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Cutting planes methods are of crucial importance to solve huge or nonconvex optimization problems. Minimizing a linear functional over general sets F may not be possible directly, however, optimizing on a wisely chosen relaxation R ⊇ F can be computationally tractable. Using the equivalence between optimization and separation, a popular approach consists in optimizing over a lightweight relaxation R 0 and separate the resulting incumbent from other cherry-picked relaxations R via cutting planes. Doing so, we implicitly optimize over R 0 intersected with cc R, the closed convex hull of R. For any type of relaxation R, we present a framework to efficiently separate an incumbent from cc R, granted that optimizing a linear functional over R can be done efficiently. In particular, our approach can generate in an efficient way 1) Balas' disjunctive cuts without having to solve a problem being multiple times the size of the original (for mixed integer linear conic problems) nor using perspective functions (for nonlinear problems), 2) Boyd's Fenchel cuts (for mixed integer linear problems) without enumerating all combinations of a small number of the integer constrained variables and 3) The hull generated by a Dantzig-Wolfe (DW) scheme via cutting planes only. In its classical use, DW is usable only when F exhibits a block-separable sub-structure. However, when facing a mixed integer problem with convex generalized nonlinear inequalities, given a partition of the variables, we show a generic way to construct a relaxation that is block-separable with respect to that partition.

Introduction

Problem definition

Consider an optimization problem of the form:

(P ) min x { c ⊤ x : x ∈ F } := min x c ⊤ x s.t. x ∈ X x (Z) ∈ Z |Z| , (1a) (1b) (1c) 
where X ⊆ R n , Z ⊆ [n], and x (Z) is x restricted to its components in Z. This kind of problem can be difficult in general and a classical way to solve it relies on solving tractable relaxations of it, min x∈R 0 c ⊤ x, with F ⊆ R 0 . A straightforward relaxation can be obtained by e.g. relaxing the integrality constraints (1c). There is no guarantee in general however, that the relaxation provides solutions x belonging to F. Two popular devices are then used to exclude an infeasible incumbent x from the search: Split the feasibility set with a disjunction that excludes x using e.g. a Branch and Bound [START_REF] Wolsey | Integer and combinatorial optimization[END_REF] and/or find a hyperplane η ⩽ µ ⊤ x such that η > µ ⊤ x and η ⩽ µ ⊤ x for any x ∈ F i.e. that is satisfied by every feasible solution of P but cuts away x. Such an inequality that is satisfied by every point of F is said to be valid for F.

In this paper, we focus on efficient ways to use the second method. In particular, given a relaxation R ⊇ F , we study the separation problem of 1) determining if x ∈ cc R and 2) in the negative, find a valid inequality for cc R that is violated by x. In particular, 1) we develop a generic framework allowing to efficiently separate from cc R granted that inf x∈R µ ⊤ x is efficiently solvable for any µ, that 2) allows to generate in a different way several existing classes of cuts that correspond to special cases of R.

Literature review

Given a cone C and some function f , we say that P is 1) Mixed Integer (MI) Non Linear Conic (NLCP) representable if Z ̸ = ∅ and

X := {x ∈ R n : -f (x) ∈ C} ,
2) Non Linear (NLP) representable if C = R m + , 3) Linear Conic (LCP) representable if f is a linear operator and 4) Mixed Integer Linear (LP) representable if C = R m + and f is a linear operator. The literature on cutting planes for MILPs is extensive: Mixed Integer Rounding cuts (MIR) [START_REF] Nemhauser | A recursive procedure to generate all cuts for 0-1 mixed integer programs[END_REF] and Chvátal-Gomory (CG) cuts [START_REF] Espinoza | Computing with multi-row gomory cuts[END_REF][START_REF] Gomory | Outline of an algorithm for integer solutions to linear programs and an algorithm for the mixed integer problem[END_REF] make use of the simplex tableau of an optimal solution of the LP relaxation to exclude fractional incumbents x. Zero-half cuts [START_REF] Caprara | {0, 1/2}-chvátal-gomory cuts[END_REF] are special MIR cuts whose separation is efficient. When X exhibits a special structure, powerful inequalities can be generated such as e.g. Cover Inequalities [START_REF] Balas | Facets of the knapsack polytope[END_REF], Flow Cover Inequalities [START_REF] Padberg | Valid linear inequalities for fixed charge problems[END_REF]; or using conflict graphs, clique cuts and Generalized Upper Bound cuts [START_REF] Atamtürk | Conflict graphs in solving integer programming problems[END_REF].

