
Learning Consistent Discretizations of the Total Variation∗

Antonin Chambolle† and Thomas Pock‡

Abstract. In this work, we study a general framework of discrete approximations of the total variation for
image reconstruction problems. The framework, for which we can show consistency in the sense
of Γ–convergence, unifies and extends several existing discretization schemes. In addition, we pro-
pose algorithms for learning discretizations of the total variation in order to achieve the best possible
reconstruction quality for particular image reconstruction tasks. Interestingly, the learned discretiza-
tions significantly differ between the tasks, illustrating that there is no universal best discretization
of the total variation.

Key words. Total variation, image denoising, image inpainting, discretization, finite differences, finite elements,
learning, bi-level optimization, primal-dual algorithms.

AMS subject classifications. 49Q20 35J87 35R35 49M29 94A08 65D18 65N06 65N30 65N50

1. Introduction. This paper tries to explore some questions raised in a previous work [10]
(see also [4]), were the authors considered alternative discretizations on the total variation,
based on finite elements, for image denoising or (basic) inpainting. In the latter experimental
setting, the issue is to recover a missing discontinuity from its boundary datum, and it was
observed that even when a discrete approximation is enjoying the property that the discretiza-
tion of a sharp edge is, whatever the direction, a minimizer of the discrete inpainting problem
(as in the case for the line labeled “RT” in Fig. 2.2, see [4] and [11, Prop. 4.1]), results could
substantially differ in terms of sharpness and precision. In the series of experiments carried
on in [10, 4], the best results for inpainting discontinuities were obtained with a discretiza-
tion introduced in [19] and properly implemented in [13], called the “Condat” discretization.
Mimicking the standard definition (by duality) of the total variation (cf [16, §1.1], here to
simplify, on a bidimensional bounded open domain Ω ⊂ R2):

(1.1) TV (u) := sup
{
−
∫

Ω
udiv p dx : p ∈ C∞c (Ω;R2), |p(x)| ≤ 1 ∀x ∈ Ω

}
for a function u ∈ L1(Ω) (we address only the scalar problem, valid for instance for gray-level
images), the idea of [19, 13] is to define a discrete total variation of a matrix of pixel values
(ui,j) as sup∑i,j p

1
i+ 1

2 ,j
(ui+1,j−ui,j)+p2

i,j+ 1
2
(ui,j+1−ui,j), with a particular set of constraints on

the discrete dual variables p = (p1
i+ 1

2 ,j
, p2
i,j+ 1

2
). While the usual forward-differences definition,

such as considered in [5], simply requires the constraints (p1
i+ 1

2 ,j
)2 + (p2

i,j+ 1
2
)2 ≤ 1 for all i, j,

the idea of [19, 13] (see also the variants [15, 18]) is to linearly interpolate the discrete dual

∗This work was funded by ERC grant HOMOVIS, No. 640156.
†CEREMADE, CNRS & Université Paris-Dauphine PSL, 75016 Paris, France

(chambolle@ceremade.dauphine.fr).
‡Institute of Computer Graphics and Vision, Graz University of Technology, 8010 Graz, Austria

(pock@icg.tugraz.at).
1

2 ANTONIN CHAMBOLLE AND THOMAS POCK

variables p = (p1
i+ 1

2 ,j
, p2
i,j+ 1

2
) into a continuous field p(x) = (p1(x), p2(x)) and enforce norm

constraints for this continuous field in a few well chosen discrete locations.
A first question which is raised by the new definition in [19, 13] is whether it is consistent,

that is, whether this it can be truly regarded as discretization of the total variation func-
tional 1.1. Strangely, the proof is not as obvious as for more standard discretizations. The
most rudimentary framework to assess this consistency is the so-called “Γ-convergence” [14, 3],
a property which ensures that minimizers of the discrete total variation (plus various types
of lower order terms) will converge, as the pixels’ size goes to zero, to a minimizer of the
continuous one (1.1). This does not give any convergence rate or error bounds, but at least
guarantees the consistency of the approach. Error bounds for variants have been discussed in
various papers [26, 21, 10] (see also the review [11]) while in [4] the second author, together with
Corentin Caillaud, report an essentially optimal error bound for the “Rudin-Osher-Fatemi”
(that is, denoising) problem based on a variant of [19, 13] where the constraints on the dual
fields p(x) are enforced at each “corner” of a pixel, and which corresponds to considering
in (1.1) a subset of the admissible fields, namely “Raviart-Thomas” dual fields (which are
conforming finite element approximations of fields with divergence [25]) subject to the square
pixels’ grid. Up to now, similar error bounds seem quite hard to establish for [19, 13], we
observe however that both the latter and the generalizations we will consider here, obtained by
minimizing some empirical error criterion, should in practice behave better than the variant
studied in [4].

In this work, we start by addressing the consistency issue, in a more general framework.
Our idea is that the previous approaches are easily generalized, by enforcing constraints on
particular averages of the dual fields p(x) (which might correspond to interpolants in particular
points as in [4, 19, 13], but more generally are obtained by convolutions with kernels of small
support). It follows a quite general definition, which also includes as a particular case the
classical definition [5]. We show that this definition is consistent in the sense of Γ-convergence
(Theorem 2.4).

In a next step, we address the issue of learning the parameters of the model, for different
types of tasks. It means that we can try to find the “best” convolution kernels so that the
denoising or inpainting problems are “best” solved for a given set of data. The idea is that
(heuristically) the error of these kernels should always be better than the error bounds for the
standard approaches which fit the framework. We show that such an approach can lead to
surprisingly good results for the given tasks, at the expense though of quite more complicated
discrete total variations than the ones usually considered (as we replace the standard dual
constraint by several — up to 8 in most of our examples and 40 for the denoising of natural
images — constraints involving a whole neighborhood of pixels).

In a near future, we believe this framework can be adapted to address more complex
energies of singular objects in 2D or 3D, and we plan to extend it for solving harder problems,
such as the “total roto-translational variation” described in [9].

The plan of the paper is as follows: in the next Sections 2–2.3 we describe more precisely
our general setting. Then in Section 2.4 we state and prove the consistency result. In the
second part of the paper, starting with Section 3, we address the learning of the parameters.
We describe our strategy and, in Section 4, we apply it to several tasks such as the “denois-

LEARNING DISCRETE TOTAL VARIATIONS 3

ui,j

ui,j+1

ui+1,j

p1
i+ 1

2 ,j

p2
i,j+ 1

2

Figure 2.1. General setting of the discretization. Filled circles correspond to discrete pixel values ui,j
localized at the centers of the pixels. Unfilled circles correspond to the discrete dual variables, with the values
p1
i+ 1

2 ,j
localized on vertical edges and p2

i,j+ 1
2

localized on horizontal edges.

ing” and “inpainting problems”, which we describe precisely in the corresponding sections.
Eventually in the appendix, we (partially) justify the differentiation technique which we have
used for optimizing the parameters of our models.

Acknowledgements. The authors would like to thank the referees, for their very accurate
reading of the paper and their comments, which have helped improving the final version.
Most of this work was done while A.C. was still with CMAP, CNRS and Ecole Polytechnique,
Institut Polytechnique de Paris, Palaiseau, France.

2. Problem and setting. In this section, we define the general discretization framework
and show that several popular discretization schemes are particular instances of this class of
discretizations.

An image u ∈ X ' RM×N is a matrix u = (ui,j)1≤i≤M,1≤j≤N of pixel values (here to
simplify we consider scalar images). We introduce the operator D : X → Y ' R(M−1)×N ×
RM×(N−1) defined as usual as Du = (D1u,D2u) with

(2.1)

(D1u)i+ 1
2 ,j

= ui+1,j − ui,j i = 1, . . . ,M − 1, j = 1, . . . , N ;
(D2u)i,j+ 1

2
= ui,j+1 − ui,j i = 1, . . . ,M, j = 1, . . . , N − 1 ;

A natural way to discretize the total variation consists in introducing an appropriate
norm ‖ · ‖Y on Y , typically some sort of “2, 1” norm, and let ‖Du‖Y be the approximate total
variation.

The norm ‖Du‖Y can of course be defined by duality as

‖Du‖Y = sup {〈p,Du〉Y : ‖p‖∗Y ≤ 1}

(where ‖ · ‖∗Y is the dual (or polar) norm of ‖ · ‖Y , defined in theory on the dual Y ∗ which here
is identified with Y through a Euclidean scalar product 〈·, ·〉Y). As illustrated in Figure 2.1,
the discrete image pixel values ui,j can be thought as pixel-averaged values of an underlying
continuous function u, and are localized in the center of the pixels. The discrete dual vari-
ables p = (p1, p2) with values p1

i+ 1
2 ,j

on vertical edges and p2
i,j+ 1

2
on horizontal edges can be

4 ANTONIN CHAMBOLLE AND THOMAS POCK

interpreted as edge-averaged fluxes of an underlying continuous field p(x), localized in the
center of the edges.

The most standard choice is, for p ∈ Y , to let:

(2.2) ‖p‖Y :=
M∑
i=1

N∑
j=1

√
(p1
i+ 1

2 ,j
)2 + (p2

i,j+ 1
2
)2

where by convention one sets in the norm p1
M+ 1

2 ,j
= p2

i,N+ 1
2

= 0 for all i, j. This is known not
to give very precise results and suffer anisotropy issues, see [4] for a recent study. Then, an
improvement over (2.2), suggested in [19, 13], consists in replacing ‖Du‖Y with another norm
defined by means of an averaging operator F : Y → Z, where Z is another Euclidean space,
and constraining in the dual formulation above F p rather than p:

(2.3) TV (u) := sup {〈p,Du〉Y : ‖F p‖∗Z ≤ 1}

In practice, in this paper, F is of convolution type and Z has more or less the same structure
as Y (and in general is a copy of L folds of Y , L ≥ 1). As considered in [4, Sec. 5], this point
of view is particularly natural in the setting where (to simplify, as later in Section 2.4) we
have Ω a rectangle, ε > 0 a small parameter with N ∼ M ∼ 1/ε, and u is identified to the
piecewise constant “Q0” function

(2.4)
∑
i,j

ui,jχ(iε−ε,iε)×(jε−ε,jε)(x).

Then, extending the discrete variable p as a Raviart-Thomas field [25] p(x) subject to the
square mesh ⋃i,j(iε − ε, iε) × (jε − ε, jε), and with vanishing flux across ∂Ω, the scaled ex-
pression ε〈p,Du〉Y is precisely equal to −

∫
Ω div p(x)u(x)dx, and one expects to recover a

sound approximation of (1.1) if the constraint ‖F p‖∗Z ≤ 1 in (2.3) is a good approxima-
tion of the dual constraint in (1.1) for the field p(x). (We observe also that the expression
−
∫

Ω div p(x)u(x)dx is well defined for any u ∈ L1(Ω), and depends only on the (L2) projection
of u on piecewise constant functions of the form (2.4), consisting in replacing u on each small
pixel (iε− ε, iε)× (jε− ε, jε) by its average on the pixel as already suggested.)

An obvious interesting case, described in [4] and which enters our general framework, is
when F is chosen in such a way that the discrete constraint in (2.3) is precisely equivalent
to |p(x)| ≤ 1 a.e. in Ω for the Raviart-Thomas field p(x), yielding a functional which clearly,
for any u ∈ L1(Ω), is below (1.1) and can be shown to be a good approximation of the total
variation in terms of error bound. It corresponds to the setting described in (2.6)–(2.7) in
the next Section 2.1; we refer to [4, Sec. 5] (cf also [15, 11]), for more details and precise
definitions. One objective of this paper is to generalize both [4] and [13].

Observe that for r ∈ Y one has:

sup
‖F p‖∗Z≤1

〈p, r〉Y = sup
p

inf
q
〈p, r〉Y − 〈q,F p〉Z + ‖q‖Z

≤ inf
q

sup
p
‖q‖Z + 〈p, r − F ∗q〉Y = inf

q:F ∗q=r
‖q‖Z

LEARNING DISCRETE TOTAL VARIATIONS 5

It is standard that this is an equality (using that the RHS is lower semicontinuous and its
convex conjugate is precisely the characteristic of {p : ‖F p‖∗Z ≤ 1}), provided of course the
value of the last inf is +∞ when the feasible set is empty, which is when r 6∈ imF ∗ = (ker F)⊥.

