
HAL Id: hal-02982618
https://hal.science/hal-02982618v1

Submitted on 28 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictive Inverse Kinematics for Redundant
Manipulators with Task Scaling and Kinematic

Constraints
Marco Faroni, Manuel Beschi, Nicola Pedrocchi, Antonio Visioli

To cite this version:
Marco Faroni, Manuel Beschi, Nicola Pedrocchi, Antonio Visioli. Predictive Inverse Kinematics for Re-
dundant Manipulators with Task Scaling and Kinematic Constraints. IEEE Transactions on Robotics,
2018, 35. �hal-02982618�

https://hal.science/hal-02982618v1
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 1, FEBRUARY 2019 1

Predictive Inverse Kinematics for
Redundant Manipulators with Task Scaling

and Kinematic Constraints

Marco Faroni, Student Member, IEEE, Manuel Beschi,
Nicola Pedrocchi, and Antonio Visioli, Senior Member, IEEE

Abstract—The paper presents a fast online predictive method to solve
the task-priority differential inverse kinematics of redundant manipula-
tors under kinematic constraints. It implements a task-scaling technique
to preserve the desired geometrical task, when the trajectory is infeasible
for the robot capabilities. Simulation results demonstrate the effectiveness
of the methodology.

Index Terms—Inverse kinematics, trajectory scaling, redundant robots,
task priority, model predictive control, motion planning.

I. INTRODUCTION

The inverse kinematics (IK) of robot manipulators permits to
determine the joint variables associated with a given task (e.g., in the
Cartesian space). Generally, the solution of this problem is not trivial,
since it involves the inversion of multivariable nonlinear functions.
Moreover, when the robot is kinematically redundant, the problem
becomes even more complex: the system is underdetermined and
it admits infinite solutions. Among them, the IK algorithm should
choose the one that tends to satisfy secondary tasks or, similarly, op-
timize a given performance index (e.g., the manipulability). Typically,
the IK is solved at velocity or acceleration level. As a matter of fact,
at differential level, it is possible to exploit the linear transformation
between joint and task velocities/accelerations given by the Jacobian.
Then, the corresponding joint configuration is calculated by forward
integration. The same occurs for redundant manipulators. In this case,
the joint variables are obtained by means of a generalized inverse
(usually the Moore-Penrose pseudoinverse) of the Jacobian, which
is in this case a rectangular matrix with more columns than rows.
A secondary task is usually handled by the projection in the null
space of the Jacobian, in order not to interfere with the execution of
the primary task [1], [2]. This formulation has been generalized for
any number of tasks in [3], giving birth to the so-called task-priority
framework. A great disadvantage of this method is that it does not
take explicitly into account the physical limits of the robot. Thus, the
obtained solution may violate such limits, resulting infeasible for the
real capabilities of the robot. In the case of redundant manipulators,
this issue has often been handled by converting the hard bounds into
soft ones in a cost function that tends to keep the joints in the middle
of their ranges [2], [4] or by using a weighted pseudo-inverse to limit
velocities or accelerations [5]. However, these methods cannot ensure
the satisfaction of the bounds, and therefore they do not prevent from
having infeasible solutions. Note that, in the practical case, this would
lead to the saturation of the actuators, with consequent deformation
of the original task or even the stop of its execution.

Recent works cope with this by addressing the inverse kinematics
as a constrained optimization problem [6]. In general, the task
is converted into a Least Square Problem (LSP) and the solution
is searched inside an admissible set. Secondary tasks are handled
similarly, by successive LSP, wherein the admissible set is limited by
the solutions of the tasks with higher priority. A general formulation

M. Faroni and A. Visioli are with the Dipartimento di Ingegneria Meccanica
e Industriale, Università degli Studi di Brescia, Brescia, 25123 Brescia, Italy
(e-mail: m.faroni003@unibs.it; antonio.visioli@unibs.it).

M. Beschi and N. Pedrocchi are with Istituto di Sistemi e Tecnologie
Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale
delle Ricerche, 20133 Milan, Italy (e-mail: manuel.beschi@stiima.cnr.it;
nicola.pedrocchi@stiima.cnr.it).

following this paradigm is presented in [7], where the priority
framework is extended to inequality tasks as well. A great advantage
of the LSP formulation is that it can explicitly include constraints
in a Quadratic Program (QP), which can be solved efficiently by
numerical QP solvers (e.g., [8]–[10]). In this way, the solution (if
it exists) will surely satisfy the hard bounds of the manipulator.
However, the use of such approach requires particular attention on
the way the constraints are posed. In particular, if joint configuration,
velocity and acceleration limits are considered, viability of the states
must be ensured. The viability of a set of states implies that, given a
state within the viable set, all the future states will belong to that set
[11]. This is fundamental to ensure that constraints will be satisfied
in the future. This problem and issues related to its discrete-time
implementation have been discussed in details in [12].

The level of satisfaction of the tasks (included the primary one)
also strongly depends on how the task is defined with respect to the
constraints. In other words, a too-demanding task would rapidly lead
to the saturation of the joint commands, with consequent considerable
deformation of the original task. Note that the primary task imposed
to a manipulator typically consists in following a predefined path in
the Cartesian space. Therefore, a significant deformation of such task
is often unacceptable and should be avoided by the IK algorithm by
any means. A widespread strategy to partially overcome this issue
consists in the time scaling of the trajectory. This allows the time
dilation of the task, in order to fulfill both the geometrical task and
the joint bounds. Several task-scaling techniques have been proposed
in the literature. First examples appeared in [13], [14], in order to cope
with torque boundaries of the actuators in a dynamic-based control of
a manipulator. Another approach was proposed in [15], [16], where
the problem was reformulated in terms of nonlinear filtering of the
joint trajectories, based on kinematic and/or dynamic constraints. As
regards pure kinematic control, an important work is represented by
[17], where a scaling factor is introduced in the computation of the
IK so that the joint commands can be scaled within the boundaries.
Nonetheless, if the robot is redundant, this solution might be non-
optimal, as other velocities/accelerations (among the infinite possible
solutions) could allow a better or even full satisfaction of the task.
An improved method was proposed in [18], wherein an efficient
exploration of the null space permits to find the solution ensuring the
best scaling factor. This problem is equivalent to a QP where the task
is expressed as an equality constraint, which forces the executed task
to follow the same direction of the desired one, whereas the scaling
factor is optimized in the cost function. The same algorithm was
developed at acceleration level in [19], in order to recover continuity
on the velocity and to include acceleration limits. However, the
introduction of acceleration bounds does not always guarantee the
existence of a feasible solution. In this case, the equality constraint
has to be converted again into an LSP, allowing the modification
of the primary task. Therefore, the obtained solution will firstly
minimize the deformation with respect to the original geometrical
path, and secondly will optimize the scaling factor.

