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ABSTRACT
Modeling of the observational spectra of H3O+ allows for a detailed understanding of the interstellar oxygen chemistry. While its spectroscopy
was intensively studied earlier, our knowledge about the collision of H3O+ with the abundant colliders in the interstellar medium is rather lim-
ited. In order to treat these collisional excitation processes, it is first necessary to calculate the potential energy surface (PES) of the interacting
species. We have computed the five-dimensional rigid-rotor PES of the H3O+–H2 system from the explicitly correlated coupled-cluster the-
ory at the level of singles and doubles with perturbative corrections for triple excitations [CCSD(T)-F12] with the moderate-size augmented
correlation-consistent valence triple zeta (aug-cc-pVTZ) basis set. The well depth of the PES is found to be rather large, about 1887.2 cm−1.
The ab initio potential was fitted over an angular expansion in order to effectively use it in quantum scattering codes. As a first application,
we computed dissociation energies for the different nuclear spin isomers of the H3O+–H2 complex.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015813., s

I. INTRODUCTION

Hydronium cation H3O+ plays a crucial role in oxygen chem-
istry and ion–molecule reaction schemes, which dominates the
chemistry of both dense and diffuse interstellar medium (ISM).1–9

The recombination of H3O+ with electrons as well as its neutral-
ization by charge exchange with a neutral electron donor leads to
OH and H2O formation, where OH can subsequently react with O
atoms to form molecular oxygen.10–13 These ions are also essential
probes of cosmic-ray and x-ray ionization rates in diffuse clouds
of the ISM.4,5 These reactive processes then initiate CO produc-
tion through interactions with interstellar carbon (both neutral and
ionized), whereas the build-up of complex polyatomic species in
the ISM then follows these basic reactions (for more details, see,
for example, the work of Sternberg and Dalgarno9). Moreover, the
hydronium cation is not just the backbone of oxygen chemistry in
the ISM, but it is among the most important cations in chemistry, in
general.14,15

The vibrational spectroscopy of H3O+ and its dissociation
dynamics were intensively studied earlier, both experimen-
tally12,13,15–17 and theoretically.14,15,18,19 For example, Yu et al.13

investigated the ground-state inversion transition, rotational con-
stants, and other spectroscopic parameters of hydronium cations
in the terahertz frequency region. Mann et al.15 studied the dis-
sociation dynamics of neutral H3O molecules. In other works,16,17

the photo-induced fragmentation of hydronium cations was inves-
tigated. The dissociative recombination processes of H3O+, which
have high importance in oxygen chemistry of the ISM, were also
intensively studied earlier.10–12,20

While the accurate determination of hydronium abundance in
astrophysical media requires to model its excitation through radia-
tive and collisional processes, there are only limited works devoted
to its collision dynamics. For example, there are no accurate data
available in the literature for collisional excitation of hydronium
cations by H2, the most abundant molecule in the ISM. Hence,
rate coefficients for rotational excitation of H3O+ are missing for
interpreting the observations in the ISM. Having the accurate abun-
dance of H3O+ can also be used as an indirect method to determine
the abundance of interstellar water.21 The theoretical approaches
for bimolecular collision-dynamics calculations require the knowl-
edge of the full intermolecular potential energy surface (PES), which
ideally contains all the information about the interaction of the
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molecules nuclei and electrons during the collision.22 The electronic
energy and so the whole PES can be computed ab initio by solv-
ing the electronic Schrödinger equation at fixed nuclear geometries.
Once the PES is known, it is possible to infer the probability of the
intermolecular reactions as well as the collision cross sections. In
order to treat low-energy molecular collisions (e.g., rotational exci-
tation processes), the knowledge of the PES of the ground electronic
state is usually enough.

Earlier for modeling the collisions involving hydronium
cations, the corresponding data of the isoelectronic NH3 molecule
were used. For example, Offer and van Hemert3 studied the effect
of the inversion motion on the collisional cross sections in rota-
tional excitation of H3O+ by H2 molecules. The collision dynamics
of para- and ortho-H3O+ with ground-state para-H2 and ortho-H2
was studied by using the NH3–H2 potential. However, such a crude
approximation cannot correctly describe the ionic nature of H3O+,
which is especially important in the long-range part of the interac-
tion potential. In order to improve the model, the authors added a
long-range correction to the NH3–H2 interaction potential, which
was calculated by second-order perturbation theory and fitted by
analytical functions.

The electron-impact excitation of H3O+ was studied by Faure
and Tennyson23 by combining the R-matrix theory with the
adiabatic-nuclei-rotation approximation. The rotational excitation
of H3O+ cations was also studied recently in collision with He
atoms, as a template for the H2 molecule.21 The authors of this
work determined the rotational rate coefficients both for para- and
ortho-H3O+ for kinetic temperatures in the range of 5 K–50 K using
the close-coupling (CC) approach. They used a 3D PES with fixed
intramolecular distances for H3O+ (rigid-rotor approximation) in
terms of Jacobi coordinates. Their PES was calculated at the level
of coupled-cluster theory using single, double, and perturbative cor-
rections for triple excitations [CCSD(T)] along with a non-standard
valence quadruple-zeta basis set augmented with bond functions
(AVQZ). The ab initio interaction potential was calculated for 4788
different geometries with corrections for the basis set superposi-
tion error (BSSE), as proposed by Boys and Bernardi.24 The PES
was fitted then by analytical functions in order to implement it in
the scattering code. The inversion splitting of the H3O+ cation was
neglected in their work, which may be valid in the case of NH3 (the
inversion splitting constant is only ∼0.8 cm−125) but is question-
able for the hydronium ion because of its large inversion constant
(∼55 cm−1).13 The global well depth calculated for the H3O+–He
system is about 354.53 cm−1. The anisotropy of the PES in the work
of El Hanini et al.21 was strong at short and intermediate radial dis-
tances. It is, however, well established that He is a poor substitute for
H2 in the case of collisional excitation of interstellar ions.26 Hence,
it is crucial and urgent to provide accurate H3O+–H2 collisional
data.