The hierarchies of relaxations of Sherali-Adams [START_REF] Sherali | A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems[END_REF], Lovász-Schrijver [START_REF] Lovász | Cones of matrices and set-functions and 0-1 optimization[END_REF], Balas-Ceria-Cornuéjols [START_REF] Balas | A lift-and-project cutting plane algorithm for mixed 0-1 programs[END_REF] or Lasserre [START_REF] Lasserre | An explicit exact sdp relaxation for nonlinear 0-1 programs[END_REF] allow to lift F in extended spaces of higher dimensions -while possibly changing its nature, e.g. turning the continuous relaxation of the extended formulation into a Semidefinite Programming problem (SDP). While they grow exponentially in size, the resulting relaxations can be as strong as cc F when projected onto the original variables.

Several of these techniques have been extended beyond the MILP world, e.g. MIR cuts for MILCPs [START_REF] Iyengar | Cuts for mixed 0-1 conic programming[END_REF] and when C is defined by Second Order Cones [START_REF] Atamtürk | Conic mixed-integer rounding cuts[END_REF]. For MINLPs, Reformulation Linearization Techniques (RLT) are specialized Liftand-project methods that use the Sherali-Adams hierarchies to solve polynomial optimization problems [START_REF] Sherali | A reformulation-linearization technique for solving discrete and continuous nonconvex problems[END_REF] or nonconvex quadratic optimization problems [START_REF] Sherali | A reformulation-convexification approach for solving nonconvex quadratic programming problems[END_REF]. We now present an approach that is usable in all the aforementioned cases, from which we build the main engine of the present work.

Disjunctive cuts (DC) date back to the 70's with the pioneering work of Balas [START_REF] Balas | Disjunctive programming[END_REF] to solve MILPs. It was shown that many classical cutting planes classes such as CG or MIR cuts were particular cases of DCs [START_REF] Balas | A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 programming[END_REF]. To illustrate its functioning, consider that we are provided a relaxation R ⊇ F defined as the disjunction

R := ∪ h∈H R h , with R h := {x : A h x ⩾ b h } for each h ∈ H.
A valid cut for cc R that x does not satisfy is generated and appended to R 0 to strengthen the relaxation. To do so, they make use of the following membership problem (MP), that is either infeasible -if x / ∈ cc R -or has objective value zero:

inf θ,x 0 s.t. x = ∑ h∈H x h 1 = ∑ h∈H θ h , θ ⩾ 0 A h x h ⩾ θ h b h , ∀h ∈ H. ( 2a 
) (2b) (2c) (2d) 
If MP is feasible, no separation is possible as x ∈ cc R, otherwise consider its LP dual -called the Cut Generating Problem (CGP): 

sup µ,η,π η -x⊤ µ s.t. µ = ( A h ) ⊤ π h , η ⩽ ( b h ) ⊤ π h , π h ⩾ 0 , ∀h ∈ H (3a) (3b) 
{ η -x⊤ µ : (3b), ||µ|| * ⩽ 1 } .
Depending on the normalization used, NCGP can behave differently both in terms of solution time and quality of the cut generated [START_REF] Bonami | On optimizing over lift-and-project closures[END_REF][START_REF] Buchheim | Local cuts revisited[END_REF][START_REF] Cadoux | Reflections on generating (disjunctive) cuts[END_REF][START_REF] Conforti | Facet separation with one linear program[END_REF][START_REF] Fischetti | On the separation of disjunctive cuts[END_REF][START_REF] Serra | Reformulating the disjunctive cut generating linear program[END_REF]. It is important to notice that if the number of constraints defining each R h is similar to that of F, MP (NMP) and CGP (NCGP) are roughly |H| times larger than P . In [START_REF] Bonami | On optimizing over lift-and-project closures[END_REF] they generate split cuts -where |H| = 2 -for MILPs by using a special normalization that reduces the size of NCGP to roughly the same size as that of the original LP relaxation. In [START_REF] Ben-Tal | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF][START_REF] Lodi | Disjunctive cuts for mixed-integer conic optimization[END_REF], DCs are extended to MILCP-representable sets R h . For convex MINLP-representable sets R h , perspective functions are used to cast MP as a convex NLP [START_REF] Stubbs | A branch-and-cut method for 0-1 mixed convex programming[END_REF]. However, using perspectives can be problematic because of the eventual presence of nondifferentiabilities [START_REF] Kılınç | Lift-and-project cuts for convex mixed integer nonlinear programs[END_REF]. Even if they are not tagged as DCs for MILPs, methodologies to generate DCs with discrete sets R are presented in [9-12, 18, 36, 44], The idea is based on the enumeration of small subsets of integer constrained variables and solve either the LP relaxation (wrt to the non-enumerated variables) or a tailored relaxation that can be weak but is extremely fast to solve. In particular, [START_REF] Perregaard | Generating cuts from multiple-term disjunctions[END_REF] shows a way to solve NCGP for disjunctions defined with linear inequalities without using the copies. Using strong LP duality, NCGP is shown to be solvable with cutting planes and a succession of MILPs over R. It is important to remark that most works about DCs use NMP -that provides a representation of cc R -as the base ingredient. After taking the conic dual, are they able to certify that x / ∈ cc R. Because there is no generic way to have explicit strong duals in the nonlinear world, NCGP is solved implicitely, further motivating our dual-free approach.

