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Recent experiments conducted in the International Space Station highlight the apparent periodicity of leaf

oscillations and other biological phenomena associated with rhythmic variations of lunisolar forces. These

events are similar to those occurring on Earth, but with greater effects over a shorter period of time.

Among the possible disturbances, other than forced or self-existing oscillations, parametric resonances

appear caused by a small periodic term; such is the case of fluids subjected to small periodic variations in

gravitational forces in microscopic or mesoscopic plant channels filled with sap and air-vapor. The interface

instabilities verify a Mathieu’s second order differential equation resulting from a Rayleigh-Taylor stability

model. These instabilities appear during the Moon’s rotation around the Earth and during the revolution

of the International Space Station. They create impulses of pressure and sap movements in the network of

roots, stems and leaves. The model can explain the effects of the lunar tide on plant growth. The eccen-

tricity of the lunar orbit around the Earth creates an important difference between the apogee and perigee of

the Moon’s trajectory and therefore the tidal effects can depend on the distance between the Moon and the Earth.

PACS Numbers: 87.10.Ed, 87.18Yt, 87.16.dj, 96.20.Jz, 96.25De

I. INTRODUCTION AND EXPERIMENTAL EVIDENCES

The mechanisms involved in the treatment of lunisolar field

on plants are not fully understood or even accepted [1]. The

existence of a diurnal rhythm of leaf movement has been ob-

served since ancient times and has been considered for a long

time as a circadian cycle [2–4].

About 30 per cent of tidal forces is due to the Sun and 60

per cent is due to the Moon. The variation in gravitational

forces creates these lunisolar tides on Earth. In literature, two

competing models currently exist on how the motion of wa-

ter in and out of cells may create leaf motions: the first is

based on Dorda’s hypothesis in which gravity, mass and time

are treated in quantified form [5]; in the second, Jurin’s law of

capillarity is used [6]. However, it seems these models do not

create strong enough impulses due to gravitational variations.

Barlow examined bean-leaf movement data from the 1920s

to 2015 [7]. Even when light and dark periods overlap the

time intervals, the duration of a cycle of motions is 24.8 hours

[8, 9]. Due to the relative orbital motions of the Earth and the

Moon around the Sun, the Earth’s gravitational field is contin-

uously changing [10, 11]. These modulations induce the diur-

nal rise and fall of ocean tides, small elastic deformations of

the Earth’s crust [12–14] and for expanding shoots and roots

[15]. The influence is noticeable on plant growth and stem

elongations, as well as variation in root diameters [16–20].

The Moon distance to the Earth varies along its orbit and is

perceptible on living organisms [21–23].

Modern tools allow observations in the International Space

Station (ISS). The cycles of leaf motions are aligned with the
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revolution time on its orbit [24–26]. The rhythm of luniso-

lar tidal forces in the ISS is very different from the rhythm

on Earth: the ISS orbits the Earth approximatively every 90

minutes. Rhythms inside the ISS with two high and two

low lunisolar tides per orbit create oscillations of Arabidop-

sis thaliana leaves with periods of 45 minutes [27, 28].

Our study consists of toy models made of cylindrical mi-

croscopic or mesoscopic tubes with diameters a few tenths

to a few tens of microns corresponding to the diameters of

the xylem channels in roots and stems. Channels are filled

with sap and gas. The first toy model consists of horizon-

tal microscopic or mesoscopic channels. Thanks to capillary

energy, the sap wets channel edges. The fluid consisting of

gas is located in central part of the cylinder, creating an inter-

face. The second toy model consists of vertical microscopic

or mesoscopic tubes, simulating on Earth xylem-channels of

plant stems. According to Jurin’s law the lower part of the

tube is filled with sap and the upper part with air-vapor.

A Rayleigh–Taylor model at constant gravity can study the

stability of liquid-sap/air-vapor interfaces in the channels at

equilibrium [29, 30].

To better understand the purpose of the article, let us give an

example of instability: a vertical pendulum of period T0 can

be set in motion by rhythmically increasing and decreasing its

length with a period commensurable with T0. The length ℓ of

the pendulum varies according to ℓ = ℓ0(1 + f (t)), (ℓ0 con-

stant), where | f (t)| ≪ 1 is a periodic function of period T0/q

when q is a small integer. This amazing phenomenon is called

parametric resonance [31].

As in the example of the pendulum, but due to small peri-

odic variations in gravity, the harmonic-oscillator equations

obtained by the Rayleigh-Taylor model taken for toy models

are modified and create parametric resonances. These results
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come from Mathieu’s equations whose points of instability are

analyzed in relation to the revolutions of the Moon and the ISS

around the Earth.

In this paper, we theoretically prove parametric resonances

associated with gravity variations induce sap and pressure im-

pulses corresponding to plant observations made on Earth and

in the ISS.

II. STABILITY OF FLUID-INTERFACES IN

MICROSCOPIC OR MESOSCOPIC TUBES SUBMITTED

TO CONSTANT GRAVITY

1. Equilibrium preliminaries

To understand gravity effects on stability of microscopic or

mesoscopic channels, we first consider the simple toy-model

of a cylindric tube filled with liquid and gas separated by a

liquid/gas interface. The liquid is crude or elaborated sap; the

gas is air and vapor. The tube is assumed to be horizontal on

Earth and in any position inside the ISS. We first consider the

case of tubes on Earth (see Fig. 1).