The methods illustrated up to this point are all termed as local,
since they only take into account information available at the current
iteration. This means that the solution is optimal with respect to
the current configuration of the manipulator, but not with respect
to the global execution of the task. As a matter of fact, the iterative
local resolution of the inverse kinematics might move the robot to
a disadvantageous configuration with respect to the global task, as
shown in [20]. Similarly, the local optimization of the task scaling
might lead to worse results if compared to an optimization involving
the future evolution of the task, the constraints and the kinematic
variables. Anyhow, the use of global methods for the redundancy
resolution or the scaling problem (i.e., the modification of the timing

IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 1, FEBRUARY 2019 2

law) is strongly limited by the heavy computational load, which
makes them unsuitable for online implementation.

To combine the strengths of local and global algorithms, this paper
proposes a unified method to solve the inverse kinematics and the task
scaling problem of a redundant manipulator by means of a model
predictive approach. Model Predictive Control (MPC) is becoming
more and more popular in robotic manipulation and mechatronics,
thanks to the growing computational power of modern processors
[21]. In this context, contributions usually address low-level control
problems of actuators for trajectory tracking [22]–[24]. Few works
also apply predictive techniques to high-level problems such as point-
to-point trajectory generation [25] or motion planning for mobile
manipulators [26].

In general, MPC is based on the optimization of a cost function
over a finite predictive horizon, in order to get an optimal set
of control actions for the considered time interval. Then, the first
control action is applied to the system and the procedure is repeated
iteratively, in the spirit of receding horizon control. One great
advantage of MPC techniques is the efficient handling of constraints.
Moreover, the predictive approach permits to take into account the
evolution of the system in the successive time instants as well. For this
reason, such approach seems to be a good candidate for overcoming
the problems of local scaling and punctual resolution of the IK
in a redundant manipulator. Following this principle, [27] exploited
Pontryagin’s Minimum Principle to set up a nonlinear optimization
problem over a finite horizon. Nonetheless, kinematic bounds are
not taken into account and this represents a considerable limitation
of the algorithm. As a matter of fact, their inclusion would lead
to a much heavier optimization problem, increasing significantly
the computational time. In [28], [29], nonlinear MPC was applied
to the operational-space inverse dynamics problem of a humanoid
robot with bounded torques. The algorithm exploits differential
dynamic programming to set up a nonlinear problem and the use
of a fast nonlinear solver and powerful hardware permit to reach a
computational time of 50 ms. In [20], a fast predictive approach to
redundancy resolution of robot manipulators was proposed: the task
was considered as a linearized constraint and an ad-hoc continuous-
time formulation of the predictive equations was derived to lighten
the computational burden of the resulting QP. Although the final QP
is an approximation of the original nonlinear problem, it allows the
computational time to be of the same order of magnitude of local
methods (in the order of 1 ms), but still conferring the advantages of
a predictive strategy. However, when the robot is required to perform
demanding trajectories that often lead to joint saturations, this strategy
might provoke a big deformation of the original task. In particular, if
infeasible motions are required to the robot, this approach is not able
to adapt the desired trajectory to the real capabilities of the robot.

For this reason, in this paper we propose a predictive scaling
technique to preserve the geometrical task when the desired motion is
not realizable by the robot. In this sense, the proposed method confers
to the IK technique the advantages of both a predictive redundancy
resolution and a predictive scaling. Then, a Closed Loop Inverse
Kinematics (CLIK) scheme is implemented [30], in order to recover
from position errors (given by numerical integration or out-of-path
initial configurations). Moreover, a viability analysis is conducted
and included in the online QP as a linear constraint. In this way, the
robot states are always ensured to stay within a feasible region. This,
along with considering the task in the cost function (and not as a
hard constraint), always allows the feasibility of the QP.

Compared to [20], the proposed technique permits to obtain smaller
deformation of the geometrical path, especially when the desired
task is demanding with respect to the robot capabilities. Furthermore,
compared to local scaling algorithms, it is possible to obtain smaller

deformations of the desired tasks and higher mean values of the
scaling factor as well.

II. PRELIMINARIES

A. Inverse kinematics as an optimization problem

Consider an n-degree-of-freedom manipulator and an m-
dimensional task x with m≤ n, defined with respect to a curvilinear
abscissa σ , corresponding to the nominal trajectory time. In order to
perform the specified task, the following equation must hold for all
values of σ :

x(σ) = f (q(σ)) (1)

where x ∈ Rm is the task position vector, q ∈ Rn is the joint
configuration vector, and f is the forward kinematics of the robot.
Differentiating with respect to σ gives:

x′(σ) = J(q)q′(σ) (2)

where x′ = dx/dσ , q′ = dq/dσ , and J = ∂ f/∂q is the m×n Jacobian
matrix. Since σ corresponds to the nominal desired time, then x′

represents the desired task velocity, and q′ corresponds to the joint
velocity. The IK problem consists in finding the joint velocities q′

that satisfies the linear system (2). This can be reformulated as an
LSP problem such that:

q′ = argmin
q′∈S

1
2
‖J q′− x′ ‖2 (3)

where S is an admissible set of joint velocities, which can include
the kinematic boundaries of the manipulator. Robot limits at the
current iteration are typically linearized around the current state of
the system, as described in [31]. In this way, S results in a set of
linear constraints and (3) therefore results to be a QP.

When the robot is redundant with respect to the first task, a
secondary task E q′ = g can be specified. The new optimization
problem is:

q′ = argmin
q′∈S2

1
2
‖E q′−g‖2 ; S2 =

{
argmin

q′∈S

1
2
‖J q′− x′ ‖2

}
. (4)

This approach can be repeated iteratively for a general number of
tasks [7]. The prime goal of an efficient IK algorithm is the maximal
satisfaction of the primary task, and this depends on the solution of
(3). In particular, if the kinematic limits specified in S lead to a
constrained solution of the LSP, a spatial deformation of the task
arises. To reduce this phenomenon, a modification of the timing law
might be performed. As proposed in [18], at each time instant, (2)
can be modified as:

sx′(σ) = J(q) q̇(t) (5)

where s = dσ/dt can be seen as a scaling factor that deforms
the velocity profile but without modifying the path. Since only
downscaling is considered, the value of s has to be between 0 and
1. When no scaling occurs, s is equal to 1, whereas s smaller than
1 slows down the original trajectory. The desired task velocity x′ is
calculated over the parameter σ =

∫
sdt. Since in the discrete-time

implementation of the algorithm, s is calculated as a scalar value
at each time instant, the parameter σ is computed at each cycle as
σ(k) = σ(k− 1)+T s(k− 1), with σ(0) = 0, s(0) = 1 and T is the
sampling period of the controller.

