ex, timeouts only

2They have been verified using an enumerative approach

12



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

Table 5: Number of expressions incorrectly found to be leaking for the presented simplify
strategies, for some of the benchmarks without theoretical leakages in the Value model, and for
SELA Ex and SELA z3.

none u u+s u+r u+f u+s+r u+s+f f1
SecMult # SELA Ex Leakages 102 75 75 0 0 0 0 0
359 Exps # SELA z3 Leakages 75 89 85 4 4 0 0 0
Arm Asm SecMult # SELA Ex Leakages – 83 83 0 0 0 0 –
313 Exps # SELA z3 Leakages 115 118 114 16 4 0 0 23
GMS AND gate 5-sh # SELA Ex Leakages 227 227 227 0 0 0 0 0
2775 Exps (2nd order) # SELA z3 Leakages 227 227 227 0 0 0 0 0
AES (KS + 2 rounds) # SELA Ex Leakages – – – – – – – –
1050 Exps # SELA z3 Leakages – 48 48 0 0 0 0 0

Table 6: Execution times for the presented simplify strategies, for some of the benchmarks, and
for SELA Ex and SELA z3. The minimum duration of five executions was taken.

none u u+s u+r u+f u+s+r u+s+f f1
SecMult SELA Ex Time 1h43m 6.4s 6.8s 6.3s 6.2s 6.6s 6.6s 6.2s
359 Exps SELA z3 Time 20s 6.9s 7.7s 7.6s 7.5s 7.7s 7.7s 18s
Arm Asm SecMult SELA Ex Time – 18s 19s 18s 19s 19s 19s –
313 Exps SELA z3 Time 33s 14s 15s 15s 16s 15s 15s 52s
GMS AND gate 5-sh SELA Ex Time 0.9s 0.8s 1.1s 0.8s 0.8s 1.0s 1.0s 0.8s
2775 Exps (2nd order) SELA z3 Time 9.0s 8.6s 9.3s 7.8s 7.7s 8.3s 8.1s 8.0s
AES (KS + 2 rounds) SELA Ex Time – – – – – – – –
1050 Exps SELA z3 Time – 6m53s 7m00 6m43s 6m55s 7m02s 7m04s 9m41s

occur for strategies none and f1 on these benchmarks. Overall, these results show that there is
little penalty for doing frequent simplifications, but on the contrary that this results in having
few false positives combined with low execution times. Therefore, we would recommend using
one of the two strategies u+s+r or u+s+f.

4.3 Limitations and Directions for Future Work

There is currently no way for enumerating automatically all the k-uplets of a set of n expressions
(k < n). While this can be done quite easily in python, doing so is not scalable: instead,
verifying at higher orders requires more elaborated strategies, as in [3]. Besides, SELA currently
does not permit checking for the stronger Threshold Non-Interference security property, which
consider glitches, as it requires the introduction the notions of shares, and not only masks and
secrets.

Despite these limitations, which are an axis for future work, SELA provides a strong basic
block allowing the verification of symbolic expressions, which can be used for circuits (without
glitches), algorithms, or low-level representations like assembly code.

5 Conclusion

We presented SELA, an open python library designed for verifying the absence of leakage
in symbolic expressions. We specified the mask selection algorithm which acts as a basis in

13



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

the replacement process of the verification. We gave the simplification rules that operate on
expressions during the verification, and compared seven different simplification strategies. The
results tend to show that if simplifying as much as possible is not always necessary, the cost
of simplification remains low, if visible at all, on the tested benchmarks. We introduced five
leakage models and illustrated their differences on small examples and on an emulated assembly
implementation of SecMult. Finally, we implemented several benchmarks from the literature
and showed the accuracy of the implementation, since all leakage-free expressions were proven
leakage-free despite the incompleteness of the method, while maintaining low computations
times. For these reasons, we believe that the ease of use, performance and accuracy of SELA
can make it a good candidate for being used as a base for leakage verification in different
contexts.

A first direction for future work consists in adding a support for modelling hardware glitches,
and in providing an efficient implementation of higher order verifications. A second direction is
to combine the approach of SELA with an inference approach, in order to take advantage of the
latter whenever possible, and fall back to the current approach when inference cannot conclude.
Finally, a last axis of research concerns the link between leakage models and physical leakages;
this includes launching investigations using physical experiments regarding the validity and
sensitivity of the leakage models introduced, but more generally finding the level of description
required in order to have a correspondence between modeled leakages and real leakages.

References
[1] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-Xavier Standaert.

On the cost of lazy engineering for masked software implementations. In International Conference
on Smart Card Research and Advanced Applications, pages 64–81. Springer, 2014.