The aim of our present work is to introduce a new, highly
accurate potential energy surface for the ionic H3O+–H2 collision
system. The provided PES will be available to a broad scientific com-
munity and can be used for calculating the collisional dynamics of
the mentioned system at low energies, i.e., for rotational excitation
studies. This paper is organized as follows: In Sec. II, the details
of the coordinate system and ab initio calculations are discussed
along with the fitting procedure of the PES. In Sec. III, we analyze
the results obtained for both the potential energy surface and the

bound-states of the complex, while our conclusions and final
remarks are presented in Sec. IV.

II. METHODS
A. Coordinate system

We used a Jacobi coordinate system to define the geometry of
the H3O+–H2 collision system (see Fig. 1). To reduce the dimension-
ality, we neglected the intramolecular vibrational motions (rigid-
rotor approximation), i.e., the intramolecular O–H and H–H bond
lengths as well as H–O–H bond angles were kept fixed during the
calculations. We note that the inversion frequency is much larger
in H3O+ than in NH3 so that neglecting the tunneling motion of
the O nucleus through the plane of the hydrogen nuclei is ques-
tionable. Offer and van Hemert3 have shown, however, that the
explicit inclusion of the inversion motion has only a small impact
on the rotational cross sections so that the rigid-rotor approxima-
tion (vibrational wavefunctions are assumed to be δ-functions, see
Ref. 27) is reasonable.

Our intermolecular potential is described then as a function of
five inner coordinates: R, θ, ϕ, θ′, and ϕ′. These coordinates specify
the five dimensions of the PES. The center of the coordinate system
(point O in the Oxyz frame) is chosen to be in the center of mass
(c.o.m.) of the H3O+ cation (molecular frame representation). One
of the hydrogen atoms of the H3O+ cation (lower left in Fig. 1) is
located in the xOz-plane. The R radial parameter defines the O–O′

intermolecular distance between the c.o.m. of H3O+ (point O) and
the c.o.m. of H2 (point O′). θ and ϕ are spherical angles that char-
acterize the angular position of the c.o.m. of H2 relative to center O,
while the θ′ and ϕ′ angles define the orientation of the H2 molecule
in the O′x′y′z′ coordinate system, which is parallel to Oxyz and its
origin is in the c.o.m. of H2. Similar notations and coordinate sys-
tems were used earlier in order to describe the PES for the similar
NH3–H2

25,28 and H2O–H2
29,51 collision systems.

In the case of H2 molecule, rH–H = 1.448 74 a.u. bond length was
employed, which is the average value of the vibrationally ground-
state distance of the hydrogen molecule, theoretically calculated
without the use of the Born–Oppenheimer approximation.30 In the
case of the H3O+ cation, the experimental equilibrium structure was

FIG. 1. The coordinate system used to describe the interaction between H3O+

and H2.
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used:31 rO–H = 1.8406 a.u. bond lengths and αH–O–H = 113.6○ bond
angles.

B. Electronic structure calculations
All ab initio calculations reported in this work were performed

using the MOLPRO (version 2015.1)32,33 and GAUSSIAN (version 09
Rev. E.01)34 quantum chemistry software packages. At the first step,
we performed full geometry optimization in order to find the global
minimum of the H3O+–H2 complex. For the first estimations, we
applied the regular CCSD theory (without triple corrections) using
the augmented correlation-consistent valence triple zeta (aug-cc-
pVTZ or AVTZ) basis set with the GAUSSIAN software. After we
performed full geometry optimization by the MOLPRO package using
the higher-level CCSD(T)-F12 theory with the same basis set to
locate the global minimum more precisely. In order to probe the
reactivity of the collisional partners, we analyzed the presence or
absence of transition states (TSs) between the global minimum of
the complex and the dissociated state into H3O+ and H2 prod-
ucts. To locate transition states with a single imaginary vibrational
mode, we applied two approaches in the GAUSSIAN code: the Syn-
chronous Transit-Guided Quasi-Newton (STQN) method and the
Berny optimization algorithm. In order to further analyze the reac-
tivity, we calculated the enthalpy change of the collision system while
modeling the dissociation to different neutral and ionized products.
In the low-temperature conditions of the ISM, a chemical reaction
has to be exothermic and barrierless in order to proceed, and so
the enthalpy change should be negative. The enthalpy of the cor-
responding species was calculated at 0 K by the explicitly correlated
CCSD(T)-F12 method with the AVTZ basis set using the MOLPRO
package. The structures of all possible molecular products involved
in the reactions were optimized by full geometry optimization at this
level of theory. Consequently, the reference structure for enthalpy
change calculations was the global minimum geometry of the H5O+

complex we found by full geometry optimization (see Fig. 2). After
the equilibrium geometries were located, normal mode analysis and
thermodynamical properties’ calculations were performed to com-
pute the zero-point vibrational energies and the total enthalpy of the
products (see below).

In order to choose the most suitable method for large-scale PES
calculations, we performed some benchmark computations. First,
we searched for the minimum of the rigid-rotor complex. Because

FIG. 2. The global minimum of the non-rigid H3O+–H2 complex. Interatomic
distances are in Å, and angles are in degrees.

the constrained geometry optimization is challenging and hard to
converge at the explicitly correlated CCSD(T)-F12 level of theory,
we used the regular CCSD theory with the AVTZ basis set. Dur-
ing the constrained optimization, we kept the intramolecular H–H
and O–H distances fixed at the values discussed in Subsection II A.
We found a CCSD/AVTZ rigid-rotor minimum located around
R ≃ 5 bohrs, θ ≃ 102○, ϕ = 0○, and ϕ′ = θ′ = 90○ internal coordi-
nates. Based on this geometry, we defined a one-dimensional cut
from the overall PES, which connects the origin of the coordinate
system with the asymptotic distances and goes through this mini-
mum (θ, ϕ, θ′, and ϕ′ are fixed, R varies between 3 bohrs and 30
bohrs in the calculations). We will refer to this 1D-cut as a Radial
Cut (RC). It is worth noting, however, that this is not the minimum-
energy path of the rigid-rotor system. As we found it later from the
analytical PES, and as we show in Subsection III B, the coordinates
of the global minimum of the rigid-rotor PES slightly differ from
the CCSD/AVTZ minimum, typically in angles θ′ and ϕ′, which
define the H2 orientation. For this reason, throughout this paper,
we will not refer to the above-mentioned CCSD/AVTZ minimum
anymore.

