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Abstract Background: Digital Image Correlation (DIC) is
based on the matching, between reference and deformed state
images, of features contained in patterns that are deposited
on test sample surfaces. These features are often suitable for
a single scale, and there is a current lack of multiscale pat-
terns capable of providing reliable displacement measure-
ments over a wide range of scales. Objective: Here, we aim
to demonstrate that a pattern based on a fractal (self-affine)
surface would make a suitable pattern for multiscale DIC.
Methods: A method to numerically generate patterns directly
from a desired auto-correlation function is introduced. It is
then enhanced by a Mean Intensity Gradient (MIG) improve-
ment process based on grey level redistribution. Numerical
experiments at multiple scales are performed for two differ-
ent imposed displacement fields and results for one of the
patterns generated are compared with those obtained for a
random pattern and a Perlin noise one. Results: The pro-
posed pattern is shown to lead to DIC errors comparable to
those found with the two others for the first scales, but has
much greater robustness. More importantly, the pattern gen-
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Université de Toulouse, ICA, INSA-UPS-Mines Albi-ISAE-CNRS
Toulouse, France.

erated here exhibits stable errors and robustness with respect
to the scale whereas these two outputs become significantly
degraded for the other two patterns as the scale increases.
Conclusions: As a result, scale invariance properties of the
pattern based on fractal surfaces correspond to scale invari-
ance in DIC errors as well. This is of great interest regarding
the use of such patterns in multiscale DIC.

Keywords Pattern auto-correlation · Coarse-to-fine
initialisation · Uncertainty quantification · Large strain ·
Speckle optimisation · Pattern generation

1 Introduction

One of the most important elements in Digital Image Cor-
relation (DIC) is the pattern deposited on test sample sur-
faces, as measurement accuracy depends strongly on spe-
cific features of this pattern [10,20,29,58]. Depending on
the application, suitable speckles can be generated on spec-
imen surfaces using a wide variety of experimental meth-
ods. For instance, for large scale applications, an airbrush
or marker pen may be useful [21,22] while, for small scale
applications, the focused ion beam (FIB) technique or spin
coating can be used [18,54,57]. However, for many of these
methods, the operator’s experience may greatly influence
the measurement accuracy obtained [27]. Concurrently, test
standardisation and robust measurement methods are needed
in the industrial context. This need raises demand for meth-
ods that are able to generate patterns with high reproducibil-
ity [8,59].

Consequently, research has sought to define relevant pat-
tern quality criteria. Some researchers have investigated the
effect of speckle characteristics in detail [20,35,36,37,38,
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39], leading to the definition of an optimal speckle size of
3 to 5 pixels [22]. We wish to point out here that this op-
timality criterion relates only to certain pattern generation
techniques (e.g. airbrush and marker pen). For example, it
relies on the assumption that a typical speckle size can be
defined.

Increasing interest is concomitantly being shown in full-
field measurement techniques that are able to operate at var-
ious scales [4,24,32,43,48,56]. These techniques dramati-
cally reduce both computational time and hardware require-
ments. However, in these conditions, it becomes question-
able to define an optimal speckle size in pixels (since cam-
eras with different magnification levels are considered).

Some other works have adopted a different approach and
assessed pattern quality on the basis of global parameters [5,
6,28]. To date, patterns described as multiscale have been
designed for only two different scales [4,24] and it is there-
fore more appropriate to call them biscale patterns. Unfor-
tunately, this kind of pattern does not completely fulfil in-
dustrial needs. There is little chance that only two scales
would be enough and that these two particular scales would
be known precisely before the start of experiments. In this
context, a truly multiscale pattern would prove particularly
useful. Also, for DIC displacement measurements, its multi-
scale features would make it easier to use initialisation pro-
cesses based on a multigrid approach [1,16,34].

In this paper, for the sake of simplicity, neither the pro-
cess of image capture nor associated problems, such as scene
lighting, will be investigated. We will focus rather on the
generation of a scale-free pattern for texturing objects. First,
some relevant global quality criteria for patterns are reviewed
in Section 2. A method to numerically generate patterns ac-
cording to these criteria is then described in Section 3. Fi-
nally, numerical experiments to assess the measurement ac-
curacy of one of the generated patterns are described in Sec-
tion 4. This brings us to Section 5 for some concluding re-
marks.

2 Pattern quality criteria

DIC is based on the assumption of grey level conservation
[17]. Let us consider a reference and a deformed state image,
respectively denoted by f and g. DIC aims to identify the
displacement field u such that:

∀x ∈Ω , f (x) = g◦φ(x) = g(x+u(x)), (1)

where Ω stands for the Region Of Interest (ROI) and φ for
the geometric transformation. From an algorithmic point of
view, this problem is usually solved by minimising a DIC
criterion measuring the distance between f and g advected
by u in a given domain Ω . For local approaches, classically
referred to as subset-based DIC [23,47], Ω corresponds to a

small sub-window (called the Zone Of Interest (ZOI), sub-
set, interrogation window, etc.). For global DIC [2,46], Ω

tends to stand for the whole ROI. Many different DIC crite-
ria exist and have been evaluated. Tong [49] showed that the
most robust and reliable criterion was the Zero-mean Nor-
malised Sum of Squared Difference (ZNSSD), with:

CZNSSD =
1

M−1 ∑
pixels

 f − f
∆ f

−
g◦φ −g◦φ

∆

(
g◦φ

)
2

, (2)

where f and g◦φ denote, respectively, the mean value of

f and g ◦ φ , ∆ f and ∆

(
g◦φ

)
denote f and g ◦ φ stan-

dard deviation, and M stands for the number of pixels. In
the present work, this ZNSSD criterion is used. Tong [49]
also expressed the relation between this criterion and the
Zero-mean Normalised Cross-Correlation one (ZNCC) de-
fined as:

CZNCC =
1

M−1 ∑
pixels

(
f − f
∆ f

)g◦φ −g◦φ

∆

(
g◦φ

)
 . (3)

Since we can write:

CZNSSD = 2(1−CZNCC). (4)

It is worth pointing out that, for whole-pixel translations,
computing CZNCC or the pattern auto-correlation function at
the corresponding point would yield the same results. Hence,
it is consistent to assess pattern quality by means of crite-
ria based on the auto-correlation function for the ZNCC (or
ZNSSD) cost function, but it should not be forgotten that
the underlying approach remains valid only for whole-pixel
translations.

2.1 Criteria based on auto-correlation function

Bossuyt [6] suggested quality criteria based on pattern auto-
correlation. From physical considerations on properties that
an ideal pattern should have (Sensitivity and Robustness),
he deduced the corresponding features of the pattern auto-
correlation function. In the following, the interesting fea-
tures of auto-correlation are reviewed.

2.1.1 Main auto-correlation peak sharpness radius

First, the pattern sensitivity needs to be assessed. For that
purpose, Triconnet et al. [50] defined the main auto-correlation
peak sharpness radii as the principal axes of the ellipse formed
by the intersection of the osculating elliptic paraboloid in
(0,0) and the zero-height plane. The half-sum of these radii
was then used as a quality criterion. Bossuyt [6] assumes
that this criterion is closely related to the pattern displace-
ment sensitivity. It may appear logical that, the smaller the
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radius, the greater the change in the auto-correlation func-
tion for a given subpixel translation.

2.1.2 Watershed radius

Then, a good pattern should allow initialisation as far as pos-
sible from the displacement to be measured. To this end,
Bossuyt [6] introduced a criterion based on the primary auto-
correlation peak width to take the pattern robustness into ac-
count. The broader the peak the further the initialisation may
be from the actual displacement and still avoid undesirable
convergence towards local minima of the cost function. This
criterion is the watershed radius and it represents the radius
of a circle with the same area as the projection of the main
auto-correlation peak on a plane. The interested reader is in-
vited to refer to Bomarito et al. [5] for more information.

2.1.3 Secondary auto-correlation peak height

Later on, Bomarito et al. [5] suggested taking possible mis-
matches or convergence in local minima into account by
considering displacement fields associated with a stretch de-
formation. As these displacement fields can lead to primary
correlation peaks that are actually lower than secondary cor-
relation peaks in a ZNCC criterion, Bomarito et al. [5] in-
troduced a metric based on the height of the secondary auto-
correlation peak.

2.2 Mean Intensity Gradient

In subset-based DIC, a link has been established theoreti-
cally and numerically [29,55] between the Sum of Square of
Subset Intensity Gradients (SSSIG) and random error. Addi-
tionally, a global parameter based on SSSIG was elaborated:
the Mean Intensity Gradient (MIG), and numerical exper-
iments [28] showed improvements in both systematic and
random errors for higher values of MIG. In the context of
global DIC, such as Finite Element DIC (FE-DIC), Roux
and Hild [40] established the same kind of relationship be-
tween MIG and error standard deviation theoretically.

The best possible values for SSSIG or MIG are achieved
for checkerboard patterns [5]. Some works followed this path
[15] and it led to a method called Localised Spectrum Anal-
ysis (LSA). However, in a general DIC context, according
to Bomarito et al. [5], these parameters alone cannot be con-
sidered as proper pattern quality criteria because of the non-
uniqueness of the identified displacement (up to a transla-
tion of a whole number of squares). These patterns cannot
be used in a multiscale DIC framework either as the dy-
namic range of checkerboard pattern pictures taken by far-
field cameras is drastically reduced.

For these reasons, both MIG-based and auto-correlation-
function-based criteria will be considered here to generate a
suitable multiscale pattern for DIC, as described below.

3 Multiscale pattern generation from auto-correlation
function

Based on the auto-correlation criteria mentioned above, Bo-
marito et al. [5] developed an optimisation metric and a frame-
work to generate an optimal pattern. A Boolean parameteri-
sation of the pattern was considered for this, i.e., each pixel
could be given the value 0 or m by the optimisation algo-
rithm (where m+1 is the number of quantisation levels). For
each pattern, the auto-correlation function was computed in
order to evaluate the metric. Thanks to this first step, Bomar-
ito et al. [4] were able to create a method to generate an op-
timal biscale pattern in which two pixel sizes were defined,
one for each camera magnification. However, the generali-
sation of this process to more than two different scales does
not appear straightforward, particularly when a reasonable
dynamic range must be obtained at all scales.

