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Abstract— Nuclear Magnetic Resonance (NMR) spectroscopy
is an efficient technique to analyze chemical mixtures in which one
acquires spectra of the chemical mixtures along one ore more di-
mensions. One of the important issues is to efficiently analyze the
composition of the mixture, this is a classical Blind Source Sepa-
ration (BSS) problem. The poor resolution of NMR spectra and
their large dimension call for a tailored BSS method. We propose
in this paper a new variational formulation for BSS based on a β-
divergence data fidelity term combined with sparsity promoting
regularization functions. A majorization-minimization strategy is
developped to solve the problem and experiments on simulated
and real 2D HSQC NMR data illustrate the interest and the effec-
tiveness of the proposed method.

1 Introduction
Blind Source Separation (BSS) consists in estimating N
sources from M mixtures (in this work we consider M > N )
without knowing the mixing operator. It appears in many fields
such as biology, chemistry, astronomy, telecommunications,
etc. [10]. Nuclear Magnetic Resonance (NMR) is a powerful
tool used to characterize and determine properties of molecules
present in a given chemical mixture. Here, we are interested
in NMR bidimensional (2D) data, which are nonnegative and
characterized by a high sparsity level presenting crowded spec-
tra with an important spectral overlap and poor resolution (see
Fig. 1 (a)). Designing a robust BSS approach tailored to the 2D
NMR data would greatly help the analysis of NMR data which
is currently mostly done by the chemists.

The BSS problem in this context is a nonnegative matrix fac-
torization (NMF) problem. This concept introduced by Lee and
Seung [17] was exploited in different applications either based
on the classical Frobenius distance [19, 17] or based on the β-
divergence family of cost functions [12, 13]. Moreover, differ-
ent works showed that the Frobenius distance associated with
regularization functions is an efficient framework enabling to
solve the BSS problem. Recently, in [8] the Frobenius norm
combined with various regularization functions was proposed
and demonstrated its effectiveness to unmix complex NMR
mixtures. In this work, we propose to investigate a β-NMF
approach in which a β-divergence is associated with regular-
ization functions that favour sparsity.

2 Methodology and algorithm
The forward model is the following. The N sources composed
of L samples are stored row-wise in the matrix S ∈ RN×L.
The measures are M mixtures stored row-wise in the matrix

*The authors would like to thank E. Piersanti, L. Shintu and M. Yemloul
from iSm2, Aix-Marseille Univ., for their collaboration. The project has re-
ceived funding from the Excellence Initiative of Aix-Marseille University -
A∗Midex, a French “Investissements d’Avenir” program.

X ∈ RM×L that follow the model

X = D(AS), (1)

where A ∈ RM×N is the mixing matrix and D the degradation
model that depends on the application. The BSS problem is the
joint estimation of A and S from X.

As in various NMF approaches [17, 19], we propose to
solve this problem by minimizing a variational functional. For
the fit-to-data term, we investigate the use of the so-called β-
divergence (noted β-div) as proposed in [16, 13]. In addition,
our functional contains regularization terms for A and S that
encompass the nonnegativity of the entries of the matrices and
the sparsity of the sources (rows of S) which will represent 2D
NMR spectra in our experiments. Our goal is thus to solve

Min
A, S

Φ(A,S) := β-div(X,AS) + λAΨA(A) + λSΨS(S), (2)

with λA > 0, λS > 0 the regularization parameters, and β-div,
ΨA and ΨS defined below.

The fit-to-data term is measured using the β-divergence

β-div(X,X′) =
∑
m

∑
l

β-div(Xm,l|X′m,l), (3)

where β-div is defined on (R+)2 and for β ∈ R \ {0, 1} as [1]

β-div(u|v) = 1
β(β−1)

(
uβ + (β − 1)vβ − βuvβ−1

)
. (4)

Note that the β-divergence is also defined for β = 0 or 1
as respectively the Itakura-Saito divergence and the Kullback-
Leibler divergence [14]. The choice of β varies generally ac-
cording to the context and the problem characteristics (e.g. type
of noise). In this work, we investigate the range β > 2.

The regularization functions ΨA and ΨS include the nonneg-
ativity constraint ι+(U) = 0 if Ui,j ≥ 0 ∀i, j and ι+(U) =
+∞ otherwise. In addition for the sources, we enforce spar-
sity either with a classical `1 norm as used in Compressive
Sensing [3] and many image processing methods, e.g. [2] or
with the Shannon negative entropy Ent as proposed in [5, 6]
as a sparsity promoting penalty in the NMR context. We have:
Ent(U) =

∑
n,l ent(Un,l) where

ent(u) =


u log(u) if u > 0

0 if u = 0

+∞ otherwise.
(5)

As a result, we propose to minimize Eq. (2) with ΨA = ι+ and
either (i) ΨS = ι+ + || · ||1 or (ii) ΨS = ι+ + Ent. To solve
this problem, we derive an alternating minimization procedure
(as in dictionary learning, NMF...) described by

For k = 0, 1, . . . Ak+1 = Appr

(
Argmin

A
β-div(X,ASk) + λAΨA(A)

)
(I)

Sk+1 = Appr

(
Argmin

S
β-div(X,Ak+1S) + λSΨS(S)

)
(II)



where Appr() denotes an approximation of the minimizer in-
side. (I) and (II) are multiplicative update rules built using
a Majorization-Minimization (MM) strategy [15]: the func-
tional in (2) is split into a convex part majorized by the Jensen-
inequality and a concave part majorized by its tangent.

