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Abstract

Nous étudions des agents exprimant des buts proposi-

tionnels sur un ensemble de questions binaires pour parve-

nir à une décision collective. Nous adaptons les propriétés

et les règles de la littérature sur la Théorie du Choix Social

à notre contexte, en fournissant une caractérisation axio-

matique d’une règle de la majorité pour le vote par buts.

Nous étudions la complexité computationnelle de trouver le

résultat de nos règles (c.-à-d., winner determination), mon-

trant qu’il va du temps polynomial non déterministe (NP) au

temps polynomial probabiliste (PP).

1 Introduction

Social choice and voting have become part of the standard

computational toolbox for the design of rational agents that

need to act in situations of collective choice [28, 4]. In

a variety of applications ranging from product configura-

tion to multiple sensor control, the space of alternatives

from which a collective choice needs to be taken is often

combinatorial. This has brought many researchers to intro-

duce compact languages for preference representation, and

to design collective procedures that act directly on a com-

pactly represented preference input (see, e.g., the survey by

Lang and Xia[22]).

When facing collective decisions with multiple binary

issues, the framework of reference is judgment aggregation

(see, e.g., List [24], Lang and Slavkovik [21], and Endriss

[13]). A vast literature explores the computational com-

plexity of this framework [14, 2, 16] and applications range

from multiagent argumentation [1] to the collective anno-

tation of linguistic corpora [27]. However, when conside-

ring collective decision-making in practice, the rigidity of

representing individual views as complete judgments over

issues poses serious obstacles, as is evident in the following

example inspired by the traveling group problem [18] :

Example 1. An automated travel planner is organising a

city trip for a group of friends, Ann, Barbara, and Camille,

deciding whether to include a visit to a Church, a Museum,

and a Park. Ann wants to see all the points of interest,

Barbara prefers to have a walk in the Park, and Camille

would like to visit a single point of interest but she does not

care about which one. A judgment-based automated plan-

ner would require agents to specify a full valuation for each

of the issues at stake, obtaining the following :

Church Museum Park

Ann �X �X �X

Barbara �× �× �X

Camille �× �X �×

The result by majority is a plan to visit both the Museum

and the Park. However, Camille voted for the Museum

only because asked for a complete judgment, and she was

unable to express her truthful goal to “visit a single place,

no matter which one” that the result does not satisfy.

The option of allowing individuals to abstain on issues,

as proposed by Dietrich and List [9], and Dokow and Holz-

man [11], is easily seen to be insufficient in modelling Ca-

mille’s preference in Example 1. Moreover, the obvious

candidate for aggregating propositional goals, logic-based

belief merging [19], is ruled out as its rules are not deci-

sive, i.e., they often output a number of equally preferred

plans. Building on an original idea of Lang [20], we use a

simple language of propositional goals to model individual

preferences, defining and studying several rules to find the

most preferred common alternative directly on such input.

A general tension exists in current models of collective

decision making in combinatorial domains : on one side is

the decisiveness or resoluteness of the rule—i.e., its abi-

lity to take a unique decision in most situations—and on



the other side are fairness requirements, with respect to is-

sues and individuals. Resoluteness is the primary concern

in the development of decision-aid tools such as automa-

ted travel planners, or collective product configurators, to

avoid returning to the users an excessive number of final

options to choose from. Therefore, our purpose is to define

rules that are as decisive as possible, whilst keeping high

standards of fairness as defined by classical work in social

choice and economic theory.

Related work. Judgment aggregation can be seen as

goal-based voting in which individuals express single-

model propositional goals. This is particularly evident in

the binary aggregation model [10, 15], and is also true

of judgments with abstentions, which correspond to goals

specified as partial conjunctions of (possibly negated) va-

riables. Propositional goals have been proposed as com-

pact representations of dichotomous preferences over com-

binatorial alternatives described by binary variables. So-

cial choice with dichotomous preferences has been widely

studied as a possible solution to the computational bar-

riers affecting classical preference aggregation (see, e.g.,

the recent survey by Elkind et al. [12]). However, to the

best of our knowledge it has not been applied to combina-

torial domains such as those studied in this paper. The vast

literature on boolean games [17] studies similar situations

in which agents are endowed with propositional goals ; yet,

our agents do not strategize and they control together the

value of the issues at stake. Finally, we acknowledge an

attempt at using logic-based belief merging to represent in-

dividual goals, using axiomatic properties from belief revi-

sion [7].

