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ABSTRACT

Aircraft certification procedures require the estimation of

wing deformation, which is a very challenging problem in

photogrammetry applications. Indeed, in real flight condi-

tions with varying environment, 3D reconstruction is strongly

degraded. To cope with this issue, we propose to introduce

prior knowledge about the wing mechanical limits in the

photogrammetry reconstruction method. These mechanical

limits are expressed as appropriate regularizations that are

included into the classical bundle adjustment step. The pro-

posed approach is evaluated using data acquired on a real

aircraft yielding promising results.

Index Terms— Bundle adjustment, optimization under

constraints, wing deformations, mechanical limits.

1. INTRODUCTION

In aircraft certification procedures, estimating the 3D defor-

mations of wings is necessary to evaluate and improve the-

oretical models of the aircraft behaviour under various con-

ditions (aircraft weight, speed, angle of attack, etc.). In or-

der to estimate these deformations during flight, we propose a

new multiple-view photogrammetry approach based on Bun-

dle Adjustment (BA) using cameras installed in the aircraft.

BA is a classical method for estimating jointly a 3D scene and

camera positions [1, p. 434]. First introduced for photogram-

metry reconstructions, it has also been widely used and im-

proved in robotics and computer applications, through struc-

ture from motion (SfM) [2, 3] and full simultaneous localiza-

tion and mapping (SLAM) [4] methods. BA is an iterative

method, which seeks to minimize a non-linear and non con-

vex objective function. Consequently, its convergence to a

global minimum of the cost function is not guaranteed and its

strong dependence to initial conditions can be a critical issue.

For the reasons mentioned above, 3D wing reconstruction

in flight is a very challenging problem in photogrammetry.

On the one hand, camera positions are subject to strong in-

stallation constraints. The only possible camera locations are

on the rear vertical stabilizer of the aircraft and on the aircraft
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windows. In such configuration, the end of the wing is viewed

under very low angle, which will strongly impact the accu-

racy of point detection in the images. Moreover, the distance

between cameras is also limited to guaranty overlapping in

views of the wing (about 15m distance for a 30m long wing).

On the other hand, we must face highly varying environment,

with luminosity changes, presence of possible reflections or

shadows, vibrations and deformations of the entire aircraft. In

this context, the classical BA method generally suffers from

observation imprecisions leading to many outliers.

To improve the performance of the classical BA method,

different constrained optimization strategies have been pro-

posed over the years, introducing prior knowledge about the

systems or scenes to reconstruct. In [2, 5, 6], prior knowledge

about the camera positions constructed from Global Position-

ing System (GPS) or Inertial Measurement Unit (IMU) data

are introduced in the BA as constraints for the camera pa-

rameters. Similarly coplanarity between neighbours or con-

straints on their positions through prior knowledge of a Dig-

ital Terrain Model (DTM) of the scene can be introduced in

the BA method [7, 8]. Note that GPS and DTM were used

jointly as priors to improve SLAM accuracy and robustness

in [9]. Finally, we would like to mention the use of prior

knowledge about 3D structure models, which were used in

model-assisted BA to enforce reconstructed 3D points to be

close to a reference model [10], [11].

In order to improve BA for wing deformation estimation,

the structure model cannot be used directly since it depends

on the model to be evaluated. The main contribution of this

paper is to investigate some prior knowledge resulting from

wing mechanical limits, beyond which the wing would break.

To this aim, we introduce an appropriate regularization in the

BA cost function [12, p. 564] constraining the 3D points to

respect these mechanical limits.

The remainder of the paper is organized as follows. Sec-

tion 2 recalls the principle of BA for 3D wing reconstruction.

Section 3 introduces the proposed mechanical constraints that

are used to define a new BA cost function defined in Section 4.

Experimental results are presented in Section 5. Conclusions

and perspectives are reported in Section VI.



