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Abstract
State tracking, i.e. estimating the state over time,
is always an important problem in autonomous dy-
namic systems. Run-time requirements advocate
for incremental estimation and memory limitations
lead us to consider an estimation strategy that re-
tains only one state out of the set of candidate es-
timates at each time step. This avoids the ambi-
guity of a high number of candidate estimates and
allows the decision system to be fed with a clear in-
put. However, this strategy may lead to dead-ends
in the continuation of the execution. In this paper,
we show that single-state trackability can be ex-
pressed in terms of the simulation relation between
automata. This allows us to provide a complexity
bound and a way to build estimators endowed with
this property and, moreover, customizable along
some correctness criteria. Our implementation re-
lies on the Sat Modulo Theory solver MONOSAT
and experiments show that our encoding scales up
and applies to real world scenarios.

1 Introduction
For autonomous systems, state estimation and tracking is a
critical task because it strongly influences the decisions that
are made and that can be essential to the life of the system. It
provides the means to diagnose the faults and to react to the
various hazards that can affect the system.

In this paper, we focus on discrete event systems [Zaytoon
and Lafortune, 2013]. When the system state is partially ob-
servable, the number of candidate estimates can quickly be-
come too large to be usable. In embedded or distributed sys-
tems, memory and communication limitations can also be-
come a problem, even with symbolic representations tech-
niques such as in [Torta and Torasso, 2007]. These lim-
itations lead us to propose an estimation strategy that re-
tains only one state out of the set of candidate estimates
at each time step, as in [Bouziat et al., 2018]. This can
be seen as an extreme strategy but nevertheless efficient
to feed the decision system with a clear input and con-
sistent with several works that select a limited number of
best candidates according to some preference criterion, for
example probabilities like in [Williams and Nayak, 1996;

Kurien and Nayak, 2000]. However, the more we limit the
number of estimates, the more we may be confronted with the
problem of dead-ends related to the fact that next observations
may prove that previous estimates were wrong and there is no
continuation in the estimated trajectory. Because backtrack-
ing [Kurien and Nayak, 2000] is not a viable solution with
real time constraints, we propose to build single-state estima-
tors that are guaranteed to avoid dead-ends. The ability of a
system to support the construction of a single-state dead-end
free estimator has been defined as single-state trackability in
[Bouziat et al., 2019].

Several properties have been investigated for discrete event
systems. A system is (strongly) detectable if one can de-
termine its state along some (all) trajectories of the system
[Shu et al., 2007]. Diagnosability [Lafortune et al., 2018]
and manifestability [Dague et al., 2019] amount to strong
detectability and detectability for faulty trajectories. Single-
state trackability is somewhat orthogonal to these properties.

In this paper, we recall the necessary and sufficient con-
dition for single-state trackability as it is derived in [Bouziat
et al., 2019] based on equality of regular languages. A first
contribution is to show that this condition can be expressed
in terms of the simulation relation between automata [Holı́k
et al., 2018]. This allows us to provide a complexity bound
for the single-state trackability problem and a way to build
estimators endowed with this property. A second contribu-
tion of the paper is to propose two customizable correctness
criteria that lead the estimator to constrain the acceptable es-
timator states towards the real states of the system. A third
contribution is an implementation that relies on the Sat Mod-
ulo Theory (SMT) solver MONOSAT for synthesising esti-
mators. Intensive experiments show that our implementation
is able to synthesize dead-end free estimators on real world
scenarios.

The paper is organised as follows. Related work is dis-
cussed in Section 2. Section 3 introduces incremental single-
state estimation and how it is performed in our framework.
The property of single-state trackability is defined and char-
acterized in Section 4 and the associated decision problem is
proved to be in NP. Customisable correctness of single-state
estimators is formalized in Section 5. Section 6 presents the
SMT encoding for synthesizing single-state estimators given
a system specification. Experimental results are presented in
Section 7, and future work is discussed in Section 8.