Paper structure. In Section 2 we introduce the frame-

work of goal aggregation, presenting our goal-based vo-

ting rules. In Section 3 we list desirable properties for such

rules, and prove a characterisation result. In Section 4 we

analyse the computational complexity of determining the

winner of goal-based voting, and in Section 5 we conclude.

2 Goal-Based Voting

We begin with basic definitions and we introduce voting

rules for goal-based collective decisions in multi-issue do-

mains.

2.1 Basic Definitions

Let N = {1, . . . , n} be a set of agents deciding over a

set I = {1, . . . ,m} of binary issues or propositions. Agent

i has individual goal γi, expressed as a consistent proposi-

tional formula over variables in I (using standard connec-

tives ∧, ∨, → and ¬). For instance, in Example 1 Camille’s

individual goal is γ3 = (1 ∧ ¬2 ∧ ¬3) ∨ (¬1 ∧ 2 ∧ ¬3) ∨
(¬1 ∧ ¬2 ∧ 3), since she wants to visit a single place.

An interpretation is a function v : I → {0, 1} associa-

ting a binary value to each propositional variable. We often

visualise v as the vector (v(1), . . . , v(m)). The set Mod(ϕ)

= {v | v |= ϕ} consists of all the models of formula ϕ. A

goal is exponentially more succint than the set of its mo-

dels. In voting terminology, interpretations correspond to

alternatives, and models of γi are the alternatives suppor-

ted by agent i. We assume that issues in I are independent,

i.e., all interpretations over I are feasible alternatives.

We indicate by mi(j) = (m1
ij ,m

0
ij) the number of 1/0

choices of agent i for issue j in the different models of her

goal γi, where mx
ij = |{v ∈ Mod(γi) | v(j) = x}| for x ∈

{0, 1}. For example, if Mod(γ1) = {(100), (010), (001)}
for issue j = 3 we have m1(3) = (m1

13,m
0
13) = (1, 2).

A goal-profile Γ = (γ1, . . . , γn) collects the goals of

all agents in N and a goal-based voting rule is a function

taking a goal-profile and returning a set of interpretations

as the collective outcome. Formally, it is a collection of

functions F : (LI)
n → P({0, 1}m) \ ∅ defined over any n

andmwhose input are n formulas submitted by the agents,

and whose output is a set of models over the m issues in I.

If a rule always outputs a singleton we call it re-

solute, and irresolute otherwise. We let F (Γ)j =
(F (Γ)0j , F (Γ)

1
j ), where F (Γ)xj = |{v ∈ F (Γ) | vj = x}|

for x ∈ {0, 1}, indicate the amount of 0/1 choices in

the outcome of F for j. We write F (Γ)j = x in case

F (Γ)1−x
j = 0 for x ∈ {0, 1}.

2.2 Conjunction and Approval Rules

We begin by introducing the following baseline rule :

Conj v(Γ) =

{

Mod(γ1 ∧ · · · ∧ γn) if non-empty

{v} for v ∈ {0, 1}m otherwise

The conjunction rule is an irresolute rule that outputs those

alternatives on which all agents agree, and a default other-

wise. While such consensual alternatives are clearly an op-

timal choice, they rarely exist—the purpose of voting being

to find compromises among conflicting individual goals. To

avoid default options, we introduce the following rule :

Approval(Γ) = argmax
v∈Mod(

∨
i∈N

γi)

|{i ∈ N | v ∈ Mod(γi)}|.

This rule expresses simple approval voting [3, 23]. It is also

studied by Lang [20] as the plurality rule, and in belief

merging as an instance of ∆
∑

,d
µ -rules by Konieczny and

Pérez [19]. Despite its intuitive appeal, approval-based vo-

ting is not adapted to combinatorial domains in which a

large number of alternatives might be approved by a few

agents only.

2.3 Issue-Wise Voting

We first introduce a large class of goal-based rules inspi-

red by the well-known quota rules from judgment aggrega-



tion [8]. Let µϕ : Mod(ϕ) → R be a function associating

to each model v of ϕ some weight µϕ(v), giving (possibly)

different weights to distinct models of the same formula.

