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Abstract: In this paper, we propose a new method for the online redundancy resolution of
robot manipulators, which implements a predictive strategy to calculate the optimal control
action. In this way, it is possible to obtain a more efficient handling of the constraints, which
represents one of the main issues in online resolution methods. The predictive model has been
obtained by considering every joint as a kth-order integral system, and the predictive equations
are derived from a continuous-time formulation. This allows the use of an irregular distribution
of the prediction and control time instants and, as a consequence, longer prediction and control
horizons can be obtained, without increasing the computational complexity of the algorithm.
Finally, joint hard bounds are easily included in a linear-model-predictive-like framework, and
the optimal control action is calculated by solving a linear quadratic problem. Simulation results
for a 4-degree-of-freedom planar arm show the effectiveness of the method compared to purely
local resolution techniques.

Keywords: robot manipulators, redundant robots, continuous model predictive control, inverse
kinematics, hard joint limits, optimal redundancy handling.

1. INTRODUCTION

Redundant manipulators have been broadly exploited in
industry and research, since they allow greater versatility
in the task execution. As a matter of fact, the extra de-
grees of freedom permit to satisfy (completely or partially)
secondary tasks, or to optimise a given objective function
such as manipulability maximisation, joint availability or
minimum energy consumption.
Several methods for the optimal resolution of the redun-
dancy has been proposed during the years. They are classi-
fied mainly in local and global methods (Nakamura, 1990):
the former class solves the redundancy using information
related to the actual configuration of the robot, whereas
the latter aims at obtaining a globally optimal solution,
taking into account the whole desired task in the optimi-
sation. Of course, local methods generally lead to poorer
global performance (Faroni et al., 2016), but they allow
an online resolution thanks to their lighter computational
burden. On the contrary, the computational complexity of
global methods is too high for real-time control applica-
tions and, therefore, they need to be performed offline.
As regards local methods, they are based on the resolu-
tion of the inverse kinematics of the robot, in order to
obtain joint velocities and/or accelerations. The typical
approach is based on the pseudo-inverse of the Jacobian
of the manipulator (Siciliano, 1989). One of the main
issues in the redundancy handling is the satisfaction of
joint position, velocity and acceleration bounds. Pseudo-

inverse methods do not explicitly take them into account.
Typically, hard position bounds are converted into soft
ones by means of a cost function that keeps the joints in
the middle of their ranges (Liegeois, 1977). However, the
impossibility of handling velocity and acceleration bounds
would generate the saturation of joint commands, leading
to the deformation of the primary task. In order to consider
also these constraints, the local redundancy problem may
be considered as a Quadratic Program (QP), with linear
equality and inequality constraints (Kanoun et al., 2011).
In this way, joint constraints are considered explicitly and
an optimal solution is found in case the task is locally
feasible.
However, the solution of these method is only locally opti-
mal, and it does not take into account the future evolution
of the task, the constraints, and the kinematic states. This
means that the iterative local resolution of redundancy
might move the robot to a disadvantageous configuration
with respect to the constraints. This would cause undesired
velocity/acceleration peaks or even the impossibility of
satisfying the constraints with bounded control actions.
In case no solution that satisfies all the constraints exists,
the saturation of the actuators leads to the deformation
of the task. Recent methods, for instance, implement task
scaling techniques to preserve at least the geometrical task
when no local feasible solution exists (Flacco et al., 2015).
Anyway, considering that constraints and bounds along
the task are usually known a priori, those situations could
often be avoided, and this represents one of the main