Hence the discrete total variation (2.3) also has the primal form

(2.5) TV (u) = min
q: F ∗q=Du

‖q‖Z .

Observe that this formulation of the total variation can also be interpreted as a particular form
of a “group-lasso” problem, where one seeks for a sparse representation F ∗q of the discrete
gradient Du based on a convolutional dictionary F ∗ [8]. We believe, that in the spirit of
compressed sensing, this formulation enables the recovery of sharp discontinuities in discrete
images and breaks the intrinsic band limitations of more classical, digital signal processing
inspired discretizations, for example the Shannon total variation proposed in [1].

2.1. Some examples. In the following we mention a few popular discretizations which
can all be seen as particular instances of our general discretization framework.

Example 2.1 (Forward differences (FD)). Certainly, the most widely used discretization
of the total variation is based on simple forward differences (see for example [5]). In our
framework, this corresponds to defining F p ∈ Z ' Y as

(F p)i,j =

p1
i+ 1

2 ,j

p2
i,j+ 1

2

 .
The corresponding Z-norm is then equivalent to (2.2). As the operator F combines dual
variables defined at different spatial locations, it follows that the constraint ‖F p‖∗Z ≤ 1 leads
to a bias towards certain directions of the image gradient. This can be clearly observed in
Figure 2.2, where some directions appear sharp, while others are overly blurred.

Example 2.2 (Raviart-Thomas discretization of the dual (RT) [15, 4, 11]). In order to gain
more rotational invariance, one can consider four constraints on the dual variables at the
four corners of each pixel. In our framework, this corresponds to letting p ∈ Y , F p =
(F 1p, F 2p, F 3p, F 4p) ∈ Z and defining

(2.6)

(F 1p)i− 1
2 ,j−

1
2

=

p1
i− 1

2 ,j

p2
i,j− 1

2

 , (F 2p)i− 1
2 ,j+

1
2

=

p1
i− 1

2 ,j

p2
i,j+ 1

2

 ,
(F 3p)i+ 1

2 ,j−
1
2

=

p1
i+ 1

2 ,j

p2
i,j− 1

2

 , (F 4p)i+ 1
2 ,j+

1
2

=

p1
i+ 1

2 ,j

p2
i,j+ 1

2

 .
The corresponding Z norm is given by

(2.7) ‖(z1, z2, z3, z4)‖Z :=
∑
i,j

|z1
i− 1

2 ,j−
1
2
|2 + |z2

i− 1
2 ,j+

1
2
|2 + |z3

i+ 1
2 ,j−

1
2
|2 + |z4

i+ 1
2 ,j+

1
2
|2,

where | · |2 is the standard Euclidean length. The constraint ‖F p‖∗Z ≤ 1 then combines all
possible pairs of edges that meet in one of the four corners of each pixel. With this, one ensures

6 ANTONIN CHAMBOLLE AND THOMAS POCK

feasibility of the Raviart-Thomas interpretation of the dual field as a dual variable in (1.1), as
mentioned in the previous section. However, as seen on Figure 2.2, these constraints seem not
appropriate for the resolution of edge inpainting problems, as they lead to a strong blur of the
inpainted edges with non grid-aligned orientations. This is a bit puzzling, as one can show
(in a more precise setting though than the experiments carried on in this paper) that straight
line inpainting problems can be solved exactly by the discrete projection of the continuous
solution with this particular discretization, see [11, Prop. 4.1]. It is likely that, as is the case
for the variant studied in [10], such problem have non-unique solutions and the optimization,
or variants in the setting, favor blurry results over sharper ones. We must observe that
the Raviart-Thomas field being admissible in the dual definition of the total variation (more
precisely, after some smoothing, in (1.1)), the value of this discrete total variation will always
be below the value of the TV of any L1 function which has average ui,j on each pixel (i, j). In
particular, this can lead to an important under-estimation (and therefore unsufficient removal)
of a noise oscillating at the same scale as the pixels.

Example 2.3 (Condat’s discretization (CD) [19, 13]). A more flexible discretization is ob-
tained by linear interpolation of the dual variables at the three grid positions (i, j), (i+ 1

2 , j),
and (i, j + 1

2). This corresponds to letting p ∈ Y , F p = (F 1p, F 2p, F 3p) ∈ Z with, for
i = 1, . . . ,M , j = 1, . . . , N ,

(F 1p)i,j =

p1
i− 1

2 ,j
+p1

i+ 1
2 ,j

2
p2
i,j− 1

2
+p2

i,j+ 1
2

2

 ,
(again the convention is that p = 0 when the indices are out of range), and, for i ≤M − 1,

(F 2p)i+ 1
2 ,j

=

 p1
i+ 1

2 ,j
p2
i,j− 1

2
+p2

i,j+ 1
2

+p2
i+1,j− 1

2
+p2

i+1,j+ 1
2

4

 ,
and for j ≤ N − 1:

(F 3p)i,j+ 1
2

=

p1
i− 1

2 ,j
+p1

i+ 1
2 ,j

+p1
i− 1

2 ,j+1
+p1

i+ 1
2 ,j+1

4
p2
i,j+ 1

2

 .
The Z norm is then ‖(z1, z2, z3)‖Z := ∑

i,j |z1
i,j |2 + |z2

i+ 1
2 ,j
|2 + |z3

i,j+ 1
2
|2.

In [13], another variant (which we call CD4) is proposed which adds another constraint on
the grid positions (i + 1

2 , j + 1
2). In our framework this corresponds to adding a fourth filter

of the form

(F 4p)i,j =

p1
i+ 1

2 ,j
+p1

i+ 1
2 ,j+1

2
p2
i,j+ 1

2
+p2

i+1,j+ 1
2

2

 .
In our experiments (cf. Figure 2.2), the performances of CD4 are comparable to CD, and for
simplicity we decided to stick to CD in further experiments. In contrast to RT, the constraint
‖F p‖∗Z ≤ 1 in CD does not guarantee the feasibility of the Raviart-Thomas extension of the

LEARNING DISCRETE TOTAL VARIATIONS 7

discrete dual field, yet it seems this is necessary to better discriminate sharper edges from
smoother ones. And indeed, Figure 2.2 confirms the excellent result for inpainting straight
edges with various orientations.

Table 2.1 visualizes the filter coefficients of the aforementioned handcrafted methods.
Observe that Condat’s discretization (CD, CD4) is the only one which relies on some averaging
of the dual variables. Figure 2.2 shows the performance of these methods for recovering
discontinuities of various orientations.

FD CD CD4 RT

Table 2.1
Visualization of the filters corresponding to the different handcrafted discretization methods. The filter sizes

are 2×3 for the horizontal direction and 3×2 for the vertical direction, which corresponds to a support of 2×2
pixels. Black corresponds to filters weights of 0.0, white corresponds to filter weights of 1.0, gray corresponds to
filter weights of 0.5 and dark gray corresponds to filter weights of 0.25.

2.2. General interpolation operators. In practice, as in the examples above, we consider
general convolution-type operators F . The basic form for such F is F = (F l)Ll=1 with

(2.8) (F lp)i,j =
(

(F l,1p1)i,j
(F l,2p2)i,j

)
=

∑ν
m,n=−ν ξ

l
m,np

1
i+ 1

2−m,j−n∑ν
m,n=−ν η

l
m,np

2
i−m,j+ 1

2−n

 ,
where (ξlm,n, ηlm,n) are weights with a small support of maximal size (2ν + 1) × (2ν + 1) for
some integer ν ≥ 01. On order to ensure that F l,1, F l,2 represent valid interpolation kernels,
we shall assume that the entries of the filters sum up to one, that is,

(2.9)
∑
m,n

ξlm,n =
∑
m,n

ηlm,n = 1⇐⇒ F l,1, F l,2 ∈ CΣ=1,

where here CΣ=1 denotes the set of filters whose coefficients sum up to one. It is not necessary
to assume that the weights are non-negative, but if not we must assume they are globally
bounded (in absolute value) by some fixed constant. A generic point in Z has the form
q = (q1

i,j , . . . , q
l
i,j), where each (qli,j) is a 2-dimensional vector, for indices i, j ∈ Z2; relevant

indices are in {1, ...,M}×{1, ..., N} plus the support of the convolution kernels (ξl, ηl). Then,
the norms we consider are

‖q‖Z =
∑
i,j,l

|qli,j |2 , ‖q‖∗Z = max
i,j,l
|qli,j |2.

1In practice, we will consider rectangular filters, but they can be always implemented by means of larger
square filters and setting the respective filter weights to zero.

8 ANTONIN CHAMBOLLE AND THOMAS POCK

In
pu

t
FD

80.37 26.94 86.23 27.02 80.97 23.62 22.90 23.30

81.73 27.02 86.22 26.99 80.36 23.73 23.19 23.61

RT

69.82 23.62 22.62 23.66 69.94 23.68 22.65 23.67

69.80 23.66 22.63 23.64 69.81 23.62 22.83 23.68

C
D

71.51 40.50 36.03 41.70 71.54 41.71 35.85 40.27

71.46 40.05 35.89 38.03 71.45 39.84 51.41 41.77

Figure 2.2. Reconstruction quality of various “handcrafted” discretization schemes for the problem of
inpainting a straight discontinuity. The numbers above the images refer to the reconstruction errors, measured
in PSNR.

The constraint in the primal problem F ∗q = Du reads (denoting qli,j = (ql,1i,j , q
l,2
i,j)T):

(D1u)i+ 1
2 ,j

=
∑
m,n,l

ξlm,nq
l,1
i+m,j+n, (D2u)i,j+ 1

2 ,j
=
∑
m,n,l

ηlm,nq
l,2
i+m,j+n.

2.3. Boundary conditions. In this section we briefly discuss how the most popular bound-
ary conditions can be realized in our framework.

LEARNING DISCRETE TOTAL VARIATIONS 9

Homogeneous Neumann conditions. Homogeneous Neumann conditions are treated as fol-
lows: we assume that p ∈ Y , that is, the values of p are defined exactly at the same points as
the values of D1u, D2u. For computing the convolutions, we implicitly assume p = 0 when
the indices fall out of range. The variable q ∈ Z, on the other hand, should be nonzero for a
larger set of indices, namely i ∈ {−ν, . . . ,M + ν}, j ∈ {−ν, . . . , N + ν}.

Homogeneous Dirichlet conditions. For Dirichlet conditions, it is roughly the opposite. In-
deed, one can assume that u = 0 and Dαu = 0, α = 1, 2, out of the domain, that is, ui,j = 0
if i ≤ 0 or j ≤ 0 or i ≥ M + 1 or j ≥ N + 1. In particular, the variable p multiplying a
difference Du which is zero should be unconstrained, i.e., for instance, p1

i+ 1
2 ,0

for any i. Then,
one should consider only convolutions F ∗p which do not involve unconstrained values of p.
This amounts to let ql,αi,j = 0, when the convolution (F l,αpα)i,j involves values of p out of the
support (cf. (2.8)), in particular this implies that (F l,α)∗ql,α = 0 at points where Dαu has
been forced to zero, in coherence with the constraint F ∗q = Du.

Heterogeneous Dirichlet conditions. In practice, for solving problems with non homogeneous
boundary conditions, we will consider the Neumann discretization introduce above, and will
solve our problems with an additional equality constraint on u in a strip of width the size of
the convolution operators.

2.4. General form: consistency. To simplify in this section we let N = M , and consider
the domain Ω = (0, 1)2, divided in N ×N pixels of size ε× ε, ε = 1/N . We add the subscript
ε to all the notions introduced in the previous section, which now depend on N = 1/ε, which
will be sent to ∞. We let Dε = (1/ε)D : Xε → Yε, D defined as in (2.1). We define

(2.10) TVε(u) = min
{
ε2‖q‖Zε : F ∗εq = Dεu

}
= sup

{
ε2〈p,Dεu〉Yε : ‖F εp‖∗Z ≤ 1

}
when u ∈ L1(Ω) is of the form u = ∑N

i,j=1 ui,jχ(iε−ε,iε)×(jε−ε,jε), and +∞ else. In (2.10), Dε

has the scaling of a discrete gradient, and the ε2 factor before the sum 〈p,Dεu〉Yε accounts for
the size of the pixels. We only consider, for simplification, the case of Neumann homogeneous
boundary conditions as described in the previous section. Then the following holds:

Theorem 2.4. Assume the supports and the weights of the convolutions defining F ε are
uniformly bounded. Then TVε Γ-converges to

TV (u) :=
{
|Du|(Ω) if u ∈ BV (Ω) ,
+∞ else.