Let threshold rules be defined as follows :

TrShµ(Γ)j = 1 iff
(

∑

i∈N

(wi·
∑

v∈Mod(γi)

v(j)·µγi
(v))

)

≥ qj

such that 1 ≤ qj ≤ n for all j ∈ I is the quota of issue

j, where for each v ∈ Mod(γi) we have µγi
(v) 6= 0 and

wi ∈ [0, 1] is the individual weight of agent i. To ease no-

tation we omit the vector q = (q1, . . . , qm) from TrShµ,

specifying the particular choice of thresholds for the is-

sues. Intuitively, threshold rules set a quota to be passed

for each issue to be accepted, with the additional flexibi-

lity of weights for agents and for models of the individual

goals.

From here, we can provide a first adaptation of the clas-

sical issue-wise majority voting for goal-based settings.

Inspired by equal and even cumulative voting [5] we call

EQuota rules those TrShµ procedures having µγi
(v) =

1
|Mod(γi)| and wi = 1 for all v ∈ Mod(γi) and for all

i ∈ N . Thus, the equal and even majority rule EMaj is

the EQuota rule having qj = ⌈n
2 ⌉ for all j ∈ I.

A second (irresolute) version of majority voting simply

compares for each issue the number of acceptances with

the number of rejections, weighting each goal model as

EQuota :

TrueMaj (Γ) = Πj∈IM (Γ)j

where for each j ∈ I :

M (Γ)j =

{

{x} if
∑

i∈N

mx
ij

|Mod(γi)| >
∑

i∈N

m
1−x

ij

|Mod(γi)|

{0, 1} otherwise

Intuitively, TrueMaj computes a weighted count of the 1s

and the 0s in all models of the individual goals, discounted

by the number of models of the formula sent by the agent.

In case of ties on an issue, the rule outputs all interpreta-

tions with either 0 or 1 for that issue.

We define a third version of the majority rule as

2sMaj(Γ) = Maj (Maj (γ1), . . . ,Maj (γn)), where Maj is

the classical issue-by-issue strict majority rule, that accepts

an issue if and only if a strict majority of the models of γi
does. This procedure belongs to a wider class of rules that

can be obtained by applying a first rule on each individual

goal, and a second, possibly different, rule on the results

obtained in the first step.

We now prove that the three proposed versions of goal-

based majority do not always return the same result.

Proposition 1. There exists goal-profiles on which the out-

comes of EMaj , TrueMaj and 2sMaj differ.

Proof sketch. In Table 1 we provide a profile for each pair

of rules on which their results differ. Consider Γ
1 and

Γ
1

Γ
2

Γ
3

Mod(γ1) (111) (111) (000)

(111) (111)

Mod(γ2) (001) (011) (110)

(000) (011)

(100) (111) (111)

Mod(γ3) (010) (011) (110)

(101) (000) (011)

EMaj (001) — (010)

TrueMaj (101) (111) —

2sMaj — (011) (111)

TABLE 1 – Three goal-profiles on which majority-based rules dif-

fer.

EMaj . For agents 1 and 2, the weight of the single mo-

del satisfying their goal is 1, while for the third agent is
1

|Mod(γ3)| = 1
3 . If we focus on the first issue,

m1

11

|Mod(γ1)| +
m1

21

|Mod(γ2)| +
m1

31

|Mod(γ3)| = 1 + 2
3 < 2, hence EMaj (Γ1)1 = 0.

Take TrueMaj instead. Since
∑

i∈N
m1

i1

|Mod(γi)| = 1 + 2
3 >

1 + 1
3 =

∑

i∈N
m0

i1

|Mod(γi)| we get TrueMaj (Γ1)1 = 1. The

calculations for the other cases can be obtained straightfor-

wardly.

3 Axiomatic Analysis

In this section we conduct an axiomatic analysis of the pro-

posed rules and we provide a characterisation of TrueMaj .

3.1 Axiom Definitions

A first straightforward generalisation of an axiom from

the literature on Social Choice Theory is the following :

Definition 1. A rule F is anonymous (A) if for any pro-

file Γ and permutation σ : N → N , we have that

F (γ1, . . . , γn) = F (γσ(1), . . . , γσ(n)).

Observe that all the presented rules are anonymous, ex-

cept for threshold rules with varying weights for the agents.

Define ϕ[j 7→ k] for j, k ∈ I as the replacement of each

occurrence of j by k in ϕ. The next axiom ensures that

issues are treated equally :

Definition 2. A rule F is neutral (N) if for all Γ

and σ : I → I, we have F (γσ1 , . . . , γ
σ
n) =

{(v(σ(1)), . . . , v(σ(m))) | v ∈ F (Γ)} where γσi =
γi[1 7→ σ(1), . . . ,m 7→ σ(m)].