Contributions and outline

We introduce the notation in Section 2. Our contributions are as follows: In Section 3, we first provide a generalization to generic relaxations R an idea of [START_REF] Perregaard | Generating cuts from multiple-term disjunctions[END_REF] for MILPs, and exhibit directly NCGP without needing NMP nor additional copies. Second, we propose an efficient separation routine provided that inf x∈R µ ⊤ x is efficiently solvable for any cost vector µ.

We extend these efficient separation schemes to well-known existing families of cuts in Section 4 by using specific sets R.

In Section 5 we propose a new methodology inspired from Column Generation [START_REF] Lübbecke | Selected topics in column generation[END_REF] that partially convexifies F when X exhibits a separable structure, allowing de facto to use DW implicitly by generating cuts only. We finally extend to MINLCPs an idea of Boyd [START_REF] Boyd | Generating fenchel cutting planes for knapsack polyhedra[END_REF] and the so-called Fenchel cuts for MILPs, where generic separable relaxations can be constructed when F is MILP-representable and no structure is present. We conclude by some remarks and describe future research directions in Section 6.

Background

Given a norm || • ||, we call || • || * the norm dual to || • || defined as ||w||

* := sup v {v ⊤ w : ||v|| ⩽ 1}. The indicator function I[V] of a set V is defined as: I[V](v) := 0 if v ∈ V
and +∞ otherwise. We call respectively cl V, cc V and int V the closure, the closed convex hull and the interior of

V. recc V := {w : v + tw ∈ V, ∀v ∈ V, t ⩾ 0} is called the recession cone of V, Π [V] (w) := arg min v∈V ||v -
w|| is the projection of w onto V and the distance between w and V is D [V] (w) := min v∈V ||v -w||. We define the K-dimensional simplex as

∆ K := {t ∈ R K + : ∑ K k=1 t k = 1}. For any v ∈ R let us define [v] + := max(0, v) and [v] -:= max(0, -v).
The convex conjugate of a real valued function φ is φ * (w) := sup v {v ⊤ wφ(v)}, and its convex biconjugate -also called Fenchel transform -is φ * * = (φ * ) * .

Remark 1. Given a set V, we have [START_REF] Rockafellar | Convex analysis[END_REF]

: (I[V]) * * = I[cc V] = (I[cc V]) * * .
A set K is a cone if for every v ∈ K and t ⩾ 0, we have tv ∈ K. For any convex cone K we denote v ⪯ K w iff w -v ∈ K. We call K * the cone dual to a cone K the set defined as

K * := {π : ⟨π, v⟩ ⩾ 0 , ∀v ∈ K}. The conjugate V * of a linear operator V is such that ⟨V •, •⟩ = ⟨•, V * •⟩. Given a convex cone K and a function φ, φ is K-convex [13] iff φ(tv + (1 -t)w) ⪯ K tφ(v) + (1 -t)φ(w), ∀v, w, ∀t ∈ [0, 1]. Alternatively, if φ is differentiable, φ is K-convex iff φ(v) ⪰ K φ(w) + Dφ(w)(v -w), ∀v, w ∈ dom f , where Dφ(w)
is the Jacobian of φ at w. When convenient, we use the equivalent notation

Dφ(w)v = ∑ j D j φ(w)v j .