We derived the following update rules for β > 2:

(I) Ak+1 =

((
X� (AkS)�(β−2)

)
ST

(AkS)�(β−1)ST

)� 1
β−1

+

� Ak, (6)

(II.i) Sk+1 =

(
AT (X� (ASk)�(β−2))− λS

AT (ASk)�(β−1)

)� 1
β−1

+

� Sk,

(7)

(II.ii) Sk+1 =

(
γ

α
W
(
α

γ
exp(− δ

γ
)

))� 1
β−1

+

� Sk, (8)

where � denotes the Hadamard product, (.)+ the projection
onto the nonnegative set andW the Lambert function [11], and

α = AT (ASk)�(β−1) � Sk,
γ = λS

β−1 Sk,
δ = λS(Sk + Sk � log(Sk))− AT (X� (ASk)�(β−2))� Sk.

Note that the same strategy can not be applied in all cases when
β ≤ 2.

3 Experimental results
We process 2D Heteronuclear Single Quantum Coherence
(HSQC) data where 5 mixtures X ∈ R5×1024×2048 and 4 pure
sources (S1: Limonene, S2: Nerol, S3: Terpinolene and S4:
Caryophyllene) noted S ∈ R4×1024×2048 are acquired on a
Bruker Avance III 600 MHz spectrometer. Matrix A is pro-
vided by the chemists who acquired the data. The tensors are
matricized (X ∈ R5×2097152 and S ∈ R4×2097152).

In the synthetic case, we use A and S described above and we
simulate synthetic measures X based on the model in Eq. (1)
with D an i.i.d. zero-mean Gaussian noise of standard devia-
tion σ = 1.97× 104. Then, we apply our algorithm to estimate
A and S. The performances of the proposed approach are com-
pared to using the popular Frobenius norm ( 1

2‖X − AS‖2F as
the data fidelity term (solved with a Block-Coordinate Variable
Metric Forward Backward algorithm [9] as in [7]). Both algo-
rithms are initialized with a projection of the JADE [4] result
onto the nonnegative space, and run for a maximum of 15, 000
iterations. The stopping criterion is (‖Ŝk+1− Ŝk‖F /‖Ŝk‖F ) ≤
10−6 and (‖Âk+1 − Âk‖F /‖Âk‖F ) ≤ 10−6 where we denote
by Ŝ and Â the estimated sources and the estimated mixing ma-
trix respectively. We evaluate the quality of Ŝ with the SDR
(Signal to Distortion Ratio), SIR (Signal to Interference Ratio)
and SAR (Signal to Artefacts Ratio) [20] in dB and compute
the Moreau-Amari index [18] to evaluate Â.

We ran the algorithm for several values of the hyperparam-
eters. We present in Table 1 the SDR, SIR and SAR averaged
over the sources and the Amari-index for different objective
functions Φ based on the β-divergence (β = 3) and Frobenius
norm, with λS = 0.1σ for the simulated case. It is clear that
the β-divergence improves SDR, SAR and SIR measures (the
higher the better) and the Amari-index (the lower the better)
for both proposed regularization functions, showing that it is an
adapted choice of data fidelity term here. However, when look-
ing at the value for each source separately (not shown here)

it seems that regularization parameter λS could be adapted to
each source Si for i = 1, ..., 4.

Data fidelity term ΨS SDR SIR SAR Amari-index

Squared Frobenius
`1 + ι+ 30.299 31.475 39.462 0.0272
Ent +ι+ 18.287 36.859 18.354 0.0090

β-divergence
`1 + ι+ 36.531 40.853 41.255 0.0054
Ent +ι+ 36.710 40.852 41.570 0.0054

Table 1: Results on 2D simulated NMR data with λS = 0.1σ.

Table 2 shows the real case with the optimal regularization
parameter λS. The β-divergence combined with `1 norm or
Ent function ensures the BSS of the 2D HSQC NMR data (see
Fig. 1). However, compared with simulated data, we have a sig-
nificant decrease of the SDR, SIR and SAR values which can
probably be explained by a wrong assumption on D and pos-
sibly the linearity of the model. This raises the question about
the choice of the objective function Φ and requires further in-
vestigations to characterize the model in the 2D NMR context.

Data fidelity term ΨS SDR SIR SAR Amari-index

Squared Frobenius
`1 + ι+ 04.984 13.956 07.951 0.18037
Ent +ι+ 05.755 14.434 08.446 0.17926

β-divergence
`1 + ι+ 07.240 11.487 10.574 0.16098
Ent +ι+ 07.220 11.396 10.632 0.16526

Table 2: Results on 2D real NMR data with λS = 10σ.
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Figure 1: Contourplot of 2D HSCQ sources Limonene (S1), Nerol (S2), Ter-
pinolene (S3) and Caryophyllene (S4). (a) pure sources, (b) (resp.(c)) esti-
mated sources using the `1 norm (resp. the β-divergence with the Ent regular-
ization function).
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