2 Related Work
A related research domain is the well-known controller syn-
thesis problem, as described in [Ramadge and Wonham,
1987]. Given a specification of the system, controller syn-
thesis consists in finding a decision procedure that produces a
command to apply to the system, given observations as input.
Under partial observability, a trend of work proposes to syn-
thesize finite-state controllers, which use a size-limited mem-
ory to record information related to the past. These were first
introduced for POMDP [Meuleau et al., 1999] and shown to
be useful for non-deterministic planning [Bonet et al., 2009;
Pralet et al., 2010]. Restricting the information recorded from
the past is also one important feature of our approach. How-
ever, there are several differences compared to our incremen-
tal estimation approach. The above works design controllers
guaranteed to satisfy some properties related to planning, in
particular the evolution of the controlled system must termi-
nate in a goal state. In our estimation framework, we are
rather interested in correctness properties, i.e. guaranteeing
that the estimated state is “as close as possible” to the real
state of the system (see Section 5).

Controller synthesis has also been approached within the
game theory framework. In particular, [Doyen and Raskin,
2011] consider observation-based strategies for two-player
turn-based games. Similar to our approach, observation-
based strategies rely on imperfect information on the past
observation sequence, hence defining partially observable
games. Such games occur in the synthesis of a controller that
does not see the private state of the plant. The main differ-
ence with our approach is that game theory considers games
as complete graphs. Such a hypothesis means that strategies
cannot encounter dead-ends in the execution, i.e. there is al-
ways a feasible action from any state of the game.

3 Incremental Single-State Estimation
In this section, we present the process of state estimation for
partially observable systems modelled by non-deterministic
Moore machines with an empty input alphabet, and whose
output alphabet represents the system observations.

Definition 1 (System). A system M is defined by a 5-tuple
(S, s0, O,∆, obs) consisting of the following:

• a finite set of states S;

• an initial state s0 ∈ S;

• a finite set of observations O (output alphabet in the
Moore machine);

• a transition relation ∆ ⊆ S2;

• an observation function obs : S → O mapping each
state to its output.

Without loss of generality, we consider that all the states of
the system are reachable from the initial state s0.

We define cands as the function from S × O to 2S such
that for all state s in S, for all o in O, cands(s, o) represents
the set of successors of s that have observation o. Formally,
∀s ∈ S, ∀o ∈ O, cands(s, o) = {t|(s, t) ∈ ∆ and obs(t) =
o}.

We also define nextObs the function S → 2O such
that nextObs(s) is the set of observations that can be ob-
served just after the system is in state s. Formally, ∀s ∈
S,nextObs(s) = {o|cands(s, o) 6= ∅}.
Notation A state sequence seq is a list (s0, s1, . . . , sn−1)
where each si is a state in S; |seq | = n is the length of the
sequence and seq [i] = si is the ith state in the sequence;
last(seq) designates the last state of seq ; if s is a state, seq · s
is the sequence of length |seq | + 1 that begins with seq and
ends with s. Similarly, we define an observation sequence.
We also extend the function obs to a state sequence: if seq is
a state sequence, obs(seq) is the observation sequence seqobs
such that |seqobs | = |seq | and seqobs [i] = obs(seq [i]) for all
i ∈ [0, n− 1].

Definition 2 (Language, observation language). The lan-
guage associated with a system M = (S, s0, O,∆, obs) is
the set of state sequences accepted by the system and starting
with s0. Formally L(M) = {seq ∈ S+|seq [0] = s0 and
∀i ∈ [1, |seq | − 1], (seq [i− 1], seq [i]) ∈ ∆}.
The observation language is the language accepted by the
system projected on the observations. Formally, Lobs(M) =
{obs(seq)|seq ∈ L(M)}.

We now focus on the estimation part for systems defined
above. Since we consider non-deterministic, partially observ-
able systems, there may be several state sequences that ex-
plain a given observation sequence. We adopt an incremental
approach to select a unique explanation, called an estimation
strategy. Then, we show that for a given system, any esti-
mation strategy can be represented by a finite state machine
called an estimator.