Membership conditions and efficient separation

In this document, our goal is to separate an incumbent x ∈ R 0 from the closed convex hull of some nonempty -and bounded when convenient -relaxation R ⊇ F. In other words, the basic question we aim to answer is twofold: 1) Does x belong to cc R? 2) In the negative, how can we find a valid inequality for cc R that separates x? The first part is naturally answerable by either checking if

I[cc R](x) ⩽ 0 or D[cc R](x) ⩽ 0 -if
we can compute these quantities. We answer both questions in what follows.

Membership conditions

We begin by showing that optimizing a linear functional over a set or over its closed convex hull yields the same optimal value. Proposition 1. For any set V, we have ω = ω where

ω := inf v { α ⊤ v : v ∈ cc V } and ω := inf v { α ⊤ v : v ∈ V } . Proof. Because V ⊆ cc V, we have ω ⩽ ω. Second, for any v ∈ V, we have ω ⩽ α ⊤ v. ( 4 
)
Consider some θ ∈ ∆ K in the K-simplex, and

K sequences v kp ∈ V N such that v kp → v k ∈ cl V. The sum over k ∈ [K] of each θ k ×(4) at v = v kp becomes: ∑ K k=1 θ k ω = ω ⩽ α ⊤ ∑ K k=1 θ k v kp → α ⊤ ∑ K k=1 θ k v k . We then have ω ⩽ α ⊤ v for any v ∈ cc V.
We finish by taking the infimum over cc V.

Finding a tuple ( µ, η) such that η ⩽ µ ⊤ x is 1) violated by x and 2) valid for R boils down to 1) maximize an eventual violation η -µ ⊤ x such that 2) for every

x ∈ R, η ⩽ µ ⊤ x. This is done by checking if sup µ,η {η -µ ⊤ x : η ⩽ inf x∈R µ ⊤ x} = sup µ inf x∈R µ ⊤ (x -x)
has a positive optimal value. We now show that the last problem is our CGP, and forcing µ to satisfy ||µ|| * ⩽ 1 provides us our NCGP:

Proposition 2. I [cc R] (x) := sup µ inf x∈R (x -x) ⊤ µ. If R is bounded, then D [cc R] (x) := sup ||µ|| * ⩽1 inf x∈R (x -x) ⊤ µ. Proof. From Remark 1, we know that I[cc R](x) = (I[R]) * * (x) = sup µ {µ ⊤ x - sup x {x ⊤ µ -I[R](x)}}.
Using the change of variables µ ← -µ, we obtain the first result. By definition

D [cc R] (x) = inf x∈cc R ||x -x|| = inf x∈cc R,δ,δ0 {δ 0 : ||δ|| ⩽ δ 0 , δ = x -x} .
The problem in (δ, δ 0 ) is a strictly feasible LCP, making strong duality hold:

D [cc R] (x) = inf x∈cc R sup µ,α,α0 { µ ⊤ (x -x) : ||α|| * ⩽ α 0 , µ + α = 0 , α 0 = 1 } = inf x∈cc R sup µ { µ ⊤ (x -x) : ||µ|| * ⩽ 1 } . (x, µ) -→ µ ⊤ (x -x
) is bilinear, cc R and {µ : ||µ|| * ⩽ 1} are compact so we can swap the inf and sup [START_REF] Komiya | Elementary proof for sion's minimax theorem[END_REF]:

D[cc R](x) = sup ||µ|| * ⩽1 inf x∈cc R µ ⊤ (x -x).
From Proposition 1, we can replace x ∈ cc R by x ∈ R, obtaining the result.

Cut retrieval

Following the literature, we now work only with D[cc R](x): as opposed to I[cc R](x) it is bounded, which can avoid numerical problems in practice:

(N CGP [R] (x)) D [cc R] (x) := sup µ,η η -µ ⊤ x s.t. η ⩽ inf x∈R x ⊤ µ ||µ|| * ⩽ 1. Proposition 3. For any feasible solution ( µ, η) of N CGP [R](x), η ⩽ µ ⊤ x is a valid inequality for cc R. Further, x / ∈ cc R iff there is some feasible solution ( µ, η) of N CGP [R](x) such that η > µ ⊤ x Proof. From Proposition 1, any ( µ, η) feasible for N CGP [R](x) satisfies η ⩽ inf x∈R µ ⊤ x = inf x∈cc R µ ⊤ x, meaning that η ⩽ µ ⊤ x is valid for cc R. Second, we know that x / ∈ cc R iff D[cc R](x) > 0, i.e.
there is some ( µ, η) feasible for N CGP [R](x) with positive objective value, proving the result.