The convergence both holds in very weak topologies (such as distributional), and in stronger
ones such as Lp(Ω) for any p < +∞.

Proof. To prove the “lim inf”, we assume uε → u in the distributional sense and that
lim infε TVε(uε) is finite. Consider p(x) = (p1(x), p2(x)) ∈ C∞c (Ω;R2) a smooth vector field
with compact support and |p(x)| ≤ 1 for every x ∈ Ω. Then∫

Ω
udiv p dx = lim

ε→0

∫
Ω
uε div p dx = lim

ε→0
ε2〈Dεu

ε,pε〉Yε

10 ANTONIN CHAMBOLLE AND THOMAS POCK

where the discretized pε is given by the horizontal and vertical fluxes2

pε,1
i+ 1

2 ,j
= (1/ε)

∫ jε

(j−1)ε
p1(iε, y)dy , pε,2

i,j+ 1
2

= (1/ε)
∫ iε

(i−1)ε
p2(x, jε)dx .

We used here that with this definition, which corresponds to the Raviart-Thomas projection
of the vector field p, the average of div p on a pixel is precisely the constant div pε.

Since p is smooth, there exists C depending only on ‖∇p‖∞ and F such that |(F lpε)i,j | ≤
1 +Cε for all i, j, l. Indeed, using the form (2.8), one sees that, denoting xεi,j := ((i+ 1

2)ε, (j+
1
2)ε) the center point of the pixel (iε, (i+ 1)ε)× (jε, (j + 1)ε),

(F l,1pε,1)i,j =
ν∑

m,n=−ν
ξlm,np

ε,1
i+ 1

2−m,j−n
= p1(xεi,j) +

ν∑
m,n=−ν

ξlm,n(pε,1
i+ 1

2−m,j−n
− p1(xεi,j))

Using that p is smooth and in particular, Lipschitz-continuous, the last term can be bounded
by a quantity Cε/

√
2, for some constant C ∼ ν‖∇p‖∞

∑
m,n |ξlm,n| which, by assumption, is

uniformly bounded. In the same way, |(F l,2pε,2)i,j − p2(xεi,j)| ≤ Cε/
√

2. Since |p(xεi,j)|2 ≤ 1,
our claim follows.

We deduce that ‖F pε‖∗Z ≤ 1 + Cε, so that pε/(1 + Cε) is an admissible dual variable
in (2.10) so that ε2〈Dεu

ε,pε〉Yε ≤ (1 + Cε)TVε(uε). Sending ε to zero and then taking the
supremum with respect to all p we obtain that:

(2.11) TV (u) ≤ lim inf
ε→0

TVε(uε).

We remark that near the boundaries, pε vanishes, so this construction remains valid in the
framework of the Neumann boundary conditions described in Section 2.3.

Let us now prove the “lim sup”. Let us consider u ∈ BV (Ω). We need to build a “recovery”
sequence, that is a sequence (uε) of discrete functions of the form

(2.12) uε(x) =
N∑

i,j=1
uεi,jχ(iε−ε,iε)×(jε−ε,jε)(x),

for ε = 1/N , N ≥ 1, such that uε → u in L1(Ω) (or actually in some Lp(Ω), 1 ≤ p < ∞, if
u ∈ Lp(Ω)3) and:

(2.13) lim sup
ε→0

TVε(uε) ≤ TV (u).

As is classical, a first observation is that one may assume that u is bounded, indeed the
sequence of truncated functions defined by uk(x) := max{−k,min{k, u(x)}} , k ≥ 1, satisfies
uk → u in L1(Ω) and

∫
Ω |Duk| →

∫
Ω |Du|. Then, from a recovery sequence for each uk, one

easily builds using a diagonal argument a recovery sequence for u. For convenience, one can
2The notation might seem a bit inconsistent, as the centers of the pixels correspond in fact to the points

xεi,j := ((i+ 1
2)ε, (j + 1

2)ε) while we choose to denote, as is usual, by (i, j) this location.
3To simplify we consider in the sequel only the case p = 1.

LEARNING DISCRETE TOTAL VARIATIONS 11

assume also that u ∈ C∞(Ω). Indeed, one can also approximate u with such functions, with
again convergence of the total variations, see for instance [16, §1.15-1.16].

In a first step, as Ω = (0, 1)2 is a square (a rectangle would work as well, for a general
Lipschitz domain one should use a more complicated approach), it is clear that one can consider
u as an even, 2-periodic functions (first let u(−x, y) = u(x,−y) = u(−x,−y) := u(x, y) for
(x, y) ∈ (0, 1)2, then extend u 2-periodically in both directions). Observe that the Fourier
transform of u, in that case, is real, even, and discrete. We can let, for ` ∈ Z2,

û(`) := 1
4

∫
[−1,1]2

u(x)e−2iπ `·x2 dx =
∫

[0,1]2
u(x) cos(π` · x)dx

so that u(x) = ∑
`∈Z2 û(`)eiπ`·x.

Then, we consider ρ̂ ∈ C∞c (B(0, 1); [0, 1]) with ρ̂ ≡ 1 on B(0, 1/2) a smooth, symmetric
cutoff function (in the Fourier domain), and let for ` ∈ Z2, ûδ(`) := û(`)|ρ̂(δ`/2)|2. It turns
out that this is equivalent, in the spatial domain, to convolving u with ρδ ∗ ρδ, where ρδ(x) :=
(1/δ2)ρ(x/δ) (is a smoothing kernel which is however not non-negative), and one has uδ → u
in L1(Ω) with TV (uδ)→ TV (u). The latter holds for instance because since we assumed that
u was initially smooth we had in particular

∫
[0,1]2 |∇u|2dx < ∞, and passing to the Fourier

domain it gets obvious that ∇uδ → ∇u strongly in L2(Ω), therefore also in L1(Ω).
Hence, again, without loss of generality, one needs just to build a recovery sequence for

a function u (real, even, 2-periodic) with vanishing spectrum out of a disk: û(`) = 0 if
|`| ≥ 2/δ =: R, for some fixed value of δ.

Given N > R an integer and ε = 1/N , let, for (i, j) ∈ Z2

(2.14) uεi,j = u(iε, jε) =
N∑

n,m=−N
û(n,m)eiπ in+jm

N .

This is of course real, even and periodic (uεi+2N,j = uεi,j+2N = uεi,j for all i, j), and it is natural
to view the restriction (uεi,j)1≤i,j≤N and its piecewise constant extension (2.12) as a discrete
approximation of the original image in the domain Ω = (0, 1)2.

In addition, being u (very) smooth, it is obvious that uε (defined by (2.12)-(2.14)) con-
verges in L1(Ω) (and in fact uniformly) to u, in the same way, as ε→ 0 (N →∞),

N∑
i,j=1

uεi,j − uεi−1,j
ε

χ(iε−ε,iε)×(jε−ε,jε)(x)→ ∂1u(x)

(also uniformly) and in particular

lim sup
ε→0

ε
N∑

i,j=1

√
(uεi,j − uεi−1,j)2 + (uεi,j − uεi,j−1)2 ≤

∫
Ω
|∇u|dx = TV (u).

Let us now estimate TVε(uε). We use the definition:

TVε(uε) = ε2 min {‖q‖Zε : F ∗εq = Dεu
ε}

12 ANTONIN CHAMBOLLE AND THOMAS POCK

with F ε a sum of L convolution operators as in (2.8). We need to find a q such that4

(2.15) ε2‖q‖Zε . ε
N∑

i,j=1

√
(uεi,j − uεi−1,j)2 + (uεi,j − uεi,j−1)2.

In particular, it is enough to find q of the form (q1, 0, . . . , 0), so that without loss of generality,
one can assume L = 1 and drop the superscript l. Therefore, we look for q = (qi,j) (i, j ∈ Z,
qi,j = (q1

i,j , q
2
i,j)T ∈ R2 for all i, j) which satisfies

(2.16) (D1
εu

ε)i+ 1
2 ,j

=
ν∑

m,n=−ν
ξm,nq

1
i+m,j+n , (D2

εu
ε)i,j+ 1

2 ,j
=

ν∑
m,n=−ν

ηm,nq
2
i+m,j+n

at least for 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N for the first equality and 1 ≤ i ≤ N , 1 ≤ j ≤ N − 1 for
the second, and hoping to have a control on the norm ‖q‖Z .

We compute the discrete Fourier transform of the first equation: for (r, s) ∈ Z2, one has

1
2N

N∑
i,j=−N

uεi+1,j − uεi,j
ε

e−iπ ir+js
N = 1

2N

N∑
i,j=−N

ν∑
m,n=−ν

ξm,nq
1
i+m,j+ne

−iπ ir+js
N

= 1
2N

N∑
i,j=−N

ν∑
m,n=−ν

ξm,ne
iπmr+ns

N q1
i+m,j+ne

−iπ (i+m)r+(j+n)s
N

= q̂1(r, s)

 ν∑
m,n=−ν

ξm,ne
iπmr+ns

N

 .
On the other hand,

(2.17) 1
2N

N∑
i,j=−N

uεi+1,j − uεi,j
ε

e−iπ ir+js
N = eiπrε − 1

ε
û(r, s)

vanishes for ‖(r, s)‖ > R. Using that ∑m,n ξm,n = 1 one sees that

ν∑
m,n=−ν

ξm,ne
iπmr+ns

N = 1 +
ν∑

m,n=−ν
ξm,n(eiπmr+ns

N − 1)→ 1

as N →∞ for any r, s with ‖(r, s)‖ ≤ R. In particular, for N large enough and ‖(r, s)‖ ≤ R,
one can just let

q̂1(r, s) =
eiπrε−1

ε û(r, s)
1 +∑ν

m,n=−ν ξm,n(eiπmr+ns
N − 1)

(and one lets q̂1(r, s) = 0 for ‖(r, s)‖ > R). This choices guarantees that the first equation
in (2.16) is satisfied, and one does analogously for the second. One could fear that the resulting

4to simplify the notation we do not denote the dependency of q on ε.

LEARNING DISCRETE TOTAL VARIATIONS 13

(qi,j) is a complex vector field, yet since also its real part then should satisfy (2.16), and have
therefore the same Fourier transform, this cannot be the case.

It remains to show that with this choice, ‖q‖Zε satisfies (2.15). One has

q1
i,j =

N∑
r,s=−N

q̂1(r, s)eiπ ir+js
N =

∑
‖(r,s)‖≤R

eiπrε−1
ε û(r, s)

1 +∑ν
m,n=−ν ξm,n(eiπmr+ns

N − 1)
eiπ ir+js

N

So that (using (2.17)),

(D1
εu

ε)i+ 1
2 ,j
− q1

i,j =
∑

‖(r,s)‖≤R

∑ν
m,n=−ν ξm,n(eiπmr+ns

N − 1)
1 +∑ν

m,n=−ν ξm,n(eiπmr+ns
N − 1)

eiπrε − 1
ε

û(r, s)eiπ ir+js
N

and

|(D1
εu

ε)i+ 1
2 ,j
− q1

i,j | ≤
∑

‖(r,s)‖≤R

∑ν
m,n=−ν |ξm,n|| sin(πmr+ns2 ε)|

1−∑ν
m,n=−ν |ξm,n|| sin(πmr+ns2 ε)|

| sin πrε
2 |

ε
|û(r, s)| ≤ Cε

when ε > 0 is small enough. In the same way, one builds q2
i,j which satisfies (2.16) and such

that
|(D2

εu
ε)i,j+ 1

2
− q2

i,j | ≤ Cε.