Definition 3 (Estimation strategy). An incremental single-
state estimation strategy for a systemM = (S, s0, O,∆, obs)
is a function estim : S × O → S such that for all s in S,
for all o in nextObs(s), estim(s, o) represents the estimated
state of the system at time step n if it was estimated in state s
at time step n− 1 and if o is observed at time step n.
We impose the estimation strategy to be consistent both across
time (i.e. estim is a function) and with the system behaviour
(i.e. estim(s, o) belongs to cands(s, o)).

For conciseness purposes, we use “estimation strategy” to
refer to “incremental single-state estimation strategy”. Given
a system and an estimation strategy, the estimation process
takes place as follows.

Definition 4 (Estimated sequence). Let M be a system,
seqobs be an observation sequence in Lobs(M) and estim an
estimation strategy forM . The estimated sequence for seqobs
is the state sequence ŝeq ∈ L(M) such that ŝeq [0] = s0 and
for all i in [1, |ŝeq |−1], ŝeq [i] = estim(ŝeq [i−1], seqobs [i]).

Example 1. LetM = (S, s0, O,∆, obs) be the system repre-
sented in Fig. 1. We have S = {s0, . . . , s5},O = {a, b}, ∆ is
represented by the arrows in the figure, obs(s0) = obs(s3) =
obs(s5) = a and obs(s1) = obs(s2) = obs(s4) = b.

In this system only two pairs in S × O have more than
one estimation candidate: (s0, b) and (s1, a). Let estim1

be the estimation strategy such that estim1(s0, b) = s1 and
estim1(s1, a) = s3, and the unique candidate is selected
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Figure 1: A simple system M , with one possible estimator M̂1 de-
picted in solid red, and another M̂2 in dashed blue.
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Figure 2: Estimation process in Example 1.

otherwise (for example, cands(s3, a) = {s3} so necessarily
estim1(s3, a) = s3).

When the system produces the observation sequence
(a, b, a, a), it can be explained by three state sequences in the
system: (s0, s1, s3, s3), (s0, s1, s5, s5) and (s0, s2, s5, s5).
With the strategy estim1, we select the first one. The esti-
mation process is illustrated in Figure 2 using this strategy.

In Example 1, one can observe that the state s2 cannot be
part of any estimated sequence, as the estimation strategy
chooses a branch of the system states that does not contain
s2. The set of states that the estimation strategy actually uses
is denoted Ŝ and is formally defined by the set of states in
S that are part of an estimation sequence associated with a
sequence of observation in Lobs .

An estimation strategy estim for a system M =
(S, s0, O,∆, obs) can also be represented by an estimator,
i.e. a 5-tuple M̂ = (Ŝ, s0, O, ∆̂, obs) composed of the reach-
able states and transitions in the system with the strategy.
Definition 5 (Estimator). Let M = (S, s0, O,∆, obs) be
a system and estim an estimation strategy. The estimator
induced by estim is a deterministic Moore machine M̂ =

(Ŝ, s0, O, ∆̂, obs) such that:

• Ŝ ⊆ S is the set of states that belong to some estimated
sequence for the given estimation strategy;

• ∆̂ is the smallest subset of ∆ such that ∀ŝ ∈ Ŝ,∀o ∈
nextObs(ŝ), (ŝ, estim(ŝ, o)) belongs to ∆̂.

In Figure 1, M̂1 is the estimator associated with the esti-
mation strategy estim1 introduced in Example 1.

Definition 5 indicates how for a given system, every es-
timation strategy can be represented by an estimator. Note
that the reverse also holds: for a given system M =

(S, s0, O,∆, obs), any deterministic Moore machine M̂ =

(Ŝ, s0, O, ∆̂, obs) such that Ŝ ⊆ S and ∆̂ ⊆ ∆, is in fact

an estimator that implements an estimation strategy estim

such that estim(ŝ, o) is the unique t̂ such that (ŝ, t̂) ∈ ∆̂

and obs(t̂) = o, for ŝ ∈ Ŝ and o ∈ O. In the rest of the paper,
we use estimators to represent estimation strategies.