TrShµ and EQuota rules are not neutral when the quo-

tas for two issues differ. Neither is Conj v , by permuting



issues in a profile of inconsistent goals resulting in a profile

of inconsistent goals, so that the same default v is chosen.

Approval is neutral, since the values for the issues are per-

muted in the models of the agents’ goals. Both TrueMaj

and 2sMaj have the same quota for all issues, and hence

they are neutral.

We then move to a controversial yet well-known axiom

in the literature, used in both characterisation and impossi-

bility results [24, 4].

First, let Dm = {(a, b) | a, b ∈ N and a+ b ≤ 2m} and

C = {{0}, {1}, {0, 1}}. Independence is formally defined

as :

Definition 3. A rule F is independent (I) if there are func-

tions f : Dn
m → C for j ∈ I such that for all profiles Γ we

have F (Γ) = Πj∈If(m1(j), . . . ,mn(j)).

Albeit being often identified as one of the main sources

of impossibilities in aggregation theory [24], we believe

that independent (i.e., issue-wise) rules are crucial in sol-

ving the tension between fairness and resoluteness in goal-

based voting. From the definitions we easily see that

TrShµ, EQuota and TrueMaj are independent, while

Conj v and Approval are not since they consider the profile

globally.

The next axiom holds whenever the unanimous choice

of the agents for an issue is respected in the outcome :

Definition 4. A rule F is unanimous (U) if for all profiles

Γ and for all j ∈ I, ifmx
ij = 0 for all i ∈ N then F (Γ)j =

1− x for x ∈ {0, 1}.

While if all agents accept or reject an issue the output of

TrueMaj and 2sMaj will agree with the profile, interestin-

gly TrShµ and EQuota rules do not satisfy it (by setting a

high enough quota) as well as Conj v (for a profile where

goals are inconsistent and thus the default is chosen).

We say that profiles Γ and Γ
′ are comparable if and only

if for all i ∈ N we have that |Mod(γi)| = |Mod(γ′i)|. Then,

a rule is positively responsive if adding (deleting) support

for issue j when the result for j is equally irresolute or fa-

vouring acceptance (rejection), results in an outcome stri-

cly favouring acceptance (rejection) for j.

Definition 5. A rule F satisfies positive responsi-

veness (PR) if for all comparable profiles Γ =
(γ1, . . . , γi, . . . , γn) and Γ

⋆ = (γ1, . . . , γ
⋆
i , . . . , γn), for

all j ∈ I and i ∈ N , if mx⋆
ij ≥ mx

ij for x ∈ {0, 1}, then

F (Γ)1−x
j ≥ F (Γ)xj implies F (Γ⋆)1−x

j > F (Γ⋆)xj .

Observe that all our presented versions of majority are

positively responsive, since they have a threshold of accep-

tance.

We conclude by presenting two important fairness

axioms. The first aims at formalising the “one man, one vo-

te” principle, and ensures that a rule is giving equal weight

to the models of each individual goal for all the agents. It

is satisfied by all EQuota rules as well as by TrueMaj :

Definition 6. A rule F is egalitarian (E) if for

all Γ, on the profile Γ
′ with |N ′| = |N | ·

lcm(|Mod(γ1)|, . . . , |Mod(γn)|), and for all i ∈ N and

v ∈ Mod(γi) there are
|N ′|

|N |·|Mod(γi)| agents in Γ
′ having

goal γ with Mod(γ) = {v}, it holds that F (Γ) = F (Γ′).

The second axiom instead focuses on possible biases to-

wards acceptance or rejection of the issues.

Definition 7. A rule is dual (D) if for all profiles Γ,

F (γ1, . . . , γn) = {(1− v(1), . . . , 1− v(m)) | v ∈ F (Γ)}
where γ = γ[¬1 7→ 1, . . . ,¬m 7→ m].

A similar requirement is called neutrality by May [25],

while in binary aggregation this is known as domain-

neutrality [15].

3.2 Characterising Goal-Based Majority Rules

A seminal result in characterising aggregation rules is

May’s Theorem [25], where an axiomatisation of the ma-

jority rule in the context of voting over two alternatives

is provided. A natural question to ask after defining three

versions of the majority rule is therefore whether one can

be axiomatised, building on May’s results. We answer this

question in the positive :

Theorem 1. A rule F satisfies (E), (I), (N), (A), (PR), (U)

and (D) if and only if it is TrueMaj .