We evaluated the 1D interaction potential of the H3O+–H2
system along the RC, applying different levels of coupled-cluster
theory with double-, triple-, and quadruple-zeta basis sets (AVDZ,
AVTZ, and AVQZ, respectively). For the CCSD(T) calculations, the
complete basis set (CBS) limit was also calculated for the whole
1D-potential along the RC, based on the three-parameter, mixed
Gaussian/exponential method proposed by Peterson et al.35 The
comparative analysis of the benchmark calculations (see Fig. 3) has
shown that in terms of central processing unit (CPU) time/accuracy
for large-scale PES calculations, the best applicable method is the
explicitly correlated CCSD(T)-F12 theory combined with a standard
AVTZ basis set. As shown in Fig. 3, the well depth of the collision
system along the RC is quite large: it is ∼1819 cm−1 according to the
CCSD(T)-F12/AVTZ calculations and ∼1840 cm−1 according to the
results of CCSD(T)/CBS-extrapolation.

The electronic structure of the collision system was tested for
possible multiconfigurational factors by analyzing T1 and D1 exci-
tation amplitudes in the coupled-cluster calculations. We also eval-
uated the effects of electronic excitations by calculating the lowest
singlet and triplet electronic states of the complex along the RC.
For this purpose, the Equation-Of-Motion (EOM)-CCSD and LCC2
response theories were used with the MOLPRO package (for more
details, see Refs. 32 and 33 for the software).

To eliminate the effects of the basis set superposition error on
the interaction potential, we applied the counterpoise procedure, as
proposed by Boys and Bernardi.24 Hence, our interaction potential
is calculated as follows:

V(R, θ,ϕ, θ′,ϕ′) = EH3O+−H2 − (EH3O+ + EH2), (1)

where E denotes the total electronic energy, evaluated in a particu-
lar geometry of the whole collision system or its interacting parties.
Note that this procedure was applied also for the 1D potentials cal-
culated along the RC (see Fig. 3). Until otherwise noted, we used
the following units throughout this paper: atomic units (a.u.) for
distances (1 a.u. = 1 bohr ≈5.291 77 × 10−9 cm) and wavenumbers
(cm−1) for energies (1 cm−1 ≈ 1/219 474.624 hartree).
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FIG. 3. Comparison of the ab initio 1D
potentials for the H3O+–H2 system along
the RC.

We used a similar formalism to Eq. (1) in order to estimate the
interaction energies of the various species within the complex. While
performing these calculations, we used only a single geometry—the
global minimum of the H5O+ complex (the same as the reference
geometry for the enthalpy change calculations). It is worth noting
that this is not the same geometry that we found for the position of
the rigid-rotor minimum. The total energy of the complex and all
species was calculated at the CCSD(T)-F12/AVTZ level. The sum in
parentheses of Eq. (1) was changed to the sum of total energies of
all possible dissociated products whose interaction can lead to the
formation of the complex (for details, see Table I). By using this
approach, the molecular dissociation is treated as a vertical (Franck–
Condon-type) process in which the intramolecular bond lengths
and angles are not changing. The calculated interaction energies

are compared with the corresponding reaction enthalpy changes in
Table I.

C. PES calculations and fitting
Using Eq. (1) and applying the CCSD(T)-F12/AVTZ method,

we calculated the ab initio interaction potential for our system, con-
sidering 99 000 geometries in total. The R radial distance has been
varied between 4 a.u. and 30 a.u. From 4 a.u. to 8 a.u., a step size of
0.25 a.u. was used, and from 8 a.u. to 11 a.u., we increased the step
size to 0.5 a.u., while between 11 and 16 a.u., we calculated the poten-
tial for every 1.0 a.u. difference. Above 16 a.u. we provided calcula-
tions only at the following distances: 18 a.u., 20 a.u., 22 a.u., 25 a.u.,
and 30 a.u. In order to define the position and the orientation of the

TABLE I. Enthalpy changes and interaction energies for the most relevant reactions involving the H5O+ complex. The lowest
enthalpy change and absolute interaction energy values are shown in boldface.

Enthalpy change Interaction energy

Reaction process (eV) (cm−1) (eV) (cm−1)

H5O+ → OH4 + H+ 7.225 58 272 −11.396 −91 917
H5O+ → OH+

4 + H 4.517 36 429 −4.871 −39 292
H5O+ → OH3 + H+

2 9.945 80 218 −11.326 −91 355
H5O+

→ OH+
3 + H2 0.134 1 081 −0.243 −1 963

H5O+ → OH+
3 + H + H 4.598 37 090 −4.995 −40 289

H5O+ → OH2 + H+
3 2.892 23 324 −7.651 −61 711

H5O+ → OH2 + H2 + H+ 7.213 58 179 −7.747 −62 484
H5O+ → OH2 + H+

2 + H 9.030 72 838 −10.517 −84 828
H5O+ → OH+

2 + H2 + H 6.200 50 005 −6.759 −54 519
H5O+ → OH+

2 + H3 6.529 52 658 −19.274 −155 457
H5O+ → OH+ + H2 + H2 7.204 58 106 −10.256 −82 726
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H2 molecule, a set of θ, ϕ, θ′, and ϕ′ angular parameters was gener-
ated via random sampling, leading to 3000 different angular orien-
tations. These parameters were randomized in the following ranges:
0○ ≤ (θ, θ′) ≤ 180○ and 0○ ≤ (ϕ, ϕ′) ≤ 360○. For all particular radial
distances Ri, we used the same randomly sampled angular grid.