[2] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Grégoire, and
François-Xavier Standaert. maskverif: Automated verification of higher-order masking in presence
of physical defaults. In European Symposium on Research in Computer Security, pages 300–318.
Springer, 2019.

[3] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and
Pierre-Yves Strub. Verified proofs of higher-order masking. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 457–485. Springer, 2015.

[4] Gilles Barthe, Sonia Belaïd, Pierre-Alain Fouque, and Benjamin Grégoire. maskverif: a formal tool
for analyzing software and hardware masked implementations. IACR Cryptology ePrint Archive,
2018:562, 2018.

[5] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-
Yves Strub. Easycrypt: A tutorial. In Foundations of Security Analysis and Design VII, pages
146–166. Springer, 2014.

[6] Régis Bevan and Erik Knudsen. Ways to enhance differential power analysis. In International
Conference on Information Security and Cryptology, pages 327–342. Springer, 2002.

[7] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage
model. In International Workshop on Cryptographic Hardware and Embedded Systems, pages 16–
29. Springer, 2004.

[8] A Adam Ding, Cong Chen, and Thomas Eisenbarth. Simpler, faster, and more robust t-test based
leakage detection. In International Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 163–183. Springer, 2016.

[9] Inès Ben El Ouahma, Quentin L Meunier, Karine Heydemann, and Emmanuelle Encrenaz. Sym-
bolic approach for side-channel resistance analysis of masked assembly codes. In 6th International
Workshop on Security Proofs for Embedded Systems (PROOFS), 2017.

14



SELA: a Symbolic Expression Leakage Analyzer Q. L. Meunier, I. Ben El Ouahma, K. Heydemann

[10] Pengfei Gao, Hongyi Xie, Jun Zhang, Fu Song, and Taolue Chen. Quantitative verification of
masked arithmetic programs against side-channel attacks. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 155–173. Springer, 2019.

[11] Pengfei Gao, Jun Zhang, Fu Song, and Chao Wang. Verifying and quantifying side-channel re-
sistance of masked software implementations. ACM Transactions on Software Engineering and
Methodology (TOSEM), 28(3):1–32, 2019.

[12] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information analysis.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages 426–442.
Springer, 2008.

[13] Louis Goubin. A sound method for switching between boolean and arithmetic masking. In In-
ternational Workshop on Cryptographic Hardware and Embedded Systems, pages 3–15. Springer,
2001.

[14] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. IACR Cryptology ePrint Archive,
2016:486, 2016.

[15] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An aes smart card implementation
resistant to power analysis attacks. In ACNS, volume 3989, pages 239–252. Springer, 2006.

[16] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing
attacks. In Annual International Cryptology Conference, pages 463–481. Springer, 2003.

[17] Yongdae Kim, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and Akashi Satoh. Biasing
power traces to improve correlation power analysis attacks. In First International Workshop on
Constructive Side-Channel Analysis and Secure Design (COSADE 2010), pages 77–80. Citeseer,
2010.

[18] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Annual International
Cryptology Conference, pages 388–397. Springer, 1999.

[19] Thanh-Ha Le, Jessy Clédière, Cécile Canovas, Bruno Robisson, Christine Servière, and Jean-Louis
Lacoume. A proposition for correlation power analysis enhancement. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 174–186. Springer, 2006.

[20] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Revealing the
secrets of smart cards, volume 31. Springer Science & Business Media, 2008.

[21] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implementations against
side-channel attacks and glitches. In International conference on information and communications
security, pages 529–545. Springer, 2006.

[22] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Verbauwhede. Con-
solidating masking schemes. In Annual Cryptology Conference, pages 764–783. Springer, 2015.

[23] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. Fast leakage assessment. In Inter-
national Conference on Cryptographic Hardware and Embedded Systems, pages 387–399. Springer,
2017.

[24] Microsoft Research. Z3py-python interface for the z3 theorem prover, 2012.
[25] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of aes. In Inter-

national Workshop on Cryptographic Hardware and Embedded Systems, pages 413–427. Springer,
2010.

[26] Tobias Schneider and Amir Moradi. Leakage assessment methodology. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 495–513. Springer, 2015.

[27] Elena Trichina. Combinational logic design for aes subbyte transformation on masked data. IACR
Cryptology ePrint Archive, 2003:236, 2003.

[28] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. Sc infer: refinement-based verification of
software countermeasures against side-channel attacks. In International Conference on Computer
Aided Verification, pages 157–177. Springer, 2018.

15


	Introduction
	Background and Related Works
	Masking Schemes
	Masking Verification

	SELA
	Overall Presentation
	Internal Representation of Expressions
	Supported Operations
	Leakage Models
	Simplifications Rules and Strategies
	Access to array elements

	Experiments
	Leakage Assessment and Performance
	Simplification Strategies
	Limitations and Directions for Future Work

	Conclusion