Démonstration. Right-to-left follows from discussion in

Section 3.1. For left-to-right, consider a rule F . Let Γ be

an arbitrary profile over n voters and m issues. By (E),

we can construct a profile Γ
′ for m issues and n′ agents,

where n′ is as in Definition 6, in which each agent submits

a single-model goal and such that v ∈ F (Γ) if and only

if v ∈ F (Γ′). We therefore consider the restriction of F

on profiles over n′ agents and m issues where agents sub-

mit single-model goals. We denote G� such a set of pro-

files (hence, in particular, Γ′ ∈ G�). We now show that

F (Γ′) = TrueMaj (Γ′).
By (I), there are functions f1, . . . , fm such that F (Γ′) =

f1(m1(1), . . . ,mn(1))× · · · × fm(m1(m), . . . ,mn(m)).
Observe that since Γ

′ ∈ G�, we have mi(j) ∈
{(0, 1), (1, 0)} for all i ∈ N and j ∈ I. Hence, we can

equivalently see each f on profiles in G� as a function from

{0, 1}n to C. By (N) and (I) we get that f1 = · · · = fm,

i.e., the same function applies to all issues, let us denote it

with f .

By (A), any permutation of agents in Γ
′ gives the same

result F (Γ′). Hence, combining (A) with (I) and (N), we

have that only the number of ones (and zeroes) and not

their position is necessary to determine the outcome of f .

Hence, we can write it as f : {0, . . . , n} → C.

Consider now a profile Γ+ ∈ G� such that for all i ∈ N
we have m0

ij = 0. By (U) we know that F (Γ)0j = 0, i.e.,



v(j) = 1 for all v ∈ F (Γ), and consequently that f(n) =
{1}. Analogously we obtain that f(0) = {0}.

Let now s be a sequence of G�-profiles Γ
− = Γ

0,

Γ
1, . . . , Γn = Γ

+ where exactly one agent i at a step k

changes her goal γi such that m1
ij = 0 in Γ

k and m1
ij = 1

in Γ
k+1. By (I) and the definition of cartesian product, for

any Γ and j, F (Γ)j is either equal to (a, 0), (b, b) or (0, c)
for a, b, c ∈ N.

By (PR), the outcome of the Γ
k profiles in s can only

switch from (a, 0) to (b, b) or (0, c), and from (b, b) to

(0, c). In particular, this means that there is some number q

such that f(0) = {0}, . . . , f(q − 1) = {0}, f(q) = {0, 1}
or f(q) = {1}, and f(q + 1) = {1}, . . . , f(n) = {1}.

We now show that for n even, q = n
2 and f(q) = {0, 1},

while for n odd we have q = n+1
2 and f(q) = {1}. For n

even, consider profile Γ
ℓ where exactly half of the agents

accept j. If F (Γℓ)j = (0, a) or (c, 0), by (D) we would

need to reverse the outcome in F (Γ
ℓ
)j . However, the deci-

sion in both profiles is determined by f(n2 ), which is there-

fore equal to {0, 1}. For n odd, suppose that q < n+1
2 and

consider a profile Γ where there are exactly q agents ac-

cepting j. By (PR) we have F (Γ)j = (0, c). Consider now

profile Γ : we have |{i | mi(j) = (0, 1) for γi ∈ Γ}| =
|{i | mi(j) = (1, 0) for γi ∈ Γ}| = q < n+1

2 . Hence,

|{i | mi(j) = (0, 1) for γi ∈ Γ}| ≥ n+1
2 > q. Hence,

F (Γ)j = (0, c), contradicting (D). Suppose q > n+1
2

and consider a profile Γ where n+1
2 ≤ |{i | mi(j) =

(0, 1) for γi ∈ Γ}| < q. Then, F (Γ)j = (a, 0) and

F (Γ)j = (a, 0), again contradicting (D).

To sum up, F is defined as the cartesian product

of binary decisions taken by the same function f :
{0, . . . , n} → C. on each issue, with f(k) = {0, 1} for

n even and k = n
2 , f(k) = {0} for

∑

i∈N ′ m
x
ij >

∑

i∈N ′ m
1−x
ij for x ∈ {0, 1}, corresponding to the defi-

nition of TrueMaj . Since Γ is an arbitrary goal profile,

and TrueMaj satisfies (E), we obtained the desired equi-

valence.