In this way, the primary objective of the IK problem becomes the
satisfaction of the geometrical path of the desired task. Secondly, the
scaling factor will be optimized, in order to maximize the fulfillment
of the original primary task. Finally, the secondary task will be
accomplished as well as possible. This hierarchy of QPs can be
formalized and extended to a generic number of secondary tasks in

IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 1, FEBRUARY 2019 3

terms of a lexicographic multi-objective quadratic problem [10]. In
lexicographic optimization, an ordered sequence of cost functions is
optimized with priority determined by the order of the sequence. By
defining an ordered sequence {w1,w2,w3, . . . ,wh}, h ∈ N, where:

w1 :=
1
2
‖J q̇− sx′‖2, (6)

w2 :=
1
2
(1− s)2, (7)

wi :=
1
2
‖Ei q̇−gi ‖2 i = 3 . . .h, (8)

the terms wi, i = 3, . . . ,h represent generic secondary tasks with de-
creasing priority. The scaling problem can be formalized as follows:

lexmin
q̇,s

{w1,w2,w3, . . . ,wh }

subject to q̇ ∈S ,s ∈ [0,1].
(9)

This approach is equivalent to the one developed in [18]. In that case,
the higher-priority task could be substituted by the equality constraint
J q̇ = sx′, as acceleration limits were not considered.

In [19] the algorithm was formulated at acceleration level as well,
in order to recover continuity on the joint velocities and to include
acceleration bounds. However, in this way, feasibility is not ensured
anymore, as explained in the following section.

B. Definition of the constraints and existence of the solution

he kinematic variables of the robot are typically required to respect
the joint configuration and velocity limits, that is:

Qmin ≤ q≤ Qmax (10)

Q̇min ≤ q̇≤ Q̇max (11)

where Qmin, Qmax ∈ Rn are the minimum and maximum joint con-
figurations respectively, while Q̇min, Q̇max ∈ Rn are the minimum
and maximum joint velocities respectively. Moreover, if acceleration
limits are taken into account, it must be:

Q̈min ≤ q̈≤ Q̈max (12)

where Q̈min, Q̈max ∈Rn are the minimum and maximum joint accel-
erations respectively.

However, to ensure that each joint can stop within its configuration
bound without exceeding the maximum acceleration Q̈max,i, the
following viability condition must be imposed (see [32], [33]):

Ψ(qi, q̇i)≤ 0 (13)

where, for i = 1 . . .n (i.e., for all joints),

Ψ(qi, q̇i) :=

qi +
q̇2

i
2Q̈max,i

−Qmax,i if q̇i > 0

qi−Qmax,i otherwise

and likewise for the lower bound. Issues in the discrete-time imple-
mentation of such constraints are well detailed in [12].

Note that the use of a scaling factor as in [18] always guarantees the
existence of a solution to the task J q̇ = sx′ (at worst q̇ = 0 and s = 0),
since acceleration bounds were not considered. Therefore, assuming J
is full rank, the task could be implemented as an equality constraint in
the QP problem, ensuring the full satisfaction of the geometrical task.
Nonetheless, there is no control on the acceleration values and this
means the algorithm even admits discontinuities between successive
solutions. When also acceleration limits are taken into account, the
presence of a scaling factor does not ensure the existence of a solution
that satisfies both the kinematics limits and the geometrical task.
Therefore, a LSP solution would be needed again, with consequent
possible deformation of the desired path.

Note that bounded accelerations play an important role in the
suitability of planning algorithms. As a matter of facts, acceleration
limits are often exploited in kinematic control to approximate torque
limits (which typically represent the physical dynamic limits of the
actuators). Generally, approximated (and conservative) constant limits
for the acceleration are imposed, based on some estimation rules (e.g.,
the one proposed in [12]), as in [17], [19], [32].

III. METHOD

Purely local methods are based on the evaluation of the current
configuration of the system. In this section, we reformulate the
IK problem in a model-predictive-like framework, in order to take
into account also the evolution of the variables along the predictive
horizon. The basic idea of the method consists in formulating the
resolution of the predictive IK problem as a constrained QP, which
has to be solved at each time step. Then, in the spirit of receding
horizon control, the first input of the sequence is applied to the system
and the procedure is repeated until the end of the trajectory.

A. Formulation of the predictive equations

A linear model of the joint-space kinematic variables for an
an n-degree-of-freedom manipulator can be derived by considering
each joint as a r-th order integrator and, then, by coupling all the
joints in state-space representation. Then, a linear predictive model
can be easily derived by forward solving the resulting difference
equation, as in classic linear MPC. Due to small sampling periods
typical of robotic systems, sufficiently long horizons with uniform
sampling periods would lead to a very large number of control
variables involved in the predictive model [34]. In order to reduce the
complexity of the predictive model, the complexity reduction strategy
proposed in [20] has been applied. Such technique uses just a small
number of prediction and control time instants along the horizons,
instead of using all the sampling times. In particular, given an ordered
set of prediction time instants {τi}, i = 1, . . . , p, and an ordered set of
control time instants {t̄ j}, j = 1, . . . ,c, the predictive horizon (in terms
of seconds) corresponds to τp, and the control horizon (in terms of
seconds) corresponds to t̄c. The order r of the integrators determines
whether the control input is velocity (r = 1), acceleration (r = 2), and
so on. Then, the predictive equations at the current time instant t0
can be written as:

q(d)
(τ)

= Ld z0 +Fdu(t̄) d = 0, . . . ,r−1 (14)

where q(d)
(τ)
∈ Rnp×1 is the prediction of the d-th derivatives of the

joint configuration at times t0 + τi, z0 is the state vector at time t0,
being

z := [q1, q̇1, . . .q
(r−1)
1 , . . . ,qn, q̇n, . . .q

(r−1)
n]T ∈ Rn(r−1)×1, (15)

u(t̄) ∈Rnc×1 is the input function (i.e., the r-th derivative of the joint
configuration) at times t0 + t̄ j , and Ld ∈Rnp×nr and Fd ∈Rnp×nc are
predictive matrices derived as in [20].