We now present an efficient way to solve N CGP [R](x).

Efficient cut generation

We define the core problem as follows:

(CP [R] (µ)) κ [R] (µ) := inf x∈R µ ⊤ x.
We now show how to take advantage of the structure of N CGP [R](x).

Proposition 4.

For any µ such that || µ|| * ⩽ 1 and R ⊆ R, we have

κ [R] ( µ) -µ ⊤ x ⩽ D [cc R] (x) ⩽ D[cc R] (x) . Proof. The first inequality comes from D[cc R](x) = sup ||µ|| * ⩽1 {κ[R](µ)-µ ⊤ x}. R ⊆ R implies that for any µ, κ[R](µ) ⩽ κ[ R](µ), proving the second.
This suggests the following Column Generation approach: we first select a finite subset R of R, then solve N CGP [ R](x) that becomes the following LC problem

D[cc R] (x) := sup µ,η η -µ ⊤ x s.t. η ⩽ x ⊤ µ , ∀x ∈ R ||µ|| * ⩽ 1,
with optimal solution ( µ, η), and dynamically append to R any optimal solution of the core problem

CP [R]( µ) if η > κ[R]( µ). We stop whenever κ[R]( µ)-µ ⊤ x > 0, in which case x /
∈ cc R and we have a cut available, or D[cc R](x) ⩽ 0, in which case x ∈ cc R. We summarize the procedure in Algorithm 1.

Algorithm 1: Cut generating procedure

Data: A point x, a relaxation R ⊇ F and a norm || • ||. Result: A certificate ( µ, η) if x / ∈ cc R 1 Set R = ∅; 2 repeat 3 Solve N CGP [ R](x). Let ( µ, η) be an optimal solution; 4 if D[cc( R)](x) ⩽ 0 then 5 return x ∈ cc R; 6
Solve the core problem CP [R]( µ). Let x be an optimal solution;

7 if κ[R]( µ) > µ ⊤ x then 8 return ( µ, κ[R]( µ)); 9 if κ[R]( µ) ⩾ η then 10 return ( µ, η); 11 R ← R ∪ { x};
Proposition 5. When Algorithm 1 terminates, either x ∈ cc R or it returns a "certificate" ( µ, η) defining a hyperplane separating x from cc R.

Proof. Recall that from Proposition 4, we have

κ [R] ( µ) -µ ⊤ x ⩽ D [cc R] (x) ⩽ D[cc R] (x) .
(5)

1. If we terminate at Line 4, (5) implies that D[cc R](x) = 0, i.e. x ∈ cc R.

By definition, ( µ, κ[R]( µ)) is always feasible for

N CGP [R](x). From Propo- sition 3, we know that µ ⊤ x ⩾ κ[R]( µ) is valid for cc R.
If we stop at Line 7, x does not satisfy the inequality, [START_REF] Balas | A lift-and-project cutting plane algorithm for mixed 0-1 programs[END_REF] 

implies that D[cc R](x) > 0: x / ∈ cc R. 3. Because D[cc R](x) = η -µ ⊤ x, (5) implies κ[R]( µ) ⩽ η. If we stop at Line 9, κ[R]( µ) = η and ( µ, η) is feasible for N CGP [R](x) with objective value η -µ ⊤ x = κ [R] ( µ) -µ ⊤ x ⩽ D [cc R] (x) ⩽ D[cc R] (x) = η -µ ⊤ x.
At this point, we already stated that D[cc R](x) > 0, obtaining µ ⊤ x > η.

Remark 2. Line 7 of Algorithm 1 is an early stopping criterion and can be dropped at will as the certificate returned already cuts x and is valid for cc R, but may not be the deepest cut available. In other words, a suboptimal solution does not necessarily provide a cut that exposes cc R, i.e. intersecting with it.

Remark 3. The relaxation R can assume any form as long as CP [R](µ) is efficiently solvable for any µ, condition on which our framework heavily relies on.