In order to implement the PES in the HIBRIDON scattering
code,36 the angular expansion must employ a different set of angles
for the orientation of the H2 molecule. These angles, denoted by
(θ2, ϕ2), are defined in Fig. 2 of Ref. 37. In terms of these “body-
fixed” coordinates, the intermolecular potential can be expressed as
follows:37

V(R, θ,ϕ, θ2,ϕ2) = ∑
l1 ,l2=2m

∑
m1=3n≥0,m2

vl1 l2m1m2(R)

× d̄l1 l2m1m2(θ,ϕ, θ2,ϕ2), (2)

where d̄l1 l2m1m2(θ,ϕ, θ2,ϕ2) is the normalized basis function,

d̄l1 l2m1m2(θ,ϕ, θ2,ϕ2)
= αl1 l2m1m2d

l1
m1m2(θ)d

l2
m20(θ2) cos(m1ϕ + m2ϕ2) (3)

with the normalization factor

αl1 l2m1m2 =
1

2π
1

(1 + δm10δm20)1/2 (
(2l1 + 1)(2l2 + 1)

2
)

1/2
. (4)

The functions dl1m1m2(θ) and dl2m20(θ2) are the reduced rotation matri-
ces,37 while the l1 and l2 indices refer to the tensor ranks of the
angular dependence of the H3O+ and H2 orientation, respectively.
It should be noted that symmetry considerations restrict the allowed
terms in Eq. (2). Thus, the threefold symmetry of H3O+ requires that
m1 be a multiple of 3. The homonuclear symmetry of H2 similarly
constrains l2 to be even. Full details about symmetry constraints in a
symmetric-top and a linear system can be found in Ref. 37.

At each intermolecular distance R, the potential was developed
over the angular expansion [Eq. (2)] using a standard linear least-
squares fit procedure. We selected a maximum order that includes
all anisotropies up to l1 = 16 for H3O+ and l2 = 4 for H2, result-
ing in 738 d̄l1 l2m1m2(θ,ϕ, θ2,ϕ2) functions. All significant terms were
selected iteratively using a Monte Carlo error estimator defined in
Ref. 38, resulting in a final set of 208 expansion functions with
anisotropies up to l1 = 16 and l2 = 4. The root mean square (rms)
residual was found to be lower than 1 cm−1 in the long-range and
minimum region of the interaction potential, i.e., at intermolecular
distances R > 4.75 bohrs. The mean error on the expansion coeffi-
cients vl1 l2m1m2(R) was also found to be smaller than 1 cm−1 in this
region of the PES. A cubic spline radial interpolation of the coeffi-
cients vl1 l2m1m2(R) was finally employed over the whole intermolec-
ular distance range (R = 4 bohrs–30 bohrs), and it was smoothly
connected to standard extrapolations (exponential and power laws
at short- and long-range, respectively) using the switch function
defined by Valiron et al.29 [see their Eq. (10)]. This procedure builds
a FORTRAN routine that provides the potential and/or the (con-
tinuous) radial expansion coefficients suitable for the bound-state
calculations presented below.

D. Bound-state calculations
In order to provide the reference theoretical data for future

measurements, we have calculated the lowest rotational bound-state
energies of the H3O+–H2 collisional complex. The Hamiltonian for
this system can be written as39

Ĥ = − 1
2μR

∂2

∂R2 R + ĤH3O+ + ĤH2 +
L̂2

2μR2 + V , (5)

where μ is the reduced mass of the system, ĤH3O+ and ĤH2 are
the rotational Hamiltonians of H3O+ and H2, respectively, L̂ is the
orbital angular momentum of the complex, and V is the interaction
potential, as defined by Eq. (2). The umbrella inversion tunneling of
the H3O+ monomer was treated with the two-state δ-function model
used previously for NH3 complexes (see the Appendix of Ref. 27).
Thus, the H3O+ cation is allowed to tunnel between two equilibrium
structures, umbrella up and umbrella down, with the inversion angle
fixed at the experimental equilibrium value.

The R-dependence of the wavefunctions is expanded in a set
of distributed Gaussian functions as a product of stretching and
angular functions. The stretching basis functions are composed as

χm(R) = exp[−α(R − Rm)2], (6)

where α is a scale-factor and Rm is mth value of a uniformly con-
structed radial grid. The angular basis included all states with total
angular momenta jH3O+ ≤ 18 for H3O+ as well as jH2 ≤ 3 and jH2 ≤ 2
for ortho- and para-H2, respectively. Such a construction method
of χm(R) rotational basis functions (which can be used for scatter-
ing calculations as well) was proposed by Hamilton and Light.40 In
order to diagonalize the Hamiltonian matrix and to determine the
eigenvalues of the bend-stretch states, we used the HIBRIDON scat-
tering code.36 Calculation of the bend-stretch energies allows one to
estimate the D0 dissociation energies of the complex,

D0 = Eint
0 − εro-vib

j , (7)

where Eint
0 is the internal energy of the ground rotational level of the

system in the corresponding nuclear spin configuration and εro-vib
j is

the eigenvalue of the deepest bend-stretch bound state.
We employed the following parameters in the bound-state

calculations. In the case of the hydronium cation, we used
the most recent experimental rotational constants from Ref. 13:
B = 11.154 58 cm−1 and C = 6.191 02 cm−1. We also considered the
55.349 97 cm−1 ground-state inversion splitting constant of H3O+

measured by Yu et al.13 In the case of the H2 molecule, we used
BH2 = 59.3801 cm−1 rotational constant, similarly to the authors of
Ref. 25. The reduced mass of the H3O+–H2 system was found to be
equal 1.822 49 amu. It is worth noting at this point that we adopted
a reduced 55-term expansion of the analytical PES in these bench-
mark calculations. The PES was not refitted and we simply kept all
anisotropies up to l1 = 6, l2 = 2, assuming that the higher-order
terms can be neglected for computing the dissociation energies. We
tested the quality of this reduced-size PES, and we found that even
in the region of the global minimum, its deviation from the full
208-term PES is always within 1%. The bound-state computations
were performed by involving both nuclear spin species (ortho- or
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o- and para- or p-) of the collision partners. If we denote the rota-
tional states by jεk, where j is the total angular momentum of the
H3O+ cation, k is its projection on the C3 rotational axis, and ε is the
(spectroscopic) parity, then for ortho-H3O+, the quantum number
k = 3n (where n = 0, 1, 2, . . .), while for para-H3O+, k ≠ 3n. We
computed the bound-states for all nuclear spin configurations with
total angular momenta (Jtot) equal 0 and 1, but we could not reach
a good convergence in the case of the para-H3O+–ortho-H2 system
for Jtot = 1 due to CPU/memory limitations. It is worth mentioning
that the ground rotational state of ortho-H3O+ is the jεk = 1+

0 state,
while in the case of para-H3O+, that is the jεk = 1+

1 state. We note
that symmetry considerations and the spectroscopic labeling of the
bound-states can be found in the work of Surin et al.41 for the similar
NH3–H2 complex (see Fig. 2 therein). Similar bound-state calcula-
tions were performed recently for the NH3–H2

41,42 and also for the
OH–H2

39 and NO–H2
43 collisional systems.