Because the fluid energy decreases when crude or elaborated

saps wet xylem walls, the sap wets channel walls [32, 33]. As

in case of stability problems for the Rayleigh-Taylor model,

the fluids are supposed to be incompressible [29, 30].

The reference state is equilibrium, where a quantity β is

then referred as β. We have:

Pa = Pa0 − ρa g y and Pb = Pb0 − ρb g y

where Pa and Pb are the fluid pressures in (a) and (b) domains

at y level, ρa and ρb are the fluid densities, Pa0 and Pb0 are

the pressures at level y = 0, and g is the gravity acceleration

assumed constant. At level y = 0, we have Laplace’s relation-

ship Pa0 − Pb0 = γ/ra0 where ra0 is the associated radius at

level y = 0, γ is the surface energy of the liquid-sap /air-vapor

interface; Pb0 = P0 denotes the reference pressure. In (a) and

(b) domains, equilibrium equations are written:

Pa − P0 =
γ

ra0

− ρa g y and Pb − P0 = −ρb g y (1)

2. Linear perturbations at interface

Out from equilibrium, we denote by ua and ub the fluid

velocities in (a) and (b) domains, and we write the pressure

perturbations p j:

P j = P j + p j j ∈ {a, b}

For Rayleigh–Taylor’s model, the stability problem can be

solved by perturbations of velocities. As demonstrated in

[29, 30], it is enough to consider irrotational velocities:

u j = gradφ j j ∈ {a, b} (2)

where functions φ j are expressed in cylindrical coordinate

system (r, θ, z). The conditions of incompressibility of fluids

FIG. 1. Cylindrical microscopic or mesoscopic tube: domain (a) of

radius ra is occupied by air-vapor; domain (b) of external radius rb

and internal radius ra is occupied by liquid-sap; the liquid-sap/air-

vapor interface is the cylinder separating (a) and (b). Axis x is hori-

zontal, axis y gives the upward direction of gravity and axis z is the

cylinder axis.

are written:

1

r

∂φ j

∂r
+
∂2φ j

∂r2
+

1

r2

∂2φ j

∂θ2
+
∂2φ j

∂z2
= 0 j ∈ {a, b} (3)

To consider mass transfert, we can refer to [34]. We also as-

sume that the viscosities are negligible [29, 30]. Effect of vis-

cosity are considered in [35]. The conservation of fluid mo-

menta in (a) and (b) domains are given by Bernoulli’s equa-

tions which are first integrals of Euler’s equations [36]:



































ρa

∂φa

∂t
+

1

2
(gradφa)2 + Pa + pa + ρa g y = P0 +

γ

ra0

ρb

∂φb

∂t
+

1

2
(gradφb)2 + Pb + pb + ρb g y = P0

(4)

The equations are satisfied at equilibrium, terms P0 and P0 +

γ/ra0 appear in (4). Difference between (1) and (4) yields:



































ρa

∂φa

∂t
+

1

2
(gradφa)2 + pa = 0

ρb

∂φb

∂t
+

1

2
(gradφb)2 + pb = 0

(5)

The magnitude order of tube diameters is a few tenths to a

few tens of microns. Due to channel sizes much less than the

capillary length, the shapes of interfaces are independent of

the gravity [37]. Therefore, the shapes of liquid-sap/air-vapor

interfaces are cylindrical around z–axis (see Fig. 1).

The perturbed liquid-sap/air-vapor interface H of equation

H(r, θ, z, t) = 0 can be written:

H(r, θ, z, t) = r − ra − η

where η = η(θ, z, t) denotes the dynamical displacement of the

liquid-sap/air-vapor interface. From calculations obtained in
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Appendix A.1, we obtain Laplace’s relationship expanded to

first order with respect to η :

Pa(η) − Pb(η) = γ

{

1

ra

−
1

r2
a

(

η + η′′
θ2

)

− η′′
z2

}

+ O(η2) (6)

where ′′ denotes the second order partial derivative with re-

spect to θ or z,

3. Study of perturbations

The linearization of (3) and (5) at interface r = ra leads to a

system with constant coefficients in (z, t). The dependence of

solutions in z and t is therefore exponential, and disturbances

can be researched in normal modes of form [38]:







































φ j = φ̂ j(r, θ) ei(kz−ωt)

p j = p̂ j(r, θ) ei(kz−ωt) j ∈ {a, b}

η = η̂(θ) ei(kz−ωt) at r = ra

(7)

where k ∈ R+⋆ is the wave number, ω ∈ R+⋆ is the wave fre-

quency. We denote by λ = 2π/k the wavelength.

