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Abstract

An original nonlinear multi-dimensional model for the inertial fluid flow through a fluid-porous interface is derived by
asymptotic theory for arbitrary flow directions. The interfacial region between the pure fluid and the homogeneous
porous region is viewed as a thin transition porous layer characterized by smoothly evolving heterogeneities. The
asymptotic analysis applied to the homogenized Navier-Stokes equations in this thin heterogeneous porous layer leads to
nonlinear momentum jump conditions at the equivalent dividing interface. These jump conditions involve slip and friction
coefficients whose dependence on porosity are analyzed. Moreover, we show that the resulting Navier-Stokes/Darcy-
Forchheimer macroscale coupled model is globally dissipative in the porosity range 0 < φp ≤ 0.95, which also contributes
to its physical relevance. To our knowledge, this innovative asymptotic model is the first nonlinear multi-dimensional
model proposed in the literature for the inertial flow with arbitrary flow directions at a permeable interface. Besides, it
clearly opens new perspectives to study turbulent flows at the fluid-porous interface.

Keywords: Fluid-porous inertial flow, Asymptotic analysis, Nonlinear jump interface conditions, Slip and friction
coefficients, Navier-Stokes/Darcy-Forchheimer model, Globally dissipative model

1. Main objectives and highlights

The momentum transport at the interface between a
fluid and a permeable region is present in a large variety
of industrial applications (dendritic solidification of multi-
component mixtures, fuel cell, oil recovery, separation pro-
cesses, etc), but also in environmental situations or for wa-
ter resources (surface or subsurface hydrology, interaction
atmosphere/canopy, benthic boundary layers, etc) or bio-
logical systems (bone growth, biofilms, cell proliferation,
etc). We refer to the recent paper [1] and the references
therein for many examples of application. Due to the dif-
ferent characteristic length scales involved in these hetero-
geneous configurations, the momentum transport analy-
sis is often performed at the macroscopic scale where the
concept of interface is actually related to the nature of
the average representation. From the pioneering work of
Beavers and Joseph [2], two macroscopic modeling ap-
proaches have been used. The single-domain approach
considers the interfacial region as a thin transition porous
layer (see Fig. 1) where the averaged properties (porosity,
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Figure 1: One-domain modeling: continuous inter-region.

permeability) are continuously spatially dependent (evolv-
ing heterogeneities). On the other hand, the two-domain
approach considers a fictive interface (see Fig. 2) where
explicit jump boundary conditions must be expressed. It is
worth mentioning that these jump conditions result from
an integration of the momentum transport on the thin
transition layer of the single-domain approach [3, 4].

Different studies have been devoted to the derivation
of these jump conditions for non-inertial one-dimensional
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Figure 2: Two-domain modeling: interface Σ located at ξ := zΣ/d.

channel flows parallel to the porous layer [2–10]. Using an
asymptotic modeling as for thin fractures in porous me-
dia [11], the present authors have recently derived in [12]
jump conditions for a general two- or three-dimensional
non-inertial viscous flow and arbitrary flow directions at a
permeable interface.

However, many applications concern flow regimes where
inertial effects have to be considered [13]. A few papers
address the inertial flows at a fluid-porous interface by nu-
merical simulations at the macroscopic scale [14, 15] or at
the pore scale [16–22], but mainly restricted to the 1-D
channel case. To the best of our knowledge, there exists
no general interface model for the multi-dimensional in-
ertial flow and arbitrary flow directions [13]. Hence, the
macroscopic description of the inertial flow through a per-
meable interface is still a challenging open problem in fluid
dynamics.
This is the objective of the present theoretical study where
the asymptotic analysis [12], applied here to the homoge-
nized Navier-Stokes equations in the thin transition porous
layer, yields an original nonlinear multi-dimensional model
for the inertial flow over a permeable medium. Moreover,
we show that the total work of the inertial forces in the
fluid and porous domains has always a positive contribu-
tion at the interface to the dissipation of kinetic energy
inside the whole system.

The paper is organized as follows. Section 2 details the
model equations governing the flow in the fluid and per-
meable regions. In Section 3, we derive the asymptotic
model for the inertial flow: only the contribution of all the
additional nonlinear and inertial terms is detailed, includ-
ing the cases of both weak or strong inertia. The result-
ing nonlinear interface conditions are discussed in Section
4. Finally, the mechanical energy balance is derived in
Section 5 which suggests some concluding remarks. The
present analysis is carried out in detail for the porosity
range 0 < φp ≤ 0.95, but Remark 5 gives some hints on
how to generalize it for larger porosities φp > 0.95.

2. Fluid-porous inertial flow models

Let us consider a two-dimensional1 bounded domain
Ω ⊂ R2 composed of a pure fluid region Ωf of con-
stant mass density ρ, dynamic viscosity µ and a satu-
rated porous medium Ωfp ∪ Ωp separated by a physical
interface Γfp; see Figure 1. The homogeneous part of the
porous region Ωp is characterized by its constant poros-
ity φp (volume fraction of fluid) and permeability tensor
Kp with Kp := ‖Kp‖, whereas φp ≤ φ := φ(x, z) ≤ 1
and K := K(φ) are respectively the spatially dependent
porosity and permeability tensor of the non-homogeneous
interfacial transition layer Ωfp. The porosity φ inside Ωfp
is assumed to vary smoothly from φp to 1 (for the pure
fluid) over the thickness d � L, where L represents the
characteristic length scale of the system (at least L ∼ 100d
[3] or far more). For example, Kozeny-Carman’s formula
[23] for Kp(φp) correlation confirmed in [24] is classically
used for granular media, whereas Happel-Langmuir’s one
[25] or others gathered in [26] are more suitable for fibrous
materials.

The asymptotic analysis is based on the integration of
the momentum transport over the thickness d of Ωfp giv-
ing rise to jump conditions at a fictive interface Σ whose
location inside Ωfp is not known a priori; here located
at the dimensionless height −1/2 ≤ ξ := zΣ/d ≤ 1/2 in
Fig. 2. The thin transition layer Ωfp is then replaced by
the interface2 Σ associated with suitable jump interface
conditions.

2.1. Flow models with inertia

The flow models without inertia are discussed in detail
in [12] for the Stokes/Brinkman or Stokes/Darcy problems.
The present analysis concerns the flow models with iner-
tia. Here, we consider the so-called Navier-Stokes/Darcy-
Forchheimer fluid-porous problem in the range of porosity
0 < φp ≤ 0.95. Under these conditions, the steady form of
the inertial incompressible viscous flow in the fluid-porous
system Ω is governed at the macroscopic scale by the fol-

1For the sake of clarity, the present asymptotic model is derived
hereafter for the 2-D flow, although the extension to 3-D is quite
straigthforward since all the tangential derivative and possibly cur-
vature terms are neglected up to first-order in O(d/L).