It follows that (2.15) holds with an error of order O(ε).
Observe to conclude that this construction is compatible with the Neumann boundary

conditions described in Section 2.3. One can consider (for each N) only the values of qi,j for
i, j = −ν, . . . , N +ν, the values of p restricted to Y , and restrict F ,F ∗ to these values; in this
setting the construction builds an admissible recovery sequence.

Compactness. Theorem 2.4 remains incomplete without the following associated compact-
ness result, whose proof is relatively easy and standard.

Proposition 2.5. Under the same assumptions as in Theorem 2.4, let (uε)ε>0 with:

sup
ε>0

TVε(uε) < +∞.

Assume moreover uε remains bounded (on average, or in some Lp(Ω)). Then there is a
subsequence (uεj) and u ∈ L1(Ω) such that uεj → u in L1(Ω).

Proof. The point is that by assumption qε is uniformly bounded, as well as the discrete
derivative Dεu

ε = F ∗qε. It easily follows that (uε)ε have uniformly bounded total variation,
and the claim can be deduced.

3. Learning a better discretization. In the previous section, we have shown consistency
of the general form (2.3) of the discrete total variation, in the spirit of Γ-convergence, for any
interpolation (averaging) kernel F . The aim of this section is to investigate numerical methods
to learn the “best” interpolation operators F given a set of input images and corresponding
ground truth solutions. To do so, we will consider several total variation minimization tasks,
where explicit solutions are known (e.g. denoising of a disk, image inpainting) but we will also

14 ANTONIN CHAMBOLLE AND THOMAS POCK

consider the case of natural image denoising. It will turn out that the learned interpolation
operators highly depend on the specific imaging task. That is, an interpolation operator that
is found to work well for image denoising will not necessarily work well for image inpainting
and vice versa. The reason is that there is a complex interaction between the total variation
term and the data fidelity term. For example, in image denoising, the total variation should
better smooth nicely the solution (whereas the recovery of sharp edges is mostly driven by the
data term), while for image inpainting we expect it to discriminate sharp edges from smoother
ones to produce sharper discontinuities.

In what follows, we consider the general class of total variation minimization problem:

(3.1) min
Du=F ∗q

λ‖q‖Z +G(u, g),

where G(u, g) is a convex data fidelity term depending on a given input image g, which defines
the type of imaging application, e.g. denoising, inpainting, segmentation etc. The parameter
λ > 0 is used to control the tradeoff between regularization and data fidelity, when needed.
We also assume that G has a proximal map proxτG(·), τ > 0 which is simple to compute (in
closed form). We denote by u∗ a minimizer, unique in case G is strongly convex.

Since (3.1) is a difficult non-smooth optimization problem, especially in its primal form,
we consider the equivalent saddle-point formulation

(3.2) min
u,q

max
p
〈Du− F ∗q,p〉 + λ‖q‖Z +G(u, g),

which can be solved by the (block)-preconditioned primal-dual algorithm [6, 23, 7], whose
main iterations are given in Algorithm 1.

Algorithm 1: Preconditioned primal-dual algorithm for solving (3.2)
• Initialization: u0 ∈ X, q0 ∈ Z, p0 ∈ Y .
• Step sizes: Choose the block-wise step sizes τu, τq, σp such that

‖diag(σp)
1
2 (D,F ∗) diag(τu, τq)

1
2 ‖ ≤ 1,

and set θ = 1.
• Iterations: For k = 0, . . . ,K − 1 let

(3.3)

pk+1 = pk + σp(Duk − F ∗qk)
p̄k+1 = pk+1 + θ(pk+1 − pk)
uk+1 = proxτuG(uk − τuD∗p̄k+1)
qk+1 = shrinkτqλ(qk − τqF p̄k+1)

• Output: Approximate saddle point (uK , qK ,pK)

The advantage of block-wise step sizes is that one can easily adapt to different scalings in the
linear operators D and F ∗. The proximal map proxτuG is assumed to be commutable in closed
form, see [6] for several examples which will also be used here. The function shrinkτ denotes

LEARNING DISCRETE TOTAL VARIATIONS 15

the classical `2,1 norm shrinkage function which is given for each of the pairs ql = (ql,1, ql,2)
in q = (q1, . . . , qL) by

q̂l = shrinkτ (q̄l)⇐⇒ q̂li,j =
(

1− 1
max{1, |q̄li,j |/τ}

)
q̄li,j , l = 1, ..., L

3.1. The learning problem. Clearly, we are here in the classical setting of supervised
learning. That is we assume we have given a set of input images G = {g1, . . . , gS} and
corresponding target images (explicit solutions) T = (t1, . . . , tS). The learning problem is now
to find interpolation kernels F such that solutions u∗s of (3.2) for input images gs minimize a
certain distance measure to the target images ts.

In order to measure the distance (or loss) between u∗s and ts we consider a convex and
continuously differentiable loss function `(u, t). Here, we adopt here the classical quadratic
loss function `(u, t) = 1

2‖u− t‖
2, but any other suitable loss function could be considered as

well. The overall loss function with respect to the entire training data set is then given by

L(F) = 1
MNS

S∑
s=1

`(u∗s(F), ts),

where we have made explicit the dependence of the solutions u∗s(F) on the interpolation
kernels F . We also include a pre-factor 1

MNS in order to normalize the loss function with
respect to the total number of image pixels.

The learning problem is now given by the following bilevel optimization problem [20]

min
F
L(F) +R(F),(3.4)

u∗s ∈ arg min
u,q

max
p
〈Du− F ∗q,p〉 + λ‖q‖Z +G(u, gs), s = 1, . . . , S

Intuitively, this bilevel optimization problem accounts for finding interpolation kernels F such
that the solutions of the saddle-point problems (here we are only interested in the primal
solution u∗s) minimize the loss function on the entire training set.

The function R(F) is an additional regularization functional that can be used to impose
certain constraints on F . As a general requirement for valid interpolation kernels, we must
enforce that the filter coefficients in each individual filter sum up to one, that is F l,1, F l,2 ∈
CΣ=1, l = 1, . . . , L, where CΣ=1 was defined in (2.9). Hence we set

R(F) = δ(CΣ=1)L,2(F) =
L∑
l=1

δCΣ=1(F l,1) + δCΣ=1(F l,2),

here δC(x) = 0 if x ∈ C, and δC(x) =∞ else, is the “indicator function” of a set C.
During learning we will need to compute the orthogonal projection

F̂ = proj(CΣ=1)L,2(F̄)

which because of the independence of the constraints can be done for each filter separately
onto the set CΣ=1. The projection of an arbitrary vector x̄ = (x̄1, . . . , x̄n) ∈ Rn onto the set
CΣ=1 is given by

x̂ = projCΣ=1(x̄)⇐⇒ x̂i = x̄i + 1−∑n
i=1 x̄i
n

.

16 ANTONIN CHAMBOLLE AND THOMAS POCK

One can also envisage additional constraints in order to make the learned discretization
invariant to certain discrete symmetries. We will come back to such constraints when they are
needed in the applications. Note that in our framework all constraints are affine or linear, so
that, in fact, the optimization can be considered as unconstrained in a proper linear subspace
and the reprojection step is equivalent to considering as a descent direction the gradient of
the objective restricted to the subspace.

The learning problem causes several difficulties. First, it is highly non-convex since the
higher-level problem (loss function) depends on the solution of a non-smooth saddle-point
problem. Second, computing gradients of the higher-level problem with respect to F is chal-
lenging since it involves the sensitivity of the saddle-point of the lower-level problem with
respect to the interpolation kernel F .

3.2. Computing derivatives. The most straightforward approach to compute the deriva-
tives would be to unravel a certain number of iterations of the primal-dual algorithm (Algo-
rithm 1) and to make use of the machinery of automatic differentiation and backpropagation.
However, for hard problems such as inpainting, where one would need to unravel several thou-
sands of iterations one easily runs into problems because of memory limitations. In our setting
and implementation of the learning, unraveling only 100 iterations takes already more than 5
GB of memory.

In order to allow learning for large problems or a large number of iterations, we rely on
standard sensitivity analysis to derive in Appendix A a method to compute derivatives of
a loss function with respect to the linear operator appearing in the saddle-point problem.
Although the theory is valid for smooth and strongly convex objectives, we use in practice the
same strategy to compute our gradients. In order to simplify the presentation in this section,
we only show the computation of the gradient of the loss function with respect to one datum
(gs, ts) and we also drop the index s to simplify the notation. The gradient with respect to the
entire data set can be easily computed by just summing up the gradients from the individual
data examples.

Assume we have computed a saddle-point u∗, q∗,p∗ of (3.2) for a certain training example
(g, t). Then, according to (A.4), the next step is to solve for the adjoint state U∗,Q∗,P ∗
which is also the solution of the bi-quadratic saddle point problem

(3.5) min
U,Q

max
P
〈DU − F ∗Q,P 〉 + 1

2
〈
∇2G(u∗)U,U

〉
− 1

2
〈
∇2‖q∗‖ZQ,Q

〉
+ 〈∇`(u∗, t), U〉.

Instead of doing this sequentially, we propose a “Piggyback”-style algorithm [17] that jointly
computes u∗, q∗,p∗ and its adjoint state U∗,Q∗,P ∗. Algorithm 2 gives the main iterations
of the Piggyback primal-dual algorithm. It is the adaption to our setting of the Algorithm
described Section A.2, whose convergence is proved in a smoother setting.

LEARNING DISCRETE TOTAL VARIATIONS 17

Algorithm 2: Piggyback primal-dual algorithm for solving (3.2) and its adjoint.
• Initialization: u0, U0 ∈ X, q0,Q0 ∈ Z, p0,P 0 ∈ Y .
• Step sizes: Choose the block-wise step sizes τu, τq, σp such that

‖diag(σp)
1
2 (D,F ∗) diag(τu, τq)

1
2 ‖ ≤ 1,

and set θ = 1.
• Iterations: For each k = 0, . . . ,K − 1 let

(3.6)

pk+1 = pk + σp(Duk − F ∗qk), P k+1 = P k + σp(DUk − F ∗Qk)
p̄k+1 = pk+1 + θ(pk+1 − pk), P̄

k+1 = P k+1 + θ(P k+1 − P k)
ũk+1 = uk − τuD∗p̄k+1, Ũk+1 = Uk − τu(D∗P̄ k+1 +∇`(uk, t))
uk+1 = proxτuG(ũk+1), Uk+1 = ∇ proxτuG(ũk+1) · Ũk+1

q̃k+1 = qk − τqF p̄k+1, Q̃
k+1 = Qk − τqF P̄

k+1

qk+1 = shrinkτqλ(q̃k+1), Qk+1 = ∇shrinkτqλ(q̃k+1) · Q̃k+1

• Output: Approximate saddle point (uK , qK ,pK) and corresponding adjoint state
(UK ,QK ,PK)

Finally, as shown in (A.6), the gradient of `(u∗(F), t) with respect to F is approximated
by the linear form:

(3.7) 〈∇F `(u∗(F), t),L〉 ≈ −
〈
QK ,LpK

〉
−
〈
qK ,LPK

〉
⇐⇒ ∇F `(u∗(F), t) ≈ −(QK ⊗ pK + qK ⊗ PK).

We refer to the Appendix and [12] for an estimate on the error of this approximation. Then,
the gradient of the loss function on the whole data set is computed as:

(3.8) ∇L(F) = 1
MNS

S∑
s=1
∇F `(u∗s(F), ts)

Remark 3.1. The expression (3.7) of the gradient in this form is a bit abstract, but can be
easily computed by means of automatic differentiation techniques since expressions such as F p
or F ∗q are implemented as convolutions with particular boundary conditions. For this, one
first implements the linear form in the first line of (3.7) (which is nothing but a linear first order
approximation of the bilevel problem (3.4)) and then computes the gradient of this linear form
with respect to the filter coefficients of the linear operators F via automatic differentiation.
In all our experiments we use the software package Pytorch to compute the gradient which
automatically takes care of the specific boundary conditions in the convolutions.