III. RESULTS AND DISCUSSION
A. Structure and reactivity properties
of the H3O+–H2 system

The structure of the global minimum of the complex, located
by full geometry optimization on the CCSD(T)-F12/AVTZ level of
theory, is shown in Fig. 2 along with some interatomic distances
and angles. It is worth noting that the interaction energy of the
H3O+ and H2 constituents is about −1954 cm−1 at this global (non-
rigid) minimum. If we compare the intramolecular O–H and H–H
bond lengths in this figure with the fixed parameters used in our
PES calculations (see Subsection II A for more details), one can
see that they only slightly differ from each other. For example, the
bond length of the H2 molecule in the H5O+ complex after global
optimization is rH–H = 0.752 Å = 1.421 a.u., which is only ∼1.5%
larger than the experimental equilibrium bond length of the molec-
ular hydrogen (req = 1.4 a.u.).44 Between the bond parameters of
H3O+ within the fully optimized H5O+ complex and the correspond-
ing data of Tang and Oka31 somewhat larger, but still rather small
deviations were observed: up to 1.92% increasing in the O–H bond
length and 1.05%–1.8% decreasing in H–O–H bond angles. Thus,
as one can see, when a bound complex is formed, the intramolecu-
lar bond parameters of the constituent H3O+ and H2 molecules do
not change intensively. This states about the chemically non-reactive
nature of the H3O+–H2 system. It is worth noting here that the H3O+

cation does not preserve its full symmetric-top structure in the global
minimum—the closest hydrogen atom is somewhat attracted to the
direction of the H2 molecule (see Fig. 2).

If we examine the intermolecular distances between the atoms
of H2 and those of the hydronium cation in the global minimum of
the H5O+ complex, one can see the following: The distance between
the closest hydrogen atoms is 1.65 Å, while that to the oxygen atom is
2.614 Å. These values are more than two times larger than the corre-
sponding intramolecular distances in the constituent systems: rO–H
= 0.974 Å–0.993 Å and rH–H = 0.752 Å (see Fig. 2). According to this,
we should consider our collision system not like a covalently bonded,
but rather as a van der Waals complex with large intramolecular
distances.

As already mentioned earlier in Subsection II B, we probed
the possible reaction barriers (transition states) before exploring the

global PES of the interacting system. However, while we applied
different search algorithms (STQN and Berny optimization) with
several starting geometries and intermolecular orientations, we were
not able to locate any TSs in this system. According to our results,
the dissociative reactions involving the H5O+ van der Waals com-
plex probably proceed without reaction barriers. In order to analyze
the barrierless dissociation mechanisms of the system, we calculated
the enthalpy change for the possible reactions (for more details, see
Subsection II B). The most relevant reactions are shown in Table I.
As one can see, all of the possible dissociation channels are endother-
mic, which enables one to draw the conclusion again that H5O+ is a
non-reactive complex. The H5O+ → OH+

3 + H2 process is character-
ized with far less enthalpy change than all other reactions. According
to this, the most favorable collision path of the complex is toward
the formation of H3O+–H2 products. All of the results obtained for
the reaction enthalpies are clearly supported by the interaction ener-
gies calculated for the same dissociation reactions. The sign “−” here
denotes that the H5O+ complex is the minimum-energy structure,
while its dissociation into different products leads to the increase in
total energy.

As shown in Table I, the H5O+ → OH+
3 + H2 reaction, which

corresponds to the collision process we are interested in, is much
more favorable than all other reactions according to the calculated
interaction energies. This process is characterized by the smallest
energy change compared to the minimum-energy complex, i.e., it is
less endothermic than other reactions. We also found that the OH3
+ H+

2 charge exchange reaction is not likely to occur. However, there
are some competing reaction channels, which could be significant at
higher collision energies, around 20 000 cm−1–40 000 cm−1. Among
them, it is worth mentioning the water formation channel H5O+

→ OH2 + H+
3 as well as the single (H5O+ → OH+

4 + H) and dou-
ble (H5O+ → OH+

3 + H + H) hydrogen loss processes, which are the
less endothermic reactions after the OH+

3 + H2 reaction. The forma-
tion of H+ and H+

2 cations is even more endothermic and thus less
probable. As one can see, all reaction channels except OH+

3 + H2 can
be neglected at the collision energies relevant to the molecular ISM.
We note that this is consistent with a reaction rate coefficient lower
than 5 × 10−15 cm3 s−1, as estimated experimentally for the reaction
of H3O+ with H2 at 300 K.45

The hydrogen (proton) exchange is another relevant pro-
cess, which could be effective in collisions involving H-containing
molecules (ions) and molecular hydrogen. According to Englan-
der et al.,46 the common criteria for hydrogen exchange to proceed
are, on one hand, the diffusional collision of the partners to form a
hydrogen-bonded encounter complex and, on the other hand, the
equilibrium redistribution of the proton between the two members
of the hydrogen-bridged complex. As one can see, the intermediate
system, which is formed in H3O+–H2 collision, is not a hydrogen-
bonded, chemical complex, but rather a van der Waals complex,
as mentioned already earlier. According to this, we can neglect the
inelastic hydrogen exchange reaction in further calculations and also
the ortho–para symmetry inversion process for H2 in collisional
dynamics studies. Again, this result is consistent with a rate coef-
ficient lower than 10−12 cm3 s−1, as estimated experimentally for the
exchange reaction between H3O+ and D2 at 300 K.47

In order to analyze the multiconfigurational nature of the
H3O+–H2 system, we calculated the lowest electronically excited
states along the radial cut, defined in Subsection II B. The two
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lowest singlet states (1A and 1B) were calculated by different the-
ories: EOM-CCSD and LCC2. The two lowest triplet (3A and 3B)
states were computed by the LCC2 method. The results of the excited
state calculations are shown in Fig. 4. The zero energy value refers to
the 1X(C1) ground state of the system at any particular intermolec-
ular distance R, which was calculated at the same level of theory
(EOM-CCSD or LCC2). As one can see, all the lowest excited states
are far from the ground state of the system: the closest 3A is about
9.5 eV–10.7 eV higher than 1X(C1) at all distances. At the same
time, the gap between the calculated excited states is rather small,
and they are close to each other everywhere. At some distances, we
can observe conical intersections where the excited states cross each
other. For example, around R = 7.5 bohrs state 3B crosses the 3A
state, while the singlet 1A and the triplet 3B states first meet around
12 bohrs, beyond which they completely coincide. The large gap
observed between the ground state and all other electronic states
allows us to neglect the excited states in the PES calculations, if the
final goal is to study the collision dynamics at energies below a few
thousand cm−1.