2The reader should be careful that the notations of Ωf and Ωp

are not obviously consistent between Fig. 1 and Fig. 2, but this is
for the practical sake of simplicity and convenience.
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lowing set of equations:

∇·v = 0 in Ω (1)

∇· (ρv ⊗ v)− µ∆v +∇p = ρf in Ωf (2)

1

φ
∇·

(
ρ

φ
v ⊗ v

)
−∇·σ(v, p)

+µK−1 ·v +
ρ√
Kp

|v|κ(φ) ·v = ρf in Ωfp (3)

µK−1
p ·v +

ρ√
Kp

|v|κ(φp) ·v

+∇p = ρf in Ωp (4)

where the symbol ⊗ represents the tensor product. In the
above system, f is a force per mass unit, κ is the Dupuit-
Forchheimer tensor and σ(v, p) represents the stress ten-
sor for a Newtonian fluid, v being the velocity and p the
pressure, defined by:

σ(v, p) := µ̃
(
∇v +∇vT

)
− p I

=
µ

φ

(
∇v +∇vT

)
− p I,

with φ = 1 in Ωf , φ = φp in Ωp,

(5)

where I denotes the identity tensor.

In the above system, equation (1) represents the mass
conservation in the whole domain Ω where v is the superfi-
cial average velocity, also called the filtration velocity (the
velocity of the solid skeleton being here null). The pres-
sure p refers to the intrinsic average pressure (the pres-
sure inside the solid skeleton being non-defined). Hence,
the variables v, p are physically measurable quantities at
the macroscopic scale. Here, it is interesting to note that
the momentum transport models for the two stratified
porous regions Ωfp ∪ Ωp are obtained from the so-called
Navier-Stokes/Darcy-Forchheimer equation (3) which has
been derived using a volume averaging method [27–29] in
the context of the one-domain approach. We also refer
to [30] for a more recent and precise derivation of this
equation in the case of evolving heterogeneities. All the
terms in equation (3) arising from the upscaling proce-
dure have to be kept due to evolving heterogeneities but
their contribution obviously depends on the porosity val-
ues (φp ≤ φ ≤ 1). For instance, in the pure fluid region
Ωf , φ → 1, ‖K(φ)‖ → +∞ and κ(φ) → 0, therefore the
two friction terms including the permeability become neg-
ligible and equation (3) asymptotically tends towards the
Navier-Stokes equation (2).

In the homogeneous porous bulk Ωp, the Darcy-
Forchheimer equation (4) is obtained by considering equa-
tion (3) when φ→ φp, therefore valid in Ωp and then, both
the Brinkman viscous term with respect to the Darcy drag
and the Navier-Stokes nonlinear term with respect to the
Dupuit-Forchheimer quadratic term are discarded. As ex-
plained a little further in Sec. 2.2, these approximations
are clearly valid at the macroscopic scale in the porosity

range 0 < φp ≤ 0.95. In other words, equation (3) asymp-
totically tends towards equation (4) at the porous interface
between Ωfp and Ωp where φ = φp. Under these condi-
tions, we have natural continuity of both the velocity and
stress vectors on Γfp; see [3, 31]. This also holds at the
porous interface between Ωfp and Ωp, i.e. at the bottom
of the transition layer Ωfp since the Brinkman boundary
layer is fully included inside Ωfp; see [32, 33].

The quadratic form of Dupuit-Forchheimer’s inertial
friction is confirmed by many studies in the strong iner-
tia regime, e.g. theoretical works [28, 34], direct numer-
ical simulations in ordered [35] or random porous media
[36]. The correlation of Ergun’s coefficient κ(φ) [37] was
confirmed in [38], also in good agreement with the ana-
lytical approach proposed in [39], although some others
are discussed in [40–42]. These correlations are recalled in
Appendix B.

2.2. Justification of the approximations

In order to justify the approximations made in Sec.
2.1, it is useful to plot the ratio between the orders of
magnitude of Brinkman’s viscous term and Darcy’s drag
term. Let us use for the homogeneous and isotropic porous
medium of porosity φ and permeability K(φ), the well-
known Kozeny-Carman’s formula [23] confirmed in [24] for
the absolute permeability of random packed beds of spher-
ical particles for granular materials. This reads as below,
dp being the mean diameter of particles and η being the
size of representative unit cell:

with : 1− φ =
π

6

(
dp
η

)3

,

K(φ) '
d2
p φ

3

180 (1− φ)2
' 0.00855

η2 φ3

(1− φ)4/3
.

(6)

Finer correlations for many other permeable media, like
fibrous materials with arrays of cylinder rods aligned or
normal to the flow, are gathered and discussed in [26, 43].
For example, they reported the formula below of Langmuir
(1942) and confirmed by Happel (1959), df being now the
characteristic diameter of fibers :

K(φ) '
d2
f

16 (1− φ)

(
− ln(1− φ)− 3

2
+ 2 (1− φ)

)
(7)

Figure 3 shows the well-known variation of the dimension-
less permeability with the porosity for both granular and
fibrous materials.

Then with µ̃ = µ/φ in Eq. (3) with (5), it is useful
to compare the ratio RB/D of the orders of magnitude
between Brinkman’s viscous term ∇· µ̃ (∇v + ∇vT ) of
order O(µ̃ V/L2) and Darcy’s drag term µK−1 ·v of or-
der O(µV/K(φ)) using Kozeny-Carman’s correlation (6).
Thus, we get :

RB/D =
d2
p

L2

φ2

180 (1− φ)2
. (8)
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Figure 3: Darcy number (dimensionless permeability) Da = K(φ)/d2
p

(red) or Da = K(φ)/η2 (blue) with Kozeny-Carman’s formula Eq.
(6) and Da = K(φ)/d2

f (black) with Langmuir-Happel’s formula Eq.

(7).

Here, V denotes a characteristic scale of velocity and
Kozeny-Carman’s formula (6) is used for the correlation
K(φ). The graph of RB/D is plotted in Fig. 4 for dif-
ferent macroscopic scales L/dp in the range of porosity
0.80 ≤ φ < 1. Hence, at a macroscopic scale of the whole
fluid-porous system usually such that L = O(100 dp) at
least or far more, the Brinkman viscous term can be clearly
neglected for φ ≤ 0.95, except for highly permeable media
as fibrous ones when we usually have φ > 0.98. In par-
ticular, this term must be kept in the interfacial porous
layer Ωfp of thickness d = O(dp) and where φ varies con-
tinuously from φp to 1. Indeed, when φ → 1, we have
RB/D → ∞ and the Darcy-Brinkman equation recovers
the Stokes one.

Let us now detail how to generalize the momen-
tum transport equation to include the inertial effects at
the macroscopic scale. The suggestion that the one-
dimensional form be modified by the addition of a term
proportional to ρv2 dates back to Dupuit (1863) [44],
but the modified equation is usually associated to Forch-
heimer (1901) [45]. This is confirmed by many experimen-
tal results [37, 38, 46–50] or numerical results [35, 36, 40–
42, 51–53]. Moreover, upscaling methods as homogeniza-
tion [54–56] or volume averaging [28, 34, 57, 58] prove the
quadratic behaviour of the macroscopic inertial effect when
the Navier-Stokes equations govern the flow at the micro-
scopic scale.
Forchheimer and others [52, 59–61] have also included
a term proportional to |v|2 v, but this cubic transition
regime from the non-inertial linear regime seems to ap-
pear only for weak inertia and shortly for the 3-D flow in
random media [41, 42, 62, 63].