At interface, we look for perturbations η corresponding to

wave frequency ω and we deduce:

η(z, t) = η̂ (θ) ei(kz−ωt) =⇒ η̈(z, t) = −ω2η(z, t)

where ¨ = d2/dt2 denotes the second order particular deriva-

tive. Then, perturbation η verifies the differential equation:

η̈ + ω2 η = 0 (8)

Likewise, we denote [p] the discontinuity at interface liquid-

sap/air-vapor of pressure p:

[p(z, t)] = ( p̂a(ra, θ) − p̂b(ra, θ)) ei(kz−ωt)

Then,

[ p̈] + ω2 [p] = 0 (9)

To be complete, in Appendix A.2, we prove that the velocities

u j in relation (2) and perturbations η are compatible with

motion equations (5) and boundary conditions.

4. Numerical applications and their consequences

The fluid in (a) domain is air and vapor; the fluid in

(b) domain is crude or elaborated sap. The temperature is

generally about 20◦ Celsius. In C.G.S. units, we have [39]:

For the crude sap (which is mainly water with some salts):

ρa ≃ 0, ρb ≃ 1, γ ≃ 70

For the elaborated sap (for example maple syrup):

ρa ≃ 0, ρb ≃ 1, 34, γ ≃ 70

For example, the sizes in the micro-channel are assumed to

be:

ra = 2 × 10−3cm = 20 µm, rb = 4 × 10−3cm = 40 µm

For mesoscopic diameters, the obtained results will be even

more accurate. The equation verified by values k and ω of

perturbations (7) is the result of Appendix A.2; we obtain:

ω2













ra ρa +
r2n

b
r−n

a + rn
a

r2n
b

r−n−1
a − rn−1

a

ρb













=

γ n

(

k2 +
n2 − 1

r2
a

)

− n (ρb − ρa) g sinθ

(10)

which is an extension of the Rayleigh–Taylor equation for

planar interfaces [30].

• if n ≥ 2, n ∈ N, then (n2 − 1)/r2
a > 7.5 × 105. For any

value of g (where g < 103 cm.s−2),

(n2 − 1)
γ

r2
a

> 5 × 107 ≫ (ρb − ρa) g | sinθ |

Consequently, for n ≥ 2, in (10), the gravity has no influence

on the perturbations along the interface. From (10) we obtain:

γ n k2 = ω2













r2n
b

r−n
a + rn

a

r2n
b

r−n−1
a − rn−1

a

ρb













− γ n

(

n2 − 1

r2
a

)

The values of ω such that

ω2













r2n
b

r−n
a + rn

a

r2n
b

r−n−1
a − rn−1

a

ρb













− γ n

(

n2 − 1

r2
a

)

> 0

are only possible. It can be immediately seen that ω corre-

sponds to a period T ≪ 1 s. As we will see in Section III, this

period is not in our study range.

• if n = 1, the equation (10) yields:

ω2 ra

r2
b
+ r2

a

r2
b
− r2

a

ρb = γ k2 − ρb g sin θ (11)

It is necessary that γ k2 and ρb g sin θ are of the same order

of magnitude. The most significant case corresponds to the

micro-tube top where the effect of gravity is maximum:

sin θ = 1 ⇐⇒ θ =
π

2

In this case, the terms γ k2 and ρb g are equal when the value

k = 2π/λ is minimum equal to km corresponding to λ maxi-

mum and equal to λM , i.e.:

km =

√

ρb g

γ
⇐⇒ λM = 2π

√

γ

ρb g
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For a stable equilibrium position when g is constant, ω2 must

be positive. Consequently, due to the fact rb > ra and ω2 > 0,

γ k2 − ρb g > 0

For a liquid–gas plug length of less than λM, the fluids are

stable in the Rayleigh–Taylor model. The oscillations have an

angular frequency ω given by (11). The period of oscillation

is T = 2π/ω. We obtain from equation (10):

k2 =
ρbg

γ

















1 +
ω2 γ ra

(

r2
b
+ r2

a

)

g
(

r2
b
− r2

a

)

















≡
ρbg

γ

















1 +
4π2 γ ra

(

r2
b
+ r2

a

)

g T 2
(

r2
b
− r2

a

)

















Let us consider the case of an horizontal micro-channel on

Earth. For T > 103 s, ra < 0.01 cm, rb = 1.1 ra, then

4π2γ ra

g T 2

r2
b + r2

a

r2
b − r2

a

< 3 × 10−7

is negligible with respect to 1. On Earth, g = 981 cm.s−2, we

obtain λM ≃ 1.68 cm. This is the maximum size of fluid plug

lengths.

We may extend the previous results for micro-channels

inside the ISS. In ISS revolutions, the apparent gravity is less

than 150 µGal [7]. It is easy to verify that λM is over hundred

meters and the interface is always stable in Rayleigh–Taylor’s

model. The perturbation of interfaces are always in form (7);

calculations are similar, and (8) and (9) are always satisfied.

A. Stability of vertical micro-tubes

This case corresponds to stem xylem-channels on Earth.