The last statement is also supported by the results of T1 and
D1 diagnostics, which were provided in order to give an indication
of the quality of results to be expected from the single-reference
CCSD(T)-F12/AVTZ calculations along the RC (see the black solid
curve in Fig. 3). It is worth noting that the mentioned coupled-
cluster method was used for the large-scale PES calculations too.
The results of T1 and D1 diagnostics for the H3O+–H2 system are
shown in the inset graph of Fig. 4. As one can see, the T1 diagnostic
results do not exceed the value of 0.0065, while D1 < 0.0133 at all
intermolecular distances. Their mean values are 0.0059 and 0.0108,
respectively. The commonly agreed and rather strict indicator of the
multi-reference nature of any molecular system is that T1 > 0.02 and
D1 > 0.05.48,49 Our T1 and D1 values are much smaller than the sug-
gested critical values, which indicates that our collision complex has
a single-reference nature. However, as it was argued also by Lee,50

FIG. 4. The lowest electronic excited states of the H3O+–H2 system along the
RC. The inset graph shows the T1 and D1 diagnostics for the CCSD(T)-F12/AVTZ
calculations.

the T1/D1 ratio gives an indication of the homogeneity of the elec-
tronic structure, and so both diagnostics should be used together
with their ratio. According to the author, a perfectly homogeneous
electronic structure is characterized by T1/D1 = 1/

√
2. The mean

value of our T1/D1 ratio is about 0.549, which is not equal to 1/
√

2
(0.707), but much closer to it compared to the 0.431 mean value
obtained by Jiang, DeYonker, and Wilson49 who derived this value
from CCSD/cc-pVTZ results for 148 different molecules, among
them H2O, OH, H2, NH3, etc.

B. PES results
The calculated ab initio potential was fitted analytically, as

described in Subsection II C. Figure 5 shows the comparison of
the calculated ab initio PES with the results of the fit along some
characteristic one-dimensional slices. The first-principles results are
indicated by open circles, while the solid lines are constructed ana-
lytically from the fit data. In order to understand the choice of the
appropriate angular and radial parameters to construct these slices,
let us refer to the structural parameters of the RC, which is defined
based on R ≃ 5 bohrs, θ ≃ 102○, ϕ = 0○, and ϕ′ = θ′ = 90○ coordi-
nates. It is worth mentioning again that these parameters were found
by constrained CCSD/AVTZ optimization and are not coincident
with the global minimum of the rigid-rotor PES calculated at the
CCSD(T)-F12/AVTZ level.

The fit results are in a good agreement with the reference
CCSD(T)-F12/AVTZ potential along the RC, as shown in Fig. 5(a).
Some deviations can be observed at small intermolecular distances
(below 4 a.u.) where the potential is mainly repulsive. As one can
see, the fit around the minimum (near 5 a.u.) somewhat overes-
timates the ab initio results, but both here and in the long-range
part of the potential, the analytical potential coincides with the first-
principles data within the rms residual. In Fig. 5(b), we tested the
angular behavior of the analytical potential. We show 1D potentials
as a function of θ spherical angle at different ϕ values. The R radial
parameter was kept fixed at 5 a.u., while the two additional angles,
which define the orientation of the hydrogen molecule, were also
fixed (ϕ′ = θ′ = 90○). As one can see, the quality of the fit in terms
of the angular parameters is very good compared to the CCSD(T)-
F12/AVTZ results, even when the anisotropy of the potential is
rather strong (the value of the potential strongly depends on both
spherical angles). We observed only tiny differences in the region
of the potential well, i.e., for θ = 90○–110○ and only for lower ϕ
angles (up to 15○), but these deviations only slightly affect the over-
all precision of the PES. According to the comparative analysis, the
quality of the fit is good enough to use it down to low collision
energies.

It is worth noting that while analyzing the results of the fit,
we observed larger interaction energies, as compared to the mini-
mum along the RC. For this reason, we provided further iterative
calculations to locate the global minimum on the fitted potential
energy surface precisely. First, we applied a coarse grid to locate its
approximate position, which was then gradually improved. Finally,
we could find the coordinates of the global minimum on the ana-
lytical PES with a fine grid. The potential is about −1887.2 cm−1 at
this point, which has the following coordinates: R ≃ 4.9207 bohrs,
θ ≃ 101.362○, ϕ = 0.000○, θ′ ≃ 169.724○, and ϕ′ = 180.000○. Until
otherwise noted, we will refer to these values while talking about

J. Chem. Phys. 153, 094301 (2020); doi: 10.1063/5.0015813 153, 094301-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Comparison of the CCSD(T)-F12/AVTZ potential with the results of the analytical fit. The open circles are for the ab initio data, the solid lines are for the fit results. (a)
1D potential: R-dependence along the RC. (b) 1D potential: θ-dependence at different ϕ angles.

the global well depth of the PES and about its coordinates. As one
can see, the position of the rigid-rotor global minimum somewhat
differs from the coordinates, calculated by the CCSD constrained
optimization for the system (see Subsection II B). It is worth not-
ing, however, that larger differences were found only for θ′ and
ϕ′ parameters, which define the orientation of the H2 molecule. In
order to check the quality of the fit at the rigid-rotor minimum, we
calculated the interaction potential at the same coordinates on the
CCSD(T)-F12/AVTZ level. The ab initio result we got for the poten-
tial here is about −1889.6 cm−1, which only slightly differs from the
value we found based on the analytical fit. The resulting difference
is also close to the rms residual of the fit, which is about 0.7 cm−1 at
R = 5 bohrs and 1.4 cm−1 at R = 4.75 bohrs.