While both EMaj and 2sMaj are based on similar intui-

tions as TrueMaj , EMaj has a bias towards the rejection

of the issues, while 2sMaj does not satisfy the equality

axiom. TrueMaj however remains the only irresolute rule

of the three, once more showing the tension between fair-

ness criteria and the decisiveness of a goal-based voting

rule.

We conclude with a seemingly negative result. A rule is

grounded if v ∈ F (Γ) implies v ∈ Mod(γ1 ∨ · · · ∨ γn).

Proposition 2. EQuota , TrueMaj and 2sMaj are not

grounded.

Démonstration. Consider profile Γ for 3 agents and 3 is-

sues where Mod(γ1) = {(111)}, Mod(γ2) = {(010)} and

Mod(γ3) = {(001)}. Both EQuota (with uniform quota

2), TrueMaj and 2sMaj return (011), contradicting groun-

dedness.

Hence, the three majority rules do not guarantee that the

collective choice will satisfy the goal of at least one agent.

However, by considering aggregation as compromising

between agents, it becomes less important for a rule to be

grounded.

4 Computational Complexity

In this section we study the computational complexity of

determining the result of goal-based voting, showing that

propositional goals entail a significant increase from stan-

dard voting, in some cases from P to Probabilistic Polyno-

mial time.

4.1 Winner Determination

We present two definitions for the winner determination

problem, for resolute and irresolute rules, in line with the

literature on judgment aggregation [14, 2, 16].

Note that we provide the existential version of the win-

ner determination problem — a universal definition is also

possible [21]. We start with resolute rules :

WINDET(F )

Input : profile Γ, issue j

Question : Is it the case that F (Γ)j = 1 ?

The outcome for F (Γ) can then be computed by repeatedly

answering the question in WINDET over all issues j ∈ I.

Next, we introduce the problem for irresolute rules.

WINDET
⋆(F )

Input : profile Γ, set S ⊆ I, partial model ρ : S → {0, 1}
Question : Is there a v ∈ F (Γ) with v(j) = ρ(j) for

j ∈ S ?

By answering to the question in WINDET
⋆ starting from a

set S with one issue and filling it with all the issues in I,

and checking possible values for the partial function ρ we

can construct a complete model in the outcome of F (Γ).

4.2 Conjunction and Approval Rules

Our first complexity result provides a lower bound for

the family of conjunction rules Conj v(Γ).

Theorem 2. WINDET
⋆(Conj v) is NP-hard.

Démonstration. We reduce from SAT. Let ϕ⋆[p⋆1, . . . , p
⋆
k]

be the formula over k variables whose satisfiability we

want to check. Construct an instance of WINDET(Conj v)
as follows. Let I = {p⋆1, . . . , p

⋆
k} ∪ {q}. Consider a pro-

file Γ = (γ1) for a single agent 1, such that γ1 = q ⊕ ϕ⋆,

for ⊕ the exclusive or. This formula is true if and only if

either q is true or ϕ⋆ is true, so that the default model v



is not needed. If we set S = {q} and ρ(q) = 0, we get

that ϕ⋆ is satisfiable if and only if for this instance of WIN-

DET
⋆(Conj v) the answer is yes.

Membership in NP is still open. The intuitive algorithm that

guesses a model v, then checks whether v |=
∧

i∈N γi,

if the answer is negative it checks v |=
∧

j∈S
ρ(j)=1

j ∧
∧

j′∈S

ρ(j′)=0

¬j′ (i.e., the formula expressing ρ), excludes the

case in which the conjunction of the goals is satisfiable, but

v is not a model.

The Approval rule is significantly harder. We first need

some definitions. Let Θp
2 = P

NP[log] be the class of decision

problems solvable in polynomial time by a Turing machine

that can make O(log n) queries to an NP oracle, for n the

size of the input. Consider the following Θp
2-complete pro-

blem [6] :

MAX-MODEL

Input : satisfiable propositional formula ϕ, variable p of ϕ

Question : Is there a model v ∈ Mod(ϕ) that sets a

maximal number of variables of ϕ to true and such that

v(p) = 1 ?

We are now ready to prove the following :

Theorem 3. WINDET
⋆(Approval ) is Θp

2-complete.

Démonstration. Membership in Θp
2 can be obtained from

Proposition 4 by Lang [20], using the following formula in

the definition of the ELECT-SAT problem :

ψ =
∧

j∈S
ρ(j)=1

j ∧
∧

j′∈S

ρ(j′)=0

¬j′.