2. BUNDLE ADJUSTMENT

BA is a common method, used in photogrammetry with

more than 2 views, to recover 3D-point coordinates and

camera parameters from 2D observations. Denote as αj =
(φj , θj , ψj , tj)

T the parameter vector of the camera j, where

φj , θj , ψj are the rotation angles and (tj) is the 3 × 1 trans-

lation vectors of the cameras. Given a set of M cameras and

N 3D-points denoted as X
i for i = 1, ..., N , the algorithm

seeks to minimize the distance between the projections of

X
i on camera j (for j = 1, . . . ,M ), denoted as x̂(αj ,X

i)
and the corresponding observed 2D points (xi

j) from camera

images:
argmin
αj ,X

i

∑

i,j

[

x
i
j − x̂(αj ,X

i)
]2
, (1)

where
x̂(αj ,X

i) =
1

wi
j

Kjl
i
j , (2)

where Kj is the 2× 3 matrix of the intrinsic camera parame-

ters, considered as known after system calibration, and

l
i
j = (uij , v

i
j , w

i
j)

T =
[

R
T
j ,−R

T
j tj

]

X
i (3)

with Rj the rotation matrix formed using Euler angles as

Rj =





1 0 0
0 cos (θj) − sin (θj)
0 sin (θj) cos (θj)



×





cos (φj) 0 sin (φj)
1 0 0

− sin (φj) 0 cos (φj)





×

[

cos (ψj) − sin (ψj) 0
sin (ψj) cos (ψj) 0

0 0 1

]

.

The estimation problem (1) is highly non-convex and thus

needs to be solved with efficient optimization methods. One

can think of using iterative methods such as Gauss-Newton or

Levenberg Marquardt (see [8] or [1, p. 597]). In both meth-

ods, the iterative steps from the initial guess to the optimum

parameter vector is guided by the Hessian matrix, which is

approximated as JT
J , where J is the Jacobian matrix.

An interesting property of the BA method is that the Ja-

cobian matrix (used for the different minimization steps) is

sparse, which allows the optimization to be fastened signifi-

cantly. Indeed, each projected point depends only on the cor-

responding 3D point and camera, leading to:

∂(xp
j − x̂(αj ,X

p))2

∂Xq = 0, ∀p 6= q, ∀j ∈ {1, ...,M} (4)

∂(xi
p − x̂(αp,X

i))2

∂αq

= 0, ∀p 6= q, ∀i ∈ {1, ..., N}. (5)

Moreover, all points are not necessarily seen by all cameras,

resulting in additional zero lines in the Jacobian matrix. The

final shape of the Jacobian is displayed in Fig. 1, where the

white elements denote the only non-zero entries of the matrix.

3. MECHANICAL CONSTRAINTS

In the specific case of wing deformations, one have access

to the Finite Element Models (FEM) of the wing, which al-

lows to calculate 3D wing shapes for all possible flight con-

figurations. These models can represent regular flight condi-

tions (which can not be used, as they are to be validated), but

Fig. 1. Example of sparse bundle adjustment Jacobian matrix

for 3 cameras and 10 points. The last rows represents the

simple constraint used in Section 5.

also limit conditions corresponding to the limits of the wing

materials. The approach considered in this work consists in

defining a constrained BA algorithm, exploiting these maxi-

mum and minimum deformation limits that can be supported

by the aircraft. More precisely, these limits correspond to the

extreme cases where the wing would break, which we assume

is not possible during the tests. These extreme cases lead to

an envelop of wing deformations, which will be used in the

estimation algorithm.

Denoting as Xi = (xi, yi, zi) the ith deformation point,

and using axes shown in Fig. 2, several limits can be taken

into account. These limits include

i. Volume constraints: each point has a specific volume

limit (sphere, ellipsoid, or some volume defined accord-

ing to the FEM data).

ii. Bending constraints: ∀i, ∃(bimin, b
i
max), such that the

bending ∂2zi

∂y2 ranges in [bimin, b
i
max],

iii. Torsion constraints: ∀i, ∃(timin, t
i
max), such that the tor-

sion ∂2zi

∂x∂y
ranges in [timin, t

i
max],

iv. Relative elongation constraint: ∀i, ∃ǫi, such that

d(Xi,Xi−1)− d0(X
i,Xi−1)

d0(X
i,Xi−1)

< ǫi (6)

where d(Xi,Xi−1) is the Euclidean distance between

points Xi and X
i−1 in the (x, y) plane, and d0(X

i,Xi−1)
is the initial distance before deformation.