In a similar fashion, we compute the Jacobian of the proximal maps times vector products
∇ proxτuG(ũk+1) · Ũk+1 and ∇shrinkτqλ(q̃k+1) · Q̃k+1 appearing in Algorithm 2 by means of
automatic differentiation. Note that the respective proximal maps might not be continuously
differentiable. This can be accounted for by either smoothing the proximal maps or by se-
lecting an arbitrary sub(super)-gradient which is the standard procedure in the deep learning

18 ANTONIN CHAMBOLLE AND THOMAS POCK

community for non-smooth activation functions such as the widely used rectified linear unit
ReLU(t) = max{0, t}. We found the latter option to work well in practice and hence did not
consider smoothing.

3.3. Learning algorithm. Having detailed the computation of the gradient of the loss
function with respect to the interpolation kernel F , we now consider the actual learning algo-
rithm. Here, we use an inertial proximal gradient method whose main iterations are presented
in Algorithm 3.

Algorithm 3: Proximal gradient method for solving (3.4)
• Initialization: F−1 = F 0 ∈ (CΣ=1)L,2.
• Step sizes: Choose αk > 0, βk ∈ [0, 1).
• Iterations: For k = 0, . . . ,K − 1 let

(3.9)

F̄
k = F k + βk

(
F k − F k−1

)
F k+1 = proj(CΣ=1)L,2

(
F̄
k − αk∇L(F̄ k)

)
• Output: Learned interpolation kernels FK

Depending on the particular learning problem we will make use of different settings of the
step size αk and the inertial parameter βk.

4. Numerical results. In this section we make use of the algorithms of the previous section
and show how one can learn the “best” interpolation kernels for different imaging applications.
We start with the most simple problem which is the recovery (inpainting) of straight discon-
tinuities but will also consider the regularization (smoothing) of the characteristic functions
of disks and natural image denoising.

Data generation. In the rest of this section we assume a domain Ω = [−1, 1]2 which is
discretized into N × N square pixels of size h × h, hence h = 2/N . According to (2.4), the
values ui,j , with 1 ≤ i, j ≤ N of the discrete images correspond to pixel averages of the
continuous functions u(x).

In order to generate the discrete input images and corresponding ground truth solutions,
we precompute pseudo-continuous images by first point-sampling the continuous functions on
a regular high-resolution grid of BN×BN points and then generate the discrete input images
gs and corresponding target images ts, s = 1..., at the target resolution N × N via block
averaging with blocks of size B ×B. In all experiments we used a block size of B = 64.

We also include in all generated synthetic data random shifts of the grid of the size h/2 in
order to simulate partial volume effects which is present in any real-world application. This
sort of “data augmentation” is a well known technique in deep learning in order to make the
learning more robust and generalize better to new data. In fact in our experiments it turned
out that it is a simple way to remove inherent data symmetries which could lead to persistent
local minima.

As it is standard in machine learning, we always make use of a training set to learn the
filters and then evaluate the learned filters on test data which was not part of the training
set. For the synthetic images, it will usually mean that the training set differs from the test

LEARNING DISCRETE TOTAL VARIATIONS 19

set by the random shifts.
Filter sizes. In all synthetic experiments, where the structures to be reconstructed are ba-

sically lines or circles, we consider only a small neighborhood of 2×2 pixels, which corresponds
to convolution kernels of size 2 × 3 for the horizontal component and 3 × 2 for the vertical
component of the dual variable p. See also Figure 2.1 and note that the duals are “living” on
the faces of the pixels. For natural image denoising, where locally the image structures are
much more complex, we will also consider learning with larger neighborhoods.

Number of filters. We experimented with different numbers L of filter pairs. In order to
investigate the influence of L to the reconstruction quality we performed experiments using
L ∈ {2, 3, 4, 8} filter pairs. For natural images, we will also perform experiments with a larger
number of filter pairs.

Filter symmetries. Depending on the number of filters it is natural to consider different
symmetries which should ideally also reflect the symmetries of the data. For example images
are known to by translation invariant, which is naturally captured by the convolution oper-
ation but images are also largely rotational invariant, which can be enforced by imposing a
rotational invariance on the filters to be learned. Enforcing symmetries also reduces the effec-
tive parameters to be learned and one can expect that such learned filters generalize better
to new data.

In the case of L = 2 or L = 3 we cannot impose a full rotational invariance and hence it
is most natural to consider “only” a transpose symmetry as this symmetry group has in fact
two elements. Interestingly, it will turn out that such a transpose symmetry is automatically
learned (approximately) without enforcing it explicitly.

For L = 4 and L = 8 it is more natural to consider a rotational symmetry by 4 × π
2 , as

this symmetry group has four elements.
In order to project the filters onto those symmetry groups, we first perform the projections

onto the set CΣ=1 followed by a projection onto the respective symmetry group. As an
example, for the transpose symmetry for L = 2, we used the following constraints:

F 1,1 = (F 2,2)>, F 1,2 = (F 2,1)>,

onto which the projection is done by averaging the corresponding filter entries. Overall, this
can be shown to give the orthogonal projection onto the intersection of both spaces.

Filter initialization. As the learning problem represents a nonconvex optimization problem,
the initialization has an important impact on the outcome. One can consider different random
initializations (uniform, Gaussian, ...) quite common in the deep learning literature, but for
our problem it turns out to be better to initialize the filters weights by the linear interpolation
weights obtained from interpolating the dual variables on certain regular or random positions.
Figure 4.1 below shows the initial filters in case L = 8. Note that such initial filters correspond
to the choice of the filter weights in the CD discretization.

Implementation and hardware. All algorithms are implemented in Python with the support
of GPU processing and automatic differentiation from the Pytorch package. All code will be
made available by the authors. The experiments were performed on an Nvidia Titan RTX
eGPU equipped with 24GB memory connected to a Dell XPS Laptop with a Quad-Core i9
CPU, 32GB of main memory, and running Ubuntu 20.04.

20 ANTONIN CHAMBOLLE AND THOMAS POCK

Figure 4.1. Initialization for L = 8 filter pairs using the weights of linear interpolation, where white
corresponds to a weight of 1.0, gray corresponds to a weight of 0.5 and dark gray corresponds to a weight of
0.25.

(a) Input images gs

(b) Target images ts

Figure 4.2. Samples of the training data consisting of the input images gs and corresponding target images
ts for learning to inpaint a straight discontinuity. The disk-like inpainting masks Ī are indicated by the gray
areas.

4.1. Inpainting. We first consider the problem of inpainting straight discontinuities of
various orientations from a given boundary datum. As seen on Fig. 2.2, most handcrafted
discretizations lead to more or less suboptimal solutions and hence the aim of this section is
to learn the best set of interpolation kernels which ensure a sharp discontinuity over a large
range of orientations. The general problem (3.1) can be specialized to inpainting by choosing

G(u, g) =
∑

(i,j)∈I
δ{gi,j}(ui,j),

where I is a given set which contains the pixel indices corresponding to the given boundary
datum and δC(·) is the indicator function of the convex set C. We also denote the inpainting

LEARNING DISCRETE TOTAL VARIATIONS 21

domain Ī = {1, ..., N}2 \ I. The proximal map of τG is given by

û = proxτG(ū, g)⇔ ûi,j =
{
gi,j if (i, j) ∈ I
ūi,j if (i, j) ∈ Ī.

Training and test data. The training data consists of S = 64 images, each of size N × N
pixels, with N = 64 and uniformly sampled orientations θs = 2sπ/S, s = 0, ..., S − 1 of the
discontinuities. Figure 4.2 shows a few examples of the training data consisting of the input
images gs and the corresponding target images ts. The inpainting domains Ī are shown in
gray. As already mentioned above, we also include a small random shift of size h/2 of the
discontinuity from the center of the image in order to simulate partial volume effects. The
test data was generated in exactly the same way.

Setting of the learning algorithm. First of all, solving the inpainting problem itself is al-
ready a very hard convex optimization problem (in fact similar problems are considered to
derive worst-cases rates in convex optimization) and hence one typically needs thousands of
iterations. Therefore we must expect that learning is even harder!

The gradients of the lower-level problem were computed by performing K = 2000 itera-
tions of the Piggyback primal-dual algorithm (Algorithm 2). We also used a warm-starting
strategy for both the variables and their adjoint states in order to improve the accuracy of
the gradients. Note that due to memory limitations, it would be impossible to unravel such a
high number of iterations of the primal-dual algorithm and compute the gradient via standard
backpropagation.

In the learning algorithm (Algorithm 3) we use a diminishing step size rule of the form
αk = α0

√
k+1 for some α0 > 0, as this choice is known to give an optimal convergence rate

for the iterates in subgradient methods. The inertial parameter was set to βk = 0, since for
this problem we have to expect errors in the gradient computation, and inertial methods are
known to accumulate errors of the gradient.

We stopped the learning algorithm when the loss function did not show any significant
improvement, which was usually the case after K = 1000− 2000 iterations.

Results. Table 4.1 plots the learned filters for different settings of the parameter L. First,
all learned filters appear significantly different from the known handcrafted ones. Second,
the filters L = 2 and L = 3 (where we did not enforce transpose symmetry) show an almost
transpose symmetry, very similar to the transpose symmetric filters L = 2 (s) and L = 3 (s).
This shows that it is absolutely reasonable to enforce symmetry constraints. Moreover, it
reduces the effective number of learnable parameters, indeed in case of L = 4 (s) we effectively
learned only 2 filters. Third, it is interesting that the learned filters also contain negative
values. For example the filter coefficients of the first filter pair F 1 = (F 1,1, F 1,2) for the
setting L = 2 (s) are given by (rounded to three decimals):

F 1,1 =
(

0.002 0.205 0.334
−0.021 0.161 0.319

)
, F 1,2 =

−0.029 −0.033
−0.095 1.301
−0.007 −0.137

We evaluated the learned filters on the test data, which consists of the same covering of
orientations but with different partial volume effects. We used a number of K = 105 iterations

22 ANTONIN CHAMBOLLE AND THOMAS POCK

of the primal-dual algorithm (Algorithm 1) to compute the solutions. Such a high number of
iterations is absolutely necessary to obtain high-accuracy solutions, as the convergence of the
primal-dual algorithm is very slow (in fact O(1/K)) for the inpainting problem.

Table 4.1
Learned filters for the inpainting problem where symmetric filters are marked by (s).

L = 2 L = 2 (s) L = 3 L = 3 (s)

L = 4 (s) L = 8 (s)

Table 4.1 summarizes and compares the (half) mean squared error (MSE = L(F))5 of state-
of-the-art handcrafted discretizations and the learned discretizations. For a better readability,
we multiply all MSE values by a factor of 105.

First of all, one can see that the MSE is very similar on both the training data and the
test data which indicates that overfitting is minor, particularly in cases where we explicitly
enforced a certain symmetry constraint. As already discussed, the best handcrafted filters is
given by CD, which outperforms the other handcrafted variants by a large margin. One can
also see that having a larger number of filters leads to consistently better results, but it is
more the symmetry of the filters which is important than the effective number of parameters.

Table 4.2
105 × the mean squared error (MSE) of handcrafted and learned filters evaluated on both the training and

test data.

Data FD RT CD L = 2 L = 2 (s) L = 3 L = 3 (s) L = 4 (s) L = 8 (s)
Train 135 195 6.69 1.26 1.22 1.19 1.27 0.85 0.77
Test 134 194 6.33 1.63 1.45 1.29 1.29 0.87 0.82

Figure 4.3 plots the peak signal to noise ratio (PSNR = −10 log10 2MSE) of the single
test images over the range of orientations. Note that a PSNR larger than 50 can already be
considered as almost perfect. From the plot one can see that the learned filters are consistently
better compared to the handcrafted filters and are much more rotationally invariant. Note

5Please note the additional factor of 1
2 in L(F) which we keep in order to make the MSE compatible to our

loss function.

LEARNING DISCRETE TOTAL VARIATIONS 23

that some handcrafted filters are very good in recovering grid-aligned orientations but at the
cost of poor results for non-grid-aligned orientations.

0 2
3
2

2
s

20

25

30

35

40

45

50

55

60

PS
NR

FD
RT
CD
L = 2, n = 3 (s)
L = 3, n = 3 (s)
L = 4, n = 3 (s)
L = 8, n = 3 (s)

Figure 4.3. Reconstruction quality (in PSNR) plotted over the angles of the discontinuities. One can see
that the learned filters offer a significantly improved isotropy.