In this work, an alternative approach is suggested. We
do not parameterise a pattern and then optimise the asso-
ciated auto-correlation function quality criteria, nor do we
define a set of magnification scales. Instead, a suitable auto-
correlation function with appropriate multiscale properties
is taken as an input. Then the associated pattern is generated
directly. This section presents the method used to generate a
fractal speckle pattern with respect to a priori criteria. The
very same method could be employed to define patterns with
user-defined auto-correlation functions.

3.1 Auto-correlation function and Fourier Transform

Let us consider a sampled and quantised pattern:

h : x ∈ [[0;2n+1]]2→ h(x) ∈ [[0;m]], (5)

where m+1 is the number of quantisation levels (256 levels
with 8 bits), 2n+2 the number of pixels in both dimensions
and x the pixel centre. h auto-correlation function Ah is de-
fined as:

Ah : τ ∈ [[−n;n+1]]2→ Ah(τ) ∈ [−1;1], (6)

where τ = (τx,τy) is the shift (or translation) vector. FT (h)
denotes h Fourier transform. The inverse Fourier transform
will be denoted by FT−1(·). With such notations, we can
compute the auto-correlation, up to a multiplicative constant,
using the Wiener-Kinchin theorem [42] as follows:

Ah = FT−1(|FT (h)|2), (7)
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where |FT (h)|2 is called h power spectrum. The pattern Fourier
Transform modulus can easily be derived from equation (7):

|FT (h)|= FT (Ah)
1
2 . (8)

At this point, it may be noted from equation (8) that the am-
plitude of the pattern Fourier transform is known at each
point of the frequency domain. However, the phase infor-
mation cannot be recovered in the process. In the generation
of fractal surfaces, a uniform [0;2π] random phase ψ is of-
ten used at each point of the frequency domain [12,41,51].
For this reason, we decided to use such a random phase ψ:

FT (h) = FT (Ah)
1
2 e jψ with j2 =−1. (9)

For a thorough analysis on the influence of phase on the pat-
tern obtained, we refer to [7]. Ultimately, the pattern can be
generated from the auto-correlation function by applying the
inverse Fourier transform and discarding the imaginary part
in the previous equation:

h = Re
(

FT−1
(

FT (Ah)
1
2 e jψ

))
. (10)

In the remainder of this article, unless otherwise stated, h
will stand for the redistributed (in [0;m]) and quantised ver-
sion of h of equation (10).

Similarities can be found between this numerical way of
generating patterns and the method defined in [13], which
optically generates fractal laser speckles. Very similar algo-
rithms for generating fractal surfaces can also be found in
the corresponding literature [12,41,51]. Additionally, a ran-
dom modulus can also be used in (10). That is, FT (Ah)

1
2 can

be multiplied in (10) by a Gaussian random variable of zero
mean (and possibly, unit variance) as in [41,51].

In previous works [4,5,6,45], the pattern (or its Fourier
Transform) was parameterised in order to optimise criteria
based on the auto-correlation function. Hence, a computa-
tionally expensive inverse problem had to be solved to gen-
erate a pattern from these criteria. In contrast, this method
is a direct way to obtain a pattern from its auto-correlation
features thanks to Fourier Transform properties.

3.2 Pattern generation

3.2.1 Auto-correlation function choice

First, it has to be noted that there are necessary conditions
for a function A to be an auto-correlation function. A non-
exhaustive list of required properties is given below:

– the image of A should be included in [−1;1];
– A(0) = 1;
– ∀τ, A(τ) = A(−τ).

According to these conditions and the criteria defined in
Section 2.1, we choose a correlation function with circular
symmetry, which can thus be captured by a unidimensional
function. Some kind of power law (e.g. an nth root func-
tion) seems to be an interesting candidate in terms of pri-
mary peak sharpness radius, watershed radius and secondary
auto-correlation peak height. It is indeed ideally sharp (infi-
nite derivative at the origin) and has no secondary peak. In
this work, we choose to use a power type distribution:

A(τ) = 1−
(
‖τ‖

n

)2H

, (11)

where H < 1/2 in order to keep an ideally sharp main auto-
correlation peak and 0 < H in order to have A(0) = 1.

This choice for the auto-correlation function has a direct
implication on the nature of the pattern that we will obtain.
By considering a fractal surface (more specifically a self-
affine surface), it is shown in [44] that the auto-correlation
function is given by the same kind of function as (11), where
H denotes the Hurst exponent and 0 < H < 1 [12,44]. Re-
ciprocally, the power spectrum of a surface is given by the
Fourier transform of its auto-correlation function (7). Hence,
the surface associated with A exhibits the same power spec-
trum as that of a fractal surface. Thus, by using (10) with
Ah = A we would obtain a fractal pattern of Hurst exponent
H [12,41,51]. Such self-affine patterns show some kind of
statistical scale invariance: magnifying space coordinates x
and y by a factor r (x and y become respectively rx and ry)
requires the grey level value to be scaled by a factor rH to re-
main statistically identical [44,52]. Concurrently, these sur-
faces are not stationary [44]. Nonstationary surfaces have
auto-correlation lengths (usually defined as the distance re-
quired for the auto-correlation function to drop from 1 to
1/e ' 0.37) that depend on the profile or surface area con-
sidered. It is therefore irrelevant to associate a correlation
length with such patterns, unless it is, for instance, the char-
acteristic length of the profile or surface used to compute the
auto-correlation (this characteristic length was introduced
in (11) via the parameter n, which ensures that the auto-
correlation function belongs to [−1;1]). We expect a scale-
invariant, correlation-length-free pattern to exhibit interest-
ing properties in the context of multiscale DIC. Let us finally
point out to the interested reader that some of these multi-
scale properties for such patterns have already been evoked
in [53].