B. Choice of the predictive and control time instants

The predictive model developed in the previous section is based
on the a-priori placement of the prediction and control time-instants
τi and t̄ j along the prediction and the control horizons respectively.
Although prediction and control time-instants can be chosen to be
different, hereafter they have been considered to be equal without
lose of generality. Since the reference signal (i.e., the Cartesian task)
is, in general, non-repetitive, it is not possible to determine an optimal
placement of τi and t̄ j. For this reason we use a simple empiric tuning
rule based on the following guidelines:

IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 1, FEBRUARY 2019 4

• the control and prediction time-instants have the same distribu-
tion (i.e., τi = t̄i);

• the first time-instant is equal to the sampling period of the system
(i.e., τ1 = t̄1 = T);

• the initial time-instants should be closer, while the successive
ones can be sparser.

Thus, given a certain number of time-instants c = p and the length
of the horizon τp in terms seconds, we set up a parabolic distribution
of τi and t̄i such that:

τi = t̄i =
τp−T
(p−1)2 i2−2

τp−T
(p−1)2 i+

(
τp−T
(p−1)2 +T

)
(16)

for i = 1, . . . , p. In this way, the same predictive and control horizons
can be reached with a reduced number of variables involved in the
predictive model.

C. Satisfaction of the tasks

The satisfaction of the primary task along the predictive horizon
can be expressed by imposing (5) at each time-instant of the horizon.
This can be approximated by only considering the predictive time-
instants τi and expressed as the minimization of the following cost
function:

1
2
‖J∗(q(τ)) q̇(τ)−X ′(τ)s(τ)‖

2 (17)

where:

J∗(q(τ)) = blkdiag
(

J
(
q(t0 + τ1)

)
, . . . ,J

(
q(t0 + τp)

))
;

q̇(τ) =
[

q̇(t0 + τ1)
T , . . . , q̇(t0 + τp)

T]T ;

s(τ) =
[

s(t0 + τ1), . . . ,s(t0 + τp)
]T ;

X ′(τ) = blkdiag
(
x′(σ(t0)+ τ1), . . . ,x′(σ(t0)+ τp)

)
;

The cost function (17) is nonlinear in the control action u(t̄), since
the future joint configuration q(τ) needed in the calculation of the
Jacobians depends on u(t̄). However, at each step, the prediction of the
joint configuration can be calculated by means of (14) (with d = 0).
Then, in the successive step, this prediction can be used to compute
an estimation of the future Jacobians [35]. Thus, by considering such
approximated Jacobians, (17) is now quadratic in q̇(τ). By substituting
(14) with d = 1, (17) is quadratic also in the control action u(t̄). A
quadratic cost function w1 can therefore be defined as:

w1 :=
1
2
‖J∗(q̂)L1 z0 + J∗(q̂)F1 u(t̄)−X ′(τ)s(τ)‖

2 (18)

where q̂ is the prediction of the joint configuration calculated at the
previous time step by means of (14) (with d = 0).

To recover from position errors, a CLIK strategy can be imple-
mented as primary controller of a cascade architecture where the
MPC is the secondary controller. In particular, the desired reference
velocity X ′(τ) can be modified by adding a corrective term, that is,

X ′(τ) = blkdiag
(
x′(σ(t0)+ τ1)+K ec,x′(σ(t0)+ τ2)+K ec, . . .

. . . ,x′(σ(t0)+ τp)+K ec
)
; (19)

where K ∈Rm×m is a positive-definite diagonal matrix, and ec ∈Rm

represents the current Cartesian position error, between the desired
and the current positions. When the task orientation is expressed in
terms of Euler angles and the analytical Jacobian is used in (18),
the Cartesian error can be simply defined as ec := xd − x, where xd
is the desired Cartesian position at the current time-instant, and x is
the current Cartesian position. However, when angular velocities are
used in the representation of the desired task velocity x′, the Cartesian
orientation error should be defined as the mutual orientation, in terms
of axis-angle representation, between the desired and the current

end-effector frames [36]. Further details about different orientation
representations in the CLIK strategy can be found in [37].

Note that the CLIK controller bandwidth is set to be much smaller
than the MPC controller one. This implies that the secondary loop
can be reasonably approximated as a unitary gain. Thus, the stability
of the primary loop can be guaranteed by imposing that K belongs
to a region that depends on the sampling period [38].

The primary task (18) can now be included in a priority framework
with other secondary tasks, by following a hierarchical approach
[7]. The resulting hierarchical QP should (in order of priority): i)
optimize the primary task (18); ii) limit the scaling; iii) optimize the
lower-priority tasks. Considering a generic secondary task in the form
E u(t̄) = g, this can be formalized as a lexicographic multi-objective
quadratic problem, similarly to (9):

lexmin
u(t̄),s(τ)

{
w1,w2,w3}

subject to u(t̄) ∈S ,si ∈ [0,1]
(20)

where w2 := 1
2‖1− s(τ)‖2, w3 := 1

2‖E u(t̄)− g‖2, and w1 is defined
in (18). The number of optimization variables involved in (20) is
given by nc+ p. In order to efficiently handle prioritized problems
in the form of (20), fast dedicated QP solvers for hierarchical task
have been recently developed, for instance, in [10], while in [39]
a technique to solve hierarchical tasks in a single enlarged QP was
proposed. Alternatively, a weighted approach can be adopted, in order
to solve a single multi-objective QP with nc+ p variables, in which
the tasks have different weights, according to their priority. This can
be written as:[

u(t̄)
s(τ)

]
= argmin

u∈S ,si∈[0,1]
λ1‖J∗(q̂) L1 z0 + J∗(q̂) F1 u(t̄)−X ′(τ)s(τ)‖

2

+λ2‖1− s(τ)‖2 +λ3‖E u(t̄)−g‖2
(21)

with λ1� λ2� λ3.
Examples of secondary tasks can be, for instance,
• joint range availability: E = F0; g = (Qmax +Qmin)/2−L0z0;
• minimum norm of the control action: E = Inc; g = 0.

D. Analysis and design of the constraints

This section aims at translating the kinematic limits of the joints
into linear constraints, in order to include them in the QP formulation.
Note that, by means of the predictive equations (14), the bounds
will be imposed along the whole control horizon. In this way, the
optimal control action calculated at each step will take into account
the presence of the constraints for the future time instants as well.