Finally, Figure 4.4 provides false-color error plots of one training example with respect to
the corresponding target image. One can see that FD and RT largely fail but CD gives very
good results. The learned filters, in particular the setting L = 4 (s), give still better results
(although hard to see with the eye).

Target FD RT CD L = 2 (s) L = 3 (s) L = 4 (s) L = 8 (s)

Figure 4.4. Color coded differences to the ground truth image ts for s = 56, θs ≈ 7π
4 . CD gives the best

result among the hand crafted filters but overall, the learned filters using L = 4 (s) gives the best results.

4.2. Disk denoising. In our second experiment, we consider regularizing (denoising) a
white disk over a black background using the ROF model and 0-Dirichlet boundary conditions.
The ROF model, is obtained from (3.1) by setting G(u, g) = 1

2‖u− g‖
2
2. The corresponding

24 ANTONIN CHAMBOLLE AND THOMAS POCK

(a) Input images gs

(b) Target images ts

Figure 4.5. Samples of the training data for learning to denoise disks of different sizes.

proximal map, which is needed in the primal dual algorithm is given by

û = proxτG(ū, g)⇐⇒ ûi,j = ūi,j + τgi,j
1 + τ

.

It is a well known fact that for the disk denoising problem, the (unique) solution of the
ROF model, is given by a disk of the same radius but with a reduced intensity value 1− 2λ

rs
,

depending on the radius rs and the setting of the regularization parameter λ.
Training and test data. The training data comprises S = 64 input images gs of the charac-

teristic functions of disks with radius rs, where we sample rs regularly in the range [0.25, 0.75].
The corresponding target images ts are obtained by reducing the intensity value of the disk
to 1 − 2λ

rs
. We used a setting of λ that ensures the existence of a solution for all values of

rs. Additionally we incorporated a small random shift of the center of the disk of size h/2 to
increase the variability of the data. Figure 4.5 exemplifies a few instances of the training data
consisting of the input images and corresponding ground truth solutions. The test data was
generated in exactly the same way but with different random shifts.

Setting of the learning algorithm. Due the the strong convexity of the ROF model (in
the variable u), the computation of a high-accuracy solution is much easier than for the
inpainting problem. Also the learning appears significantly easier in practice. For computing
the derivatives, we used K = 200 iterations of the Piggyback algorithm (Algorithm 3), again
with a warm-starting strategy for both the variables and their adjoint states. In the learning
algorithm we used a constant step size αk = α0 with α0 > 0. The inertial parameter βk was

LEARNING DISCRETE TOTAL VARIATIONS 25

set to βk = 1√
2 , as this setting is known to lead to a convergent algorithm for optimization

problems with 1
α0 – Lipschitz–continuous gradients [22]. The learning was stopped when no

significant improvement of the objective function was observed, in practice after approximately
K = 1000 iterations.

Results. Table 4.3 summarizes the learned filters for the disk denoising problem. At first
glance, the filters obtained for disk denoising look very different from the filters learned for
inpainting (c.f. Table 4.1). Indeed the coefficients of the first filter pair for the setting L = 2 (s)
obtained are given by (rounded to 3 decimals)

F 1,1 =
(
−0.001 0.294 0.349
−0.037 0.168 0.227

)
, F 1,2 =

 0.009 −0.003
−0.169 1.250
−0.026 −0.062

Moreover, it is interesting that the filters obtained for the setting L = 4 (s) are very similar
(up to a translation) to the handcrafted filters of RT. This is also confirmed by the MSE
values in Table 4.4 where RT appears to be a very well performing handcrafted filter. From
the table one can also see that learning consistently improves on the entire data set (training
set and testing set). The best learned variant is given by the setting L = 8 (s). Figure 4.6
additionally plots for the testing data the PSNR values for the different handcrafted and
learned filters over the radius of the disk. One can observe that the learned filters consistently
perform better compared to the handcrafted filters over the whole range of radii. The simple
(de facto standard) discretization FD gives worst results, both in terms of the sharpness of the
boundary of the disk and the value of the disk itself. Indeed, one weakness of all handcrafted
filters seem to be to identify correctly the value of the disk which results in a large error. This
is exactly, where learning improves and finds a discretization which gives a better value of the
disk. See Figure 4.6 for a color coding based visualization of this issue.

In Figure 4.8, we show the dependence of the MSE on the discretization width h. For
this we set the parameter λ such that the intensity value of the regularized disk is equal to
1/2, and we performed the disk denoising experiment for different values of h = 2/N with
N ∈ {64, 128, 256, 512, 1024}. The MSE corresponds, in the continuous setting, to the squared
L2 norm of the solution with respect to the expected solution. The plot shows that RT and
both learned discretizations L = 4 (s) and L = 8 (s) satisfy an O(h) error bound, although
this is rigorously proved, for this experiment, only in the RT case [4].

4.3. Natural image denoising. We now propose to learn the “best” filters for denoising
natural images. Of course we have to admit that we do not expect the total variation to
be competitive against state-of-the art image denoising methods, it is just interesting to see
which kind of filters are learned for natural image denoising and how they compare to the
filters learned on the synthetic images. We will consider the same setting as in the previous
experiments, but will also present results of a larger experiment where we learn 40 filter pairs
with an effective neighborhood of 6×6 pixels. Despite the fact we are restricted to the setting
of consistent discretizations of the total variation, at the lowest scale this introduces a flavor
of non-locality which is known to be the key to the success of state-of-the art approaches. We
also present results in this setting enforcing an additional 90◦ rotational invariance, so that
the effective number of filter pairs is reduced to 10.

26 ANTONIN CHAMBOLLE AND THOMAS POCK

Table 4.3
Learned filters for the disk denoising problem. Symmetric filters are indicated by (s).

L = 2 L = 2 (s) L = 3 L = 3 (s)

L = 4 (s) L = 8 (s)

Table 4.4
105 times the mean squared error (MSE) of handcrafted and learned filters for the disk denoising problem.

Data FD RT CD L = 2 L = 2 (s) L = 3 L = 3 (s) L = 4 (s) L = 8 (s)
Train 22.28 1.36 2.33 2.10 2.10 1.62 1.63 0.73 0.48
Test 22.36 1.32 2.30 2.10 2.10 1.60 1.60 0.72 0.47

For natural image denoising, we still consider the ROF model, now with Neumann bound-
ary conditions. Since we are dealing with natural images, we do not know (even if we know
the noise level) the optimal regularization parameter λ > 0. To overcome this issue, we fix in
our optimization a value of λ but replace the sum constraint (2.9) by the looser constraints
F ∈ CΣ=µ where:

(4.1) CΣ=µ = {F : ∃µ ∈ R,
∑
m,n

ξlm,n =
∑
m,n

ηlm,n = µ, l = 1, . . . L}.

In words, the sum of the coefficients of all the filters of F should be equal to the same value.
Exploiting the 1-homogeneity of the norm, the “optimal” value of the regularization parameter
in the original problem (3.1) is then given by λ|µ|, and the normalized filter coefficients, which
satisfy (2.9), are simply obtained by dividing all the coefficients of F by µ.

During learning, we project the coefficients onto the constraint (4.1). This of course has
a simple closed form. Given m vectors x̄i = (x̄i1, . . . , x̄in) ∈ Rn, i = 1, . . . ,m, the projection
onto (4.1) reduces to the problem:

min
µ,(xi)mi=1

1
2

m∑
i=1
‖xi − x̄i‖2, s.t.

n∑
j=1

xij = µ, i = 1, . . .m.

Assuming that the optimal solution is attained for some µ̂ ∈ R, then the entries of the

LEARNING DISCRETE TOTAL VARIATIONS 27

0.3 0.4 0.5 0.6 0.7
rs

20

25

30

35

40

45

50

55

60

PS
NR

FD
RT
CD
L = 2 (s)
L = 3 (s)
L = 4 (s)
L = 8 (s)

Figure 4.6. Reconstruction errors measured in PSNR for different handcrafted and learned filters for the
disk denoising problem.

Target FD RT CD L = 2 (s) L = 3 (s) L = 4 (s) L = 8 (s)

Figure 4.7. Color coded differences to the ground truth image ts with s = 64. RT gives the best result
among the handcrafted filters but the value of the disk is well reconstructed only for the learned filter k = 8, s.

projected vectors x̂i = (x̂i1, . . . , x̂in) are given by

x̂ = x̂ij = x̄ij +
µ̂−

∑n
j=1 x̄

i
j

n
, i = 1, . . . ,m, j = 1, . . . , n.

Substituting this formula into the objective function, we get that µ̂ solves:

min
µ

1
2

m∑
i=1

(µ−
n∑
j=1

x̄ij)2,

28 ANTONIN CHAMBOLLE AND THOMAS POCK

25 26 27 28 29

h 1

10 5

10 6

10 7

M
SE

O(h)
RT
L = 4 (s)
L = 8 (s)

Figure 4.8. Plot of the MSE error with respect to the inverse discretization width h−1 of the image domain,
for the disk experiment. One sees that the handcrafted discretization RT as well as the two learned discretizations
L = 4 (s) and L = 8 (s) satisfy a O(h) error bound.

(a) Input images gs

(b) Target images ts

Figure 4.9. Samples of the training data for natural image denoising. The input images are given by adding
i.i.d zero-mean Gaussian noise with a standard deviation of σ = 0.05.

from which we obtain

µ̂ = 1
m

m∑
i=1

n∑
j=1

x̄ij .

LEARNING DISCRETE TOTAL VARIATIONS 29

Training and test data. For the training data, we used S = 64 target patches ts, s = 1, . . . S,
each of size 64×64 pixels, which are randomly cropped from images of the well-known BSDS500
database [2]. The input patches gs are generated by adding i.i.d. zero-mean Gaussian noise
with a standard deviation of σ = 0.05. The test data was generated in exactly the same way,
but of course contain a different set of randomly cropped patches. For the handcrafted filters
the optimal regularization parameter was determined to be λ = 0.025 and kept constant for
both the training and test set. For the learned filters we used λ = 0.02 but the effective
regularization parameter was adapted during learning, by the additional freedom to adjust
the sum of the filter coefficients.

Setting of the learning algorithm. We used exactly the same setting of the learning algorithm
as in the case of the disk denoising experiment.

Results. In Table 4.5 we plot the learned filters for the setting L = 8 (s) using a neighbor-
hood of 2× 2 pixels, L = 40 and L = 40 (s) using a neighborhood of 6× 6 pixels. Comparing
the setting L = 8 (s) obtained for natural images with the respective filters obtained for disk
denoising, we see that the filters for natural images are significantly different. The main rea-
son is that natural photographs do not to contain sharp discontinuities because of the band
limitation of optical devices. The larger filters show quite nicely that the learned interpolation
kernels correspond to oriented edge- and line-like structures and hence better adapt to the
structures of natural images. As mentioned before, another interpretation is that the learned
filters correspond to a convolutional dictionary for the local image gradient Du.

Table 4.5
Learned filters for natural image denoising. Symmetric filters are indicated by (s).

L = 8 (s), 2× 2

L = 40 (s), 6× 6

L = 40, 6× 6

Table 4.6 presents quantitative results and comparisons with hand-crafted discretizations.
One can see that the learned discretizations lead to significantly better values than any of the
handcrafted discretizations. Interestingly, while the setting L = 40 yields the smallest training
MSE, the setting L = 40 (s), enforcing the rotational invariance, gives a slightly better test
MSE and seems to generalize better to new data.

In Figure 4.10 we finally provide a per-instance comparison between the PSNR values
of the learned discretization L = 40 (s) and the handcrafted discretization CD. One can see

30 ANTONIN CHAMBOLLE AND THOMAS POCK

Table 4.6
104× the mean squared error (MSE) of handcrafted and learned filters for natural image denoising.

Data FD RT CD L = 8 (s) L = 40 (s) L = 40
Train 5.05 5.33 4.87 4.58 4.31 4.22
Test 4.72 5.05 4.51 4.28 4.10 4.13

that as expected, a clear majority of image instances are better denoised by the learned
discretization. We also exemplify provide one typical denoising results, where the learned
discretization yields an improvement of almost 0.8 dB.