4 Single-State Trackability
4.1 Dead-ends
In this section, we first recall the notion of dead-end as de-
fined in [Bouziat et al., 2019]. During estimation, the estima-
tor may choose a state sequence different from the one taken
by the system. This can be particularly problematic when the
following conditions happen: a) the system is in state s, the
estimator estimates that it is in state ŝ with ŝ 6= s; b) the
system moves in state t and produces observation o; c) there
exists no candidate t̂ in Ŝ such that obs(t̂) = o and (ŝ, t̂) be-
longs to ∆̂.

Definition 6 (Dead-end). A dead-end for an estimator M̂
of a system M is an observation sequence that belongs to
Lobs(M) but does not belong to Lobs(M̂).
An estimator M̂ is dead-end free if there is no dead-end for
it, i.e. Lobs(M) = Lobs(M̂).
Example 2. We consider the example illustrated in Fig-
ure 1. Let M̂2 be the estimator induced by the estimation
strategy estim2 defined by estim2(s0, b) = s2 (no other
choices necessary). The sequence of observations (a, b, b, b)
belongs to Lobs(M) as it is produced by the state sequence
(s0, s1, s4, s4) but it does not belong to Lobs(M̂2). This ob-
servation sequence is therefore a dead-end for M̂2. Note that
M̂1 is dead-end free.

In [Kurien and Nayak, 2000], dead-ends are handled by
backtracking in time in order to modify previous estimation
choices. The main drawback of this technique is the lack of
control over both the computational time and memory. More-
over, some actions may have been taken based on the previous
estimated states that cannot be undone. Backtracking in time
and revising estimations may turn past actions sub-optimal or
even inconsistent.

Another way to tackle dead-ends is to keep a fixed number
k of past observations and reason on this window [Su et al.,
2014]. However this approach is also subject to dead-ends
as the estimator and system paths may diverge earlier beyond
the memorized window.

Our goal is to design estimators able to follow the execu-
tion of a system while keeping just a unique state in memory
and never encountering dead-ends. Such deterministic incre-
mental estimators may be feasible depending on the system
specifications. We express that possibility by defining single-
state trackability for discrete event systems.

4.2 Trackability Problem
In [Bouziat et al., 2019], a system is considered as single-
state trackable if there exists a dead-end free single-state in-
cremental estimator for this system. They show that this is
the case if and only if there exists an estimator with an obser-
vation language equal to that of the system. In this paper, we



take the language equivalence as a definition of Single-State
Trackability.

Definition 7 (Single-State Trackability). A system M is
single-state trackable if there exists an estimator M̂ for M
such that Lobs(M) = Lobs(M̂).

Determining whether a system is single-state trackable or
not is called the TRACKABILITY problem.

The problem of deciding if two languages are equiva-
lent (also called trace-equivalence) is, in the general case, a
PSPACE-complete problem [Hüttel and Shukla, 1996]. This
leads to the definition of a rather complex algorithm for the
TRACKABILITY problem in [Bouziat et al., 2019]. This ap-
proach can be improved because the system and the estima-
tor, for which language equivalence is considered, are not in-
dependent from each other. In fact, the estimator is a sub-
machine of the system’s machine. A contribution of this pa-
per is to prove that in this case, the language equivalence
problem is reduced to the simulation preorder problem, which
is decidable in polynomial time [Shukla et al., 1996].

We first adapt the definition of simulation to the case of a
system and an estimator.