As introduced in Section II-B, the IK resolution should consider the
boundaries of the kinematic variables, such as configuration, velocity
and acceleration. Thus, by choosing the order r of the resolution
algorithm, and by using (14), the following set of linear inequalities
results:

Q(d)
min−Ldz0 ≤ Fdu(t̄) ≤ Q(d)

max−Ldz0 ∀d = 0, . . . ,r−1

Q(r)
min ≤ u(t̄) ≤ Q(r)

max

(22)

The linear inequalities (22) permit to take into account the joint
boundaries up to the rth derivative of the configuration. However,
the IK should consider the viability set condition (13) as well, as
mentioned in Section II-B. Unfortunately, (13) is nonlinear in the
joint configuration and velocity and cannot be linearized as in the
local resolution. In order to approximate it with a linear constraint a
further analysis is required. First of all, it is important to point out
that shrinking the state space (q, q̇) to a more conservative admissible
set does not guarantee the satisfaction of the constraint in the future.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 1, FEBRUARY 2019 5

Fig. 1: Admissible velocity area. Black: area given by the constraints
(10)–(13); Red: infeasible linearization of the viability condition;
Blue: feasible linearization (23), (24) of the viability condition. Note
that Proposition 1 yields to the graphical result ∆1 = ∆2 and ∆3 = ∆4
(if the boundaries are symmetric all the quantities are equal).

For instance, for every joint, consider the linear approximation of the
constraint (13) given by the line passing through the points (Qmax,i,0)
and (Qmax,i +

q̇2
i

2Q̈min,i
, Q̇max,i) (red line in Figure 1). When the con-

straint is activated, the state is forced to follow the trajectory given
by the curve q̇i = 2 Q̈min,i

Q̇max,i
qi− 2 Q̈min,i

Q̇max,i
Qmax,i. The corresponding ac-

celeration is given by q̈i = dq̇i/dt = 2 Q̈min,i

Q̇max,i
q̇i, with q̇i ∈ [0, Q̇max,i].

Thus,

max |q̈i|= max
q̇i∈[0, Q̇max,i]

∣∣∣∣∣2 Q̈min,i

Q̇max,i
q̇i

∣∣∣∣∣= 2|Q̈min,i|.

This means that the acceleration needed to move from the current
value of q̇i to zero without violating the linear constraint is twice the
maximum acceleration from which the constraint was constructed.
Following a similar reasoning, it is possible to obtain the following
proposition.

Proposition 1: Consider the upper viability condition (13) and its
linear approximation in the form q̇i ≤ α qi+β . Imposing the passage
of the curve through the point (Qmaxi ,0) of the (qi, q̇i) plane, then
the acceleration does not exceed the value Q̈max,i if

α =−
|ρmin,i|
Q̇max,i

; β =
|ρmin,i|
Q̇max,i

Qmax,i (23)

where |ρmin,i| ≤ |Q̈min,i|. Likewise, for the lower viability condition
and its linear approximation q̇i ≥ γ qi +δ it results

γ =
|ρmax,i|
Q̇min,i

; δ =−
|ρmax,i|
Q̇min,i

Qmin,i (24)

where |ρmax,i| ≤ |Q̈max,i|.
Proof: Let the curve q̇i ≤ α qi + β be the approximation of the

viability condition (13). Imposing the passage through the point
(Qmax,i,0) yields α Qmax,i + β = 0 ⇒ α = −β/Qmax,i. Therefore,
q̇i = (−β/Q̇max,i) qi +β . The acceleration is given by q̈i = dq̇i/dt =
(−β/Q̇max,i) q̇i, with q̇i ∈ [0, Q̇max,i]. Thus,

max |q̈i|= max
q̇i∈[0, Q̇max,i]

∣∣∣∣∣ −β

Qmax,i
q̇i

∣∣∣∣∣= Q̇max,i

Qmax,i
|−β |.

Assuming β is negative and imposing max |q̈i| ≤ |Q̈min,i| gives
β ≤ (Q̈min,i Qmax,i)/Q̇min,i ⇒ α ≥ (Q̈min,i)/Q̇min,i or equivalently
α = −|ρmin,i|/Q̇max,i and β = (|ρmin,i|/Q̇max,i)Qmax,i, where
|ρmin,i| ≤ |Q̈min,i|. �

Once the constraint related to the viability set has been wisely lin-
earized, its inclusion in the predictive framework is straightforward.
As a matter of fact, it has to be:{

q̇i(t)≤ αiqi(t)+βi

q̇i(t)≥ γi qi(t)+δi
∀ t ∈ t̄c ∀ i = 1, . . . ,n. (25)

Reminding the predictive equation (14), the constraints become:{
(F2− ᾱF1) u(t̄) ≤ (ᾱL1−L2) z0 + β̄

(F2− γ̄ F1) u(t̄) ≥ (γ̄ L1−L2) z0 + δ̄
(26)

where ᾱ := diag
(
[α1, . . . ,αn], . . . , [α1, . . . ,αn]

)
∈ Rnc×nc,

β̄ :=
[
[β1, . . . ,βn], . . . , [β1, . . . ,βn]

]T ∈ Rnc and likewise for
γ̄ and δ̄ .

IV. NUMERICAL RESULTS

This section aims at testing the proposed method via simulation
on a 9-dof redundant manipulator. The robot is composed of a 7-
dof KUKA iiwa14 manipulator, mounted on an actuated base, which
consists in a 2-dof planar arm hanging on the ceiling. The manipulator
is equipped with a 0.2m-long tool, aligned with the rotation axis of
the last joint. The configuration and velocity limits are given by:

Qmax =−Qmin

=[3.00, 3.00, 2.96, 2.09, 2.96, 2.09, 2.96, 2.09, 3.05]T [rad]

Q̇max =−Q̇min

=[1.48, 1.48, 1.48, 1.48, 1.74, 1.30, 2.26, 2.35, 2.35]T [rad/s]

The acceleration bounds are chosen equal to ±12 rad/s2 for all joints.
The method is implemented with a sampling period T = 1 ms.

Regarding the task, consider the two following reference paths:
• Path X1: a circle in the plane x = 0.35 m with center

P1(0.35,−0.3,1.3) m and radius R = 0.25 m. The circle has
to be performed twice to complete the task;

• Path X2: a sinusoidal curve z = 1.2+ 0.2 sin(4π − 8πx) in the
plane y = 0.1 m, from the initial point P2(0.5,1,1.2) m to the
final point P3(0,0.1,1.2) m.

For each of these reference paths, ten random paths are generated by
perturbing the path parameters by adding a random number between
±0.05 m (with uniform distribution).

The position of the end-effector should perform each path by
following the nominal longitudinal timing law

η(σ) =
6

T 5
tot

σ
5− 15

T 4
tot

σ
4 +

10
T 3

tot
σ

3 (27)

where Ttot is the desired total duration of the nominal task. The
following values of Ttot are considered: Ttot = 0.5, 1, 2, 4 s for Path
X1, and Ttot = 0.8, 1.2, 1.6, 2 s for Path X2. The longitudinal velocity
profile of the end-effector can be obtained by differentiating (27).