We consider a second toy-model constituted by a vertical

cylindrical tube (with diameters a few tenths to a few tens

of microns), filled with liquid-sap and air-vapor. The tube is

connected with a liquid-sap reservoir (see Fig. 2). The liquid-

sap rises at level h and creates a liquid-sap/air-vapor interface

(meniscus). Jurin’s law of capillarity writes:

h =
2 γ cosΘ

r0 ρb g
(12)

where ρb is the liquid density and γ is the sap surface ten-

sion. We note that if g varies infinitesimally, this has no con-

sequence on h-height of the meniscus. In fact (12) is only

the equilibrium equation for fluids in tubes. Dynamic per-

turbations of the meniscus must be studied from equations of

motions. We again assume that fluids are incompressible and

with negligible viscosities; we consider meniscus perturba-

tions η in vertical direction. The calculus are simpler than in

Section 2.1; we refer to Chapter 2 in [30].

The linearization of perturbation equations yields a similar

form as (3) and (6) for meniscus displacements; it comes a

system with coefficients independent of r and t, where r is the

radial coordinate. The dependence of solutions in r and t is

therefore exponential, and disturbances can be researched in

FIG. 2. A vertical cylindrical micro-tube of radius r0 is filled until

level h by the crude sap. Sap constant density is ρb; Θ is the Young

contact angle of the meniscus with the micro-tube’s wall.

form of normal modes. We obtain a representation in a form

similar to Eq. (2.34) in [30], but with r in place of x:







































φ j = φ̂ j(y), ei(kr−ωt)

p j = p̂ j(y) ei(kr−ωt) j ∈ {a, b}, k ∈ R+⋆ and ω ∈ R+⋆

η = η̂(y) ei(kr−ωt)

where domain (a) corresponds to air-vapor and domain (b) to

liquid-sap. Perturbations η at the interface again verify the

differential equation:

η̈ + ω2 η = 0

Discontinuity of pressure [p] through the meniscus verifies:

[p(z, t)] = ( p̂a − p̂b) ei(kz−ωt) and consequently:

[ p̈] + ω2 [p] = 0

In the case of revolution of the Moon around the Earth, g =

981 cm.s−2 and we always obtain the capillary length λM ≃

1.68 cm [30]. Due to radius sizes of micro-channels, when g is

assumed constant, liquid-sap plugs always exist and meniscus

is stable for the Rayleigh–Taylor model.

III. VARIATIONS OF GRAVITY DUE TO

THE MOON AND SUN

Relatively to fixed directions with respect to stars, the pe-

riod T of a satellite around the Earth and its corresponding

angular frequency ω can be written [40]:

T = 2π

√

a3

R2g
and ω =

√

R2g

a3
(13)

where g is the associated averaged acceleration of gravity on

Earth, R the Earth radius and a the apogee lenght of the satel-

lite orbit.
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A. Variations of gravity on the Earth

On Earth, when the Moon is at its zenith, the gravity de-

creases by 110 µGal (1 µGal = 10−6 cm.s−2); when the Moon

is at the horizon, it decreases by 170 µGal. The action of the

Sun, which is 2.17 times weaker than the Moon action, causes

a maximum variation of 80 µGal under similar conditions. In

the most favorable case the gravity undergoes a variation of

250 µGal, corresponding to a variation of about 1/4 000 000 th

of its intensity [41, 42]. The actual estimation of gravimetric–

tide is provided by Kingelé’s Etide program [43]. However,

due to the circulation of the Moon around the Earth over one

month, the distance from Moon to Earth varies. The spacing

between the two bodies does not significantly vary during one

day; the value is given for a position along the lunar orbit (see

Fig. 3).

The Moon moves around the Earth axis Ok0 relatively to fixed

directions with respect to stars during TL = 27.3 days. The as-

sociated angular frequency is ωL = 2π × 4.24 × 10−7 rad.s−1.

Relatively to fixed directions with respect to stars, the Earth

rotates around axis Ok0 during TE = 24 hours. The associ-

ated angular frequency is ω
E
= 2π × 1.16 × 10−5 rad.s−1.

Relatively to Earth-bound axes of third axis Ok0, the apparent

Moon motion has a period of TLE
= 24.8 hours [7]. The asso-

ciated angular frequency is ωLE
= 2π × 1.12 × 10−5 rad.s−1.

The gravity on Earth is not constant and its perturbation has

a period which is associated with the apparent motion of the

Moon around the Earth. A simple expression of the gravity

variation on Earth can be written in periodic form as:

g(t) = g
E

(

1 + ε
E
cos

(

ωLE
(t − t0)

))

, g
E
=

1

TLE

∫ TLE

0

g(t)dt

where ε
E
= 1.25 × 10−7 = 1/8 000 000 with g

E
= 9.81 ×

108µGal. Because g is associated with the Moon orbit in axes

centered at the Earth and fixed directions with respect to stars,

we obtain from (13):

ω2
L =

R2g(t)

a3
=

R2g
E

(

1 + ε
E
cos

(

ωLE
(t − t0)

))

a3

where a is the Moon apogee relative to the Earth.