In addition to the constraints mentioned before, we pro-

pose to detect points of interest located on the lines naturally

present on the wing (represented in Fig. 2 as green lines). As-

suming that the constraints are locally valid, we can specify

them numerically on a finite set of nodes in the (x, y) plane.

As an illustration, consider the node X
i = (xi, yi, zi)

T and

its neighbourhood (Xi−2, . . . ,Xi+2,X ′i−2, . . . ,X ′i+2), as

displayed in Fig. 2. The possible constraints for Xi are:



i. Volume constraint: for the simple case of a spherical vol-

ume with radius ri, the constraint can be written:
∥

∥X
i −X

i
init

∥

∥ ≤ ri, (7)

with X
i
init the initial position of the point i before defor-

mation, and ‖.‖ an appropriate norm (the ℓ2 norm in this

paper).

ii. Bending constraints: ∀i, ∃(bmin, bmax), such that

bimin <
zi+1 − 2zi + zi−1

(yi+1 − yi)2
< bimax. (8)

iii. Torsion constraints: The two nodes Xi and X
′i are con-

strained by the adjacent nodes Xi−1 and X
′i−1, leading

to ∀i, ∃(timin, t
i
max) such that

timin <
z′i − z′i−1 − zi + zi−1

4(x′i − xi)(yi − yi−1)
< timax. (9)

iv. The elongation constraint remains unchanged.

4. CONSTRAINED BUNDLE ADJUSTMENT

Before applying the constraints on our set of estimated 3D

points, a registration phase is necessary. Indeed, in this ap-

plication, constraints are defined in the aircraft coordinate

system, while camera and point positions are estimated in a

moving coordinate system, due to camera motions during the

flight. To overcome this issue, we first find the transfer matrix

P from the aircraft coordinate system to the rear camera sys-

tem, using reference points visible only from the rear view.

Then, using the estimated parameters αk from the same cam-

era, the registered points X̃
i

can be calculated as follows:

X̃
i
= P

[

R
T
k ,−R

T
k tk

]

X
i. (10)

After the registration phase, the constraints defined in

Section 3 can be transformed into regularization terms pe-

nalizing the cost function (1) [12, p. 564]. This allows us to

define the following regularized optimization problem:

argmin
αj ,X

i

∑

i,j

[

x
i
j − x̂(αj ,X

i)
]2

+ µ
∑

i

[

g
+(αk,X

i)
]2

, (11)

where µ is a positive penalty parameter (to be adjusted by

the user), and g+(αk,X
i) = max(0, g(αk,X

i)), with g

the considered constraint (which can be extended to several

constraints by including several regularizations). The exper-

imentation described in this paper corresponds to a simple

constraint, stating that 3D points have limited displacements

in the (x, y) plane, leading to the following constraints:

g(αk,X
i) =

√

(x̃i − xiinit)
2 + (ỹi − yiinit)

2 − ai (12)

where ai is the maximum radius at point Xi.

Note that when the constraint is respected, the penalty

term equals zero. Moreover, we choose the Courant-Beltrami

penalty function [12, p. 566] with a quadratic term, in or-

der to ensure that the cost function is differentiable when

g(αk,X
i) = 0. As a a result, classical optimization methods

Fig. 2. Node illustration on the aircraft wing.

based on the Jacobian matrix can be applied to solve (11). Fi-

nally, it is interesting to note that the Jacobian matrix for the

cost function in (11) is still sparse (as shown in Fig. 1) since

the constrains are applied to specific points and their neigh-

bours and depend only on the rear camera parameters. This

sparsity of the Jacobian matrix induces a reduced computa-

tional cost for the final constrained optimization algorithm.