Also, from [44] and (10), it is possible to show that the
Root Mean Square (RMS) grey level difference between con-
secutive pixels is proportional to n−H . This demonstrates, in
this particular case, that the local gradient is linked to the
main auto-correlation peak sharpness radius defined in Sec-
tion 2.1.1. As H decreases, the sharpness radius decreases
and the local gradient increases, which results in better mea-
surement accuracy.
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Fig. 1: Comparison between desired (solid blue line, A) and
actual (dashed orange line, Ah) auto-correlation functions
for n = 127, H = 1/22 and τx = 0. The green dash-dotted
line is the auto-correlation function of Fµ,0.3σgl (h), a MIG-
improved version of h.

Conversely, as H decreases, the slope of the auto-correlation
function far from the origin also decreases, making it more
difficult to converge far away from the optimum. For 0 <

H < 1/2, the fractal field is said to be antipersistent. For
1/2 < H < 1 it is said to be persistent. In the latter case, this
means that an increase of grey level value over an arbitrary
distance along a profile of h is likely to continue to increase
for a comparable distance. In contrast, in the former case, an
increase of grey level value is expected to be followed by a
decrease [12].
Therefore, there is an interesting trade-off between measure-
ment accuracy and robustness depending on the value that is
chosen for H.

Figure 1 shows slices of different auto-correlation func-
tions. The solid blue line represents the desired auto-correlation
function A of (11) for n = 127, H = 1/22 and τx = 0.

Then, from A(τ), with H = 1/22, the pattern h is gener-
ated using (10), and its actual auto-correlation function Ah is
computed with (7) after having subtracted h mean grey level
value. In the following, h only stands for the pattern gen-
erated for H = 1/22. Ah(0,τy), symbolised by the orange
dashed curve in Figure 1, can be compared to the solid blue
line of the desired auto-correlation A.

3.2.2 MIG improvement method

Since the focus has been placed on the auto-correlation func-
tion, MIG improvements have not been investigated so far.
To remedy this, Figure 2 shows the histogram of the grey
level distribution for different patterns and the MIG value
computed for each of them. More specifically, Figure 2a
shows the grey level distribution of h (the pattern that we
generated in Section 3.2.1), for which a classical bell shape
can be observed. This kind of grey level distribution is not
optimal in terms of MIG. Heuristically, a way of increasing
the MIG value would be to change the shape of the grey
level distribution so that a greater number of pixels reached
extreme values. To do this in practice, we make use of the
inverse method [11]. Starting with the distribution plotted on
Figure 2a, a normal cumulative distribution function:

Fµ,σ : x→ m+1
2

(
1+ erf

(
x−µ√

2σ

))
, (12)

was applied to obtain the uniformly distributed pattern of
Figure 2b. In all that follows, unless otherwise stated, µ is
set to the grey level mean value of image h (before quan-
tisation), σ is a parameter to be chosen, and the grey level
standard deviation of image h (before quantisation) is de-
noted by σgl . More precisely, it can be seen in Figure 2b that
a nearly uniform distribution is obtained by applying Fµ,σ

to h (before quantisation) for σ = σgl , and a significant in-
crease in the MIG value, from 23.3 to 58 is achieved. For the
sake of simplicity, the redistributed (in [0;m]) and quantised
version of Fµ,σ applied to h (before h has been quantised)
will be denoted Fµ,σ (h). The Python script allowing both h
and Fµ,σ (h) to be generated is included as supplementary
material of this work for better understanding.

So as to spread grey levels even more towards extreme
values and improve the MIG of the pattern, we now set σ

equal to 0.3σgl when applying Fµ,σ to the pattern h (this
choice for the value of σ will be explained in Section 4).
Thus, as σ < σgl , extreme values are more represented than
values in the middle of the distribution. It can be seen, by ob-
serving Figures 1 and 2c, that this value for σ gives an even
better MIG value, and sharpens the main auto-correlation
peak. At the same time - although the possibility existed of
this not being the case - the auto-correlation function keeps
the same global shape.

Remark Another path could be followed in order to ob-
tain any grey level distribution function. From the uniform
grey level distribution of Figure 2b and by making use of the
inverse method [11] a second time, the desired grey level
distribution could be generated from the pattern h as long
as its inverse cumulative distribution function was known.
However, in this case, it cannot be guaranteed that the pat-
tern auto-correlation function would remain practically un-
changed.
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(a) h, MIG= 23.3.
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(b) Fµ,σ (h), σ = σgl , MIG= 58.0.
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(c) Fµ,σ (h), σ = 0.3σgl , MIG= 84.6.
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(d) Randomly generated pattern (each pixel can be equal to either 0 or
255 with a 50% chance), MIG= 109.9.

Fig. 2: Grey level distributions of h and Fµ,σ (h) for different values of σ and grey level distribution of a randomly generated
pattern. Mean Intensity Gradient (MIG) is also given for each pattern. Histograms and MIG values are given for n = 127.