As secondary task, the robot elbow has to be kept as high as
possible. This is expressed by defining a required velocity to the z-
coordinate of the origin of the elbow frame in the form ẋ2 = |dη/dσ |.
From a practical perspective, such behavior could be useful to reduce
as much as possible the occupation of the space below the robot.

The following algorithms are compared:
• the local method (9) at acceleration level [19];
• the proposed predictive method, with number of control and

predictive time instants c = p = 3 and predictive horizon τp =
100 ms (namely, {τi}= {1,26,100} ms);

• the proposed predictive method, with c = p = 5 and predictive
horizon τp = 100 ms (namely, {τi}= {1,7,26,57,100} ms).

Referring to Section III-C, simulations related to Path X1 were
performed by implementing the hierarchical approach, whereas sim-
ulations related to Path X2 were performed by implementing the
weighted approach, with λ1 = 106, λ2 = 103, λ3 = 10. The propor-
tional gain related to the CLIK strategy is K = 200 I, where I is the
identity matrix. Simulations were performed in Matlab.

The evaluated parameters are the deformation with respect to the
desired path in terms of Euclidean distance with respect to the closest

IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 1, FEBRUARY 2019 6

TABLE I: Numerical comparison between the local method and the proposed predictive method (p = 3 and p = 5).

Ttot [s] emax [m] emean [m] smean zelb,mean [m]
Local p = 3 p = 5 Local p = 3 p = 5 Local p = 3 p = 5 Local p = 3 p = 5

Path X1

0.5 1.17 ·10−1 1.01 ·10−2 4.48 ·10−3 1.33 ·10−2 2.66 ·10−3 2.22 ·10−3 0.286 0.101 0.082 1.28 1.59 1.65
1 3.40 ·10−2 2.14 ·10−3 1.47 ·10−3 2.17 ·10−3 6.93 ·10−4 5.85 ·10−4 0.617 0.386 0.343 1.27 1.56 1.57
2 1.67 ·10−2 2.59 ·10−4 1.10 ·10−4 7.22 ·10−4 2.24 ·10−5 1.97 ·10−5 0.920 0.964 0.962 1.33 1.39 1.40
4 2.56 ·10−5 2.40 ·10−5 2.36 ·10−5 5.59 ·10−6 6.53 ·10−6 6.34 ·10−6 0.998 1.000 1.000 1.32 1.51 1.50

Path X2

0.8 1.52 ·10−1 4.53 ·10−3 1.50 ·10−3 2.51 ·10−2 2.15 ·10−4 1.92 ·10−4 0.479 0.556 0.455 1.30 1.39 1.38
1.2 1.10 ·10−1 1.51 ·10−3 6.12 ·10−4 1.29 ·10−2 5.64 ·10−5 6.02 ·10−5 0.578 0.773 0.735 1.30 1.35 1.40
1.6 3.43 ·10−2 8.88 ·10−4 4.05 ·10−4 1.41 ·10−3 2.20 ·10−5 2.06 ·10−5 0.869 0.928 0.909 1.31 1.41 1.37
2.0 6.38 ·10−4 2.76 ·10−4 4.43 ·10−5 1.29 ·10−5 1.15 ·10−5 1.19 ·10−5 0.992 0.982 0.985 1.30 1.40 1.46

point on the desired path, the scaling factor along the task, and the
satisfaction of the secondary task. The results are shown in Table
I. For each method and for each value of Ttot, the table shows
the maximum error emax, the mean error emean, the mean scaling
factor smean, and the average height of the robot elbow zelb,mean,
given by the mean of the ten randomly-generated tasks. First of all,
note that emax and emean decrease for greater values of Ttot (i.e.,
less demanding tasks). As regards the scaling values, as expected,
more demanding tasks lead to smaller values of smean, since a greater
scaling of the timing law is needed. Consider now the comparison of
the various methods. Firstly, emax and emean given by the predictive
methods always result to be significantly better than ones given by
the corresponding local method. Secondly, the values of smean given
by the predictive methods are usually better than the ones given by
the corresponding local method. An exception is represented by the
fastest tasks. In such cases the predictive methods tend to perform a
heavier scaling of the timing law to preserve the original geometrical
path, which is the priority of the method.

Simulations using Gazebo [40] have then been performed to assess
the effectiveness of the method in a realistic scenario. Gazebo receives
the motor torque signals by a simple cascade P-PI control architecture
with inertia matrix decoupling. The inner- and outer-loop bandwidths
are respectively equal to 11 Hz and 4 Hz. In particular, few Cartesian
tasks performed by the robot are shown in Figure 2. Table II shows
the values of emax and emean (considering also the controlled system
tracking error), and smean for such tests. In Figure 2a, it is possible
to note that, for Path X1 and Ttot = 2 s, the local method (dashed-
dotted blue line) gives a significant deformation of the desired path,
while the predictive method (dashed red line) is able to avoid such
deformation. This behavior is even more evident when the desired
task becomes more demanding: as shown in Figure 2b for Ttot = 0.5 s,
the local method (dashed-dotted blue line) leads to a distorted path,
especially in the final deceleration phase (zoomed window), while
the predictive strategy (dashed red line) still gives satisfactory results.
The same applies for Path X2, as shown in Figure 2c and 2d.

As an illustrative example, the trends of the kinematic variables
for Path X1, Ttot = 2 s, and p = 3 are shown in Figure 3. First
of all, the kinematic variables of the joint are always within their
bounds. Moreover, as shown in the fourth column of the figure, the
torque applied to the joints are kept within their limits, thanks to the
appropriate choice of the acceleration limits.

Finally, the proposed method has also been tested at jerk level
(r = 3). In many applications, for example to cope with unmodeled
elasticities, it is advisable to reduce also higher-order derivatives to
increase smoothness. By using r = 3, such soft constraints are taken
into account as a part of the cost function. Joint accelerations are
shown in Figure 4, which shows smoother trends of such variables,

TABLE II: Numerical comparison between the local method and the
proposed predictive method in Figure 2.

Figure emax [m] emean [m] smean
Local p = 3 Local p = 3 Local p = 3

2a 1.66 ·10−2 8.69 ·10−4 1.11 ·10−3 2.78 ·10−4 0.909 0.918
2b 1.01 ·10−1 7.33 ·10−3 1.30 ·10−2 4.21 ·10−3 0.294 0.102
2c 3.09 ·10−2 1.32 ·10−3 2.79 ·10−3 3.68 ·10−4 0.855 0.854
2d 1.53 ·10−1 5.31 ·10−3 4.39 ·10−2 5.84 ·10−4 0.471 0.594

TABLE III: Mean and maximum computational time taken by the
local and the predictive (p = 3 and p = 5) methods for Path X1.