ω2
L = ω

2
Le

(

1 + ε
E
cos

(

ωLE
(t − t0)

))

with ω2
Le
=

R2g
E

a3

The revolutions being associated with the rotation around the

axis Ok0 of the plane containing Ok0 and the Moon center,

then ωLE
+ ωL = ωE

and due to ε
E
≪ 1:

ωLE
= ω

E
− ωL ≡ ωE

− ωLe

(

1 +
ε

E

2
cos

(

ωLE
(t − t0)

)

)

We denote ωLE0
= ω

E
− ωLe

. Due to the fact that ωLE0
≃ ωLE

,

we obtain:

ω2
LE
= ω2

LE0

(

1 + ε
E0

cos
(

ωLE0
(t − t0)

))

where ε
E0
=

(

ωLe
/ωLE0

)

ε
E
= 0.47 × 10−8.

FIG. 3. The Earth’s rotation around axis k0. The ISS orbit, the Moon

and Sun positions are indicated on the figure.

B. Variations of gravity at the ISS altitude

Relatively to Earth-bound axes of third axis Ok0, the ISS

revolution has a period TIE
= 93 minutes. The ISS moves

around axis Ok0 with the same orientation than the Earth

(trigonometric rotation), but 15.8 times faster. The associated

angular frequency is ωIE
= 2π × 1.79 × 10−4 rad.s−1.

Relative to fixed directions with respect to stars, the Earth

rotates around axis Ok0 in TE = 24 hours. The revolutions

being associated with the rotation around the axis Ok0 of the

plane containing Ok0 and the ISS, the ISS has a sidereal an-

gular frequency (frequency relative to axes of fixed direction

with respect to stars) ωI = ωIE
+ωE = 2π×1.91×10−4 rad.s−1.

Variations of the lunisolar tidal acceleration in the ISS are

closely sinusoidal [9, 27]. The gravitational oscillations ex-

pressed by the Etide program proposed by Klingelé, can be

first found in [43]. The Etide program shows that the period

of gravitational variations is about 45 minutes with two max-

ima of about 150 µGal and two minima of about −70 µGal.

However, due to the circulation of the Moon around the

Earth relative to axes of fixed directions with respect to stars

during one month, the distance from Moon to Earth varies.

Because the spacing between the two bodies does not signifi-

cantly vary during 93 minutes, the value is given for a position

when the ISS is at an altitude of 410 km. The perturbation

term has a period which is the half of the revolution period

around the Earth. We can write a simple expression of gravity

at the ISS level (it is not the micro-gravity inside the ISS but

the gravity due to the Earth-Moon-Sun):

g(t) = gI

(

1 + εIcos
(

2ωIE
(t − t1)

))

, gI =
1

TIE

∫ TIE

0

g(t) dt

g(t) is a periodic function of t of period TIE
/2 where gI =

8.83 × 108µGal and εI = 1.25 × 10−7.

The gravity variation effect on ωI is associated with the ISS

orbit around the Earth relatively to axes of fixed directions

with respect to stars (see Fig. 3):

ω2
I =

g(t)

a
=

gI

(

1 + εI cos
(

2ωIE
(t − t1)

))

a

where a is the apogee length of the ISS with respect to the

Earth and here g(t) is the value of gravity at ISS level.

ω2
I = ω

2
Ie

(

1 + εI cos
(

2ωIE
(t − t1)

))

with ω2
Ie
=

gI

a
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Due to the fact that εI ≪ 1:

ωIE
= ωIe

(

1 +
εI

2
cos

(

2ωIE
(t − t1)

)

)

− ωE

We denote ωIE0
= ωIe

− ω
E
. From ωIE0

≃ ωIE
, we obtain:

ω2
IE
= ω2

IE0

(

1 + εI0
cos

(

2ωIE0
(t − t1)

))

where εI0
=

(

ωIe
/ωIE0

)

εI and εI0
= 1.34 × 10−7.

IV. INSTABILITY OF FLUID-INTERFACES IN

MICROSCOPIC OR MESOSCOPIC TUBES SUBMITTED

TO PERIODIC GRAVITATIONAL FORCES

A. The Mathieu parametric resonance

Hill’s equation is the differential equation ẍ + f (t) x = 0,

where f (t) is a periodic function. Depending of f (t), solutions

may stay bounded at all times or the amplitude of oscillations

may grow exponentially as described by Floquet’s theory [44].

An important case is Mathieu’s equation [45]:

ẍ + ω2
0 (1 + ε cos(qω0 t)) x = 0, (14)

where ω0 ∈ R
+⋆ is eigenfrequency of the system, ε ∈ R⋆

is a small real parameter (|ε| ≪ 1 ) and q ∈ R+⋆ (we use

the term ω0 as angular frequency and ε with the same

meaning than in Section III). This case corresponds to

a differential equation of motion of a pendulum whose

frequency ω = ω0

√

1 + ε cos(qω0 t) varies over time.

The fundamental pendulum period is T0 = 2π/ω0. The

system of Hamilton equations corresponding to (14) can be

associated with a point of the plane constituted of couples

{q, ε} (see Fig. 4). We have the fundamental Mathieu theorem:

Theorem: Points of q-axis corresponding to ε = 0 are

stable, except points q = 2/p, where p ∈ N, which are

unstable.

The proof of the theorem is given in [44, 46]. As small as ε

is, the theorem proves that the amplitude of oscillations of x

exponentially growths when q = 2/p, p ∈ {1, 2}.