For an isotropic homogeneous porous medium with a

Figure 4: Ratio RB/D of Brinkman’s viscous term over Darcy’s drag
Eq. (8) in the porosity range 0.80 ≤ φ < 1: L = dp (black), L =
10 dp (red) and L = 100 dp (blue).

constant porosity φ and permeability K = K(φ), the
Navier-Brinkman-Dupuit-Forchheimer equation reads as
follows after [28, 64–66]:

ρ

φ2
(v ·∇)v−µ̃∆v+

µ

K
v+

κ(φ)√
K(φ)

ρ |v|v+∇p = ρf (9)

where the non-dimensional scalar function κ(φ) > 0 in
Dupuit-Forchheimer’s quadratic inertial friction strongly
depends on the porosity φ, |v|2 := v ·v being the square
of the Euclidean norm of vector v. For example, [64] sug-
gested the mean value κ ' 0.55, whereas [37] proposed
from his experimental data a κ – φ correlation given in
Appendix B. Later, [38] confirmed a very close correlation
for κ(φ) as:

κ(φ) ' 1.80
(1− φ)1/2

φ3
. (10)

This is also in good agreement with the analytical ap-
proach proposed in [39]. Then, together with Kozeny-
Carman’s formula 6, it gives:

κ(φ)√
K(φ)

' 24.15
(1− φ)3/2

dp φ9/2
. (11)

Other correlations exist from various experimental data
or numerical results supplied in Appendix B, e.g. [40, 41,
46], giving a large disparity or even some discrepancy as
shown in Fig. 5. However, it is important to mention that
all these correlations are not calibrated for the same me-
dia, ordered or random, and some result from experimental
measurements and others from numerical simulations. Be-
sides, they are not all valid in the whole range of porosity
0 < φ < 1. For instance, κ(φ) does not tend to 0 when
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Figure 5: Ergun’s coefficient κ(φ) of Dupuit-Forchheimer’s inertial
drag in Eq. (9) in the range 0 < φ ≤ 1 with the κ – φ correlations
summarized in Appendix B: Eq. (B.1) or (B.3) (blue), Eq. (B.5)
(red), Eq. (B.2) (magenta) and Eq. (B.4) (black).

φ → 1 in [46] and the results of [41] are limited to the
range 0.3 ≤ φ ≤ 0.75.

In such a way, when dp → 0 and φ → 1, we have using
Kozeny-Carman’s relation K(φ) → +∞, and the inertial
resistance factor κ(φ)/

√
K(φ)→ 0 with Eq. (11) or with

other κ – φ correlations. Therefore, since we have also
µ̃→ µ, the Navier-Stokes equation is fully recovered with
Eq. (9) which justifies the presence of the Navier-Stokes
nonlinear term. Indeed, this term in Eq. (9) actually
comes from the volume averaging process of the Navier-
Stokes equation at the microscopic scale, as developed by
Whitaker (1996) [28].

Nevertheless, for many real porous media, the Navier-
Stokes nonlinear term is shown to be negligible with re-
spect to Dupuit-Forchheimer’s inertial term, and thus, it
is often omitted when φ ≤ 0.95. Indeed, the following ap-
proximation holds with (11), except for a large porosity
since κ(φ)/

√
K(φ)→ 0 when φ→ 1:∣∣∣∣ ρφ2

(v ·∇)v

∣∣∣∣ = O

(
ρ V 2

φ2 L

)
� ρ√

Kd

|v|κ(φ) ·v = O

(
ρ V 2 κ(φ)√

K(φ)

)
.

Using Eq. (11), the ratio RNS/F of these quantities reads:

RNS/F '
dp
L

0.0414
φ9/2

(1− φ)3/2
. (12)

The graph of RNS/F is plotted in Fig. 6 for different
macroscopic scales L/dp in the range of porosity 0.80 ≤
φ < 1. This shows that the Navier-Stokes nonlinear term
cannot be neglected when φ → 1 whatever the scale. In
particular, this term must be kept in the interfacial porous

Figure 6: Ratio RNS/F of the Navier-Stokes nonlinear term over
Dupuit-Forchheimer’s inertial friction Eq. (12) in the porosity range
0.80 ≤ φ < 1: L = dp (black), L = 10 dp (red) and L = 100 dp
(blue).

layer Ωfp of thickness d = O(dp) and where φ varies
continuously from φp to 1. But as soon as L ≥ 100 dp,
the approximation holds in Ωp with RNS/F ≤ 1/100 for
φp ≤ 0.95 and the Brinkman viscous term is also negli-
gible as discussed earlier. In that case, the flow in Ωp is
governed by Darcy-Forchheimer’s equation (4).

Now, if the porous medium is anisotropic, Dupuit-
Forchheimer’s quadratic term takes a tensorial form as
derived in [28]: F (φ, |v|) ·v, where the tensor F (φ, |v|)
varies linearly with |v|, so has the dimension of a velocity
and is written in 2-D as :

F (φ, |v|) := |v|κ(φ) = |v|

(
κτ (φ) κτn(φ)

κnτ (φ) κn(φ)

)
. (13)

We also refer to [41] for the numerical solutions of the
associated local closure problems showing that this tensor
is positive but generally non-symmetric for ordered media
in the so-called strong inertia regime of flow. Thus, the
dimensionless tensor κ(φ) is positive and possibly non-
symmetric.

As a conclusion, the previous discussion justifies the mo-
mentum transport equation (3) in the transition porous
region Ωfp, which is derived by volume averaging for an
heterogeneous porous medium in several works [27–29] and
also in [30] for evolving heterogeneities.

3. The asymptotic interface model

The asymptotic model for the momentum transport is
derived by integrating Eqs. (1), (3) and (5) over the thick-
ness d of the interfacial layer Ωfp using the constraint
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d/L � 1 with d = O(20
√
Kp) [67] and related approxi-

mations up to O(d/L). In the recent study [33], the thick-
ness δB of Brinkman’s viscous boundary layer is precisely
investigated by filtered direct numerical simulations at the
pore scale for different configurations of porous media.
We also refer to [32] where the viscous boundary layer is
theoretically calculated by WKB asymptotic expansions
of which the convergence is proved. Since the transition
layer Ωfp due to the microstructure is included inside the
Brinkman boundary layer, we have thus: d ≤ δB . Then,
the averaged transfer is described at the fictive dividing
interface Σ through suitable jump interface conditions at
the first-order in O(d/L).