drawbacks of purely local approaches, as pointed out in
(Schuetz et al., 2014).
This paper proposes a method to solve the inverse kine-
matic of a redundant manipulator by means of a model
predictive approach.
One great advantage of MPC techniques is the efficient
handling of constraints. Moreover, the predictive approach
permits to take into account the constraints in the succes-
sive time instants as well. For this reason, such approach
seems to be a good candidate for overcoming the problems
of punctual resolution of the redundancy in a robotic
manipulator.
Following this principle, Schuetz et al. (2014) exploited
Pontryagin’s Minimum Principle to set up a nonlinear op-
timisation problem over a finite horizon. In (Zube, 2015),
by contrast, a typical nonlinear MPC (NMPC) is applied
to solve the inverse kinematics of a redundant manipula-
tor. Although the results are certainly satisfactory in terms
of kinematic performance, real-time applications for long-
enough horizons seem to be still far away.
In this work, we propose a different approach, where every
joint of the robot is treated as an kth-order integral sys-
tem, while the desired trajectory is considered as a nonlin-
ear constraint in the optimisation. As shown in Section 3.2,
this constraint can be easily linearised using the prediction
of the state variables. In this way it is possible to reduce the
optimisation of some typical cost functions (e.g. minimum
control effort and joint availability) to a linear quadratic
programming problem, which can be solved much more
rapidly. In order to obtain control and prediction horizons
sufficiently long for the purposes of the paper, control and
prediction time instants are not equally distributed along
the horizons. As a matter of fact, the time instants are
more frequent at the beginning of the horizons and less
frequent in the end. This strategy permits to reduce the
number of variables involved in the prediction and in the
optimisation and, therefore, it dramatically decreases the
computational burden of the algorithm.
Another advantage of the proposed method is that first
and second (or even third) order resolution levels may be
obtained just by using either a single or a double (or triple)
integral system respectively, without any modification to
the algorithm. Moreover, the intrinsic structure of linear
MPC permits to handle position, velocity and acceleration
boundaries in an elegant and efficient manner.

2. BACKGROUND

Consider an n-degree-of-freedom manipulator and an m-
dimensional task with m < n. The associated direct
kinematics is given by:

x = f(q) (1)

where x ∈ Rm is the task position vector and q ∈ Rn is the
joint position vector. Differentiating with respect to time
gives:

ẋ = J q̇ (2)

where J = ∂f/∂q is the m × n Jacobian matrix, ẋ ∈ Rm
is the task velocity vector and q̇ ∈ Rn is the joint velocity
vector.
Typical inverse kinematics are based on the solution of
the linear system (2) by means of the pseudoinverse of
the Jacobian. This can be performed at velocity or ac-
celeration level (De Luca and Oriolo, 1991). However,

pseudoinverse methods do not provide an intrinsic way of
handling boundaries and constraints. As a matter of fact,
their mere application may cause the violation of position,
velocity and acceleration boundaries if no strategies are
implemented to avoid it. Moreover, the violation of veloc-
ity and acceleration bounds would saturate the actuators,
with consequent deformation of the primary task.
Alternatively, it is possible to represent the redundancy
problem as a quadratic optimisation, as follows:

q̇ = argmin
1

2
e(q̇)T e(q̇)

s.t. J(q)q̇ = ẋ ; Q̇min ≤ q̇ ≤ Q̇max
(3)

where Q̇min and Q̇max represent the kinematic constraints
at velocity level.
When the function e(q̇) is linear with respect to q̇, the
minimisation becomes a QP.
The extension of such method to the acceleration level is
easily derived and gives:

q̈ = argmin
1

2
e(q̈)T e(q̈)

s.t. J(q)q̈ = ẍ− J̇ q̇ ; Q̈min ≤ q̈ ≤ Q̈max
(4)

where Q̈min and Q̈max represent the kinematic constraints
at acceleration level.
The kinematic constraints typically include position, ve-
locity and/or acceleration limits, as extensively explained
in (Flacco et al., 2012).

3. PROPOSED METHOD

3.1 Formulation of the predictive model

Consider an n-degree-of-freedom manipulator and an m-
dimensional task, wit m < n. From a control perspective,
the aim of redundancy resolution consists in finding the
optimal control actions that have to be applied to the
joints, taking into account the constraints introduced by
the Cartesian task. To this end, every joint is modelled as
a kth-order integral system:

qi(s) =
1

sk
ui(s) ∀ i = 1 . . . n (5)

Equivalently, choosing the state vector as

ξi := [qi q̇i . . . q
(k−1)
i ]T ∀ i = 1 . . . n (6)

the following state-space formulation (Ã, B̃, C̃) results:

ξ̇i(t) = Ãξi(t) + B̃ui(t) (7)

qi(t) = C̃ξi(t) (8)

where the matrices Ã ∈ Rk×k, B̃ ∈ Rk×1, and C̃ ∈ R1×k

are given by:

Ã =

0 1 0 0

0

1

0 0



 (9)

B̃ = [ 0 · · · 0 1 ]
T

(10)

C̃ = [ 1 0 · · · 0 ] (11)

(Note that in the remarkable case of k = 1, the matrices

reduce to the scalar case, in which Ã = 0, B̃ = 1, C̃ = 1.)