Definition 8 (Simulation for estimators). Let M =

(S, s0, O,∆, obs) be a system and M̂ = (Ŝ, s0, O, ∆̂, obs)

be an estimator for M . M̂ simulates M if there exists a rela-
tion R ⊆ S × Ŝ such that:

(s0, s0) ∈ R (1)
∀(s, ŝ) ∈ R, obs(s) = obs(ŝ) (2)
∀(s, ŝ) ∈ R,∀t ∈ S s.t. (s, t) ∈ ∆,

∃t̂ ∈ Ŝ s.t. (ŝ, t̂) ∈ ∆̂ and (t, t̂) ∈ R (3)

Informally, if s is a state in S and ŝ a state in Ŝ, then ŝ
simulates s (or (s, ŝ) is in R) represents the fact that M̂ can
estimate that the system is in state ŝ while it really is in state
s without encountering a dead-end later in the execution.

Proposition 1. Let M be a system and M̂ be an estimator
for M . M̂ is dead-end free (or Lobs(M) = Lobs(M̂)) if and
only if M̂ simulates M .

Proof. (⇐) Lobs(M̂) ⊆ Lobs(M) as the states and tran-
sitions of M̂ are subsets of those of the system. More-
over, let seqobs ∈ Lobs(M) be produced by seq ∈ L(M).
We prove that for all k < |seq |, there exists a sequence
ŝeq ∈ L(M̂) of length k such that obs(seq) = obs(ŝeq) and
(seq [k], ŝeq [k]) ∈ R, which entails Lobs(M̂) ⊇ Lobs(M).

(⇒) We consider the following relation R: ∀s ∈ S, ŝ ∈ Ŝ,
(s, ŝ) ∈ R iff ∃seqobs ∈ Lobs(M), seq ∈ L(M), ŝeq ∈
L(M̂) s.t. obs(seq) = obs(ŝeq) = seqobs , s = last(seq)
and ŝ = last(ŝeq). We show that R is a simulation rela-
tion. (1,2) By construction of R, we have (s0, s0) ∈ R, and
for all (s, ŝ) ∈ R, obs(s) = obs(ŝ). (3) Let (s, ŝ) ∈ R
and t ∈ S such that (s, t) ∈ ∆. By construction of R,
∃seqobs ∈ Lobs(M), seq ∈ L(M), ŝeq ∈ L(M̂) s.t.

obs(seq) = obs(ŝeq), s = last(seq) and ŝ = last(ŝeq).
(s, t) ∈ ∆ so seq .t ∈ L(M) and produces the sequence
of observation seqobs .obs(t) ∈ Lobs(M). By the equality
of languages and definition of Lobs(M̂), there exists ŝeq

′ ∈
L(M̂) s.t. obs(ŝeq

′
) = seqobs .obs(t). As M̂ is determinis-

tic, seqobs is generated by the same state sequence ŝeq . So,
ŝeq
′ is equal to ŝeq .t̂ and (ŝ, t̂) ∈ ∆̂. By construction of R,

(t, t̂) ∈ R.

The following corollary presents a necessary condition for
estimators. It indicates that any observation sequence that
can follow a state s can also follow the state ŝ by which s is
estimated. This corollary is used in Section 6 to increase the
efficiency of estimator synthesis.

Corollary 1. Let M be a system, M̂ a dead-end free estima-
tor for M , s a state in S, ŝ a state in Ŝ, and R a simulation
relation such that (s, ŝ) ∈ R. For any observation sequence
seqobs , if seqobs can follow s then seqobs can follow ŝ.

Corollary 2. The TRACKABILITY problem is in NP.

Proof. Checking if M̂ is a dead-end free estimator for M is
polynomial since it comes to checking whether M̂ simulates
M , which can be encoded into HORN-SAT clauses as shown
in [Shukla et al., 1996].

5 Estimator Correctness
Correctness is the property of an estimator that estimates the
actual system state. So far we provided a way to gener-
ate dead-end free estimators, which can be seen as a very
weak form of correctness as a dead-end free estimator can-
not be proven wrong by the system’s observations. How-
ever, depending on the operational context, total correct-
ness may be required or an incorrect pessimistic or opti-
mistic estimation may be satisfying [Bouziat et al., 2018;
Couto et al., 2020].