For completeness, we give a reduction from MAX-

MODEL. Consider an instance of MAX-MODEL where

ϕ[p1, . . . , pm] is a satisfiable formula and pi for i ∈
{1, . . . ,m} is one of its variables. Construct now an ins-

tance of WIN-DET
⋆(Approval) in the following way. Let

Γ = (γ1, . . . , γm+1, γm+2, . . . , γ2m+1) be a profile such

that γ1 = · · · = γm+1 = ϕ and γm+2 = p1, . . . ,

γ2m+1 = pm.

We have that Approval(Γ) ⊆ Mod(ϕ), since a strict ma-

jority of m+1
2m+1 agents already supports all the models of

ϕ. Moreover, note that in this instance of Approval pre-

cisely the models maximising the number of variables set

to true in ϕ win. In fact, consider a model v ∈ Mod(ϕ) :

as explained, v gets the support of all the first m + 1
agents whose goal is ϕ, and then for all the agents in

{m + 2, . . . , 2m + 1} it gets the support of those agents

whose goal-variable is true in v. Specifically, the support

of v is (m+ 1) + |{pi | v(pi) = 1}|.
Hence, only those v ∈ Mod(ϕ) with a maximal number

of 1s are in the outcome of Approval(Γ). It now suffices

to set S = {pi} for pi the propositional variable in the

instance of MAX-MODEL and ρ(pi) = 1. Therefore, a for-

mula ϕ has a model with a maximal number of variables set

to true where pi is true if and only if WINDET
⋆(Approval)

returns yes on the constructed input.

4.3 Threshold Rules

We study the complexity of finding the outcome of

TrShµ rules for the special case where each model, as well

as each agent, has the same weight of 1. We start by stu-

dying the following auxiliary problem.

k−MODELSUM

Input : propositional formulas ψ1, . . . , ψℓ, number k ∈ N

Question : Is it the case that
∑

1≤i≤ℓ |Mod(ψi)| > k ?

We now find the complexity for k−MODELSUM.

Lemma 1. k−MODELSUM is NP-complete.

Démonstration. To show membership in NP guess

k1, . . . , kℓ numbers with ki ≤ k + 1 for all 1 ≤ i ≤ ℓ, and

guess X1, . . . , Xℓ sets, where Xi ⊆ 2|Var | for 1 ≤ i ≤ ℓ

and Var is the set of variables of ψ1, . . . , ψℓ. The size of

each Xi for 1 ≤ i ≤ ℓ is bounded by k + 1, and each Xi

corresponds to a set of models. It is then easy to check that

k1+ · · ·+kℓ > k, that for all 1 ≤ i ≤ ℓ we have |Xi| = ki
and for all vi ∈ Xi we have vi ∈ Mod(ψi).

For completeness, we reduce from SAT. Let ϕ⋆ be the

formula whose satisfiability we want to check. Construct

now an instance of k−MODELSUM where ψ1 = ϕ⋆ and

k = 1. Formula ϕ⋆ is satisfiable if and only if it has at least

one model, and SAT can be reduced to k−MODELSUM.

Now we can assess the complexity of the rule TrShµ.

Theorem 4. For µγi
(v) = 1 constant and wi = 1 for all

i ∈ N , WINDET(TrShµ
) is NP-complete.

Démonstration. For membership in NP consider a profile

Γ = (γ1, . . . , γn) and an issue j. Guess k1, . . . , kn num-

bers with ki ≤ k+1 for 1 ≤ i ≤ n, and guess X1, . . . , Xn

sets of models where Xi ⊆ 2m and for each v ∈ Xi we

have v(j) = 1 for i ∈ N . It is then easy to check whether

k1 + · · · + kn > qj , that for all i ∈ N we have |Xi| = ki
and for all vi ∈ Xi we have vi ∈ Mod(γi).

For completeness, we reduce from k−MODELSUM. Let

ψ1, . . . , ψℓ and k ∈ N be an instance of this problem.

Construct now an instance of WINDET(TrShµ) such that

Γ = (γ1, . . . , γℓ) where for all i ∈ N we have γi =
ψi ⊕ ¬p for p a fresh variable and ⊕ the exclusive or. This

is done since the formulas of the k−MODELSUM might be

inconsistent, while individual goals are always consistent.

Now, we choose j = p and we set qj = k. In this way,

every model v such that v(p) = 1 is a model of ψi for all

i ∈ N , and we can thus count if there are at least k models

of each ψi, which give TrShµ(Γ)p = 1.