4 Pattern performance evaluation

This section evaluates the suitability of the developed pat-
terns a posteriori. To do this, we compare one of the pro-
posed patterns with two others. As in [5], a random black
and white pattern is taken as a reference. In addition, some
numerical experiments are performed on a Perlin noise pat-
tern for a deeper analysis.

4.1 Multiscale properties − Coarse graining

As expected from previous discussions, the patterns gener-
ated exhibit interesting multiscale properties. Figure 3 illus-
trates this statement by comparing one of the patterns de-

veloped (Fµ,0.3σgl (h)) with two other patterns, namely a ran-
domly generated one (where each pixel can be equal to ei-
ther 0 or 255 with a 50% chance) and a Perlin noise based
one with speckles of 3 pixels. For these three patterns, a 32×
32 subsampling was computed from the original 16384×
16384 pictures. This meant that the subsampling required a
9-step coarse graining process (much greater than usual) of
the corresponding original picture. As a result, each pixel in
the coarse image was the integer part of a mean over more
than 260,000 pixels from the original. Unsurprisingly, it led
to an almost uniform grey picture for the random and the
Perlin noise patterns, as shown in Figures 3h, 3k, 3i and
3l. However, for our correlation-length-free pattern, the sub-
sampled picture dynamic range was still greater than 200



Fractal Pattern for Multiscale Digital Image Correlation 7

grey levels (see Figures 3g and 3j). A file is included as
supplementary material. It contains a picture of each pat-
tern and the corresponding grey level distribution along the
coarse graining process described here. This suggests that
prospects are good in a multiscale context where cameras
with different levels of magnification operate simultaneously
[32], or in the context of large transformations.

4.2 Monoscale displacement-field measurements

In order to further evaluate the performance of one of the
generated patterns (Fµ,0.3σgl (h)), it is now compared with
the random and the Perlin noise patterns for two different
kinds of displacement fields. The first kind of displacement
field addressed corresponds to subpixel translations and the
second one to stretches. These displacement fields were cho-
sen because they are exactly represented by the FE shape
functions and do not require any specific care from an algo-
rithmic standpoint (as opposed to large rotations for instance
[25,31]). This reduces mesh-dependent and algorithm-dependent
effects as much as possible, the idea being that similar re-
sults may be expected for subset-based DIC.

From a reference state image f (i.e. one of the three pat-
terns considered), we generated a deformed state image g.
The process for this generation will be described more in
detail in each corresponding subsection. Then, in order to
account for image noise acquisition, images were assumed
to be polluted by a Gaussian noise [3]. Finally, each picture
was quantified and grey level values above 255 and below 0
were set to 255 and 0 respectively (i.e. m = 255).

Adding Gaussian noise of variance σ2
noise to both images

f and g is equivalent to corrupting only g with a Gaussian
noise of variance 2σ2

noise [40]. Consequently, we only gen-
erated noise for g and set the σnoise value to 3 grey levels,
which is a conservative approach regarding the 2 grey lev-
els evaluated in [40]. From a practical point of view, for
each measurement, 3 different noises were drawn and the
3 corresponding displacement fields were measured using a
FE-DIC algorithm [2,30,46]. For the initialisation, a coarse-
graining approach with a decreasing Tikhonov regularisa-
tion was used [34]. Basically, the idea is to aggregate pixels
4 by 4 in order to produce a coarser image with a smaller
number of pixels. This process can be repeated n times and
produces an n-level multigrid scheme. A DIC problem is
solved at each level by a top-down approach. The Tikhonov
term added in the DIC functional regularises the DIC dis-
placement field identification problem, which becomes more
and more ill-posed as the number of pixels shrinks when the
same mesh is used for any level.

The discrepancy between the measured displacement um

and the imposed one uimp was evaluated at each node of the
mesh for the 3 measurements corresponding to each noise.
Two quantities of interest were extracted:

– The systematic error expectancy

eu =

〈
1

2N

N

∑
k=1

∑
α∈{x,y}

(
um

αk−uimp
αk

)〉
, (13)

– The random error expectancy

σe =

〈√√√√ 1
2N−1

N

∑
k=1

∑
α∈{x,y}

(um
αk−uimp

αk − eu)2

〉
, (14)

where N denotes the number of nodes of the mesh, um
αk the

measured displacement for node k and direction α ∈ {x,y},
uimp

αk the corresponding imposed displacement and 〈·〉 the ex-
pectancy, in the sense of the mean over the different noises.

Finally, picture size was set to 256×256 pixels (i.e. n =

127) and an unstructured triangular mesh, containing 132
nodes and 222 elements, was generated (see Figure 4). The
mesh was located in the centre of f so that high levels of
strain (up to 25%) could be reached without having pixels
initially contained in the mesh moved out of the picture.

4.2.1 Subpixel translations

The generation of g from f for subpixel translations was
achieved by a phase shift in the Fourier space [33]. In our
framework, 21 subpixel translations ranging from 0 to 1 pixel
in the {x}-direction were imposed by steps of 0.05 pixel. At
the same time, the {y}-component of the imposed displace-
ment was kept equal to 0. The multigrid level was set to 1
for the initialisation step.

In order to choose the value for σ , the influence of this
parameter was studied as shown in Figure 5. We can observe
a smooth decrease of the curve representing the systematic
error expectancy as σ decreases until the curve reaches a
minimum for σ = 0.3σgl .