In this section, we model correctness as constraints and op-
timization criteria that allow some end-user to generate inter-
esting estimators. Correctness constraints allow one to re-
strict the possible estimator states associated with some given
system state. Correctness criteria let one associate a cost with
each possible estimator, with the lowest cost being associated
with the “most correct” estimators.
Definition 9 ((φ1, φ2)-correctness). LetM be a system, φ1 ⊆
S and φ2 ⊆ S be two sets of states of M , M̂ a dead-end free
estimator for M , and R the associated simulation relation.
M̂ is (φ1, φ2)-correct if whenever the system is in a state of
φ1, then the estimator is in a state of φ2, i.e. ∀(s, ŝ) ∈ R, if
s ∈ φ1 then ŝ ∈ φ2.

In a symbolic model where states are represented by
Boolean variables, correctness constraints can be represented
by propositional formulae. They can also be deduced from
a proof of reachability of an undesirable pair (s, ŝ) as pro-
duced in [Couto et al., 2020]. With such constraints, one can
require that whenever some critical fault is present in the sys-
tem state, it is also present in the estimated state. This ensures
the estimator is correct with respect to this critical fault.



Example 3. Let us consider the system M presented in Ex-
ample 1 and illustrated on Figure 1. Let f1 be a fault only
present in states φf1 = {s1, s3, s4} and f2 a fault only
present in φf2 = {s5}. The estimator M̂1 is (φf1 , φf1)-
correct as all the states in φf1 are estimated by states in φf1 .
However M̂1 is not (φf2 , φf2)-correct as s5 is estimated by
s3 which does not belong to φf2 .

While it is very flexible, in some systems, (φ1, φ2)-
correctness might be either too strong or too tedious to spec-
ify. For example, in Example 3, there exists no estimator
that satisfies both (φf1 , φf1) and (φf2 , φf2)-correctness. In
order to relax this requirement, a first laborious approach is to
enumerate the possible estimated states for each system state.
Another approach consists in expressing a weaker form of
correctness, for instance that (φ1, φ2)-correctness should be
satisfied “as much as possible”. In this regard we introduce a
cost function that lets one model this kind of requirement.

Definition 10 (Correctness cost). Let M be a system, M̂ an
estimator for M , and R their simulation relation. Let cost :

S × Ŝ → N be a cost function such that cost(s, ŝ) represents
how much we want to avoid estimating that the system is in
state ŝ when its real state is s. The correctness cost for M̂ is
cost(M̂) =

∑
(s,ŝ)∈R cost(s, ŝ)

Definition 11 (Correctness order). Let M be a system, M̂1

and M̂2 be two dead-end free estimators for this system, and
cost a cost function. M̂1 is strictly more correct than M̂2 with
respect to cost if cost(M̂1) < cost(M̂2).

There are several ways to define a cost for pairs of states.
A straightforward one is to check if the real state of the sys-
tem is correctly estimated. Such a cost c= is formally de-
fined by ∀(s, ŝ) ∈ S2, c=(s, ŝ) = 0 if s = ŝ, 1 otherwise.
One could also consider a cost based on (φ1, φ2)-correctness:
∀(s, ŝ) ∈ S2, cφ1,φ2

(s, ŝ) = 0 if s ∈ φ1 and ŝ ∈ φ2, 1
otherwise. Symbolic models make it easier to specify cost
functions. The Hamming distance ([Hamming, 1950]) is an
example of a cost function for Boolean variables. Weighted
sums, or lexicographical aggregation of costs can also be used
to emphasize some critical faults for example.
Example 4. Let us consider the system M presented in Ex-
ample 1 and illustrated on Figure 1. We define the dead-end
free estimator M̂3 similar to M̂1 except that estim3(s1, a) =
s5. We consider a correctness cost c such that ∀i, c(si, si) =
0, c(s1, s2) = c(s2, s1) = 1, c(s5, s3) = 1 and c(s3, s5) = 2.
This cost represents that it is preferable to estimate that the
system is in state s3 when it really is in state s5 than the op-
posite. We have c(M̂1) = 2 and c(M̂3) = 3. This means that
M̂1 is more correct than M̂3 with respect to cost c.