In this way the control action ui results to be the kth
derivative of the corresponding joint position. Choosing
k = 1, 2, or 3 the joint will be controlled at velocity,
acceleration, or jerk level respectively.
It is now possible to obtain the kinematic model of
the whole manipulator from the single-joint models by
coupling them in state-space formulation (A,B,C), where:

A := blkdiag
(
Ã, . . . , Ã

)
∈ Rnk×nk (12)

B := blkdiag
(
B̃, . . . , B̃

)
∈ Rnk×n (13)

C := blkdiag
(
C̃, . . . , C̃

)
∈ Rn×nk (14)

where blkdiag(·) generates a block-diagonal matrix from
the given matrices. The complete state vector results:

ξ = [q1, q̇1, . . . q
(k−1)
1 , . . . , qn, q̇n, . . . q

(k−1)
n ]T (15)

whereas the output vector is:

q = [q1, q2, . . . qn]T (16)

Once the state-space model of the whole manipulator
has been obtained, the application of classic discrete-time
MPC would result straightforward. On the other hand, in
this work, a continuous-time approach has been preferred.
Such choice allows the irregular distribution of prediction
and control time instants along the horizons, as will be
explained later.
Therefore, consider a time instant t0 and the correspond-
ing state ξ0 = ξ(t0). The predicted output at a generic
time t = t0 + τ , τ > 0, is given by:

q(t0 + τ) = C eAτ ξ0 + C eAτ
∫ τ

0

e−Aγ Bu(γ) dγ (17)

Now assume that B is constant and u is a staircase
function. Let t̄i be the time instants, with respect to t0, in
which the steps of the function are applied and let u(t0+t̄i)
be the input value in the time interval between t̄i−1 and
t̄i. These intervals are defined, then, as ∆t̄ = [t̄1 − t0, t̄2 −
t̄1, , . . . , t̄c − t̄c−1], c > 0. Note that the lengths of the
intervals does not need to be the same.
Thus, (17) becomes:

q(t0 + τ) = C eAτ ξ0 + C
c∑
i=1

Γi u(t0 + t̄i) (18)

where:

Γi :=


eA(τ−t̄i)

∫∆t̄i
0

eAγ dγ B, if τ ≥ t̄i∫ τ−t̄i−1

0
eAγ dγ B, if t̄i−1 < τ < t̄i

0, if τ < t̄i ∧ τ < t̄i−1

(19)
assuming t̄0 = 0.
Differentiating (18) with respect to τ gives:

q̇(t0 + τ) = CA eAτ ξ0 + C

c∑
i=1

Γ̇i u(t0 + t̄i) (20)

where:

Γ̇i =


A eA(τ−t̄i)

∫∆t̄i
0

eAγ dγ B, if τ ≥ t̄i
eA(τ−t̄i−1)B, if t̄i−1 < τ < t̄i
0, if τ < t̄i ∧ τ < t̄i−1

(21)
Repeating for a dth-order derivative, the following equa-
tion results:

q(d)(t0 + τ) = CAd eAτ ξ0 + C

c∑
i=1

Γ
(d)
i u(t0 + t̄i) (22)

where d = 1, . . . , k − 1, and

Γ
(d)
i =


Ad Γ, if τ ≥ t̄i
Ad−1 eA(τ−t̄i−1)B, if t̄i−1 < τ < t̄i
0, if τ < t̄i ∧ τ < t̄i−1

(23)

assuming A0 = I in case A = 0.
Having defined the control time instants t̄, a series of con-
stant matrices Φd,τ can be defined for a given prediction
time τ , such that:

Φd,τ :=
[
C Γ

(d)
1 , C Γ

(d)
2 , . . . , C Γ(d)

c

]
(24)

for d = 0, . . . , k − 1, having assumed Γ
(d)
i = Γi if d = 0.

Substituting (24) in (18) and (22) gives respectively:

q(t0 + τ) = C eAτ ξ0 + Φ0,τ u(t̄) (25)

q(d)(t0 + τ) = CAd eAτ ξ0 + Φd,τ u(t̄) (26)

where u(t̄) := [u(t0 + t̄1), . . . , u(t0 + t̄c)]
T .