For the sake of simplicity, we consider the simplest
reasonable choice when the fictive interface Σ is cen-
tered inside Ωfp, i.e. with the dimensionless coordinate
ξ := zΣ/d = 0. The modifications involved by ξ 6= 0 with
−1/2 ≤ ξ ≤ 1/2 are detailed in [12] using non-centered ap-
proximations (see Remark 3) leading to a family of jump
interface conditions depending on the location of Σ inside
Ωfp. In fact, the exact position of the interface inside Ωfp
is not of great importance for the present study since the
model is derived hereafter up to the approximation order
of O(d/L). Therefore, compared to more sophiscated up-
scaling methods, the present simplified asymptotic theory
considers the position of Σ as given a priori, as it is for the
macroscopic problem to solve in Ω, and then the resulting
approximate model is related to that given position up to
O(d/L).

It is also worth noting that at every step of the deriva-
tion of the model, a quantity is neglected only with re-
spect to another term of the same physical meaning that
is much larger. Hence, this allows us to assess that the
global error remains of the order of O(d/L) throughout
the whole model3. We very often refer to [12] where
the asymptotic modeling is extensively developed for the
multi-dimensional but non-inertial viscous flow with arbi-
trary flow directions.

Let n be a unit normal vector on the interface Σ arbi-
trarily oriented from Ωp to Ωf and τ be a unit tangential
vector on Σ; see Figure 2. For any quantity ψ defined all
over Ω, the restrictions on Ωf or Ωp are respectively de-
noted by ψf := ψ|Ωf

and ψp := ψ|Ωp
. For a function ψ

having a jump on Σ, let ψ− and ψ+ be the traces of ψp

and ψf on each side of Σ, respectively. Following [68], the
jump of ψ on Σ oriented by n and the arithmetic mean of
traces of ψ are defined as reduced variables at the interface
by

[[ψ]]Σ := ψ+ − ψ− =
(
ψf − ψp

)
|Σ ,

ψΣ :=
1

2

(
ψ+ + ψ−

)
=

1

2

(
ψf + ψp

)
|Σ .

(14)

3With some obvious changes, the present theory can be applied to
derive the macroscopic jump interface conditions for the flow between
two porous media of different permeability, or with a non-Newtonian
fluid.

Besides, for any quantity k, the arithmetic and harmonic
means over the thickness of Ωfp respectively are given by

〈k〉(x) :=
1

d

∫ d/2

−d/2
k(x, z) dz, 〈k〉h(x) :=

〈
1

k

〉−1

(15)

3.1. Jump interface conditions for the non-inertial flow

Before deriving jump conditions for the inertial flow,
let us briefly recall the linear jump interface conditions for
the stress and tangential velocity vectors at the interface Σ
separating now the pure fluid domain Ωf from the porous
domain Ωp, as derived in [12]:

[[v ·n]]Σ = 0

σ(v, p) ·nΣ + pΣ n =
2µ

dφΣ
[[v]]Σ

−[[σ(v, p) ·n]]Σ + µdK−1
Σ ·vΣ = d 〈ρf〉

(16)

where φΣ denotes an effective surface porosity on Σ and
KΣ is an effective surface permeability tensor on Σ.

The first equation in (16) indicates that there is no jump
of the normal velocity across Σ. This is obtained by the
average of the mass conservation equation ∇·v = 0 over
the thickness of the interfacial layer Ωfp, the additional
tangential derivative term being of order of O(V d/L) and
thus neglected in front of [[v ·n]]Σ = O(V ). We refer to
[11] for higher-order asymptotic modelling of the flow in
fractured porous media where the tangential derivatives
are not neglected.

The second equation in (16) corresponds to the aver-
age of the viscous stress vector4 from Eq. (5) and the
scalar coefficient 2/d φΣ can be related with the scaling
d = O(

√
Kp) to the quantity αΣ/

√
Kp, where αΣ de-

notes the non-dimensional slip coefficient, originally intro-
duced semi-empirically in [2] for the 1-D channel flow with
Darcy’s law. Thus, this jump condition appears as a gen-
eralization for 2-D/3-D configurations with arbitrary flow
directions of the popular Beavers and Joseph’s tangential
velocity jump which was early justified by volume averag-
ing in [70, 71] and recently proved via homogenization by
[10]. A simplified version was also justified with a statis-
tical and volume averaging approach in [5] and proved via
homogenization in [8]. According to the present theory,
these two first conditions in Eq. (16) are not modified by
including the inertial effects.

Remark 1 (Nonlinear Beavers-Joseph conditions).
Therefore, it does not seem physically meaningful to con-
sider nonlinear versions of Beavers and Joseph’s velocity
jump condition as made by several authors, since the

4The derivation in [12] is carried out using the pseudo-stress vec-
tor: µ̃∇v ·n − pn on Σ instead of the full stress one σ(v, p) ·n|Σ
with (5) that is more suitable for arbitrary flow directions [69]. How-
ever, the reader will be easily convinced that the contribution of∇vT
amounts to multiply the slip coefficient αΣ by a factor 2 since all the
tangential derivatives terms are neglected up to O(d/L).
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definition of the stress vector in Eq. (5) remains un-
changed and linear whatever inertia or not. However, the
case of non-Newtonian flows will result in a nonlinear
Beavers-Joseph condition.

The last condition in (16) results from the averaging
of the Darcy-Brinkman momentum equation, i.e. Eq. (3)
with no inertial term, over the thickness d of the interfacial
layer Ωfp. This corresponds to the balance of forces across
the interface Σ and this is the single equation which will
be modified to take account of inertia terms included in
Eq. (3). The tensorial quantity dK−1

Σ can be rescaled and
related to βΣ/

√
Kp, where βΣ denotes the so-called Darcy

friction tensor that is dimensionless. This condition can be
viewed as a generalization for 2-D/3-D configurations with
arbitrary flow directions of the shear stress jump condition
originally derived by volume averaging in [6, 7, 72] for the
1-D flow with no tangential velocity jump or assuming no
pressure jump [29].

Moreover, as argued in [12], the linear asymptotic model
described by the set of equations (16) provides a suitable
generalization for 2-D/3-D configurations with arbitrary
flow directions of the interface conditions recently derived
for the 1-D channel flow by volume averaging in [4] and
including both shear stress and tangential velocity jumps.

Therefore, in agreement with the above discussion with
the scaling d = O(20

√
Kp), we introduce the dimension-

less scalar or tensorial slip and friction coefficients at the
interface:

αΣ :=
2
√
Kp

dφΣ
with φΣ :=

1

〈φ−1〉
:= 〈φ〉h

βΣ := d
√
KpK

−1
Σ with KΣ := 〈K(φ)〉h.