Remark 4. If R is not bounded, CP [R]( µ) can be unbounded from below. If a certificate of unboundedness is available -i.e. some x ∈ recc cc R such that µ ⊤ x < 0 -we must add the cut 0 ⩽ µ ⊤ x instead of incrementing R ← R ∪ { x}.

Special cases

Using specific relaxations R, we can generate several existing types of cuts. We point out the advantages of our method when R has an exploitable structure.

Lift-and-project

Some problems P admit strong extended formulations R such as SDP relaxations [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF][START_REF] Lovász | On the Shannon capacity of a graph[END_REF] or hierarchies. If R has nonempty interior and is representable with LC inequalities, i.e. R := {x : ∃y :

V x + W y -d ∈ K}, it is not difficult to see that the core problem is equivalent to κ[R](µ) = sup π {⟨d, π⟩ : π ∈ K * , V * π = µ, W * π = 0}, making N CGP [R](x) equivalent to the following problem D [cc R] (x) = sup µ,η,π η -µ ⊤ x s.t. η ⩽ ⟨d, π⟩ , ||µ|| * ⩽ 1, π ∈ K * , V * π = µ, W * π = 0.
In this case, our framework is equivalent to a Benders Decomposition [START_REF] Geoffrion | Generalized benders decomposition[END_REF] that considers π as the second stage variables. For relaxations that are not LCPs, our framework allows to generate cutting planes without needing strong duals.

Disjunctions

If R := ∪ h∈H R h , optimizing over R is separable on each R h . In fact, we have

κ [R] ( µ) = inf h∈H κ [R h ] ( µ).
Defining 

T + j := {x : x j ⩾ t j + 1} , T - j := {x : x j ⩽ t j } , R 0 := {x ∈ X : l ⩽ x ⩽ u} ,
we obtain that R = ∪ h∈H R h where: 

R h := R 0 ∩ ∩ j∈N + h T + j ∩ ∩ j∈N - h T - j , ∀h ∈ H := { x ∈ R 0 : ( x j ⩾ t j + 1 , ∀j ∈ N + h ) ∧ ( x j ⩽ t j , ∀j ∈ N - h )} , ∀h

Local and Fenchel cuts

In a MILP context -i.e. X := {x : Ax ⩾ b} -we can generate the Local cuts of [START_REF] Chvátal | Local cuts for mixed-integer programming[END_REF] by using a relaxation R that is a relaxation {x : Ãx ⩾ b} of X where the integrality requirements are dropped safe for a small (|N

| ⩽ 5) subset N ⊆ Z, i.e. R := {x : Ãx ⩾ b, x(N ) ∈ Z |N | }.
Using LP duality and column generation, their procedure is equivalent to ours. However, we show in the next Section that our framework extends the idea to general mixed integer optimization problems and can specialize into an implicit DW scheme that locally convexifies F.

Local cuts are a generalization of Boyd's Fenchel cuts [START_REF] Boyd | Generating fenchel cutting planes for knapsack polyhedra[END_REF][START_REF] Boyd | Fenchel cutting planes for integer programs[END_REF][START_REF] Boyd | Solving 0/1 integer programs with enumeration cutting planes[END_REF][START_REF] Boyd | On the convergence of fenchel cutting planes in mixed-integer programming[END_REF][START_REF] Yan | Cutting planes for mixed-integer knapsack polyhedra[END_REF] where single row relaxations of X are considered and either all possible integer combinations of x(N ) are enumerated or a tailored integer knapsack problem is solved via dynamic programming. In the next Section, we extend their idea to MINLCPs -i.e. when X := {x : -f (x) ∈ C}. We now show that local cuts hold several advantages against cross cuts.

Proposition 6. Consider N ⊆ Z, some tractable relaxation R 0 of F, an |N |cross T and the following relaxations of

F R 1 = R 0 |int T and R 2 := R 0 ∩ { x : x(N ) ∈ Z |N | } .
Then cc R 2 is a relaxation of F that is no weaker than cc R 1 .

Proof. It is enough to show that R 2 ⊆ R 1 , i.e. that any x 2 ∈ R 2 satisfies x 2 ∈ R 0 -which is immediate -and x 2 / ∈ int T . The second point is also straightforward as by construction int T ∩ {x : 

x(N ) ∈ Z |N | } = ∅. Remark 7. Notice that 1. CP [R 2 ](µ)

Block-separable structures and Column Generation

Suppose that some block-separable structure is present in P , i.e. we have F := {x ∈ F 0 : x(N h ) ∈ F h , ∀h ∈ H}, where the N h ⊆ [n] are pairwise disjoint and each F h is a general set. Notice that without x ∈ F 0 , P is separable in |H| independent problems in x(N h ) only. R := ∩ h∈H R h is a block-separable relaxation of F, where for each h ∈ H, R h := {x : x(N h ) ∈ F h }. In DW, one successively constructs cc R via inner approximations of cc R; We now show that we can build cc R via outer approximations.