In order to estimate the general anisotropy of the PES, we
also analyzed its dependence from the different angular parame-
ters and the radial distance. The results are shown in the contour
plots [Figs. 6(a)–6(g)]. Each contour plot visualizes a slice of the PES
depending on two parameters, which are indicated by the axis labels.
Since our coordinate system is defined by five parameters, it is obvi-
ous that every contour plot was constructed by keeping the three
additional coordinates fixed. The fixed coordinates for the contour
plots were chosen based on the radial cut defined in Subsection II B;
consequently, R = 5 a.u., θ ≃ 100○, ϕ = 0○, and ϕ′ = θ′ = 90○. Let us
consider this on some examples below.

The first three contour plots [Figs. 6(a)–6(c)] describe the radial
dependence of the PES as a function of different angular parame-
ters (θ, ϕ, and ϕ′, respectively). As one can see, the radial depen-
dence is very strong and rather isotropic. In the plot of θ vs R
[Fig. 6(a)], one can observe a single, deep minimum around 102○.
The well around the minimum is narrow and sharp. The PES here
changes quickly, especially with respect to R. Except in the well
region, large anisotropies could not be found; however, the PES is
quite asymmetric with respect to θ.

The radial dependence as a function of ϕ angle is somewhat
stronger [see Fig. 6(b)]. The deepest minimum is located at 0○ here,

and two additional minima can be observed around ±145○. The
PES is characterized by perfect bilateral (left–right) symmetry with
respect to ϕ. The well regions are wider and are not so sharp, as in the
case of the previous contour plot. The radial anisotropy is significant
only below R ∼ 8 bohrs.

In order to characterize the radial dependence of the PES with
respect to ϕ′, it is enough to consider a smaller angular interval from
0○ to 180○. The features of the PES periodically repeated after every
180○ rotation. As shown in Fig. 6(c), only one deep minimum is
observed in this slice of the PES at ϕ′ = 90○ (or ϕ′ = −90○). The
size and the shape of the well is rather similar to that observed in the
case of θ vs R dependence. However, in this case, a perfect left–right
symmetry is observed in the ϕ′-dependence with respect to 90○ at
the minimum.

We also analyzed the dependence of the PES on different angu-
lar coordinates simultaneously at a fixed intermolecular distance of
R = 5 bohrs. Figures 6(d) and 6(e) show the PES contours with
respect to θ as functions of ϕ and ϕ′ coordinates, respectively. As
one can see, the anisotropy of the PES is much stronger than that
observed in the previous cases. It is also highly asymmetric in the two
contour plots. While the potential changes intensively with respect
to θ at any ϕ, ϕ′ values, we observe only slight changes with respect to
both ϕ and ϕ′ at those θ angles, which are far from the position of the
minimum (i.e., at θ → 0○ and θ → 180○). In the numerical analysis
of the PES, we found that both the ϕ-dependenc and ϕ′-dependence
show a perfect left–right symmetry with respect to 0○, which could
be observed also in Figs. 6(b) and 6(c). This is due to the features of
our coordinate system: one hydrogen atom of the H3O+ cation lies
in the xz-plane (i.e., in the ϕ = 0○ direction, see Fig. 1). It is worth
noting, however, that the anisotropic angular interval in the case of
ϕ is twice as large (180○), compared to the case of ϕ′ (90○). As one
can see, the PES also shows a slight spherical symmetry in terms of
θ vs ϕ′, but only in the potential well region.

Finally, we describe the θ′-dependence as functions of θ and ϕ
spherical angles in Figs. 6(f) and 6(g). As one can see, the anisotropy
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FIG. 6. Contour plots showing the dependence of the PES from the radial and angular parameters: (a) θ vs R, (b) ϕ vs R, (c) ϕ′ vs R, (d) θ vs ϕ, (e) θ vs ϕ′, (f) θ vs θ′, and
(g) θ′ vs ϕ.

of the PES is even stronger, compared to the previous cases, espe-
cially in the θ′ vs ϕ contour plot. In this plot, one can observe a
very asymmetric PES for which it is not likely to find any reference
point or axis to define higher symmetric behavior. At the same time,

according to our numerical analysis, the dependence of θ vs θ′ also
shows a perfect left–right symmetry with respect to the θ′ coordi-
nate with turning point at 90○. This symmetric behavior is related
to the identical hydrogen atoms of the H2 molecule, which could be
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“exchanged” in every 90○ rotation of the molecule. It is also worth
noting that the dependence of the PES on this angular parameter is
rather small, in general. For example, the deepness of the potential
well for θ = 80○–110○ is almost not affected by the change in θ′ coor-
dinate. A similar behavior is observed in the case of the PES contour
in Fig. 6(g). In the region of the well around ϕ = 0○ and the barrier
around ϕ = 180○, the PES does not depend strongly on the θ′ param-
eter. However, in the region of ϕ = 100○–120○, both deep potential
wells (around θ′ = 10○ and θ′ = 180○) and a high barrier (around
θ′ = 100○) can be observed. Similar tendencies were observed in this
PES at ϕ = 240○–260○ spherical angles, but at other θ′ values.

As one can see from the above analysis, the overall angular
anisotropy of the PES is rather strong. It is worth noting, however,
that the potential well is well-defined and narrow. As we mentioned
earlier, in some angular coordinates, a quite large left–right symme-
try can be observed, which reduces the complexity of the PES, in
general. This left–right symmetry was explicitly shown only for the
radial dependencies in Figs. 6(b) and 6(c).

C. Results of bound-state calculations
We calculated the bound rotational levels based on the new

PES for all nuclear spin species of the interaction system: o-H3O+–o-
H2, o-H3O+–p-H2, p-H3O+–o-H2, and p-H3O+–p-H2. A good con-
vergence was achieved in terms of the rotational basis size for all
nuclear-spin species with Jtot = 0, 1, except for p-H3O+–o-H2, where
memory requirements exceeded the available resources. In the case
of the latter, the number of rotational levels to be involved in the
calculations for a good convergence is more than 1900, while the
total number of Gaussian basis functions exceeds 100 000. It should
be noted that in order to save CPU time/memory, from the full
208-term fit, a subset of 55 angular basis functions (including all
anisotropies up to l1 = 6 and l2 = 2) was selected as the optimal
expansion for dynamical calculations.