6 Estimator Synthesis
In this section, we describe a procedure to solve the TRACK-
ABILITY problem. To decide if a system M is single-state
trackable, we try to synthesize a dead-end free estimator for
it. More precisely, we consider that a system M can be seen
as a graph and that a dead-end free estimator M̂ is a sub-graph

that satisfies several constraints, that can be encoded into
SMT provided the underlying theory provides graph predi-
cates. We specifically target the solver MONOSAT ([Bayless
et al., 2015]), that allows to handle classical SAT constraints
but also graph constraints.
Dead-end free estimator synthesis Let M =

(S, s0, O,∆, obs) be a system and M̂ = (Ŝ, s0, O, ∆̂, obs)
the dead-end free estimator we try to synthesize for M . If
M̂ exists (i.e. M is single-state trackable), then states and
transitions of M̂ are subsets of those of M and following
Prop. 1, there exists a simulation relation R between the
states of M and M̂ .

We associate the system M with a directed graph G whose
vertices are the states S and whose edges are the transitions
∆. Similarly, Ĝ is the graph associated with an estimator M̂ .

First, we instantiate the following Boolean decision vari-
ables:
• for each s ∈ S, vs is true iff s belongs to Ŝ;

• for each (s, t) ∈ ∆, es,t is true iff (s, t) belongs to ∆̂;

• for each (s, ŝ) in S2, rs,ŝ is true iff (s, ŝ) belongs to R.
We next instantiate the following constraints.

∀(s, t) ∈ ∆, es,t → vs ∧ vt (4)

∀ŝ ∈ S, vŝ ↔ reachable(Ĝ, s0, ŝ) (5)

∀s ∈ S, ∀o ∈ nextObs(s),
∑

t∈S|obs(t)=o

es,t ≤ 1 (6)

∀s ∈ S, ∀o ∈ nextObs(s), vs →
∨

t∈S|obs(t)=o

es,t (7)

rs0,s0 (8)

∀s ∈ S,
∨

ŝ∈S ,obs(s)=obs(ŝ)

rs,ŝ (9)

∀(s, ŝ) ∈ S 2 s.t. obs(s) = obs(ŝ),∀t ∈ S s.t. (s, t) ∈ ∆,

rs,ŝ →
∨

(ŝ,t̂)∈∆,obs(t)=obs(t̂)

(rt,t̂ ∧ eŝ,t̂) (10)

∀ŝ ∈ S, vŝ ↔
∨

s∈S|obs(s)=obs(ŝ)

rs,ŝ (11)

We first encode that the estimator is a well-built automaton.
Constraint (4) states that if an edge is selected in Ĝ, its ver-
tices are selected as well. Constraint (5) enforces the states of
the estimator to be exactly the ones reachable from s0 in the
graph Ĝ. We use here the MONOSAT predicate reachable.

Constraints (6) and (7) force M̂ to be deterministic: for
every state s and every successor observation o, exactly one
outgoing transition leads to a state with observation o. We use
two constraints, as in SAT/SMT the ”at most one” cardinality
constraint (6) cannot easily be combined with the implication
of Constraint (7).

We next consider constraints related to the simulation re-
lation. Constraint (8) states that the initial state simulates it-
self (see Definition 8). Constraint (9) encodes that every state



of the system is simulated by at least one state of the esti-
mator. Constraint (10) encodes the simulation relation from
Definition 8 and also states that the edge associated with the
simulation relation must belong to M̂ 1.

Constraint (11) makes the simulation relation minimal as
the estimator states must all simulate at least one system state.

Using a SMT solver let us use the predicate reachable
in constraint (5). This constraint can be expressed in SAT
clauses using for instance the Floyd-Warshall algorithm [Cor-
men et al., 2001] with a complexity of O(|V |3). MONOSAT
achieves a complexity of O(|V | · |E|) [Bayless et al., 2015].