While it would be easy to adapt this proof to deal with

different values for the individual weights wi (to be mul-

tiplied with the ki’s), for model weights as the ones in

EQuota rules it would be necessary to compute the num-

ber of models of each goal, thus making it a more difficult

problem.

4.4 Majority Rules

We now study the complexity of majority rules. We in-

troduce the complexity class PP, for Probabilistic Polyno-

mial Time, a class of problems that has rarely been encoun-

tered in the literature on computational social choice, and

we show that the three versions of the majority rule are PP-

hard. Membership is an open problem for future work.

Let PP be the class of decision problems solvable by a

non-deterministic Turing machine that accepts in strictly

more than half of all non-deterministic choices if and only

if the answer to the problem is yes [26]. Consider the fol-

lowing problem :

MAJ-SAT-p

Input : propositional formula ϕ, variable p of ϕ

Question : Is it the case that |Mod(ϕ ∧ p)| >

|Mod(ϕ ∧ ¬p)| ?

We first show that MAJ-SAT-p is PP-complete by redu-

cing from the PP-complete MAJ-SAT, the problem of deci-

ding whether a formula ϕ has more models than its nega-

tion.

Lemma 2. MAJ-SAT-p is PP-complete.

Démonstration. We start by showing membership in

PP. Consider the non-deterministic Turing machine that

guesses a model v for ϕ. Then, if v 6|= ϕ the machine ac-

cepts with probability 1
2 . If v |= ϕ∧ p the machine accepts

with probability 1 and if v |= ϕ ∧ ¬p the machine accepts

with probability 0.

For completeness, we reduce from MAJ-SAT. Consider

the formula ϕ as our instance of MAJ-SAT, and now let

ψ = (ϕ ∧ p) ∨ (¬ϕ ∧ ¬p) for p a fresh variable. We can

now observe that ϕ has more models than ¬ϕ if and only

if ψ ∧ p has more models than ψ ∧ ¬p, concluding the

reduction.

The next theorem gives a lower bound to computing the

outcome of the majority rules. Note that for TrueMaj we

study a (strict) resolute version TrueMaj r.

Theorem 5. WINDET(2sMaj ), WINDET(EMaj ) and

WINDET(TrueMaj r) are PP-hard.

Démonstration. The proof is analogous for the three rules,

so we only prove it for 2sMaj . We reduce from MAJ-SAT-

p. Consider the formulaϕ and the variable p ofϕ as our ins-

tance of MAJ-SAT-p. Consider now a profile Γ for a single

agent such that γ1 = ϕ. Since we are dealing with resolute

rules, we simply have to fix an issue and ask whether the

goal-based voting rule will accept or reject the issue. Given

that there is a single agent 1, we have that 2sMaj (Γ)p = 1
if and only if the set of models of γ1 accepts p more of-

ten than reject it. Therefore, ϕ ∧ p has more models than

ϕ ∧ ¬p if and only if 2sMaj (Γ)p = 1, completing the re-

duction.

While PP is the hardest class studied in this paper, the

axiomatic analysis of Section 3 as well as their intuitive de-

finitions make us champion our majority-based rules, and

TrueMaj in particular. We argue that the class PP is perva-

sive in propositional goal-based reasoning, calling for the

development of good algorithms for problems in this class.

5 Conclusions and Future Work

Starting from the observation that classical judgment

aggregation falls short in many examples of collective

decision-making in multi-issue domains, such as creating

a shared travel plan or collective product configuration, we

introduced new rules to aggregate a set of propositional

goals into a collectively satisfying alternative. In a quest

for resolute rules, we introduced three adaptations of the

classical majority rule, as well as other goal-based voting

rules, providing an axiomatic characterisation in line with

the literature on Social Choice Theory for one of them

(TrueMaj ). We concluded by investigating the computa-

tional complexity of determining the outcome of our rules,

showing that the use of propositional goals entails harder

complexity classes.

Our results open several paths for future research, most

notably in studying restrictions on the language of goals

that might determine islands of tractability for the winner

determination problem, or develop tractable approxima-

tions for their computation. Moreover, the quest for more

resolute and decisive rules may suggest novel voting pro-

cedures in related areas such as non-binary combinatorial

domains and more expressive compact languages for prefe-

rence representation. Finally, we focused on the basic case

of no integrity constraints, but it would be interesting to

study classes of constraints for which our rules always re-

turn consistent results.
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