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ABSTRACT

A new sparse estimation method was recently introduced in a pre-
vious work to correct biases due to multipath (MP) in GNSS me-
asurements. The proposed strategy was based on the resolution of
a LASSO problem constructed from the navigation equations using
the reweighted-`1 method. This strategy requires to adjust the re-
gularization parameters balancing the data fidelity term and the in-
volved regularizations. This paper introduces a new Bayesian es-
timation method allowing the MP biases and the unknown model
parameters and hyperparameters to be estimated directly from the
GNSS measurements. The proposed method is based on Bernoulli-
Laplacian priors, promoting sparsity of MP biases.

Index Terms— GNSS, multipath, sparse representation

1. INTRODUCTION

Satellite navigation consists in estimating the position of a receiver
using satellite measurements such as pseudoranges and Doppler me-
asurements (also referred to as pseudorange rates) [1, ch. 7] leading
to the following observation model

ρi,k = f1(rk) + εi,k, ρ̇i,k = f2(vk) + ε̇i,k (1)

for i = 1, ..., sk, where sk is the number of visible satellites at
instant k, ρi,k and ρ̇i,k are the pseudorange and pseudorange rate
(which is colinear to the Doppler [1, ch. 7]) for satellite #i at time
k, rk = (xk, yk, zk, bk)T contains the receiver position and clock
bias, vk = (ẋk, ẏk, żk, ḃk)T gathers the receiver velocity and clock
drift, f1 and f2 are two nonlinearities (defined for instance in [1, pp.
203 and 205]) and εi,k and ε̇i,k are measurement errors, e.g., due to
atmospheric delays, multipath (MP) or relativity. The sequential es-
timation of the states rk and vk from (1) has received a considerable
attention in the literature. A classical solution is to linearize the ob-
servation equations and to determine the unknown vector by using
the least squares method or the extended Kalman filter (EKF) [1,
ch. 3]. More precisely, denote as yk = (y1,k, ..., y2sk,k)T ∈ R2sk

the vector of pseudorange errors, where yi,k = ρi,k − ρ̂i,k is the
difference between the ith pseudorange at time k and its estima-
tion, ysk+i,k = ρ̇i,k − ˆ̇ρi,k is the difference between the ith pseu-
dorange rate at time k and its estimation, i = 1, ..., sk where sk
is the number of pseudorange measurements at time k. We intro-
duce the state vector xk = (xT1,k,x

T
2,k)T at time instant k with

x1,k = rk − r̃k, x2,k = vk − ṽk (where r̃k and ṽk will be ex-
plicited later), the Jacobian matrix Hk ∈ Rsk×4 associated with
the non-linear transformation at time instant k (which is the same
for the two functions f1 and f2 [1, ch. 7]), the residual error vector
ξk = (ξ1,k, ..., ξ2sk,k)T ∈ R2sk containing the residual error for
the ith pseudorange at time instant k denoted as ξi,k and the resi-
dual error for the ith pseudorange rate at time instant k denoted as

ξsk+i,k, for i = 1, ..., sk. All the notations introduced before lead
to the following observation equation

yk =

[
Hk 0sk
0sk Hk

]
xk + ξk (2)

where 0sk is the sk × sk zero matrix, which is complemented by a
state equation to be processed by the EKF.

A new estimation method was recently introduced by the aut-
hors of this paper to estimate and correct additive biases, e.g., due
to MP, possibly affecting the observed measurements defined in (2)
thanks to sparse regularization [2]. The proposed strategy was based
on the resolution of a LASSO problem constructed from the naviga-
tion equations using the reweighted-`1 method. It required to adjust
the regularization parameters balancing the data fidelity term and the
involved regularizations. This paper introduces a new Bayesian es-
timation method allowing the MP biases and the unknown model
parameters and hyperparameters to be estimated directly from the
GNSS measurements.

The paper is organized as follows. Section 2 introduces the sta-
tistical model based on Bernoulli-Laplacian priors used to mitigate
MP biases in GNSS measurements. Section 3 studies a Markov
chain Monte Carlo method to sample the posterior distribution of
this statistical model and to build estimators of the unknown mo-
del parameters. Section 4 presents simulation results allowing the
performance of the proposed estimation method to be appreciated.
Conclusions are finally reported in Section 5.