The domain of instability of Mathieu’s equation in

plane of couples {1/q, ε} contacts 1/q-axis at points

{1/q = p/2, p ∈ N}. The corresponding values of p/2 on 1/q-

axis are called points of parametric resonance. For plane

red domains in Fig. 4 the solutions of (14) become unsta-

ble. This parametric resonance is strongest manifesting when

p = 1 or (q = 2). Parametric resonance really manifests for

q = 2, q = 1 and more rarely for q = 2/3.

B. Influence of the lunisolar-tidal’s resonance on plants

As seen in Section 3, the gravity is not constant during

revolutions of the Moon and the ISS around the Earth. The

liquid considered in toy-models is sap. On Earth, horizontal

FIG. 4. Instability domains in the parametric resonance case.

microscopic or mesoscopic tubes schematize plant root chan-

nels; vertical tubes schematizes stem channels. Inside the ISS,

toy-model of Section II.1 schematizes roots and stems filled

by sap. The channels are tubes of xylem or cells conducting

water, crude sap, or elaborated sap, mixed with air-vapor.

Equations (8) and (9) are modified by lunisolar-tides to obtain

Mathieu’s equations.

1. Resonances on the Earth

From Section 3, ωLE0
= 2π×1.12×10−5 rad.s−1, TLE

= 24.8

hours and ε
E0
= 0.47 × 10−8.

Perturbations η associated with Moon revolutions around

Earth-bound axes verifies η̈+ω2
LE
η = 0, but angular frequency

ωLE
is not constant and the differential equation (8) writes:

η̈ + ω2
L

E0

(

1 + ε
E0

cos
(

ωLE0
(t − t0)

))

η = 0

The perturbations of pressure through the liquid-sap/air-vapor

interface verify the differential equation (9):

[ p̈] + ω2
LE0

(

1 + ε
E0

cos
(

ωLE0
(t − t0)

))

[p] = 0

We are in the case q = 1 of Eq. (14) corresponding to a small

but effective impulsion.

2. Resonances inside the ISS

From Section 3, ωIE0
= 2π × 1.79 × 10−4 rad.s−1, TIE

=

93 minutes and εI0
= 1.34 × 10−7.

Perturbation η associated with revolutions of the ISS around

Earth-bound axes verifies η̈ + ω2
IE
η = 0, but frequency ωIE

is

not constant and the differential equation (8) writes:

η̈ + ω2
IE0

(

1 + εI0
cos

(

2ωIE0
(t − t1)

))

η = 0

The perturbations of pressure through the liquid-sap/air-vapor

interface verify the differential equation:

[ p̈] + ω2
IE0

(

1 + εI0
cos

(

2ωIE0
(t − t1)

))

[p] = 0
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We are in case q = 2 of Eq. (14) corresponding to a bigger

impulsion than for Earth case.

The results come from periodic gravity variations of period

commensurable with period of revolution of the Moon around

Earth-bound axes. It can be seen in papers by Barlow et al

that the effect of gravity variations on plants is steeper for the

ISS since bean leaves oscillate dramatically. This observation

is in accordance with Mathieu’s equations: the period of rev-

olution of the ISS is much shorter than period of revolution

of the Moon around the Earth and coefficient ε in Mathieu’s

equation is 35 times larger than the one associated with grav-

ity variations on Earth. In addition, the resonance coefficient

q is optimum since the period of gravity variations in the ISS

is half of its circumterrestrial revolution.

V. DISCUSSION AND CONCLUSION

The instabilities of fluid interfaces in microscopic or meso-

scopic tubes subjected to periodic gravity come from Math-

ieu’s equations. As the variations of gravity are periodic and

commensurable with the periods of revolution of the Moon or

the ISS around the Earth’s axes, the instabilities always appear

during rotation of the Earth and revolution of the ISS.

Inside the ISS, it can be seen that effects on plants are stronger

than on Earth since leaves dramatically oscillate depending

along the ISS’ cycle. Despite its extreme smallness, the varia-

tion of gravity on Earth has great consequences on ocean tides.

The effect is less spectacular on plants. It is proven that dis-

turbances of Mathieu’s equation exponentially increase over

time [44]; then, the successive rotations of the ISS and Moon

around the Earth amplify observed perturbations.

The lunar orbit relative to the Earth is not circular but el-

liptical with apogee of 405 400 km and perigee of 362 600

km. This fact was not taken into account in our calculations

because the spacing between the two bodies does not vary sig-

nificantly during 93 minutes or one day. The gravity varia-

tion depending on this distance, we can assume that effects on

plants and living organisms depend on the rising Moon and

the falling Moon as Tavener’s gardener thinks [3].

Also at a mesoscopic level, interfacial capillarity is one of

the main drivers of the rise of crude sap in trees [47, 48]. It

provokes, by pressure variations and time-exponential distur-

bances, lengthening of stems and swelling of roots. It can be

assumed that the same phenomenon occurs in cells and thus

explains the influence of lunisolar tide on all living organisms

including animals and humans as predicted by [22, 23]. In as-

tronomy, orbital resonances appear; the periodic gravitational

influence may destabilize the orbits of asteroids [40]. Thus, in

the whole of nature, at nanoscopic, microscopic, metric, ter-

restrial and sidereal scales, materials and creatures are subject

to gravitational resonance phenomena.