While constructing the set of rotational basis functions [see
Eq. (6)], our radial grid covered the range from Rmin = 4.5 a.u. up to
Rmax = 27 a.u. with a constant of 0.35 a.u. distance between the cen-
ters of the Gaussian functions. For the α exponential scaling factor,
the 6.32 value was found to be suitable. The bound rotational states
of the collisional system were computed then from the constructed
basis functions. For the integration, we used a rather dense uniform
grid with 0.02 a.u. step size in the whole range of the R-space.

From the bound-state eigenvalues, we computed the D0 disso-
ciation energies for all nuclear spin species according to Eq. (7). The
reference values are the internal energies of the ground rotational
levels of the H3O+–H2 complex with the corresponding symmetry,
i.e., Eint

0 for the jεk = 1+
0 state involving o-H3O+ and the jεk = 1+

1 state in
the case of p-H3O+. The results for dissociation energies along with
the corresponding ground-level internal energies and total angular
momenta are listed in Table II. We found that the o-H3O+–p-H2 and
p-H3O+–o-H2 dimers have a ground-state with Jtot = 1, while in the
two other nuclear-spin configurations, the dimers have a ground-
state with Jtot = 0. These observations are in accordance with the
bound-state data of Surin et al.41 for the o-NH3–o-H2 and p-NH3–o-
H2 spin species. The calculated D0 values are rather large, which can
be related to the deep well of the interaction potential (∼1887 cm−1).
As one can see, D0 is considerably larger (by more than 59 cm−1)
for the H3O+–ortho-H2 complexes than for the H3O+–para-H2

TABLE II. Calculated D0 dissociation energies with the corresponding Eint
0 ground-

level internal energies and Jtot total angular momenta for the H3O+–H2 nuclear-spin
species.

Nuclear-spin species D0 (cm−1) Jtot Eint
0 (cm−1)

ortho-H3O+–ortho-H2 1124.497 0 141.069
ortho-H3O+–para-H2 1065.053 1 22.309
para-H3O+–ortho-H2 1108.228 1 136.106
para-H3O+–para-H2 1042.779 0 17.364

systems, since the H2 rotational wavefunction can polarize to sample
the most attractive geometry of the complex.42 Similar tendencies
were observed for the lowest bound states of other molecule-H2
complexes for which the dissociation energies are significantly larger
in the case of ortho-H2 than for para-H2 (see, for example, Refs. 39
and 41–43). We found a few hundred bound states for all nuclear
spin configurations. For the states with Jtot = 1, more states can
be associated with the complexes involving ortho-H2 than those of
involving para-H2. This is especially remarkable when the interact-
ing partner is para-H3O+. These observations are also in agreement
with the findings of the previously cited works.

IV. CONCLUSIONS
We have presented in this work a five-dimensional rigid-rotor

PES to study the collision of hydronium cation and molecular hydro-
gen. The calculations were performed using the explicitly correlated
CCSD(T)-F12 coupled-cluster theory along with the standard aug-
cc-pVTZ basis set. The ab initio potential energy surface, which
consists of 99 000 points, was fitted over a set of analytical angular
functions in order to effectively use it for collisional dynamics stud-
ies. While the angular anisotropy of the potential is rather large, the
final expansion contains 208 basis function terms. The rms residual
of the fit is below 1 cm−1 in the minimum and long-range region of
the PES.

We have also analyzed the possible reactive processes that can
be relevant in H3O+–H2 collisions. The enthalpy change and the
interaction energy for the possible chemical reaction channels were
calculated. We found that the system under study is a van der Waals
complex, which has a chemically non-reactive nature. We did not
find any transition states along the collision pathway of the system.
Based on the analysis, we can conclude that the hydrogen exchange
process and those chemical reactions, which correspond to the for-
mation of new molecular species, are not likely to occur and can be
neglected.

We have calculated the lowest singlet and triplet excited elec-
tronic states of the H3O+–H2 system along a one-dimensional radial
cut of the potential. All of these states are far from the ground elec-
tronic state, and so the collision complex does not have a strong
multiconfigurational nature, and the interaction potential can be
adequately calculated by single-reference ab initio methods. This
is also supported by the results of T1 and D1 diagnostics, which
was provided to benchmark the CCSD(T)-F12 calculations along
the RC.
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We have focused in the current study on providing an angu-
lar expansion for the H3O+–H2 potential energy surface, which can
be suitable for close-coupling dynamical calculations. It should be
noted, however, as follows:

● The well depth of the analytical potential energy surface is
rather large, about 1887.2 cm−1. The scattering studies of
the system will involve many rotational levels, as also found
from the results of our bound-state calculations.

● The D0 dissociation energies are large for all possible ortho-
and para-nuclear spin species. In the case of ortho-H2,
the value of D0 is somewhat larger: about 1108 cm−1 and
1124 cm−1 when interacting with para- and ortho-H3O+,
respectively.

● For the same interacting systems involving para-H2, the dis-
sociation energies are somewhat lower, but still rather large
(about 1043 cm−1 and 1065 cm−1, respectively).

● The difference between the two H2 nuclear spin isomers is
in accordance with the results of the previous studies, where
the interaction of molecular hydrogen with other molecular
and ionic species was investigated.

The recently developed, advanced ab initio methods allow one
to treat the many-dimensional interaction potential of large molec-
ular systems with high accuracy. We should emphasize that the
explicitly correlated CCSD(T)-F12 theory is probably the best single-
reference approach, which can be effectively used to calibrate the
intermolecular PES of these collisional systems at the wavenumber
level of accuracy. Because the system under study has a non-reactive,
single-configuration nature, for which the coupled-cluster theory
performs very well and rarely fails, the findings of the present work
can be used confidently for further dynamical studies successfully.

SUPPLEMENTARY MATERIAL

See the supplementary material for the ab initio datasets, the
expansion coefficients of the PES, and the FORTRAN routines corre-
sponding to construct the fitted potential.
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