2. MUTIPATH MITIGATION

The proposed MP mitigation strategy assumes that residual errors
affecting the pseudoranges and pseudorange rates are essentially due
to MP and can be modeled by additive biases leading to

ξk = mk + nk (3)

where mk = (mi,k)i=1,...,sk contains the MP biases for the line-
arized pseudoranges and pseudorange rates at time instant k, and
nk = (ni,k)i=1,...,sk is an additive zero mean Gaussian noise vec-
tor whose covariance matrix is denoted as Rk. More precisely,
mi,k = 0 when there is no MP affecting the pseudorange relative
to satellite #i, and mi,k 6= 0 when there is an MP affecting this
pseudorange (the same definition applies to mi+sk,k, i.e., to the va-
riable associated with the pseudorange rate relative to satellite #i
at time instant k). A last assumption is that some satellites are not
affected by MP, which will be taken into account by considering a
Bernoulli-Laplace prior for mi,k, allowing the navigation problem
to be solved using a Bayesian framework. This section defines the
different parts of the hierarchical Bayesian model that will be consi-
dered to solve the estimation problem defined by (2) and (3).



2.1. State model

We consider a random walk state model for the state vector (rTk ,v
T
k )T

defined by the propagation equation[
rk+1

vk+1

]
= F k

[
rk
vk

]
+ uk with F k =

[
I4 (∆tk)I4
04 I4

]
(4)

where I4 is the R4×4 identity matrix, 04 is the R4×4 zero matrix,
∆tk is the time between instants k and k+ 1, and uk is a zero-mean
Gaussian noise of covariance matrixQk ∈ R8×8, leading to

uk ∼ N (08,Qk) (5)

where 08 is the zero vector of R8. This state model has been used in
several navigation solution, including the EKF.

2.2. Observation model

The sk pseudorange and Doppler measurements can be classically
expressed as

yk = H̄kxk +mk + nk (6)

where yk = (yi,k)i=1,...,2sk ∈ R2sk is defined in Section 1, H̄k ∈
R2sk×8 is a block diagonal matrix with two blocks equal to Hk,
and nk is an additive white Gaussian noise with covariance matrix
Rk. In order to account for different noise variances for the pseudo-
ranges and pseudorange rates, we assume that Rk = diag(σ2

i,k) ∈
R2sk×2sk is a diagonal matrix, whose elements

σ2
i,k =

{
c1,kµi,k, i = 1, . . . , sk,
c2,kµi,k, i = sk + 1, . . . , 2sk

, µi,k = 10−
(C/N0)i,k

10

(7)

are related to the signal to noise ratio in the ith channel at time instant
k (denoted as (C/N0)i,k, provided by standard receivers). Note that
this formulation was proposed in [3] with c1,k = 1.1 × 104 m2. In
this paper, based on the analysis of various, real datasets, we will use
c2,k = 1.1 × 102 m2.s−2, in order to have a pseudorange variance
100 times larger than the pseudorange rate variance. Assuming that
the different measurement vectors are independent, the joint likeli-
hood of yk is

f(yk|θk) =

sk∏
i=1

f(yi,k|θ1,k)

2sk∏
i=sk+1

f(yi,k|θ2,k) (8)

where the first term is related to the pseudoranges and the second one
to the pseudorange rates. By denoting as hTi,k the i-th row of the ma-
trixHk, we obtain yi,k ∼ N (hTi,kx1,k+mi,k, σ

2
i,k) and yi+sk,k ∼

N (hTi,kx2,k +mi+sk,k, σ
2
i+sk,k

), for i = 1, . . . , sk. Moreover, we
use the notation θk = (θT1,k,θ

T
2,k)T with θ1,k = (xT1,k,m

T
1:sk,k

)T

and θ2,k = (xT2,k,m
T
sk+1:2sk,k

)T . After defining the observation
equations for our navigation model, we need to define the priors as-
sociated with the unknown model parameters, that are classically
used in any Bayesian inference. These priors will be used to de-
termine the posterior distribution p(θk|yk) and to define Bayesian
estimators of θk.

2.3. Priors

2.3.1. State vector

We introduce a state vector xk defined as

xk =

[
rk
vk

]
−
[
r̃k
ṽk

]
(9)

where (r̃k, ṽk) is a point around which (1) has been linearized. Ac-
cording to the EKF theory, we have[

r̃k
ṽk

]
= F k−1

[
r̂k−1

v̂k−1

]
(10)

where (r̂Tk−1, v̂
T
k−1)T is the state vector estimated at time instant

k − 1, leading to the following prior for xk

xk ∼ N (xk; 08,F k−1P k−1|k−1F
T
k−1 +Qk−1) (11)

where P k−1|k−1 is the state covariance matrix estimated at the pre-
vious time instant k − 1. Note that this prior depends on all the me-
asurements acquired before time instant k via the covariance matrix
P k−1|k−1 (notations involving conditioning on the previous measu-
rements y1:k−1 are omitted for brievity, see the technical report [4]
for more details).