We have only considered instabilities due to lunisolar

tides without developing information on the dynamics of the

induced flows. Such an important development could be the

subject of voluminous numerical computations. One could

thus apply the Rayleigh-Taylor model for compressible fluids

[49] or for incompressible fluid turbulence [50].
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Appendix A: Compatibility with equations of motion and

boundary conditions

The purpose of this appendix is to show that the system (7)

and the equations (8) and (9) are compatible with the equa-

tions of motion (5).

1. Interfacial perturbations

From

dH =
∂H

∂t
dt + gradH . dM with dM = w dt

where w is the fluid velocity along the interface, we get:

∂H

∂t
= −gradH . w with

∂H

∂t
= −

∂η

∂t
(A1)

In cylindrical coordinates:

grad H = er −
1

r

∂η

∂θ
eθ −

∂η

∂z
ez

where er , eθ and ez are the unit vectors of coordinate-lines.

The external unit normal-vector to the interface is:

n =

er −
1

r

∂η

∂θ
eθ −

∂η

∂z
ez

√

1 +
1

r2

(

∂η

∂θ

)2

+

(

∂η

∂z

)2

From (A1) we deduce:

w .n =

∂η

∂t
√

1 +
1

r2

(

∂η

∂θ

)2

+

(

∂η

∂z

)2
(A2)

For fluids in (a) and (b) domains, we write:

u j =
∂φ j

∂r
er +

1

r

∂φ j

∂θ
eθ +

∂φ j

∂z
ez j ∈ {a, b}
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and from (A1), (A2), we get interfacial conditions:

∂φ j

∂r
−

1

r2

∂φ j

∂θ

∂η

∂θ
−
∂φ j

∂z

∂η

∂z
=
∂η

∂t
j ∈ {a, b} (A3)

The sumH of principal curvature radii of liquid-sap/air-vapor

interface isH = divn [51]. Therefore,

H =
2

(

r2 + η′2
θ
+ r2η′2z

)0.5
−

r2
(

1 + η′2z

)

(

r2 + η′2
θ
+ r2η′2z

)1.5

−
η′′
θ2

r
(

r2 + η′2
θ
+ r2η′2z

)0.5
+
η′θ

r

η′θη
′′
θ2 + r2η′zη

′′
zθ

(

r2 + η′2
θ
+ r2η′2z

)1.5

−
rη′′

z2

(

r2 + η′2
θ
+ r2η′2z

)0.5
+

rη′z

(

η′
θ
η′′
θz
+ r2η′zη

′′
z2

)

(

r2 + η′2
θ
+ r2η′2z

)1.5

By expanding to first order with respect to η expression ofH ,

we obtain for total curvature on the perturbed interface:

H =
1

ra

−
1

r2
a

(

η + η′′
θ2

)

− η′′
z2 + O(η2)

2. Compatibility with motion equations

a. The incompressibility

Equation of incompressibility (3) yields:

(

1

r

∂φ̂ j

∂r
+
∂2φ̂ j

∂r2
+

1

r2

∂2φ̂ j

∂θ2
− k2φ̂ j

)

ei(kz−ωt) = 0

which is equivalent to:

r2
∂2φ̂ j

∂r2
+ r

∂φ̂ j

∂r
− k2r2φ̂ j +

∂2φ̂ j

∂θ2
= 0 (A4)

Classically, we look for solutions of (A4) in form:

φ̂ j(r, θ) = ϕ j(r)ψ j(θ)

We obtain:

r2 ϕ j
′′(r) + rϕ j

′(r) − k2r2 ϕ j(r)

ϕ j(r)
+
ψ j
′′(θ)

ψ j(θ)
= 0

• Consequently, there exist two real constants α j, j ∈ {a, b}

such that:

ψ j
′′(θ)

ψ j(θ)
= −α j ⇐⇒ ψ j

′′(θ) + α jψ j(θ) = 0

Due to the cylindrical geometry of tubes, ψ j(θ) must be peri-

odic with a period which is a divider of 2π. Then, α j = n2
j

where n j ∈ N
⋆, and

ψ j(θ) = A jsin(n j(θ − θ0 j)) with θ0 j and A j ∈ R

• Furthermore:

r2 ϕ j
′′(r) + rϕ j

′(r) − (n2
j + k2r2) ϕ j(r) = 0 (A5)

with k r ≤ k rb. Due to diameter channel sizes, we assume

that rb ≪ λ, and consequently k2r2 ≪ 1. So, (A5) can be

linearized in the form:

r2 ϕ j
′′(r) + rϕ j

′(r) − n2
j ϕ j(r) = 0 (A6)

Solutions of (A4) are:

φ̂ j(r, θ) =
(

A j rn j + B j r−n j

)

sin
(

n j

(

θ − θ0 j

))

(A7)

with A j and B j ∈ R. Terms ∂η/∂θ, ∂φ j/∂θ, ∂η/∂z, ∂φ j/∂z

are small quantities and consequently their products are neg-

ligible. From (A3) we deduce ∂φ j/∂r = ∂η/∂t, j ∈ {a, b}.