Extending this reasoning to a generic number of prediction
times [τ1, . . . , τp], p > 0, leads to the following systems of
equations:

q(t0 + τ1) = C eAτ1 ξ0 + Φ0,τ1 u(t̄)

...

q(t0 + τp) = C eAτp ξ0 + Φ0,τp u(t̄)

(27)


q(d)(t0 + τ1) = CAd eAτ1 ξ0 + Φd,τ1 u(t̄)

...

q(d)(t0 + τp) = CAd eAτp ξ0 + Φd,τp u(t̄)

(28)

As for the control time instants, the prediction instants
[τ1, . . . , τp] are not necessarily equally spaced.
The systems (27) and (28) can be rewritten in a single
matrix form as:

q̂(d) = Ld ξ0 + Fdu(t̄) d = 0, . . . , k − 1 (29)

where q̂ ∈ Rnp×1 is the predicted output vector at times
(t0 + τ1, . . . , t0 + τp), u(t̄) ∈ Rnc×1 is the vector of the
control inputs, and:

Ld =

CA
d eAτ1

...
CAd eAτp

 ∈ Rnp×nk, Fd =

Φd,τ1
...

Φd,τp

 ∈ Rnp×nc.

The formulation presented in (29) is convenient since the
output and its derivatives have clear physical meaning.
In this way, the series of matrices Ld and Fd permits to
easily express joint positions, velocities or accelerations
(depending on the order k of the model) with respect to
the control action. For instance, choosing k = 2, the joint
positions and velocities are given by:

q̂ = L0 ξ0 + F0u(t̄) (30)

˙̂q = L1 ξ0 + F1u(t̄) (31)

whereas the vector u(t̄) represents the future accelerations
at time instants (t0 + t̄1, . . . , t0 + t̄c).

In classic MPC, prediction and control instants are equally
distributed along the respective horizons and correspond
to the sampling times. However, robotic systems generally
have sampling periods of the order of few milliseconds,
not allowing long-enough horizons and low computational
burdens at the same time. Although the derivation of the



predictive equations in continuous time might seems less
intuitive, their great advantage consists in the possibility of
using a free distribution of prediction and control instants
along their horizons, disregarding the real sample time of
the system. As a matter of fact, it is not necessary for the
time instants t̄i and τi to be neither equally distributed
nor coincident with a sample instant.
Adopting an irregular partition of the predictive and
control horizons, thus, it is possible to obtain much longer
horizons, without increasing the computational burden of
the algorithm.

3.2 Linearisation of the task constraint

Up to this point, a predictive model of the robot in the
joint space has been obtained, with longer horizons thanks
to the continuous-time formulation of the model. On the
other hand, nothing has been said about the satisfaction
of the Cartesian task.
In order to perform the task, the robot has to satisfy (2) for
all time instants. Imposing this constraint to every control
instant t̄i of the control horizon gives:

J∗(q(t0 + t̄i)
)
q̇(t0 + t̄i) = ẋ(t0 + t̄i) ∀ i = 1, . . . , c (32)

where:

J∗(q(t0 + t̄i)
)

= blkdiag
(
J
(
q(t0 + t̄1)

)
, . . . , J

(
q(t0 + t̄c)

))
.

This constraint is nonlinear with respect to the variables
q(t0 + t̄i), due to the Jacobian.
However, using (30) it is possible to calculate the predic-
tion of the joint position. Therefore, approximating q(t0 +
t̄i) with its prediction at the previous cycle, (32) becomes
linear and depends only on the joint velocities q̇(t0 + t̄i).
Moreover, considering that the relationship between the
future joint velocities and the control action is given by
(31), the task constraint becomes linear and dependent on
the sole control action u(t̄):

J∗(q̂)F1c u(t̄) = ẋ(t0 + t̄i)− J∗(q̂)L1c ξ0 ∀ i = 1, . . . , c
(33)

where F1c and L1c are the velocity prediction matrices
as defined in (29), but related only to the control time
instants. In other words, they correspond to the first nc
rows of the matrices F1 and L1 used in (31).
(Note that, in case of first-order model, the joint velocity
is given simply by the control action u(t̄). So, in that case,
the matrix F1c would result equal to the identity matrix
Ic, while the matrix L1c would be null.)
Obviously, the constraint must be updated at each itera-
tion with the new prediction q̂ in the Jacobians, the new
initial state ξ0, and the Cartesian velocities ẋ related to
the corresponding time instants.

3.3 Handling of constraints

The formulation of the predictive model (29) allows a
straightforward inclusion of constraints on linear combi-
nations of the state variables. As a matter of fact, the use
of (29) as prediction of the kinematic variables permits
to express such constraints with respect to the control
variables in a easy and intuitive manner.