26 28 30 32 34 36
CD

26

28

30

32

34

36

L
=

40
(s

)

(a) Training set

26 28 30 32 34 36
CD

26

28

30

32

34

36

L
=

40
(s

)

(b) Test set

Target t Input g CD, PSNR=28.98 L = 40 (s), PSNR=29.77

(c) Example from the test set

Figure 4.10. Comparison (in PSNR) between the best handcrafted filters (CD) and the learned filters
L = 40 (s) for both the training set (a) and the test set (b). Subfigure (c) exemplifies a denoised image patch
from the test set where the learned discretization of the total variation gives a significant improvement.

LEARNING DISCRETE TOTAL VARIATIONS 31

Table 4.7
Confusion matrix for the crossover experiments. For a better comparison, all values are here on the scale

of 105× the mean squared error (MSE). For comparison the last column depicts the results for the handcrafted
filters of CD.

Learning task Handcrafted
Line Disk Natural CD

Evaluation task
Line 0.82 243.55 50.71 6.33
Disk 1.88 0.47 4.08 2.30
Natural 48.68 49.65 42.80 45.10

4.4. Crossover experiments. We conclude this section by carrying out crossover experi-
ments, where we compare the filters learned on one specific task to the other tasks. The aim
of such crossover experiments is to investigate the extent to which the learned discretization
schemes can be generalized to other tasks. In order to make a relatively fair comparison, we
only compare the filter of the setting L = 8 (s), for which we have obtained good results on
all the tasks. In Table 4.7, we provide a “confusion matrix” of the results and we put the
respective results of the handcrafted scheme CD as a reference. One can see that the filters
obtained for line inpainting seem to generalize best to the other tasks. Surprisingly, the filters
obtained for natural image denoising task seem to generalize better than the filters learned
for the synthetic disk denoising task. It seems that for disk denoising the role of the quadratic
data fidelity term is too strong such that almost “any” consistent discretization of the total
variation may give good results. At this point one could of course try to learn optimal filters
for several tasks simultaneously, and one can expect that this gives even better generalization
capabilities, but we leave this experiments for future work.

Appendix A. Derivatives of saddle-points.
In this appendix, we give a partial justification of the “Piggyback”-style Algorithm 2 the

derivative of our loss function. We consider to simplify a smoother objective. This is obtained
by assuming that both ‖·‖Z and G(·, g) in (3.2) are replaced with smooth and strongly convex
functions: in such situation our sensitivity analysis shows that Algorithm 2 actually converges
to states and adjoint states from which one can recover a gradient of the objective. In general,
we can just hope that it produces a limit of gradients which would be computed by smoothing
the appropriate functions and then letting the smoothing go to zero, but this remains an open
question. On the other hand, the good quality of the gradients we compute and the results of
the optimization give a hint that it seems to be the case in our application. In a forthcoming
work [12], we will further analyse this algorithm in a slightly more general setting.

A.1. Theoretical grounds. We consider here a generic problem of type (3.2), yet in a
smoother case. Following the notation in [6, 7], we are given two convex, lower semicontinuous
functions g, f such that g, f∗ are smooth (at least C2, we will require a bit more in Sec. A.3)
and strongly convex (defined on some finite dimensional Euclidean spaces X, Y). We consider
then the standard saddle point problem

(A.1) min
x∈X

max
y∈Y
〈Kx, y〉 + g(x)− f∗(y)

32 ANTONIN CHAMBOLLE AND THOMAS POCK

which, with our assumptions, has for any given linear operator K : X → Y ∗ ' Y a unique
saddle point (x̂, ŷ). Then, we consider the convex and continuously differentiable loss function

L(K) = `(x̂(K), ŷ(K)),

where we have made explicit the dependence of the saddle point (x̂, ŷ) with respect to the
linear operator K. Our aim is to find a derivative of L with respect to the linear operator K.

Following a classical approach in sensitivity analysis, we start from the optimality condi-
tion of the saddle-point problem (A.1):

(A.2)
{
Kx̂−∇f∗(ŷ) = 0
K∗ŷ +∇g(x̂) = 0

and assume K is perturbed by a small variation sL, |s| � 1, in a given direction L. Denoting
x̂s = x̂+ sξs and ŷs = ŷ + sηs the solution for the linear operator K + sL it follows that{

Kx̂+ s(Kξs + Lx̂s)−∇f∗(ŷ)−
(∫ s

0 D
2f∗(ŷ + tηs)dt

)
ηs = 0,

K∗ŷ + s(K∗ηs + L∗ŷs) +∇g(x̂) +
(∫ s

0 D
2g(x̂+ tξs)dt

)
ξs = 0.

Dividing by s and making use of the optimality condition (A.2) yieldsKξs + Lx̂s −
(

1
s

∫ s
0 D

2f∗(ŷ + tηs)dt
)
ηs = 0

K∗ηs + L∗ŷs +
(

1
s

∫ s
0 D

2g(x̂+ tξs)dt
)
ξs = 0.

Thanks to the strong convexity of g, f∗ (and the continuity of the Hessians) we can pass to
the limit as s→ 0 and see that ξs, ηs go to ξ, η satisfying{

K∗η + L∗ŷ +D2g(x̂)ξ = 0,
−Kξ − Lx̂+D2f∗(ŷ)η = 0,

where we have exchanged the order of the equations and changed the sign of the second line.
The unique solution is given by(

ξ
η

)
=
(
D2g(x̂) K∗

−K D2f∗(ŷ)

)−1(
−L∗ŷ
Lx̂

)

We can now compute the directional derivative L′(K;L) = 〈∇L(K), L〉, as follows:

(A.3) L′(K;L) = ∇`(x̂, ŷ)T
(
ξ
η

)
= ∇`(x̂, ŷ)T

(
D2g(x̂) K∗

−K D2f∗(ŷ)

)−1(
−L∗ŷ
Lx̂

)
.

Next, we introduce adjoint variables X,Y , such that

(−XT , Y T) = ∇`(x̂, ŷ)T
(
D2g(x̂) K∗

−K D2f∗(ŷ)

)−1

⇔ ∇`(x̂, ŷ) =
(
D2g(x̂) −K∗
K D2f∗(ŷ)

)(
−X
Y

)
,

LEARNING DISCRETE TOTAL VARIATIONS 33

which we can write as:

(A.4)
{
D2g(x̂)X +K∗Y +∇x`(x̂, ŷ) = 0,
−KX +D2f∗(ŷ)Y −∇y`(x̂, ŷ) = 0.

Equation (A.4) are the optimality conditions of the bi-quadratic adjoint saddle-point problem:

min
X

sup
Y
〈KX,Y 〉 + 1

2
〈
D2g(x̂)X,X

〉
− 1

2
〈
D2f∗(ŷ)Y , Y

〉
+
〈
∇`(x̂, ŷ),

(
X
Y

)〉
.

Denoting by (X̂, Ŷ) the unique solution of this adjoint saddle-point problem, the directional
derivative (A.3) is given by

(A.5) L′(K;L) =
〈
X̂, L∗ŷ

〉
+
〈
Ŷ , Lx̂

〉
,

for any L. Using L′(K;L) = 〈∇L(K), L〉 we find that the gradient is given by

(A.6) ∇L(K) = Ŷ ⊗ x̂+ ŷ ⊗ X̂.

In practice, our variable will be only a subset of the operator K, in which case it is convenient
to assemble the linear form (A.5) and use automatic differentiation to extract its gradient
with respect to the relevant parameters.

A.2. Algorithms. Algorithm 3 in [6] (or Alg. 5 in [7]) can be implemented to solve
both (A.2) and (A.4). For the latter it yields the following iterations: one chooses τ, σ > 0,
θ ≤ 1 (particular choices will be discussed later on), choose (X0, Y 0) and let for each k:

(A.7)

Xk+1 = (I + τD2g(x̂))−1(Xk − τ(K∗Y k +∇x`(x̂, ŷ)))
X̄k+1 = Xk+1 + θ(Xk+1 −Xk)
Y k+1 = (I + σD2f∗(ŷ))−1(Y k + σ(KX̄k+1 +∇y`(x̂, ŷ))).

Here (x̂, ŷ) have to be computed first by solving (A.2), which can be done using the same
algorithm (and actually, with the same parameters τ, σ, θ): we pick (x0, y0) (possibly as the
result of a former optimization) and let for each k:

(A.8)

xk+1 = (I + τ∇g))−1(xk − τK∗yk)
x̄k+1 = xk+1 + θ(xk+1 − xk)
yk+1 = (I + σ∇f∗)−1(yk + σKx̄k+1).

Now, a natural algorithm consists in replacing in (A.7) the values of (x̂, ŷ), which can
be estimated only up to some precision, with the iterate (xk, yk) or (xk+1, yk+1) of the itera-
tion (A.8). Denoting proxτg = (I + τ∇g)−1, etc, we observe that for any x,

∇ proxτg(x) = (I + τD2g(proxτg(x)))−1.

Hence ∇ proxτg(xk − τK∗yk) = (I +D2g(xk+1))−1, etc. Computationally, the idea would be
to evaluate such a gradient using automatic differentiation, against the vector Xk−τ(K∗Y k+

34 ANTONIN CHAMBOLLE AND THOMAS POCK

∇x`(x̂, ŷ)): however also in the latter we have to substitute (x̂, ŷ) with known values, which
at this point would be (xk, yk). This would transform (A.7) into:

(A.9)

Xk+1 = ∇ proxτg(xk − τK∗yk) · (Xk − τ(K∗Y k +∇x`(xk, yk)))
X̄k+1 = Xk+1 + θ(Xk+1 −Xk)
Y k+1 = ∇ proxσf∗(yk + σKx̄k+1) · (Y k + σ(KX̄k+1 +∇y`(xk, yk))).

where xk, yk, x̄k+1 are computed using (A.8). Iterations (A.8) and (A.9) translate to Alg. 2
in the particular setting of this paper.

A.3. Convergence analysis. We denote γ the modulus of convexity of g and δ the modulus
of f∗. Thanks to [6, Thm. 3], choosing µ = 2

√
γδ/‖K‖, 1/(1 + µ) ≤ θ ≤ 1, τ = µ/(2γ) and

σ = µ/(2δ) we have:
γ‖xk − x̂‖2 + (1− ω)δ‖yk − ŷ‖2 ≤ Cωk

for ω = (1 + θ)/(2 + µ) < 1 (precisely, ω = θ in case θ = 1/(1 + µ), ω = 1/(1 + µ/2) in
case θ = 1). Hence, one should expect Xk, Y k to converge to the solution of (A.4) if g, f∗
and ` are smooth enough, following the analysis for inexact primal-dual algorithms (see for
instance [24]).

We can sketch a convergence analysis, following [6, 7, 24], as follows. We write (A.7) as{
D2g(xk+1) ·Xk+1 = Xk−Xk+1

τ − (K∗Y k +∇x`(xk, yk)))
D2f∗(yk+1) · Y k+1 = Y k−Y k+1

σ + (KX̄k+1 +∇y`(xk, yk))).

Subtracting (A.4), we get that{
D2g(xk+1) · (Xk+1 − X̂) = Xk−Xk+1

τ −K∗(Y k − Ŷ) + ek+1
X

D2f∗(yk+1) · (Y k+1 − Ŷ) = Y k−Y k+1

σ +K(X̄k+1 − X̂) + ek+1
Y

where the error terms are given by

ek+1
X = −(∇x`(xk, yk)−∇x`(x̂, ŷ) + (D2g(xk+1)−D2g(x̂)) · X̂),

ek+1
Y = ∇y`(xk, yk)−∇y`(x̂, ŷ)− (D2f∗(yk+1)−D2f∗(ŷ)) · Ŷ .

In particular, if we assume additionally that ∇` and D2g, D2f∗ are Lipschitz, we have the
estimate, for k ≥ 1,

(A.10) ‖ekX‖2 + ‖ekY ‖2 ≤ Cωk

where C depends on the Lipschitz constants mentioned above. We observe that we would still
obtain a (slower) linear rate if we assumed only Hölder continuity of the same functions.