Table 1 sums up the performance achieved by Fµ,0.3σgl (h)
with respect to the random pattern and the Perlin noise pat-
tern in terms of systematic and random error expectancies.
In order to conveniently compare all three patterns, for each
expectancy, a scalar value is derived from the 21 measure-
ments as in [5]. These values are the mean of the systematic
error expectancy absolute value and the mean of the ran-
dom error expectancy over the 21 subpixel translations re-
spectively. Thus, using the proposed pattern generation tech-
nique, a 18.9% improvement for random error and a 95.1%
improvement for systematic error can be obtained with re-
spect to the random pattern. Compared to the Perlin noise
pattern, the random error of the proposed pattern increases
by 1.52% while, at the same time, its systematic error de-
creases by 77.9%.

In what follows, only Fµ,0.3σgl (h), the random and the
Perlin noise patterns are considered.
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(c) Perlin noise pattern, n = 8191.
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(l) Grey level distribution of 3i.

Fig. 3: The first column is for a pattern generated using the proposed technique, Fµ,0.3σgl (h). The second one shows a
randomly generated pattern where each pixel has a one-half chance of being equal to 0 or 255. The last column concerns a
pattern based on a Perlin noise with a speckle size of approximately 3 pixels. For each column, the first figure is a picture of
the pattern considered for n = 8191. The second picture is a zoom on a 100×100-pixel square of the 16384×16384 pattern.
The third one is a subsampling of the pattern considered (each grey level value is equal to the integer part of the mean over
the corresponding 512×512-pixel square). The last picture is the grey level distribution of the subsampling. Colour scale for
pictures goes from 0 (black) to 255 (white).
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Pattern Fµ,0.3σgl (h) Random pattern
Perlin noise

(3 pix/speckle)
Mean of the systematic

error expectancy
absolute value (pixel)

4.19×10−4 8.60×10−3 1.89×10−3

Mean of the random
error expectancy (pixel)

1.29×10−2 1.59×10−2 1.27×10−2

Table 1: Comparison of the pattern Fµ,0.3σgl (h) with the random and the Perlin noise patterns. Each line represents the mean
over the 21 translations of Figure 5, for systematic error expectancy absolute value and for random error expectancy.

0

50

100

150

200

250

Fig. 4: Mesh used for the FE-DIC measurements superim-
posed on h (n = 127).

4.2.2 Stretches

Regarding stretch deformation, we decided to generate im-
age g from a reference state image f such that g repre-
sented a symmetric stretch along the {x}-direction. It was
performed via an inversion of the transformation φ . More
precisely, the relation f (x) = g◦φ(x) with φ(x) = (x+ε(x−
n),y)T had to be inversed. It yielded g(x̃) = f ◦φ

−1(x̃) with
φ
−1(x̃) = ( x̃−n

1+ε
+ n, ỹ)T , where ε denotes the tensile strain

and n has been defined in Section 3.1. Finally, g was gener-
ated by evaluating f at non-integer pixel positions thanks to
a bivariate spline approximation. Since expected values for
the displacement were much higher than for subpixel trans-
lations, we used a two-level multigrid initialisation. Values
for ε ranged from 1% to 20% by steps of 1 percentage point.

Figure 6 shows both systematic and random errors for
Fµ,0.3σgl (h) (orange diamonds), the random pattern (blue cir-
cles) and the Perlin noise pattern (green triangles) for the
stretch displacement field. For each curve in Figures 6a and
6b, two different regimes are exhibited. A part where sub-
pixel accuracy for systematic and random error expectan-
cies is achieved (below 9% stretch for the random and the
Perlin noise patterns, and 18% stretch for our pattern) and

another part where the algorithm obviously converged to a
local minimum since errors are about a pixel or above. Ta-
ble 2 is composed in the same way as Table 1 except that
averages for systematic and random error expectancies were
not taken over the whole measurement range but only over
the values where all the curves converged (i.e. for the stretch
strain value ε ∈ {0.01,0.02...0.09}). The pattern developed
in this work is outperformed by 15.0% and 33.2% in terms
of random and systematic error expectancies, respectively,
by the Perlin noise pattern for average values of Table 2
and by 13.3% in terms of systematic error expectancy ab-
solute value by the random pattern. However, it should be
pointed out that a 35.4% improvement compared to a ran-
dom pattern is obtained for the random error expectancy.
But most importantly, the multiscale property and large wa-
tershed radius of the generated pattern result in its capabil-
ity to converge to the global minimum for higher levels of
deformation than either the random or Perlin ones; a 100%
improvement in these levels is achieved by Fµ,0.3σgl (h) com-
pared to these patterns. This robustness property should be
of particular interest for large deformation applications [9]
and, most interestingly, in applications like metal forming,
where intermediate images between a reference and signifi-
cantly deformed images cannot be obtained [14].