In the resolution of the inverse kinematics, the main
constraints are represented by the mechanical limits of the
joints and the boundaries of the kinematic variables, such

as velocity and acceleration. Therefore, chosen the order k
of the kinematic model, these constraints are given by:

qmin ≤ q ≤ qmax
...

q
(k)
min ≤ q

(k) ≤ q(k)
max

(34)

By using (29) it is possible to impose these boundaries
with respect to the control actions u(t̄) as:

qmin ≤ L0ξ0 + F0u(t̄) ≤ qmax
...

q
(k)
min ≤ u(t̄) ≤ q(k)

max

(35)

which can be easily rewritten in the typical form of linear
inequality constraints with respect to u(t̄) as:

Fd u(t̄) ≤ q(d)
max − Ldξ0 ∀ d = 0, . . . , k − 1

−Fd u(t̄) ≤ −q
(d)
min + Ldξ0 ∀ d = 0, . . . , k − 1

u(t̄) ≤ q(k)
max

−u(t̄) ≤ −q
(k)
min

(36)

3.4 Optimal control action

In classic linear MPC, the control action to apply to the
system is obtained by minimising a cost function in the
following form:

η(u) =

∫ τp

0

e2(t)dt+ λ

∫ t̄c

0

u2(t)dt (37)

where e is a linear function of the output and, due to the
linearity of the model, of the control variable as well. This
cost function may be approximated as follows:

η(u) ≈ e(τ)T ∆τ e(τ) + λuT(t̄) ∆t u(t̄) (38)

where ∆τ = diag(τ1, τ2 − τ1, . . . , τp − τp−1), ∆t =
diag(∆t1, . . . ,∆tc), e(τ) is given by the function e eval-
uated at time instants (t0 + τ1, . . . , t0 + τp), and λ > 0.
Typically, e is given by the difference between the output
variable and a reference signal. In this way, the optimisa-
tion of the cost function leads to a trade-off between the
minimisation of the control error (first term in (38)) and
the control effort (second term in (38)). Moreover, if the
control variable u has to satisfy only linear constraints, the
optimisation of (38) can be carried out by means of typical
QP procedures. Applying the same approach to the inverse
kinematics, it is possible to minimise a generic quadratic
cost function with respect to the control variable u or
to the state variables ξ (reminding the linear relationship
between them, given by (29)).
The Cartesian task is satisfied by imposing the linearised
constraint (33). Moreover, (33) requires the task constraint
to be satisfied at the future control times as well, and this
permits to obtain a prediction of the states which takes
into account the task constraint within the control horizon.
Finally, the inequality constraints (36) ensure that the
kinematic variables remain between their boundaries
within the control horizon. In this way, a QP with linear
constraints results, that intrinsically takes into account the
Cartesian task and the limits of the kinematic variables in
an efficient and elegant manner.



3.5 Typical quadratic cost function in redundancy resolution

Typical quadratic functions used in the redundancy reso-
lution are:

• Minimum control effort
In this case only the second term appears in the cost
function (37), then e(t) = 0 and

η(u) =

∫ τp

0

u2(t)dt ≈ uT(t̄) ∆t u(t̄). (39)

Generally, if the order of the system is greater than
1, it is convenient to include in the cost function
the minimisation of all the kinematic variables. The
resulting cost function will be therefore:

η(u) =

∫ τp

0

k∑
d=1

(
q(k)(t)

)2
dt ≈

k−1∑
d=1

(
(Ldξ0 +Fdu)T ∆τ (Ldξ0 +Fdu)

)
+uT(t̄) ∆t u(t̄)

(40)

• Joint-range availability
The distance between the joint positions and a given
reference value q̄ (usually the middle value of the joint
range) has to be minimised, thus the first term e in
(37) and (38) becomes:

e(t) = W (q(t)− q̄) ≈W (L0ξ0 + F0u(t̄) − q̄) (41)

where W is an appropriate weighting matrix.

4. SIMULATION RESULTS

As an illustrative example, consider a 4-degree-of-freedom
planar arm with unitary length axis. As shown in Figure 1,
the base of the robot corresponds to the origin of the
Cartesian plane and the task consists of a circle of centre
C(0, 2) and radius r = 1 m. The end-effector has to execute
the circle, starting from and returning to the point (1, 2)
in a total execution time equal to 3 s. The scalar Cartesian
velocity of the end-effector is requested to follow a trape-
zoidal timing law. In this example, we choose to minimise
the cost function (41). In this way, the control action will
be calculated in order to attract the joint positions in
the middle of their ranges. At the same time, the control
actions ensure that the joint variables respect boundaries
and constraints along the control horizon. Thus, at each
cycle, the optimal solution corresponding to the first time
instant is applied to the system, following the receding
horizon principle. This simulation aims at demonstrating
that, using the proposed method, the resulting kinematic
profiles give better global results in terms of satisfaction
of the boundaries and minimisation of the control action.
Similar conclusions can be obtained by minimising other
performance indices (e.g. (39)). The results will be omitted
for the sake of brevity.
The method has been tested at both first and second
kinematic levels, that is, k equal to 1 and 2, with the
tuning parameters shown in Table 1. The number and
the distribution of the prediction and control instants
have been chosen empirically. As a general approach, the
first time instants are chosen at a distance equal to the
sampling time of the system, while the following ones are
more and more sparse.