(17)

Then, the asymptotic interface model (16) with a surface
force fΣ := d 〈ρf〉 on Σ finally reads for the non-inertial
regime and arbitrary flow directions up to O(d/L):

[[v ·n]]Σ = 0,

σ(v, p) ·nΣ + pΣ n =
µ√
Kp

αΣ [[v]]Σ,

− [[σ(v, p) ·n]]Σ +
µ√
Kp

βΣ ·vΣ = fΣ

on Σ. (18)

Such a form similar to Eq. (18) was proposed earlier in
[68, 73] to mathematically study the multi-dimensional
fluid-porous flow and prove the solvability of the coupled
Stokes/Brinkman or Stokes/Darcy problems.

Remark 2 (Over-determination with (18)). Let us
point out that the normal component of the second equa-
tion in (18) is not necessary to solve the problem since
[[v ·n]]Σ = 0 is already given by the first equation. This
can be used to determine the mean pressure pΣ at the in-
terface; see also [12] for the jump of pressure [[p]]Σ at the
interface. Thus, only the tangential component of this sec-
ond equation is required with the first and third equations

of (18) to prove that the whole fluid-porous coupled prob-
lem is well-posed. Indeed, the mathematical analysis of
solvability is recently detailed in [74].

Let us now derive separately the contribution of the
additional inertial terms from Eq. (3) in Ωfp, i.e. the
Navier-Stokes nonlinear term and Dupuit-Forchheimer’s
quadratic inertial friction for the strong inertia regime of
flow. The case of the weak inertia regime with a cubic
inertial friction is also considered further.

3.2. Contribution of the Navier-Stokes nonlinear term

Let us set for convenience γ(φ) := 1/φ and observe that
φp ≤ φ ≤ 1 in Ωfp. To respect the coherency of the
modeling, this function should be cut off to zero in Ωp, i.e.
by taking γp := γ(φp) = 0 in Ωp, since the Navier-Stokes
nonlinear term is neglected in Ωp for φp ≤ 0.95. Besides,
we have using the trapezoidal quadrature formula:

γΣ := 〈γ(φ)〉 =
1

2

(
γf + γp

)
+O(d2) ≈ 1

2
. (19)

By integrating the Navier-Stokes nonlinear term in Eq. (3)
over the thickness of Ωfp, the density ρ being a constant,
and applying the approximation Lemma 1 of the general-
ized average in Appendix A, we get:∫ d/2

−d/2

1

φ
∇·

(
ρ

φ
v ⊗ v

)
dz

= ρ γΣ

∫ d/2

−d/2
∇· (γ(φ)v ⊗ v) dz +O

(
ρ γ2

Σ V
2 d2/L2

)
.

(20)
It clearly appears that the error term can be neglected up
to O(d/L). Then, it yields in the 2-D tensorial form up to
the modeling error in O(d/L):

ρ γΣ

∫ d/2

−d/2
∇· (γ(φ)v ⊗ v) dz

≈ ρ γΣ

(
∂τ (d〈γ v2

τ 〉) + [[γ vτ vn]]Σ

∂τ (d〈γ vτ vn〉) + [[γ v2
n]]Σ

)
.

(21)

However, the tangential derivative terms in both compo-
nents are estimated as:∣∣ρ γΣ ∂τ (d〈γ v2

τ 〉)
∣∣ = O

(
γ2

Σ ρ V
2 d

L

)
,

|ρ γΣ ∂τ (d〈γ vτ vn〉)| = O

(
γ2

Σ ρ V
2 d

L

)
,

(22)

and they can be neglected up toO(d/L) with respect to the
jump terms which are of the order of O(γ2

Σ ρ V
2). Since

[[vn]]Σ = [[v ·n]]Σ = 0 [12] and thus vf ·n = vp ·n =
v ·n, we get with Eq. (20) the approximation below up to
O(d/L):∫ d/2

−d/2

1

φ
∇·

(
ρ

φ
v ⊗ v

)
dz = ρ γΣ v ·n [[γ v]]Σ. (23)
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Besides, by neglecting the Navier-Stokes nonlinear term in
Ωp, we have with γp = 0 and the definitions (14):

γΣ =
1

2
, [[γ v · τ ]]Σ = vf · τ |Σ, [[γ]]Σ = γf−γp = 1.

Then Eq. (23) simplifies as:∫ d/2

−d/2

1

φ
∇·

(
ρ

φ
v ⊗ v

)
dz =

1

2
ρv ·nvf . (24)

We observe that this term is always null for the 1-D
channel or shear flow, i.e. with v ·n = 0 at Σ, which
is physically expected from the Poiseuille or Couette flow
since the Navier-Stokes convection term vanishes. How-
ever, this term is generally non-zero for 2-D/3-D configu-
rations with arbitrary flow directions.

3.3. Contribution of Dupuit-Forchheimer’s term

Let us consider Dupuit-Forchheimer’s quadratic term of
Eq. (3) in Ωfp, first written as:

ρ√
Kp

F (φ, |v|) ·v, with F (φ, |v|) := |v|κ(φ).

By applying the approximation Lemma 1 of the gener-
alized average in [12, Appendix B], the integral of this
term over the thickness of Ωfp yields with the scaling
d = O(

√
Kp)∫ d/2

−d/2

ρ√
Kp

F (φ, |v|) ·v dz

=
ρ d√
Kp

〈F (φ, |v|)〉 ·vΣ +O

(
ρ V 2 d

L

)
,

(25)

and the error term can be neglected with respect to other
terms in O(ρ V 2).

Now, still using the approximation Lemma 1, we get:

d〈F (φ, |v|)〉 =

∫ d/2

−d/2
|v|κ(φ) dz

= d |v|Σ〈κ(φ)〉+ O
(
‖〈κ(φ)〉‖∞ V d2/L

)
.

(26)

Let us define the positive tensor κΣ := 〈κ(φ)〉 as the
effective Dupuit-Forchheimer’s friction tensor at Σ. Then,
by replacing (26) in Eq. (25), it gives still using the scaling
d = O(20

√
Kp):∫ d/2

−d/2

ρ√
Kp

F (φ, |v|) ·v dz

=
ρ d√
Kp

|v|Σ κΣ ·vΣ +O

(
‖κΣ‖∞ ρ V 2 d

L

)
,

(27)

and the error term can be still neglected. Hence, the ap-
proximation up to O(d/L) of the integral across Ωfp of
Dupuit-Forchheimer’s quadratic term in Eq. (3) reads∫ d/2

−d/2

ρ√
Kp

F (φ, |v|) ·v dz =
ρ d√
Kp

|v|Σ κΣ ·vΣ. (28)

3.4. Contribution of a power-law inertial term

More generally, let us now consider a power-law inertial
term of the form:

F q(φ, |v|q) ·v, with F q(φ, |v|q) := |v|q κ(φ),

with any real number q > 0. This term should be multi-
plied by a suitable quantity for dimensional reason to be in-
cluded in Eqs. (3) and (4) instead of Dupuit-Forchheimer’s
term corresponding to q = 1. Then, using the same ap-
proximation procedure with Lemma 1, we get:∫ d/2

−d/2
F q(φ, |v|q) ·v dz = |v|qΣ κΣ ·vΣ, on Σ. (29)

The cubic inertial term for the weak inertia regime corre-
sponds to the case q = 2.