2.3.2. MP vectormk

The components of the MP vector mk can be equal to zero when
the corresponding channel is not affected by MP, or different from
zero when there is MP corrupting this channel. In order to promote
sparsity, we assign Bernoulli-Laplace priorr to these vectors. Note
that this kind of prior has been used successfully in different appli-
cations [5, 6, 7]. Based on these works, the following probability
density function (pdf) is chosen as prior for mi,k

f(mi,k|a1,k, zi,k) ∝

{
δ(mi,k) if zi,k = 0

exp
(
−a1,kwi,k√

c1,k
|mi,k|

)
if zi,k = 1

(12)
for i = 1, . . . , sk, where zi,k is a binary random variable indicating
the presence or absence of MP in the ith measurement at time instant
k. A similar prior is used for mi,k for i = sk + 1, . . . , 2sk by chan-
ging (a1,k, c1,k) to (a2,k, c2,k). Note that the hyperparameters a1,k
and a2,k control the amplitudes of the non-zero MP components in
the pseudoranges and pseudorange rates and that wi,k is a weight
defined as an increasing function of (C/N0)i,k (as in [8]) and of the
ith satellite elevation. Indeed, the higher (C/N0)i,k, the better. Si-
milarly, the higher the elevation, the better. In order to simplify the
analysis and finish the description of the proposed model, we pro-
pose to consider the completion procedure initially suggested in [9].
This completion consists of introducing one latent variable τ2i,k for
each MP bias mi,k, in order to obtain simpler conditional distributi-
ons. These conditional distributions will be used in the Gibbs sam-
pler considered to sample the posterior of interest. Thus, as in [9],
we assign the following prior to (τ2i,k,mi,k), for i = 1, ..., sk

τ2i,k|a1,k ∼ E

(
τ2i,k;

2

w2
i,ka

2
1,k

)
(13)

mi,k|zi,k, τ2i,k ∼
{
δ(mi,k) if zi,k = 0
N (mi,k; 0, c1,kτ

2
i,k) if zi,k = 1

(14)

where E(.) denotes the exponential distribution. A similar prior
is used for i = sk + 1, ..., 2sk, by replacing (a1,k, c1,k) with
(a2,k, c2,k).The indicator variable zi,k is classically assigned a Ber-
noulli prior. We assume that the MP probabilities are different
for pseudoranges and pseudorange rates. Thus, zi,k is assigned a
Bernoulli prior with parameter p1,k ∈]0, 1[ for i = 1, ..., sk, and
parameter p2,k ∈]0, 1[ for i = sk + 1, ..., 2sk

zi,k|p1,k ∼ B(zi,k; p1,k), i = 1, ..., sk

zi,k|p2,k ∼ B(zi,k; p2,k), i = sk + 1, ..., 2sk (15)



with zk = (z1,k, ..., z2sk,k)T and pk = (p1,k, p2,k)T . Assuming
a priori independence for the variables zi,k, the following indicator
prior is obtained

f(zk|pk) =

sk∏
i=1

f(zi,k|p1,k)

2sk∏
i=sk+1

f(zi,k|p2,k). (16)

Similarly, assuming mi,k, τi,k|ak,zk are independent leads to

f(mk, τ k|ak,zk) =

2sk∏
i=1

f(mi,k|zi,k, τ2i,k)f(τ2i,k|ak) (17)

with τ k = (τ1,k, ..., τ2sk,k)T and ak = (a1,k, a2,k)T .

2.3.3. Joint prior distribution

Combining (11), (16) and (17) and assuming prior independence be-
tween the different parameters, the following prior is obtained

f(θk,zk|ϕk) = f(xk)f(mk, τ k|ak,zk)f(zk|pk) (18)

where ϕk = (aTk ,p
T
k )T is the hyperparameter vector.