We deduce that

γ‖Xk+1 − X̂‖2 ≤ 1
τ

〈
Xk −Xk+1, Xk+1 − X̂

〉
−
〈
Y k − Ŷ ,K(Xk+1 − X̂)

〉
+
〈
ek+1
X , Xk+1 − X̂

〉
,

LEARNING DISCRETE TOTAL VARIATIONS 35

that is

1 + 2τγ
2τ ‖Xk+1 − X̂‖2 + 1

2τ ‖X
k+1 −Xk‖2 ≤ 1

2τ ‖X
k − X̂‖2

−
〈
Y k − Ŷ ,K(Xk+1 − X̂)

〉
+
〈
ek+1
X , Xk+1 − X̂

〉
and in the same way

1 + 2σδ
2σ ‖Y k+1 − Ŷ ‖2 + 1

2σ‖Y
k+1 − Y k‖2 ≤ 1

2σ‖Y
k − Ŷ ‖2

+
〈
Y k+1 − Ŷ ,K(X̄k+1 − X̂)

〉
+
〈
ek+1
Y , Y k+1 − Ŷ

〉
.

As in [6] we introduce ∆k := 1
2τ ‖X

k − X̂‖2 + 1
2σ‖Y

k−1 − Ŷ ‖2. We sum the previous
inequalities to find that

(A.11) (1 + µ)∆k+1 + 1
2τ ‖X

k+1 −Xk‖2 + 1
2σ‖Y

k − Y k−1‖2

≤ ∆k −
〈
Y k − Ŷ ,K(Xk+1 −Xk)

〉
+ θ

〈
(Y k−1 − Ŷ k,K(Xk −Xk−1)

〉
+ θ

〈
Y k − Y k−1,K(Xk −Xk−1)

〉
+
〈
ek+1
X , Xk+1 − X̂

〉
+
〈
ekY , Y

k − Ŷ
〉
.

The simplest way to get rid of the two error terms (which might not be optimal) is to bound
these by ‖ek+1

X ‖2/(2γ) + ‖ekY ‖2/(2δ) + (µ/2)∆k+1, thanks to Young’s inequality. It yields

(A.12) (1 + µ
2)∆k+1 + 1

2τ ‖X
k+1 −Xk‖2 + 1

2σ‖Y
k − Y k−1‖2

≤ ∆k −
〈
Y k − Ŷ ,K(Xk+1 −Xk)

〉
+ θ

〈
(Y k−1 − Ŷ k,K(Xk −Xk−1)

〉
+ θ

〈
Y k − Y k−1,K(Xk −Xk−1)

〉
+ 1

2γ ‖e
k+1
X ‖2 + 1

2δ‖e
k
Y ‖2.

Letting now ω̃ := (1 + θ)/(2 + µ/2) ∈ (ω, 1), using (A.10) and adapting the proofs of [6,
Thm. 3] [24, Thm. 7], we obtain that (Xk, Y k) → (X̂, Ŷ) at rate O(ω̃k/2) (which is strictly
slower than the rate for (xk, yk)). As mentioned already, if ∇`, D2g, D2f∗ are only Hölder
continuous, we may still adapt the above proof to still obtain a (slower) linear convergence
rate.

REFERENCES

[1] R. Abergel and L. Moisan, The Shannon Total Variation, J. Math. Imaging Vision, 59 (2017), pp. 341–
370, https://doi.org/10.1007/s10851-017-0733-5, http://dx.doi.org/10.1007/s10851-017-0733-5.

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, Contour detection and hierarchical image seg-
mentation, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011), pp. 898–916, https://doi.org/10.1109/
TPAMI.2010.161, http://dx.doi.org/10.1109/TPAMI.2010.161.

[3] A. Braides, Γ-convergence for beginners, vol. 22 of Oxford Lecture Series in Mathematics and its Appli-
cations, Oxford University Press, Oxford, 2002, https://doi.org/10.1093/acprof:oso/9780198507840.
001.0001, http://dx.doi.org/10.1093/acprof:oso/9780198507840.001.0001.

https://doi.org/10.1007/s10851-017-0733-5
http://dx.doi.org/10.1007/s10851-017-0733-5
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1093/acprof:oso/9780198507840.001.0001
https://doi.org/10.1093/acprof:oso/9780198507840.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198507840.001.0001

36 ANTONIN CHAMBOLLE AND THOMAS POCK

[4] C. Caillaud and A. Chambolle, Error estimates for finite differences approximations of the total
variation. Preprint hal-02539136, 2020, https://hal.archives-ouvertes.fr/hal-02539136.

[5] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision,
20 (2004), pp. 89–97. Special issue on mathematics and image analysis.

[6] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with appli-
cations to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145, https://doi.org/10.1007/
s10851-010-0251-1, http://dx.doi.org/10.1007/s10851-010-0251-1.

[7] A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal-dual algorithm,
Mathematical Programming, (2015), pp. 1–35, https://doi.org/10.1007/s10107-015-0957-3, http://
dx.doi.org/10.1007/s10107-015-0957-3. (online first).

[8] A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Acta Numer., 25
(2016), pp. 161–319, https://doi.org/10.1017/S096249291600009X.

[9] A. Chambolle and T. Pock, Total roto-translational variation, Numer. Math., 142 (2019), pp. 611–666,
https://doi.org/10.1007/s00211-019-01026-w, https://doi.org/10.1007/s00211-019-01026-w.

[10] A. Chambolle and T. Pock, Crouzeix-Raviart approximation of the total variation on sim-
plicial meshes, J. Math. Imaging Vision, 62 (2020), pp. 872–899, https://doi.org/10.1007/
s10851-019-00939-3, https://doi.org/10.1007/s10851-019-00939-3.

[11] A. Chambolle and T. Pock, Finite differences and finite elements discretizations of the total variation.
Preprint hal-02959358, 2020, https://hal.archives-ouvertes.fr/hal-02959358.

[12] A. Chambolle and T. Pock, Convergence of a Piggyback-style method for the differentiation of solutions
of standard saddle-point problems, tech. report, CEREMADE, Paris-Dauphine / ICG, TU Graz, 2021.
(in preparation).

[13] L. Condat, Discrete total variation: new definition and minimization, SIAM J. Imaging Sci., 10 (2017),
pp. 1258–1290, https://doi.org/10.1137/16M1075247.

[14] G. Dal Maso, An introduction to Γ-convergence, vol. 8 of Progress in Nonlinear Differential Equa-
tions and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1993, https://doi.org/10.1007/
978-1-4612-0327-8, http://dx.doi.org/10.1007/978-1-4612-0327-8.

[15] P. Destuynder, M. Jaoua, and H. Sellami, A dual algorithm for denoising and preserving edges in
image processing, J. Inverse Ill-Posed Probl., 15 (2007), pp. 149–165, https://doi.org/10.1515/JIIP.
2007.008, https://doi.org/10.1515/JIIP.2007.008.

[16] E. Giusti, Minimal surfaces and functions of bounded variation, vol. 80 of Monographs in Mathemat-
ics, Birkhäuser Verlag, Basel, 1984, https://doi.org/10.1007/978-1-4684-9486-0, http://dx.doi.org/
10.1007/978-1-4684-9486-0.

[17] A. Griewank and C. Faure, Piggyback differentiation and optimization, in Large-Scale PDE-
Constrained Optimization, L. T. Biegler, M. Heinkenschloss, O. Ghattas, and B. van Bloemen Waan-
ders, eds., Berlin, Heidelberg, 2003, Springer Berlin Heidelberg, pp. 148–164.

[18] M. Herrmann, R. Herzog, S. Schmidt, J. Vidal-Núñez, and G. Wachsmuth, Discrete total varia-
tion with finite elements and applications to imaging, Journal of Mathematical Imaging and Vision,
61 (2019), pp. 411–431.

[19] M. Hintermüller, C. N. Rautenberg, and J. Hahn, Functional-analytic and numerical is-
sues in splitting methods for total variation-based image reconstruction, Inverse Problems, 30
(2014), pp. 055014, 34, https://doi.org/10.1088/0266-5611/30/5/055014, https://doi.org/10.1088/
0266-5611/30/5/055014.

[20] K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational models,
SIAM J. Imaging Sci., 6 (2013), pp. 938–983, https://doi.org/10.1137/120882706, https://doi.org/
10.1137/120882706.

[21] M.-J. Lai, B. Lucier, and J. Wang, The Convergence of a Central-Difference Discretization
of Rudin-Osher-Fatemi Model for Image Denoising, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009, pp. 514–526, https://doi.org/10.1007/978-3-642-02256-2 43, https://doi.org/10.1007/
978-3-642-02256-2 43.

[22] M. C. Mukkamala, P. Ochs, T. Pock, and S. Sabach, Convex-Concave Backtracking for Inertial
Bregman Proximal Gradient Algorithms in Nonconvex Optimization, SIAM Journal on Mathematics
of Data Science, 2 (2020), pp. 658–682, https://doi.org/10.1137/19M1298007.

[23] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms, in Inter-

https://hal.archives-ouvertes.fr/hal-02539136
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10107-015-0957-3
http://dx.doi.org/10.1007/s10107-015-0957-3
http://dx.doi.org/10.1007/s10107-015-0957-3
https://doi.org/10.1017/S096249291600009X
https://doi.org/10.1007/s00211-019-01026-w
https://doi.org/10.1007/s00211-019-01026-w
https://doi.org/10.1007/s10851-019-00939-3
https://doi.org/10.1007/s10851-019-00939-3
https://doi.org/10.1007/s10851-019-00939-3
https://hal.archives-ouvertes.fr/hal-02959358
https://doi.org/10.1137/16M1075247
https://doi.org/10.1007/978-1-4612-0327-8
https://doi.org/10.1007/978-1-4612-0327-8
http://dx.doi.org/10.1007/978-1-4612-0327-8
https://doi.org/10.1515/JIIP.2007.008
https://doi.org/10.1515/JIIP.2007.008
https://doi.org/10.1515/JIIP.2007.008
https://doi.org/10.1007/978-1-4684-9486-0
http://dx.doi.org/10.1007/978-1-4684-9486-0
http://dx.doi.org/10.1007/978-1-4684-9486-0
https://doi.org/10.1088/0266-5611/30/5/055014
https://doi.org/10.1088/0266-5611/30/5/055014
https://doi.org/10.1088/0266-5611/30/5/055014
https://doi.org/10.1137/120882706
https://doi.org/10.1137/120882706
https://doi.org/10.1137/120882706
https://doi.org/10.1007/978-3-642-02256-2_43
https://doi.org/10.1007/978-3-642-02256-2_43
https://doi.org/10.1007/978-3-642-02256-2_43
https://doi.org/10.1137/19M1298007

LEARNING DISCRETE TOTAL VARIATIONS 37

national Conference of Computer Vision (ICCV 2011), 2011, pp. 1762–1769.
[24] J. Rasch and A. Chambolle, Inexact first-order primal-dual algorithms, Comput. Optim. Appl.,

76 (2020), pp. 381–430, https://doi.org/10.1007/s10589-020-00186-y, https://doi.org/10.1007/
s10589-020-00186-y.

[25] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2nd order elliptic problems,
(1977), pp. 292–315. Lecture Notes in Math., Vol. 606.

[26] J. Wang and B. J. Lucier, Error bounds for finite-difference methods for Rudin-Osher-Fatemi image
smoothing, SIAM J. Numer. Anal., 49 (2011), pp. 845–868, https://doi.org/10.1137/090769594, http:
//dx.doi.org/10.1137/090769594.

https://doi.org/10.1007/s10589-020-00186-y
https://doi.org/10.1007/s10589-020-00186-y
https://doi.org/10.1007/s10589-020-00186-y
https://doi.org/10.1137/090769594
http://dx.doi.org/10.1137/090769594
http://dx.doi.org/10.1137/090769594

	Introduction
	Problem and setting
	Some examples
	General interpolation operators
	Boundary conditions
	General form: consistency

	Learning a better discretization
	The learning problem
	Computing derivatives
	Learning algorithm

	Numerical results
	Inpainting
	Disk denoising
	Natural image denoising
	Crossover experiments

	Appendix A. Derivatives of saddle-points
	Theoretical grounds
	Algorithms
	Convergence analysis