4. The nonlinear interface model for inertial flow

By incorporating the contributions of the inertial terms
from Eqs (24) and (28) in the asymptotic interface model
(18) for the non-inertial flow, we summarize below the non-
linear asymptotic model governing the 2-D/3-D inertial
flow at the interface. By neglecting Brinkman’s viscous
term in Ωp, within a suitable rescaling, it suffices to for-
mally take the limit when the effective viscosity µ̃p → 0
inside Ωp in the definition of the stress tensor (5) [32, 73],
and thus the stress vector on the porous side of Σ reduces
to the normal pressure force:

σ(v, p)p ·n|Σ = −pp n. (30)

Indeed, the coupled limit problem when µ̃ → 0 is rigo-
rously proved by a vanishing viscosity method in [73] or
with a BKW asymptotic expansion to calculate the viscous
boundary layer in [32] from the Stokes/Darcy-Brinkman
problem to the Stokes/Darcy problem. We also refer to
[33] for numerical investigations of the Brinkman bound-
ary layer with pore-scale resolved simulations.

Since we have the scaling d = O(20
√
Kp), we introduce

the dimensionless scalar or tensorial slip and friction coef-
ficients at the interface:

αΣ :=
2
√
Kp

dφΣ
with φΣ :=

1

〈φ−1〉
:= 〈φ〉h

βΣ := d
√
KpK

−1
Σ with KΣ := 〈K(φ)〉h

λΣ :=
d√
Kp

κΣ with κΣ := 〈κ(φ)〉.

(31)

Here, φΣ denotes an effective surface porosity on Σ,
whereas KΣ is an effective surface permeability tensor on
Σ. Therefore, the nonlinear interface model with a surface
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force fΣ := d 〈ρf〉 on Σ reads up to O(d/L):

[[v ·n]]Σ = 0,

σ(v, p) ·nΣ + pΣ n =
µ√
Kp

αΣ [[v]]Σ,

1

2
ρv ·nvf − [[σ(v, p) ·n]]Σ

+
µ√
Kp

βΣ ·vΣ + ρ |v|Σ λΣ ·vΣ = fΣ

on Σ. (32)

Remark 2 obviously holds also, as for (18), for the over-
determination of the set of interface conditions (32).

Remark 3 (The case of Σ non-centered in Ωfp).
For the sake of completeness, let us recall from [12] that
when the dividing interface Σ is chosen non-centered
inside Ωfp, i.e. for ξ 6= 0 (see Fig. 2), then all the mean
quantities ψΣ in the interface conditions (18) or (32)
must be replaced by their weighted counterpart ψ

w

Σ defined
by:

ψ
w

Σ := ψΣ + ξ [[ψ]]Σ, with − 1/2 ≤ ξ ≤ 1/2. (33)

Therefore, two special cases can be discussed: ξ = 1/2 giv-

ing ψ
w

Σ = ψf|Σ where Σ is located at the top of the transition

layer Ωfp and ξ = −1/2 giving ψ
w

Σ = ψp|Σ when Σ is at

the bottom of Ωfp; see [75].

Although the slip and friction coefficients should be es-
timated by experimental data or direct numerical simu-
lations in ordered or random media, the present theory
also provides correlations with respect to the porosity φp of
the porous medium in Ωp. These functions are calculated
hereafter for isotropic tensors, βΣ = βΣ I or λΣ = λΣ I,
and depend on the scaling d/dp chosen for the thickness
of the transition layer Ωfp, dp = O(

√
Kp) being the mean

diameter of solid particles or fibres. Indeed, we have cho-
sen d = O(10 dp) to derive the macroscopic momentum
equation (3) in Ωfp. Now, approximating the averaged
quantities in Eqs. (31) by the trapezoidal rule which only
includes the known values in Ωf or Ωp, we get:

αΣ =
2
√
Kp

d
〈φ−1〉 '

√
Kp(φp)

d

(
1 +

1

φp

)
,

βΣ '
d

2
√
Kp(φp)

,

λΣ =
d√
Kp

〈κ(φ)〉 ' d κ(φp)

2
√
Kp(φp)

' κ(φp)βΣ.

(34)

It is easy to verify that these coefficients satisfy the re-
quired coherency at the asymptotics when φp → 0 or
φp → 1 in Ωp. The graphs of αΣ and βΣ for the scal-
ing d = 10 dp or d = 10 df are plotted in Fig. 7 and Fig.
8, respectively, using either Kozeny-Carman’s correlation
Kp(φp) for granular media [23, 24] or Happel-Langmuir’s
one for fibrous materials [25, 26]. The graph of λΣ is plot-
ted in Fig. 9 using also the correlation of Ergun’s coeffi-
cient κ(φp) from [38].

Remark 4 (On the inertial friction coefficient λΣ).
It is remarkable that λΣ at the interface is related to the
stress jump coefficient βΣ as λΣ ' κ(φp)βΣ from (34).
Therefore, the interface model for the inertial flow with
ξ = 0 (i.e. Σ being centered in Ωfp) only requires the
surface coefficients αΣ, βΣ needed for the non-inertial flow
and the Ergun’s coefficient κ(φp) of the porous bulk Ωp.

Moreover, by choosing the interface Σ at the bottom of
Ωfp, i.e. ξ = −1/2, it appears from the forthcoming study
[75] that the interface conditions (32) degenerate to a gen-
eralized version of the stress jump condition of Ochoa-
Tapia and Whitaker [6] with velocity continuity vf = vp

on Σ. Then, the single friction coefficient βΣ is only re-
quired to calibrate the interface model for the inertial flow.

Figure 7: Slip coefficient αΣ at the interface Σ in (34) for the sca-
ling d = 10 dp or d = 10 df and usual Kp(φp) correlations in Ωp –
Solid line: with Kozeny-Carman Eq. (6); Dashed line: with Happel-
Langmuir Eq. (7).

5. The mechanical energy balance and dissipation

5.1. Energy balance for the fluid-porous inertial flow

Let us now derive the energy balance of the resulting
macroscale coupled model (1,2,4) in the domain Ω := Ωf ∪
Σ ∪ Ωp, i.e. the Navier-Stokes and Darcy-Forchheimer
equations in Ωf and Ωp, respectively, supplemented by
the interface model (32) on Σ. This will show that our
model actually satisfies the energy theorem in mechanics at
the macroscopic scale and that the conservation of kinetic
energy holds.
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Figure 8: Friction coefficient βΣ at the interface Σ in (34) for the
scaling d = 10 dp or d = 10 df and usual Kp(φp) correlations in
Ωp – Solid line: with Kozeny-Carman Eq. (6); Dashed line: with
Happel-Langmuir Eq. (7).

Without loss of generality, we assume null boundary
conditions vf|Γ = 0 and vp ·n|Γ = 0 at the external bound-

ary Γ of Ω. Thus, all the boundary integrals on Γ will
vanish with these homogeneous boundary conditions.