2.4. Hyperpriors

The priors defined in the previous section depend on hyperpara-
meters forming the vector ϕk = (ϕT1,k,ϕ

T
2,k)T , with ϕj,k =

(pj,k, a
2
j,k)T . Independent uniform priors are assigned to the

probabilities pj,k expressing the absence of knowledge about the
probability of having an MP in a given channel, i.e.,

pj,k ∼ U[0,1](pj,k), j = 1, 2. (19)

The hyperpriors for the MP amplitudes a1,k and a2,k are defined
using non-informative Jeffreys priors leading to

f(a2j,k) ∝ 1/a2j,k, j = 1, 2 (20)

and to the following joint hyperprior

f(ϕk) =

2∏
j=1

[
f(pj,k)f(a2j,k)

]
. (21)

2.5. Posterior distribution

The posterior distribution of the proposed Bayesian model can be
derived using the hierarchical structure between the observation mo-
del, the model parameters and hyperparameters, leading to

f(θk,zk, τ
2
k,ϕk|yk) ∝ f(yk|θk)f(θk,zk|ϕk)f(ϕk) (22)

where the likelihood f(yk|θk) has been defined in (8), the parameter
prior f(θk,zk|ϕk) in (18) and the hyperprior f(ϕk) in (21).

3. GIBBS SAMPLER

Obtaining closed-form expressions of Bayesian estimators (such as
the minimum mean square error (MMSE) estimator or the maxi-
mum a posteriori (MAP) estimator) of the unknown model parame-
ters associated with the posterior (22) seems to be very complicated.
Therefore we propose to draw samples from the posterior distribu-
tion (22) and to use these samples to compute estimators of the mo-
del parameters. More precisely, we consider a Gibbs sampler whose
principle is to sample the different variables according to their con-
ditional distributions [10] that are provided below.

3.1. Conditional distributions

Mathematical details allowing the conditional distributions of the
proposed Bayesian model to be computed are omitted here for bre-
vity (but can be found in the technical report [4]). Table 1 summa-
rizes the different results, where E , N , GIG, IG and Be are the ex-
ponential, normal, generalized inverse Gaussian, inverse gamma and
beta distributions. Note that different definitions of the GIG distri-
bution can be found in the literature. Here, GIG(x|p, a, b) denotes
the distribution whose probability density function is

f(x) ∝ xp−1 exp

[
−1

2

(
ax+

b

x

)]
1R+(x)

where 1R+(x) denotes the indicator function on R+. Furthermore,
denoting as ‖zk‖0,j the `0 pseudo-norm of the vector containing the
element zk,i, i ∈ Ij , the following notations have been used

µmi,k =


τ2i,k

µi,k+τ
2
i,k

(yi,k − hi,kx1,k), i = 1, ..., sk

τ2i,k
µi,k+τ

2
i,k

(yi,k − hi−sk,kx2,k), i = sk + 1, ..., 2sk

(23)

σ2
mi,k

=


c1,kµi,kτ

2
i,k

µi,k+τ
2
i,k

, i = 1, ..., sk

c2,kµi,kτ
2
i,k

µi,k+τ
2
i,k

, i = sk + 1, ..., 2sk
(24)

ui,k =

{
1− p1,k, i = 1, ..., sk
1− p2,k, i = sk + 1, ..., 2sk

(25)

vi,k =


p1,k√
c1,k

√
σ2
mi,k

τ2
i,k

exp

(
µ2
mi,k

2σ2
mi,k

)
, i = 1, ..., sk

p2,k√
c2,k

√
σ2
mi,k

τ2
i,k

exp

(
µ2
mi,k

2σ2
mi,k

)
, i = sk + 1, ..., 2sk

(26)

Σ−1
xk

= H̄
T
kR
−1
k H̄k + (F kP k|kF

T
k +Qk)−1 (27)

µxk
= ΣxkH̄

T
kR
−1
k (yk −mk). (28)

and thus we update the state covariance matrix asP k+1|k+1 = Σxk .

τ2i,k

E
(
τ2i,k; 2

a2
1,k

w2
i,k

)
if zi,k = 0, i ∈ I1

GIG
(
τ2i,k; 1

2
, w2

i,ka
2
1,k,

m2
i,k

c1,k

)
if zi,k = 1, i ∈ I1

E
(
τ2i,k; 2

a2
2,k

w2
i,k

)
if zi,k = 0, i ∈ I2

GIG
(
τ2i,k; 1

2
, w2

i,ka
2
2,k,

m2
i,k

c2,k

)
if zi,k = 1, i ∈ I2

mi,k

δ(mi,k) if zi,k = 0

N
(
mi,k;µmi,k , σ

2
mi,k

)
if zi,k = 1

zi,k B
(
zi,k;

vi,k
ui,k+vi,k

)
xk N

(
xk;µxk

,Σxk

)
a2j,k G

(
a2j,k; sk,

1
2

∑
i∈Ij w

2
i,kτ

2
i,k

)
pj,k Be (pj,k; ‖zk‖0,j + 1, sk − ‖zk‖0,j + 1)

Table 1: Conditional distributions of the parameters and hyperpara-
meters, where I1 = (1, ..., sk) and I2 = (sk + 1, ..., 2sk).