5. EXPERIMENTAL RESULTS

The proposed method was evaluated on a set of real images

acquired on an Airbus A350-900 located on ground. The test

was conducted in order to reproduce in-flight vibrations. Four

4K cameras were placed on the aircraft window and a drone

was used to simulate the rear camera. Different focal lengths

were used to ensure a similar accuracy in far and close parts of

the wing. Some examples of views acquired with these cam-

eras are displayed in Fig. 3. Red tape markers were installed

on the two black lines of the wing at approximately every 30
cm to clearly identify nodes on which we will apply the de-

formation constraints. Some cross targets were also installed

to guarantee a good detection of these points. To ensure a

good initialization of the camera parameters and point posi-

tions, we scanned the wing using a drone and the software

Agisoft Metashape [13]. Finally, the wing was shaken man-

ually at its tip to make it vibrate. Using a scale board placed

at the end of the wing, we estimated a bending of about 5
cm. As expected, moving reflections appeared on the wing

for several views (visible on camera 3 in Fig. 3), preventing

good graduation detections in images. Furthermore, the grad-

uations viewed under the lowest angles were detected with a

reduced accuracy.

The proposed new algorithm was implemented on Python

and compared to solution without constraints. The opti-

mization was performed for both algorithms using the Least-

squares method implemented in the Scipy library [14] (func-

tion “scipy.optimize.least squares”).

After running our method on a set of 30 representative im-

ages of the moving wing, we extracted the camera and point

parameters estimated with and without the constraint (respec-

tively denoted as “CBA” and “BA”). The radius ai defined

in (12) was fixed by experts to 5 cm, which is in good agree-

ment with typical measurements from stress gauges in flight.

Fig. 4 shows that using the constrained algorithm improves



(a) Camera 1 (b) Rear camera (c) Camera 3

Fig. 3. Examples of recorded views resulting from a the test on ground with an Airbus A350-900.

Fig. 4. Bending results at the middle of the wing (top) and at

wing tip (bottom).

the estimation results significantly. The point displacements

obtained using CBA along the z axis are much more coherent

than the unconstrained points. Indeed, these CBA points have

a sinusoidal shape with an amplitude close to 5cm amplitude

at the wing tip, and with an amplitude less than 1cm in the

middle of the wing (corresponding to what was measured us-

ing the scale board). In addition, Fig. 5 shows that the CBA

algorithm also provides better camera position estimates. In-

deed, since the test was performed on ground, camera were

fixed with negligible motions. Finally, the point positions es-

timated using the CBA algorithm seem to be tracked correctly,

as illustrated in Fig. 6. This last figure also confirms that the

constraint was correctly applied, with all points located close

to their initial positions in the (x, y) plan.

6. CONCLUSIONS

This paper presented a new method to improve photogramme-

try-based 3D estimation of wing deformations in real flight

conditions. The main idea was to introduce mechanical con-

straints as regularizations in the classical bundle adjustment

cost function. A realistic experimentation conducted on im-

ages acquired on ground showed the interest of using con-

strained bundle adjustment, with a simple displacement con-

straint for the 3D points. Future work will focus on the appli-

cation, in flight, of other constraints resulting from finite ele-

ment models (e.g., see [15]). Another line of research would

be to investigate weighted bundle adjustment to mitigate the

inaccuracy of some observations.

Fig. 5. Estimated motions (in meters) of the 4 cameras located

on the aircraft windows versus time.

Fig. 6. Point reconstructions in the (x, y) plane for the first

and last frames. (top) without the constraint, (bottom) with

the constraint. Some outliers do not respecting the constraints

can be observed in the last frame.
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D. Kouamé, and J. Y. Tourneret, “Wing 3D reconstruc-

tion by constraining the bundle adjustment with me-

chanical limitations,” in Proc. 28th European Signal

Process. Conf. (EUSIPCO), Amsterdam, Netherlands,

Jan. 2021.