For the linear terms, we follow the mathematical ana-
lysis made in [74], see also [68, 73], for the well-posedness
study of the fluid-porous Stokes/Darcy problem with the
asymptotic interface conditions without inertia (16) and
we include the contributions of all the nonlinear inertial
terms. To deal with the nonlinear terms, it is more suitable
to write the inertial term in the Navier-Stokes equation
with constant density ρ in Ωf as:

ρ (v ·∇)v = ρ (∇× v)× v +
1

2
∇(ρ |v|2), (35)

which introduces Bernoulli’s total pressure in the fluid Ωf :
πf := pf + ρ |vf |2/2.

By taking L2-scalar products of the motion equations
with v in Ωf and Ωp, respectively, we use formally for suf-
ficiently regular solutions standard integrations by parts
and the boundary integrals on Γ vanish with homoge-
neous boundary conditions, as well as the integrals with
divergence-free velocity terms. We have also the skew sym-
metry property:∫

Ωf

(
ρ (∇× vf )× vf

)
·vf dx = 0. (36)

Figure 9: Coefficient of inertial friction λΣ ' κ(φp)βΣ at the inter-
face Σ in (34) for the scaling d = 10 dp or d = 10 df , κ(φp) correlation
(10) from [37, 38] and usual Kp(φp) correlations in Ωp – Solid line:
with Kozeny-Carman Eq. (6); Dashed line: with Happel-Langmuir
Eq. (7).

Using Eqs (35, 36) and ∇·vf = 0, vf|Γ = 0, we get with

integration by parts:

∫
Ωf

((ρvf ·∇)vf ) ·vf dx =

∫
Ωf

∇
(

1

2
ρ |vf |2

)
·vf dx

= −
∫

Ωf

(
1

2
ρ |vf |2

)
∇·vf dx

−
∫

Σ

1

2
ρ |vf |2 vf ·nds

= −ρ
2

∫
Σ

|vf |2 v ·n ds.

(37)
Hence, the contribution of the Navier-Stokes inertial
term in Ωf only involves the kinetic energy on Σ from
Bernoulli’s pressure.

Then, we follow the previous works [68, 73, 74] for the
mathematical analysis of the fluid-porous flow without in-
ertia. Using now the inertial interface conditions (32) in-
stead of (18), we get after standard integrations by parts
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the following energy balance:

µ

∫
Ωf

|∇vf |2 dx+ µ

∫
Ωp

(K−1
p ·vp) ·vp dx

+
ρ√
Kp

∫
Ωp

|vp| (κ(φ) ·vp) ·vp dx

+
µ√
Kp

∫
Σ

αΣ [[v · τ ]]
2
Σ ds

+
µ√
Kp

∫
Σ

(βΣ ·vΣ) ·vΣ ds

+ JΣ =

∫
Ω

ρf ·v dx+

∫
Σ

fΣ ·vΣ ds,

(38)

where the energy quantity JΣ gathers all the contributions
of the nonlinear Navier-Stokes and Forchheimer inertial
terms from the third interface condition in (32) on Σ and
also includes the term (37). Therefore, we have:

JΣ := ρ

∫
Σ

|v|Σ (λΣ ·vΣ) ·vΣ ds

+
ρ

2

∫
Σ

v ·nvf ·vΣ ds− ρ

2

∫
Σ

|vf |2 v ·n ds.

By combining the last two terms using the definition of vΣ

from (14), the quantity JΣ finally reads:

JΣ = ρ

∫
Σ

|v|Σ (λΣ ·vΣ) ·vΣ ds

− ρ

4

∫
Σ

(
|vf |2 − vf ·vp

)
v ·nds.

(39)

Let us notice that the first term in the right-hand side
of (39) is always positive whereas the second one is of
arbitrary sign or vanishes if vp = vf on Σ, i.e. when there
is no jump of velocity at the interface.

5.2. Global dissipation of the coupled fluid-porous model

Now, we can prove the following result in Appendix C:

Theorem 1 (Sufficient condition for dissipation).
If the condition λΣ ≥ 1 holds, then we have JΣ ≥ 0 and
hence the global dissipation of the present model holds.

This is at least satisfied within the porosity range of
validity of the present Navier-Stokes/Darcy-Forchheimer
macroscale model (1,2,4,32), i.e. 0 < φp ≤ 0.95, as shown
in Fig. 10 and Fig. 11 for a zoom.

Indeed, introducing the ratio R := |vf |Σ/|vp|Σ ≥
1, we recall that Saffman’s approximation [5] assuming
|vp · τ | � |vf · τ | at the interface is generally not valid as
soon as the porosity is large enough. Thus, only the con-
dition R ≥ 1 clearly holds but we do not have in general
R� 1.

Then, it appears after calculations detailed in Appendix
C that a simple sufficient condition to get JΣ ≥ 0 reads:

A := λΣ

(
R2 + 1

)
− 2R ≥ 0, for any R ≥ 1. (40)

Figure 10: Coefficient of inertial friction λΣ ' κ(φp)βΣ at the in-
terface Σ in (34) for κ(φp) correlation (B.3) of [37, 38] and different
correlations Kp(φp) in Ωp or scalings of d: Kozeny-Carman Eq. (6)
(solid line) for d = 5 dp (red) or d = 10 dp (blue) – Happel-Langmuir
Eq. (7) (dashed line) for d = 5 df (red) or d = 10 df (blue) – Mini-
mum coefficient for global dissipation: λmin = 1 (green) – Maximum
porosity limit for φp: φmax = 0.95 (black).

Then from (40), it follows the final sufficient condition for
global dissipation:

λΣ ≥ 1

⇒ A ≥ R2 + 1− 2R = (R− 1)2 ≥ 0

⇒ JΣ ≥ 0.

(41)

As shown in Figures 10 and 11, the condition λΣ ≥ 1
is clearly satisfied for the correlation of Ergun’s coefficient
κ(φp) given by [37, 38], but it also holds for other cor-
relations like [40, 41], at least within the porosity range
φp ≤ 0.95 of validity of the present Navier-Stokes/Darcy-
Forchheimer model.

Thus we have always JΣ ≥ 0 with φp ≤ 0.95, which
means that all the nonlinear terms at the interface have
always a positive contribution to the dissipation of kinetic
energy in the whole system Ω. Since, all the other terms in
the left-hand side of Eq. (38) are also positive, we conclude
that the present Navier-Stokes/Darcy-Forchheimer model
is globally dissipative which assesses its stability and phy-
sical relevance5. Moreover, the condition JΣ ≥ 0 is also a
strong argument to mathematically prove the global exis-
tence of weak solutions to this nonlinear flow model in 3-D,
with no restriction on the size of the data.