3.2. Estimators

Once the different samples have been generated by the Gibbs sam-
pler, the unknown model parameters are estimated as

ẑ = arg max
z∈{0,1}2n

#M(z) (29)

p̂ =
1

#M(ẑ)

∑
m∈M(ẑ)

p(m) where p ∈ {θ, τ2,ϕ} (30)

where #A denotes the cardinal of the setA, Ja, bK denotes the set of
integers in [a, b] and

M(z) = {m ∈ Jnburn-in + 1, niterK,z(m) = z} (31)

where nburn-in is the burn-in period (containing the first observations
of the chain that are not considered in the estimation) and niter is the
total number of iterations. Note that the Gibbs sampler convergence
was accelerated using Metropolis-Hastings moves as in [4].

4. EXPERIMENTAL VALIDATION

The proposed algorithm was validated using synthetic data, allo-
wing its performance to be assessed with controlled ground truth.
For this validation, GNSS measurements associated with 8 satellites
were generated according to (6), with satellite and receiver positions
extracted from real data. These measurements were contaminated
by additive Gaussian noise with known C/N0 values. MP vectors
mk, referred to as biases, were finally generated (with known lo-
cations) and added to the noisy GNSS measurements. More preci-
sely, we considered a scenario using a real trajectory. Fixed biases
were then generated between time instants 50 and 130 in 3 channels
(corresponding to 3 satellites). Noise variances were finally genera-
ted in agreement with the values of C/N0 as in (7) and the weights
wi,k appearing in the MP prior were computed following [8] (with
the corresponding C/N0 values). More details about the simulation
scenario including the trajectory and the parameters of interest can
be found in [4].

The Gibbs sampler was run with 10000 iterations including
a burn-in period of 1000 samples, to make sure the sampler has
converged. This convergence was confirmed by computing the
so-called potential scale reduction factor (PSRF) [11] at each time
instant for each parameter. We checked that this PSRF does not
exceed 1.2 as recommended in [12]. The estimated pseudorange
biases and the corresponding areas representing ± standard devi-
ations (computed using 100 Monte Carlo runs) are displayed in
Fig. 1. Note that there is no false detection in absence of MP
(k ∈ {1, ..., 49, 131, ..., 200}) and that the bias amplitudes are
correctly estimated for k ∈ {50, 130}. Note also that peaks in
the standard deviations correspond to missed detections for a given
Monte Carlo run (the higher the theoretical bias, the higher the
standard deviation). The corresponding planar and altitude position
errors are displayed in Fig. 2 and compared to the EKF errors. We
can observe that the bias estimation allows the position errors to be
reduced in the presence of MP. More details including estimated
pseudorange rate biases or posterior distributions of the unknown
parameters can be found in [4].

5. CONCLUSION

This paper studied a new Bayesian model for estimating the multi-
path biases potentially affecting GNSS measurements. This model

was based on Bernoulli-Laplace priors exploiting the potential pre-
sence of MP biases in the different satellite channels. Interesting
properties of the proposed algorithm are 1) it does not require to ad-
just regularization parameters as in [2], 2) it only requires the prior
knowledge of two hyperparameters, namely c1 and c2, correspon-
ding to average noise variances. The results obtained on realistic
data (with controlled ground truth) are globally very promising.

Our future work will be dedicated to study the performance of
the proposed algorithm in more constrained environments with dif-
ferent levels of sparsity for the multipath biases. Another prospect
would be to reduce the computational complexity of the proposed
sampler, e.g., by considering variational Bayesian approaches.

0 50 100 150 200

-20

0

20

40

60

Fig. 1: Ground truth (plain) and estimated biases (dotted) for pseu-
doranges versus time (100 Monte Carlo runs).

Fig. 2: Planar and altitude errors versus time (for the EKF and pro-
posed method).
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