Method tmax tmean
[s] [s]

Local 8.3 ·10−4 1.2 ·10−4

Predictive (p = 3) 1.1 ·10−3 2.1 ·10−4

Predictive (p = 5) 2.3 ·10−3 3.8 ·10−4

since the algorithm also considers jerk minimization.
An important issue to take into account when using an

optimization-based algorithm with fast sampling periods is the re-
quired computational time. For this reason, the mean and the maxi-
mum cycle time required by the algorithm are evaluated. Referring
to the above-mentioned simulations, Table III shows the mean and
the maximum computational time taken to perform Path X1. The
simulations were performed by using the parametric active-set QP
solver QpOASES [8], [9], on a standard laptop mounting a 2.5 GHz
Intel Core i5-2520M processor. As expected, the computational time
required by the predictive method is generally higher than the one
required by the local method, due to the greater number of variables
involved in the online optimization. Moreover, the computational time
obviously grows with the number of control moves c = p. However,
it is important to remind that the extension of the IK problem to
the predictive framework originally led to a constrained nonlinear
problem. The proposed method converts such problem into a QP
problem, and the required computational time is still comparable
with the one taken by the purely local method, and, thus, suitable for
online implementation. Indeed, considering the example with p = 3,
it is interesting to note that the maximum computational time is in the
order of 1 ms. Furthermore, its mean value is around 0.21 ms, that
is, less than the double of the local method, although the number
of optimization variables is three times bigger. Finally, it is worth
stressing that, in order to handle the real time execution of the control
algorithm for which a fixed sampling period has to be selected, it is
in any case possible to set a soft maximum CPU time, within which
the optimization shall stop. From a practical perspective, the use of
such setting does not give rise to a significant performance decay, if
such maximum time is chosen properly, according to the problem to
solve.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 1, FEBRUARY 2019 7

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
1

1.1

1.2

1.3

1.4

1.5

1.6

-0.12 -0.1 -0.08
1.4

1.42

1.44

1.46

(a) Path X1, Ttot = 2 s

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
1

1.1

1.2

1.3

1.4

1.5

1.6

-0.08 -0.06 -0.04

1.3

1.35

1.4

(b) Path X1, Ttot = 0.5 s

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.16 0.18 0.2

1.38

1.42

0.28 0.3 0.32 0.34

1

1.05

(c) Path X2, Ttot = 1.6 s

-0.1 0 0.1 0.2 0.3 0.4 0.5
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(d) Path X2, Ttot = 0.8 s

Fig. 2: Dotted black: ideal reference path. Dashed-dotted blue: path obtained by the local method. Dashed red: path obtained by the predictive
method with r = 2, p = 3.

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0 1 2 3
-2

0

2

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-2

0

2

-1

0

1

-2

0

2

0 1 2 3

-2

0

2

-10

0

10

-10

0

10

-10

0

10

-10

0

10

-10

0

10

-10

0

10

-10

0

10

0 1 2 3

-10

0

10

-150

0

150

-150

0

150

-150

0

150

-150

0

150

-80

0

80

-80

0

80

-80

0

80

0 1 2 3

-30

0

30

Fig. 3: Solid black: joint configuration, velocity, acceleration and torque obtained by the predictive method with r = 2, p = 3, Path X1,
Ttot = 2 s. Dashed-dotted gray: joint configuration, velocity, acceleration and torque obtained by the local method, Path X1, Ttot = 2 s. Dashed
blue: joint configuration, velocity, acceleration and torque limits. The ninth joint is omitted for it does not affect the motion.

-10

0

10

-10

0

10

-10

0

10

-10

0

10

0 1 2 3

-10

0

10

0 1 2 3

-10

0

10

0 1 2 3

-10

0

10

0 1 2 3

-10

0

10

Fig. 4: Solid black: joint acceleration obtained by the predictive method with r = 3, p = 3, Path X1, Ttot = 2 s. Dashed-dotted gray: joint
acceleration obtained by the local method, Path X1, Ttot = 2 s. Dashed blue: joint acceleration bounds. The ninth joint is omitted for it does
not affect the motion.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 1, FEBRUARY 2019 8

V. CONCLUSIONS

A new predictive task-scaling technique has been proposed in this
paper. It allows solving the IK of a redundant manipulator taking into
account the kinematic limits of the robot. The task-scaling strategy
preserves the geometrical task when the desired motion is infeasible
for the robot capabilities, dramatically reducing the geometrical error
in case of very demanding tasks. Moreover, compared to local
techniques, it is possible to obtain much better results in terms of
task deformation and trajectory scaling. The use of a single-step
linearization of the predicted task around the previous prediction
of the joint configuration permits to convert the online optimization
into a QP. In this way, the computational complexity is dramatically
decreased, making the method suitable for online implementation.

ACKNOWLEDGMENT

The research leading to these results has been partially funded by
the European Union H2020-CS2-738039-Eureca: Enhanced Human
Robot cooperation in Cabin Assembly tasks.

REFERENCES

[1] Y. Nakamura, Advanced Robotics: Redundancy and Optimization. MA,
USA: Addison-Wesley, 1990.

[2] A. Liegeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Trans. on Systems Man and
Cybernetics, vol. 7, pp. 868–871, 1977.

[3] B. Siciliano and J.-J. E. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” in Proc. Int. Conf.
on Advanced Robotics, Pisa (Italy), 1991, pp. 1211–1216.

[4] A. Atawnih, D. Papageorgiou, and Z. Doulgeri, “Kinematic control of
redundant robots with guaranteed joint limit avoidance,” Robotics and
Autonomous Systems, vol. 79, pp. 122–131, 2016.

[5] T. F. Chan and R. V. Dubey, “A weighted least-norm solution based
scheme for avoiding joint limits for redundant joint manipulators,” IEEE
Trans. on Robotics and Automation, vol. 11, pp. 286–292, 1995.

[6] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis,
“Opensot: a whole-body control library for the compliant humanoid
robot Coman,” in Proc. IEEE Int. Conf. on Robotics and Automation,
Seattle (USA), 2015, pp. 6248–6253.

[7] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of
redundant manipulators: generalizing the task priority framework to
inequality tasks,” IEEE Trans. on Robotics, vol. 27, pp. 785–792, 2011.

[8] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, pp. 327–363, 2014.

[9] H. J. Ferreau, H. Bock, and M. Diehl, “An online active set strategy to
overcome the limitations of explicit mpc,” Int. J. of Robust and Nonlinear
Control, vol. 18, pp. 816–830, 2008.