4.3 Multiscale displacement-field measurements

This section aims to demonstrate the suitability of one of the
proposed patterns in a multiscale DIC setup in terms of ex-
pected errors on displacement field measurements. The pro-
cess used for this purpose was similar to that described in
Section 4.1 and thus generated a 16384× 16384-pixel pic-
ture for each of the three patterns considered (i.e. Fµ,0.3σgl (h)
for n = 8191, the random pattern and the Perlin noise pat-
tern with 3-pixel-wide speckles, see Figures 3a, 3b and 3c).
For each pattern and for every scale s ∈ [[0;6]], we generated
a 16384

2s × 16384
2s -pixel image via s steps of the coarse grain-

ing process used in Section 4.1. Then from this aggregated
picture only a 256× 256-pixel portion located in the centre
was considered and extracted. Finally, exactly the same dis-
placement measurements as in Section 4.2 were performed,
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(a) Systematic error expectancy (in pixel) for sub-pixel translations.
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(b) Random error expectancy (in pixel) for sub-pixel translations.

0.0 0.2 0.4 0.6 0.8 1.0
Translation value

0.00

0.01

0.02

0.03

0.04
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σ=0.3σgl

σ=0.2σgl

Perlin noise (3 pix/speckle)

Legend.

Fig. 5: Systematic and random error expectancies for sub-pixel translations. Results are presented for the random pattern,
the initial pattern h, Fµ,σ (h) for five different values of σ ranging from 0.2σgl to σgl , and the Perlin noise pattern.

Pattern Fµ,0.3σgl (h) Random pattern
Perlin noise

(3 pix/speckle)
Mean of the systematic

error expectancy
absolute value (pixel)

2.70×10−4 2.39×10−4 2.03×10−4

Mean of the random
error expectancy (pixel)

1.37×10−2 2.12×10−2 1.19×10−2

Table 2: Comparison of the pattern Fµ,0.3σgl (h) with the random and the Perlin noise patterns. Each line reports the mean
over the first 9 measurements of Figure 6 (ε ∈ {0.01,0.02...0.09}), for either systematic (upper line) or random (lower line)
error expectancies.

the only difference being that, here, ε could reach 25% (in-
stead of 20% in Section 4.2).

At this point, for each scale s and each pattern, only five
scalar values assessing the corresponding measurement ac-
curacy are derived:

– the mean over the 21 sub-pixel translations of the:
– systematic error expectancy absolute value,

– random error expectancy,
– the convergence robustness defined as the highest stretch

strain value where the pattern managed to converge,
– the mean over the stretch strain values such that all three

patterns managed to converge for the:
– systematic error expectancy absolute value,
– random error expectancy.
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(a) Systematic error expectancy absolute value (in pixel) for stretches.

0.05 0.10 0.15 0.20
Stretch strain value

10−2

10−1

100

101 Random error expectancy in pixel

(b) Random error expectancy (in pixel) for stretches.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Stretch strain val e

10−4

10−3

10−2

10−1

100

101
Systematic error expectancy 

 absol te val e in pixel
Random pattern
Fμ, 0.3σμl(h)
Perlin noise (3 pix/speckle)

Legend.

Fig. 6: Systematic error expectancy absolute value and random error expectancy for stretches. Results are presented for
Fµ,0.3σgl (h), the random and the Perlin noise patterns.

Remark For stretches, if a pattern at a given scale did
not manage to converge (even for the smallest stretch strain
value considered ε = 0.01), we did not include it.

Figure 7 shows corresponding results with respect to the
scale s for the three patterns. For scales 5 and 6, the Per-
lin noise pattern could not converge, even for the smallest
stretch strain value (ε = 0.01). This can be seen in Figure
7e, where the value plotted for the convergence robustness
is 0. Strictly speaking, for these scales, the convergence ro-
bustness of the Perlin noise pattern is not 0 but is less than
0.01. As a result, and as shown in Figures 7c and 7d, the
Perlin noise pattern was discarded for scales 5 and 6.

Relatively to the random and the Perlin noise patterns,
and for the range of scales considered, the DIC errors asso-
ciated with the pattern proposed in this work do not depend
on the scale s. Except for the steep increase of the mean
of the systematic error expectancy absolute value between
scales 0 and 1 for translations (see Figure 7a), our pattern
shows stable error values. Regarding the convergence ro-
bustness in Figure 7e, this output tends to improve as the
scale increases for the proposed pattern while the opposite
trend can be observed for the other two patterns.

Figures 7c and 7d show the mean of the systematic er-
ror expectancy absolute value and of the random error ex-
pectancy for stretches for the three patterns considered. For
each scale, these means were computed over the range of

ε where all three patterns converged. Additionally, Table 3
gives the mean of the absolute value of the systematic er-
ror expectancy and the mean of the random error expectancy
over the whole range of convergence of our pattern for stretches
(i.e. {s= 0,ε ≤ 0.17}, {s= 1,ε ≤ 0.16},{s= 2,ε ≤ 0.20},{s=
3,ε ≤ 0.20}, {s= 4,ε ≤ 0.25},{s= 5,ε ≤ 0.22},{ s= 6,ε ≤
0.25}). This shows that the errors for the highest strain rates
are similar to those for the smallest ones. If this was not the
case, the values of Table 3 would not be so close to the val-
ues shown in Figures 7c and 7d for Fµ,0.3σgl (h).

Remark Error values for Fµ,0.3σgl (h) at the scale s = 0
differ quite a bit from the values of Section 4.2 (see Tables
2 and 3 for instance). This can be explained by the fact that
the patterns considered are not exactly the same. In Section
4.2, the pattern was generated with n = 127 to produce a
256×256-pixel picture. In this section it was generated with
n = 8191 and then a 256×256-pixel picture was extracted.