Column generation via cutting planes

Similar to the pricing problem in DW, solving the core problem reduces to optimize on each R h i.e. solve |H| optimization problems with |N h | variables each:

κ [R] (µ) = ∑ h∈H κ [R h ] (µ).
Equally importantly, the cuts generated separate x from cc R = ∩ h∈H cc R h = {x : x(N h ) ∈ cc F h , ∀h ∈ H}. We can also separate each x(N h ) from cc F hwhich yields the same hull -but generates the following disaggregated cuts:

η h ⩽ x (N h ) ⊤ µ h , where ( µ h , η h ) is optimal for N CGP [R h ] (x (N h )).
In fact, similar to DW with a separable structure, one can choose to consider the "easy" subproblem either as a single block or a family of |H|.

For such an approach to work, a block separable sub-structure is needed. When such a sub-structure does not appear naturally, it is sometimes possible to extract one: In Boyd's work for MILPs, they first define a single row relaxation {x : ã⊤ x ⩽ b} of X . For some bounds l ⩽ x ⩽ u and noticing that for each j ∈ [n]

l j [ã j ] + -u j [ã j ] -⩽ x j ãj , ( 6 
)
they work on the following relaxation of F that depends on x(N ) only: R :=

{x : x(N ∩ Z) ∈ Z |N ∩Z| : ã(N ) ⊤ x(N ) + ∑ j / ∈N (l j [ã j ] + -u j [ã j ] -) ⩽ b}.
We now extend this idea to construct separable relaxations for MINLCPs.

Projection and conic dominance

We begin with an adaptation of a theorem from Moreau [START_REF] Moreau | Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[END_REF] that allows to decompose a point in terms of its projections onto the cones K and -K * : Proposition 7. Consider a closed convex cone K. For any v, 1) there exists a decomposition

v = v + v * such that v ∈ K and v * ∈ -K * and 2) the only decomposition satisfying ⟨ v, v * ⟩ = 0 is v = Π [K] (v) + Π [-K * ] (v).
We now use the last result to derive the following (conic) bound: Proposition 8. Consider a closed convex cone K such that K * ⊆ K. For any v and some real number t ∈ [l, u], we have

l • Π [K] (v) + u • (v -Π [K] (v)) ⪯ K t • v
Proof. From Proposition 7, for any π ∈ K * , we have:

⟨π, t • v⟩ = t⟨π, Π[K](v)⟩ + t⟨π, Π[-K * ](v)⟩. Given that Π[K](v) ∈ K and -Π[-K * ](v) ∈ K * ⊆ K, we have ⟨π, Π [K] (v)⟩ ⩾ 0 and ⟨π, Π[-K * ](v)⟩ ⩽ 0. Because t ∈ [l, u], this implies that for any π ∈ K * : ⟨π, t • v⟩ ⩾ l⟨π, Π[K](v)⟩ + u⟨π, Π[-K * ](v)⟩. Because v = Π[K](v) + Π[-K * ](v)
, we obtain the result.

If K = R + , we retrieve Boyd's basic ingredient [START_REF] Balas | A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 programming[END_REF] to his single row relaxation. Going beyond single-row relaxations, we now provide block-separable relaxations for convex MINLCPs.

Remark 8. Many of the usual cones are self dual -i.e. K * = K -and proving membership or projecting on K is not necessarily a hard task:

1. Nonnegative orthant R m + . For v ∈ R m : Π[K](v) = ([v i ] + ) i∈[m] . 2. SOC L m+1 2 := {(v, v 0 ) : ||v|| 2 ⩽ v 0 }. For any nonzero (v, v 0 ) / ∈ L m+1 2 [21]: Π[K](v, v 0 ) = (v 0 + ||v|| 2 )(2||v|| 2 ) -1 • (v, ||v|| 2 ). 3. Symmetric SDP matrices S m + . Any matrix V ∈ S m with eigenvalues (λ i ) i∈[m] is diagonalizable in an orthonormal basis L: Π[K](V ) = Ldiag([λ i ] + ) i∈[m] L.