[10] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The Int.
J. of Robotics Research, vol. 33, pp. 1006–1028, 2014.

[11] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, pp. 1747–
1767, 1999.

[12] A. Del Prete, “Joint position and velocity bounds in discrete-time
acceleration/torque control of robot manipulators,” IEEE Robotics and
Automation Letters, vol. 3, pp. 281–288, 2018.

[13] J. M. Hollerbach, “Dynamic scaling of manipulator trajectories,” in Proc.
IEEE American Control Conf., San Francisco (USA), 1983, pp. 752–756.

[14] O. Dahl and L. Nielsen, “Torque-limited path following by online
trajectory time scaling,” IEEE Trans. on Robotics and Automation, vol. 6,
pp. 554–561, 1990.

[15] O. Gerelli and C. Guarino Lo Bianco, “Nonlinear variable structure filter
for the online trajectory scaling,” IEEE Trans. on Industrial Electronics,
vol. 56, pp. 3921–3930, 2009.

[16] C. Guarino Lo Bianco and O. Gerelli, “Online trajectory scaling for
manipulators subject to high-order kinematic and dynamic constraints,”
IEEE Trans. on Robotics, vol. 27, pp. 1144–1152, 2011.

[17] G. Antonelli, S. Chiaverini, and G. Fusco, “A new on-line algorithm
for inverse kinematics of robot manipulators ensuring path tracking
capability under joint limits,” IEEE Trans. on Robotics and Automation,
vol. 19, pp. 162–167, 2003.

[18] F. Flacco, A. De Luca, and O. Khatib, “Control of redundant robots
under hard joint constraints: Saturation in the null space,” IEEE Trans.
on Robotics, vol. 31, pp. 637–654, 2015.

[19] ——, “Motion control of redundant robots under joints constraints:
Saturation in the null space,” in Proc. IEEE Int. Conf. on Robotics and
Automation, St. Paul (USA), 2012, pp. 285–292.

[20] M. Faroni, M. Beschi, A. Visioli, and L. Molinari Tosatti, “A predictive
approach to redundancy resolution for robot manipulators,” in Proc.
IFAC World Congress, Toulouse (France), 2017.

[21] J. Wilson, M. Charest, and R. Dubay, “Nonlinear model predictive
control schemes with application on a 2 link vertical robot manipulator,”
J. of Robotics and C.I.M., vol. 41, pp. 23–30, 2016.

[22] R. Hedjar and P. Boucher, “Nonlinear Receding-Horizon control of rigid
link robot manipulators,” Int. J. of Advanced Robotic Systems, vol. 2,
pp. 15–24, 2005.

[23] P. Poignet and M. Gautier, “Nonlinear model predictive control of a
robot manipulator,” in Proc. Int. Workshop on Advanced Motion Control,
Nagoya (Japan), 2000, pp. 401–406.

[24] A. Ferrara, G. P. Incremona, and L. Magni, “A robust MPC/ISM
hierarchical multi-loop control scheme for robot manipulators,” in Proc.
Annual Conf. on Decision and Control, Firenze (Italy), 2013, pp. 3560–
3565.

[25] M. M. Ghazaei Ardakani, N. Olofsson, A. Robertsson, and R. Johansson,
“Real-time trajectory generation using model predictive control,” in
Proc. IEEE Int. Conf. on Automation Science and Engineering, Gothen-
burg (Sweden), 2015, pp. 942–948.

[26] G. Buizza Avanzini, A. M. Zanchettin, and P. Rocco, “Reactive con-
strained model predictive control for redundant mobile manipulators,”
Intelligent Autonomous Systems 13, Advances in Intelligent Systems and
Computing, pp. 1301–1314, 2016.

[27] C. Schuetz, T. Buschmann, J. Baur, J. Pfaff, and H. Ulbrich, “Predictive
online inverse kinematics for redundant manipulators,” in Proc. IEEE
Int. Conf. on Robotics and Automation, Hong Kong (China), 2014, pp.
5056–5061.

[28] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in Proc. IEEE Int. Conf. on Robotics and
Automation, Seattle (USA), 2015, pp. 1168–1175.

[29] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control applied
to the HRP-2 humanoid,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Hamburg (Germany), 2015, pp. 3346–3351.

[30] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-
loop inverse kinematics schemes for constrained redundant manipulators
with task space augmentation and task priority strategy,” The Int. J. of
Robotics Research, vol. 10, pp. 410–425, 1991.

[31] F.-T. Cheng, T.-H. Chen, and Y.-Y. Sun, “Resolving manipulator re-
dundancy under inequality constraints,” IEEE Trans. on Robotics and
Automation, vol. 10, pp. 65–71, 1994.

[32] M. Scheint, J. Wolff, and M. Buss, “Invariance control in robotic
applications: Trajectory supervision and haptic rendering,” in Proc. IEEE
American Control Conf., Seattle (USA), 2008, pp. 1436–1442.

[33] A. M. Zanchettin and P. Rocco, “Motion planning for robotic manipu-
lators using robust constrained control,” Control Engineering Practice,
vol. 59, pp. 127–136, 2017.

[34] D. Dimitrov, P.-B. Wieber, H. J. Ferreau, and M. Diehl, “On the
implementation of model predictive control for on-line walking pattern
generation,” in Proc. IEEE Int. Conf. on Robotics and Automation,
Pasadena (USA), 2008, pp. 2685–2690.

[35] L. Tamas, I. Nascu, and R. De Keyser, “The NEPSAC nonlinear
predictive controller in a real life experiment,” in Int. Conf. on Intelligent
Engineering Systems, Budapest (Hungary), 2007, pp. 229–234.

[36] B. Siciliano and L. Villani, “Six-degree-of-freedom impedance robot
control,” in Proc. IEEE Int. Conf. on Advanced Robotics, Monterey (CA),
1997, pp. 387–392.

[37] F. Caccavale, B. Siciliano, and L. Villani, “The role of Euler parameters
in robot control,” Asian J. of Control, vol. 1, pp. 25–34, 1999.

[38] L. Roveda, N. Pedrocchi, M. Beschi, and L. Molinari Tosatti, “High-
accuracy robotized industrial assembly task control schema with force
overshoots avoidance,” Control Engineering Practice, vol. 71, pp. 142–
153, 2018.

[39] M. Liu, Y. Tan, and V. Padois, “Generalized hierarchical control,”
Autonomous Robots, vol. 40, pp. 17–31, 2016.

[40] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Sendai (Japan), 2004, pp. 2149–2154.