5 Conclusion and outlook

In this work, a method based on the literature on fractal sur-
face generation has been introduced. This has been used to
generate patterns directly from a desired auto-correlation
function. Unlike the methods used so far, this generation
process does not require any optimisation loop. This way
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(a) Mean of the systematic error expectancy absolute value (in
pixel) for sub-pixel translations.
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(b) Mean of the random error expectancy (in pixel) for sub-pixel
translations.
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(c) Mean of the systematic error expectancy absolute value (in
pixel) for stretches.
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(d) Mean of the random error expectancy (in pixel) for stretches.
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Legend.

Fig. 7: Top, results for the sub-pixel translations; means are computed over the 21 translations considered. Middle, results for
the stretches; means are computed only over the stretch strain values where all three patterns managed to converge (except
for scales 5 and 6 where the Perlin noise pattern was discarded): {s = 0,ε ≤ 0.08}, {s = 1,ε ≤ 0.04},{s = 2,ε ≤ 0.05},{s =
3,ε ≤ 0.04},{s = 4,ε ≤ 0.04},{s = 5,ε ≤ 0.06},{ s = 6,ε ≤ 0.04}. Bottom, convergence robustness and legend. Left, mean
of the systematic error expectancy absolute value. Right, mean of the random error expectancy. Results are presented for
Fµ,0.3σgl (h), the random and the Perlin noise patterns.



Fractal Pattern for Multiscale Digital Image Correlation 13

Scale s
Mean of the systematic

error expectancy
absolute value (pixel)

Mean of the random
error expectancy (pixel)

0 4.98×10−4 1.67×10−2

1 2.26×10−4 1.32×10−2

2 3.05×10−4 1.48×10−2

3 4.80×10−4 1.64×10−2

4 3.44×10−4 1.49×10−2

5 2.74×10−4 1.60×10−2

6 3.48×10−4 1.40×10−2

Table 3: Fµ,0.3σgl (h) results for stretches and the scales considered. For each scale, means are computed over the whole range
of convergence of this pattern.

of generating patterns has offered the opportunity to clarify
what a good pattern is in a multiscale DIC context thanks to
a priori quality criteria. One of the main unprecedented ideas
that has arisen from these discussions is that a correlation-
length-free pattern, i.e. a pattern with no typical speckle size,
should exhibit interesting multiscale properties. This new
way of considering patterns enables a family of truly mul-
tiscale patterns (and not only biscale or n-scale patterns)
to be defined, based on fractal (self-affine) statistical scale-
invariance. Also, it helps overcome some limitations linked
to defining speckle sizes when different levels of magnifi-
cation are involved (usually, a speckle size of 3 to 5 pixels
is recommended). At this point, a complementary process
could be implemented based on image filtering [26,60] with
parameters set accordingly to each camera zoom level in or-
der to increase measurement accuracy at each scale consid-
ered. In the present work, a way has also been found to use
the inverse method [11] to redistribute grey levels for pat-
terns that we generated in order to improve their MIG value.
For the distribution function used and these patterns specif-
ically, this process kept their auto-correlation function prac-
tically unchanged.

Numerical experiments have been performed for two dif-
ferent displacement fields in order to assess a posteriori the
quality of one of the patterns generated compared to a ran-
dom black and white pattern and a Perlin noise pattern. These
experiments were first performed at a single scale, and then
for multiple magnification up to a factor 64 (26). They cor-
roborated the expectations formulated beforehand. The pat-
tern considered showed DIC errors comparable to those of
the other two patterns for the first scales, but a much greater
robustness. Most importantly, it showed errors and robust-
ness that were stable with respect to the scale whereas these
two outputs became significantly degraded for the other two
patterns as the scale increased. Making use of the framework
developed here, one may think of performing a closed-loop
optimisation [19]. By considering the auto-correlation func-
tion shape (with (11) parameterised by H or even with a

different parameterisation) and the grey level distribution as
input parameters, it would be possible to fine-tune them and
optimise error expectancies for specific displacement fields.
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ital image correlation: Framework and mechanical regularization.
Experimental Mechanics 57(3), 443–456 (2017)

35. Reu, P.: All about speckles: Aliasing. Experimental Techniques
38(5), 1–3 (2014)

36. Reu, P.: All about speckles: Speckle size measurement. Experi-
mental Techniques 38(6), 1–2 (2014)

37. Reu, P.: All about speckles: Contrast. Experimental Techniques
39(1), 1–2 (2015)

38. Reu, P.: All about speckles: Edge sharpness. Experimental Tech-
niques 39(2), 1–2 (2015)

39. Reu, P.: All about speckles: Speckle density. Experimental Tech-
niques 39(3), 1–2 (2015)

40. Roux, S., Hild, F.: Stress intensity factor measurements from dig-
ital image correlation: post-processing and integrated approaches.
International Journal of Fracture 140(1), 141–157 (2006)

41. Saupe, D.: Algorithms for random fractals, pp. 71–136. Springer
New York, New York, NY (1988)

42. Scargle, J.D.: Studies in astronomical time series analy-
sis. iii-fourier transforms, autocorrelation functions, and cross-
correlation functions of unevenly spaced data. The Astrophysical
Journal 343, 874–887 (1989)

43. Serra, J., Pierré, J., Passieux, J., Périé, J., Bouvet, C., Castanié,
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