From

∂φ j

∂r
=
∂φ̂ j

∂r
ei(kz−ωt) and

∂η

∂t
= −η iω ≡ −η̂ iω ei(kz−ωt)

we deduce for r = ra:

∂φ̂ j

∂r
= −η̂ iω j ∈ {a, b} (A8)

From (5) linearized, ρ j (∂φ j/∂t) + p j = 0 and we obtain:

−iωρ jφ̂ j + p̂ j = 0 j ∈ {a, b} (A9)

As in [30], to linearize Laplace’s relationship near r = ra, we

consider a Young–Taylor expansion at η = 0. For a given

value of θ, we obtain:

P j(η) = P j(η)+ p j(η) = P j(0)+η
∂

∂r

(

P j(η)
)

η=0
+ p j(0)+O(η2)

From P j(η) = P j(0) − ρ jg y ≡ P j(0) − ρ jg r sinθ, we get

∂P j(η)/∂r = −ρ jg sinθ and finally:

P j(η) = P j(0) − η ρ jg sinθ + p j(0)

We denote pa and pb for pa(0) and pb(0). Consequently,

Pa(η)−Pb(η) = Pa(0)−Pb(0)−η ρag sinθ+η ρbg sinθ+ pa− pb

From (6), Pa(0) − Pb(0) = γ/ra, and we obtain the equation:

(η ρbg sinθ − pb)− (η ρag sinθ − pa) = −γ

{

1

r2
a

(

η + η′′
θ2

)

+ η′′
z2

}

(A10)

From
(

∂φ̂ j/∂r
)

r=ra

= f (ra) sin
(

n j

(

θ − θ j0

))

where f is solu-

tion of (A6) and from (A8), we obtain:

η̂ = h(ω, ra) sin
(

n j

(

θ − θ j0

))

where h is a convenient function related to f . Displacement

η̂ being independent of j ∈ {a, b}, we have na = nb ≡ n and

θa0 = θb0 = θ0. Then,

η̂′′
θ2 = −n2h(ω, ra) sin (n (θ − θ0)) =⇒ η̂′′

θ2 = −n2 η̂
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b. Boundary conditions

In cylindrical coordinates:

u j = gradφ j =
∂φ j

∂r
er +

1

r

∂φ j

∂θ
eθ +

∂φ j

∂z
ez

where j ∈ {a, b}, and with expression (A7):































































∂φ j

∂r
= n

(

A j rn−1 − B j r−n−1
)

sin (n(θ − θ0)) ei(kz−ωt)

1

r

∂φ j

∂θ
=

(

A j rn−1 + B j r−n−1
)

n cos (n(θ − θ0)) ei(kz−ωt)

∂φ j

∂z
=

(

A j rn + B j r−n
)

sin (n(θ − θ0)) i k ei(kz−ωt)

The components of ua must be bounded in (a) domain. Then

Ba = 0 and φa = Aa rn sin (n(θ − θ0)) ei(kz−ωt) with n ∈ N⋆.

On the micro-tube’s wall r = rb, the normal component of

liquid velocity in domain (b) is zero: on r = rb, ub . er = 0.

Then, (∂φb/∂r)r=rb
= 0.

From ∂φb/∂r = n
(

Ab rn−1 − Bb r−n−1
)

sin (n(θ − θ0)) ei(kz−ωt),

we obtain Bb = Ab r2n
b

. Condition (A8) at r = ra implies:

(

∂φa

∂r

)

r=ra

=

(

∂φb

∂r

)

r=ra

=⇒ Aa rn−1
a = Ab

(

rn−1
a − r2n

b r−n−1
a

)

and finally with A = Ab, Aa = A
(

1 − r−2n
a r2n

b

)

:























φa = A
(

1 − r−2n
a r2n

b

)

rnsin (n(θ − θ0)) ei(kz−ωt)

φb = A
(

1 + r−2nr2n
b

)

rnsin (n(θ − θ0)) ei(kz−ωt)

(A11)

c. Equation of pertubations

From (A9) we have p̂a = iωρa φ̂a; from (A11) we obtain

φ̂a = Aa rnsin (n(θ − θ0)), and from (A8), for r = ra:

Aa = −
iω η̂

n rn−1
a sin (n (θ − θ0))

and from p̂a = iωρaAa rnsin (n(θ − θ0)), we deduce at r = ra:

p̂a =
ω2ρa

n
raη̂

Likewise, from (A9), we have p̂b = iωρb φ̂b; from (A11):

φ̂b = A(rn + r2n
b r−n) sin (n(θ − θ0))

From (A8), for r = ra:

A = −
iω η̂

n(rn−1
a − r2n

b
r−n−1

a ) sin (n (θ − θ0))

From p̂b = iωρbA (rn + r2n
b

r−n) sin (n(θ − θ0)), we deduce at

r = ra:

p̂b =
ω2ρb

n

rn
a + r2n

b
r−n

a

rn−1
a − r2n

b
r−n−1

a

η̂

and from (A10), we obtain the equation (10) of II.4 for possi-

ble perturbations at the interface in cylindrical micro-tubes.
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