From Definition 8 and Corollary 1, the number of variables
rs,ŝ can be reduced by creating variables only for pairs (s, ŝ)
for which ŝ accepts all the observation sequences of length 2
(or more) that s accepts.

Correct estimator synthesis The encoding presented
above allows to synthesize dead-end free estimators. It is pos-
sible to enrich it to synthesize correct estimators, as defined
in Section 5. (φ1, φ2)-correctness can be encoded as a hard
constraint the following way: ∀s ∈ φ1,∀ŝ ∈ S \ φ2,¬rs,ŝ.
The second correctness requires a cost function c as input,
and is encoded as the following pseudo Boolean criterion:
minimize

∑
(s,ŝ)∈R rs,ŝ · c(s, ŝ).

7 Experiments
Our implementation uses the SCALA programming language,
and each experiment was performed on a computer with a
Intel R© Xeon R© CPU E5-2699 v3 @ 2.30GHz processor and
a limit of 16GB of memory.

Examples from the literature We have encoded bench-
marks from three system models from the literature:

• valve controller [Sampath et al., 1995] that models a
valve controller for heating, ventilation and air condi-
tioning units with a valve that can be stuck closed or
stuck open, a pump that can fail in modes on and off and
a controller; each component has 4 possible states; this
system is not trackable.

• valve driver [Williams and Nayak, 1996] that models a
valve driver that has 4 modes, 6 command inputs and 3
command outputs; this system is trackable.

• baggage transfer [Pencolé et al., 2018] that models a
baggage transfer system composed of 2 conveyors, 1 pis-
ton, 1 controller and 4 sensors. No fault model is pro-
vided, so we enriched each component with a permanent
fault model. By enabling or not the fault model for each
of the 8 components, we managed to create 218 systems
among 256, all of which are trackable.

Random examples In order to test our prototype inten-
sively, we randomly generated a set of systems as follows.
First, we generated a set of small systems of 5 states, 3 ob-
servations, and 0.5 transition probability for any two states.
Second, we aggregated them by Cartesian product (of states
and observations), with a 0.1 probability that any two states

1Note that Constraint (9) is redundant with Constraints (8) and
(10), but improves the solver’s performance.

Figure 3: Computation time w.r.t. number of system states. Both
scales are logarithmic.

are incompatible (in this case their pair is removed from the
aggregated states). The benchmark contains systems obtained
by aggregation of 4 and 5 small systems. Finally, we selected
only “interesting” systems, such that:

1. the system is trackable;
2. the estimator has less than half the number of states of

the system (so as to reject trivially trackable systems);
3. there exists a state s such that the system has no ({s}, S\
{s})-correct estimator.

This method generated systems from 10 to 1461 states,
with more small systems than large ones.

In all our experiments, most of the computation time is
used for generating SMT clauses whereas the time required
by MONOSAT to solve the SMT instance is negligible. This
explains why the computation time is nearly the same for the
trackable and untrackable versions of random examples. We
have yet to properly assess the impact of a cost function on
the solving time. Figure 3 shows that on random benchmarks,
the solving time grows regularly in the number of states.
The valve driver and valve controller systems require simi-
lar computation time as random systems. For the baggage
transfer system, the computation time is higher, because of
the large number of symmetries in the system.

8 Conclusion
This paper describes a new approach for checking single-state
trackability as defined in [Bouziat et al., 2019]. As a system
is simulated by its estimator, we prove that the TRACKABIL-
ITY problem is in NP. We also define two customizable cor-
rectness types for modelling relevant estimators. We solve
the TRACKABILITY problem by reducing it to a MONOSAT
SMT query, along with correctness requirements. The ap-
proach is validated on a set of benchmarks both from the lit-
erature and from randomly generated problems.

Studying NP-completeness with and without correctness
constraints is a natural next step in our work. Allowing for de-
layed estimation, or using a bounded number of memorized
states at each time step could help apply this approach to a
larger range of systems, including real-world systems, and
will be considered in future work.

Symbolic representation of estimators with preferences as
in [Bouziat et al., 2018] is also a possible extension.
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