Generic separable relaxation

Consider that we have X := {x : l ⩽ x ⩽ u , -f (x) ∈ C}, where C is a convex proper cone such that C * ⊆ C and f is C-convex. Proof. Because f is C-convex, for every x ∈ dom(f ) we have

f (x) ⪰ C f (x) + Df (x) (x -x) = f (x) -Df (x) x + ∑ j∈[n] D j f (x) x j = f (x) -Df (x) x + ∑ j∈N D j f (x) x j + ∑ j / ∈N D j f (x) x j .
Applying Proposition 8 to each D j f (x)x j , j / ∈ N we obtain:

f (x) ⪰ C f (x) -Df (x) x + ∑ j∈N D j f (x) x j + ∑ j / ∈N ( l j Π[C] ( D j f (x) x j ) + u j ( D j f (x) x j -l j Π[C] ( D j f (x) x j ))
) .

Replacing into -f (x) ∈ C we obtain the result. From Proposition 9, R is a relaxation of F that is separable in each cluster N h .

Given disjoint sets

Remark 9. The relaxation obtained after linearizing f and fixing some variables to their bounds is weaker that the continuous relaxation of P ; However, keeping the integrality as a hard constraint can compensate that weakness.

Remark 10. If the sets N h are not pairwise disjoint, we cannot split the core problem. However, we can still separate in parallel each x(N h ) from cc R h .

Conclusions and future directions

We present a framework to separate from convex hulls of general relaxations R. We allow the use of existing classes of cuts for more general problems and compare our method with the classical methodologies. We show how to generate partial convex hulls just as DW and in the MINLCP case, we give guidelines to construct separable relaxations making our framework decomposable. In a current work, we study 1) a modified algorithm that solves the NCGP and the core problems only approximately and 2) the generation of facet-defining cuts with different normalizations, including the stand-alones used in [START_REF] Buchheim | Local cuts revisited[END_REF][START_REF] Conforti | Facet separation with one linear program[END_REF].

Extensive computational experiments on benchmark instances are required in order to assess the quality of the methodology -in terms of both cut strength and computational efficacy.

∈ H Remark 6 .

 6 If we can efficiently optimize over R 0 and 2 |N | is reasonably small, calculating κ[R](µ) reduces to solve 2 |N | optimization problems over R 0 with the additional requirement that |N | variables must satisfy an extra lower or upper bound. Further, the classical framework solves a CGP having a number of variables and constraints that is roughly 2 |N | times that of R 0 .

Proposition 9 .

 9 Given N ⊆ [n], R := {x : x(N ∩ Z) ∈ Z |N ∩Z| : Āx(N ) ⪯ C b}, is a relaxation of F, where Āx (N ) := ∑ j∈N D j f (x) x j , b := Df (x) x -f (x) + ∑ j / ∈N ( (u j -l j ) Π [C] ( D j f (x) ) -u j D j f (x) ) .

  N h ⊆ [n], consider R := ∩ h∈H R h where for each h ∈ H R h := { x : x (Z) ∈ Z |Z| : l ⩽ x ⩽ u , Āh x (N h ) -bh ∈ C } .

  x h as an optimal solution of CP [R h ]( µ) andh * ∈ arg inf h∈H κ[R h ]( µ), we have that x h * is an optimal solution for CP [R]( µ). Whenever η > κ[R h ]( µ) for some h ∈ H we can stop solving the remaining subproblems CP [R h ′ ]( µ), h ′ ̸ = h,and directly append x h to R. Cross cuts Given a subset N ⊆ [n] such that x(N ) / ∈ Z |N | and |N | integers (t j ) j∈N , we define a |N |-cross as T := ∪ j∈N {x : t j ⩽ x j ⩽ t j + 1}. Cross cuts are generated by taking R := R 0 |int T . Defining the |H| := 2 |N | 2-partitions of N as {N + h , N - h } h∈H and the following sets

	Remark 5.

  is an optimization problem with |N | integer variables 2. CP [R 1 ](µ) requires solving 2 |N | continuous optimization problems. 3. Separating for R 1 with the classical method requires solving a problem that is roughly 2 |N | larger than R 0 . 4. cc R 2 is often strictly stronger than cc R 1 .