x [m]
-1 -0.5 0 0.5 1 1.5 2
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[m
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Fig. 1. Desired task and initial configuration of the robot.

Table 1. Tuning parameters used in simulation.

T [ms] 1
Np 40
Nc 10

τ [ms] T, 2T, ..., 5T, 10T, ..., 30T, 40T, ..., 80T, 105T, ..., 705T
t̄ [ms] 0, T, 2T, ..., 5T, 10T, ..., 25T
λ 5 · 10−3

Table 2. Position, velocity and accelerations
boundaries for the simulated robot.

Joint
qmin qmax q̇min q̇max q̈min q̈max

[rad] [rad] [rad/s] [rad/s] [rad/s2] [rad/s2]

1 0 π −4 4 −100 100
2 −π/2 π/2 −4 4 −100 100
3 −π/2 π/2 −4 4 −100 100
4 −π/2 π/2 −4 4 −100 100

The proposed method has been compared against the
local quadratic optimisations (3) and (4), setting the joint
range limits as reported in Table 2. The resulting joint
kinematic states are shown in Figure 2 for the velocity
level resolution, and in Figures 3 and 4 for the acceleration
level.
Although the QP solver considers the bounds on position,
velocity and acceleration of the joints, the local optimisa-
tion causes abrupt changes in the control variable, since
it is not able to foresee the activation of the constraints
(Figures 2 and 4, magenta lines). This situation often leads
to the impossibility of satisfying both the primary task
and the joint bounds, and task scaling techniques would
be needed to preserve at least the geometric path. The
proposed method, on the contrary, considers the presence
of the boundaries along the whole control horizon. In this
way, the algorithm calculates a smoother control action
that tends to avoid its saturation. As a consequence, if the
task is feasible for the robot capabilities, it is more likely
to find a solution that does not cause task deformation.

Of course the better performance of the proposed method
implies a heavier computational burden. Nonetheless, the
calculation of the control action is still a QP problem
and this permits to obtain a much lighter optimisation
problem if compared to typical NMPC schemes, as (Zube,
2015). The optimisation has been performed in Matlab by
using the QP solver described in (Ferreau et al., 2014).
The optimisation takes about 0.45 ms on average (using
a 2.5 GHz Intel Core i5-2520M processor). During the
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Fig. 2. Comparison between the joint velocities given by
the local-QP (dashed magenta) and the proposed
(solid blue) methods in the constrained case (k = 1).
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Fig. 3. Comparison between the joint velocities given by
the local-QP (dashed magenta) and the proposed
(solid blue) methods in the constrained case (k = 2).
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Fig. 4. Comparison between the joint accelerations given
by the local-QP (dashed magenta) and the proposed
(solid blue) methods in the constrained case (k = 2).
Note the different axis scales.

first cycle the optimisation takes about 3.8 ms, since the
solver has to initialise the problem. Existing algorithms
using NMPC are, at least, one order of magnitude slower,
even on a dedicated hardware and with a C/Fortran
implementation.

5. CONCLUSIONS

This paper presented a new method for the online redun-
dancy handling of robot manipulators. It has been shown
that the use of a model-based predictive strategy permits
to take into account the future evolution of the kinematic
variables of the robot. In this way, the control actions are
optimised with respect to a desired cost function (e.g. joint
range availability) and to the presence of joint boundaries,
along a certain time horizon. Considering the presence
of the boundaries in the future permits to take action

before their activation and this leads to smoother trends
of the kinematic states. Moreover, if the desired task is
feasible for the manipulator, the algorithm is more likely
to find a solution without deforming the original trajec-
tory. The irregular distribution of control and prediction
instants permits to have longer horizons without increasing
the computational burden. Finally, the reduction of the
Cartesian task to a linear constraint allows the use of
linear MPC techniques, ensuring a computational com-
plexity lower than the classic NMPC strategies used in
the literature to the same purpose.
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