5With the present theory and with no inertia at all in the porous
region Ωp, it does not seem possible to get the global dissipation
with no restriction on the size of the data. Indeed, considering only
the Navier-Stokes/Darcy problem, as made by some authors, would
give λΣ = 0. This does not enable us to control the kinetic energy
at the interface Σ with the present interface conditions at ξ = 0, nor
discarding the first nonlinear term ρv ·nvf/2 in (32) to get interface
conditions that become then only linear.
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Figure 11: Zoom of Figure 10 with the same caption in the range of
porosity 0.5 ≤ φp < 1.

Remark 5 (Generalization for porosities φp > 0.95).
The present interface model (32), its derivation and anal-
ysis of global dissipation can be extended with some
modifications to larger porosities φp > 0.95 of the perme-
able medium Ωp, e.g. for fibrous porous media. In that
case, considering now the Navier-Brinkman-Forchheimer
equation (9) in Ωp, the Navier-Stokes/Navier-Brinkman-
Forchheimer model must be used for the free fluid and
porous medium coupling together with a suitable mod-
ification of the interface conditions (32) on Σ. Then,
the jump of velocity [[v]]Σ on the interface is small and
can be neglected. Thus we have vp ' vf on Σ and the
second term in the right-hand side of (39) vanishes.
Therefore, we get JΣ ≥ 0 and the global dissipation of the
Navier-Stokes/Navier-Brinkman-Forchheimer model is
also ensured. That is detailed in a forthcoming paper [76].

6. Conclusion

Let us emphasize that the physically meaningful nonlin-
ear interface model in the set of equations (32-34) is quite
original since, to our knowledge, there exists in the lit-
erature no other multi-dimensional nonlinear macroscale
model for the inertial flow with arbitrary flow directions
over a permeable medium. Moreover, this clearly opens
new perspectives to study turbulent flows at the fluid-
porous interface.
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Appendix A. Approximation result

The key practical result which is used several times in
this study reads as follows. The proof is given in [12,
Appendix B].

Lemma 1 (Approximations of generalized average).

Let the function ψ : [−d/2, d/2] → R be continuously
differentiable and the function w : [−d/2, d/2] → R be
Lebesgue-integrable.

Then we have:∫ d/2

−d/2
w(x)ψ(x) dx = 〈w〉

∫ d/2

−d/2
ψ(x) dx

+O
(
〈|w|〉 ‖ψ′‖∞ d2

)
= d 〈w〉ψΣ +O

(
〈|w|〉 ‖ψ′‖∞ d2

)
.

Appendix B. Different κ – φ correlations for Er-
gun’s coefficient

Here, we summarize various widely used κ – φ corre-
lations for Ergun’s coefficient of Dupuit-Forchheimer’s in-
ertial resistance force. Most of the correlations are phe-
nomenological and have been deduced from experiments.
Recently, a few of them have been obtained using numer-
ical simulations.

• Correlation by Ergun (1952) [37]: based on an implicit
model of packed spheres

κ(φ) ' 1.75
(1− φ)1/2

φ3
. (B.1)

• Correlation by Irmay (1958) [46]: three-dimensional
viscous flow in the tortuous channels of the medium
composed by spherical grains

κ(φ) ' 0.045

φ3/2
. (B.2)

• Correlation by MacDonald et al. (1979) [38]: theoret-
ical and experimental data with solid spheres

κ(φ) ' 1.80
(1− φ)1/2

φ3
. (B.3)

• Correlation by Papathanasiou et al. (2001) [40]: com-
putational evaluations

κ(φ) ' 0.08
1− φ
φ

. (B.4)

• Correlation by Lasseux et al. (2011) [41]: numerical
simulations

κ(φ) ' 0.12
(1− φ)0.38

φ2.04
, for 0.3 ≤ φ ≤ 0.75. (B.5)
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Appendix C. Proof of Theorem 1

The strategy is to get a non-negative lower bound of JΣ

given in (39). For sake of clarity, we consider the case of
the isotropic tensor λΣ = λΣ I with the scalar coefficient
λΣ > 0. The general case of a symmetric positive definite
tensor λΣ will easily follow by considering the classical
minoration from Rayleigh’s quotient:

(λΣ ·v) ·v ≥ λmin |v|2, for all v ∈ R3,

where λmin > 0 is the minimum eigenvalue of the matrix
λΣ. Then the result below holds using λmin instead of λΣ.

Further from (39), we have the splitting below:

JΣ := J1 − J2, with

J1 := ρ

∫
Σ

|v|Σ (λΣ ·vΣ) ·vΣ ds ≥ 0,

J2 :=
ρ

4

∫
Σ

(
|vf |2 − vf ·vp

)
v ·n ds.

(C.1)

Now, the key idea is to introduce the ratio:

R :=
|vf |Σ
|vp|Σ

≥ 1, on Σ. (C.2)

We recall that Saffman’s approximation [5] assuming
|vp · τ | � |vf · τ | at the interface is generally not valid
as soon as the porosity is large enough. Thus, only the
condition R ≥ 1 clearly holds since |vp · τ | ≤ |vf · τ | and
also vf ·n = vp ·n = v ·n on Σ. But we do not have in
general R� 1.

Then, from one side using the definition of the arith-
metic mean on Σ from (14), we have successively:

J1 = ρ

∫
Σ

|v|Σ λΣ |vΣ|2 ds

=
ρ

8

∫
Σ

λΣ

(
|vf |+ |vp|

) ∣∣vf + vp
∣∣2 ds

=
ρ

8

∫
Σ

λΣ

(
|vf |+ |vp|

) (
|vf |2 + |vp|2 + 2vf ·vp

)
ds

=
ρ

8

∫
Σ

|vp|3 λΣ (R+ 1)

(
R2 + 1 + 2

vf ·vp

|vp|2

)
ds.

Since vf ·vp ≥ 0 on Σ, we get the minoration of J1:

J1 ≥
ρ

8

∫
Σ

|vp|3 λΣ (R+ 1)
(
R2 + 1

)
ds. (C.3)

From another side with the Cauchy-Schwarz inequality,
we have the majoration of J2:

|J2| ≤
ρ

4

∫
Σ

(
|vf |2 + |vf | |vp|

)
|v ·n|ds

≤ ρ

4

∫
Σ

|vp|3
(
R2 +R

)
ds

≤ ρ

8

∫
Σ

|vp|3 2R (R+ 1) ds.

(C.4)

Combining (C.3) and (C.4), we get the minoration of JΣ

below:

JΣ = J1 − J2

≥ ρ

8

∫
Σ

|vp|3 (R+ 1)
[
λΣ

(
R2 + 1

)
− 2R

]
ds.

(C.5)

Then, it appears that a simple sufficient condition to get
JΣ ≥ 0 reads:

A := λΣ

(
R2 + 1

)
− 2R ≥ 0,

i.e. λΣ ≥
2R

R2 + 1
, for any R ≥ 1.

(C.6)

Since we have 0 < 2R/(R2 +1) ≤ 1 for all R ≥ 1, the suffi-
cient condition (C.6) is equivalent to the condition below:

λΣ ≥ 1. (C.7)

This ends the proof.
2
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