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Abstract 

Questions: Giving a time advance to restored native plant species has recently been considered a 

promising way to improve their persistence and reduce invasion success (i.e.  through priority effects). 

However, little is known about the influence of the elapsed time between seeding and invasion and its 

interaction with other characteristics such as species composition and density, despite the fact that it could 

substantially help developing effective management strategies. 

Methods: In a pot experiment, we simulated invasion by three major invasive species (Ambrosia 

artemisiifolia, Bothriochloa barbinodis, and Cortaderia selloana) in soil covered with recipient 

communities differing in species composition (one, three or nine species), density (700 or 2,778 

seeds/m
2
), and time advance (established one or five months previously). We assessed early invasion 

success by measuring seedling emergence and survival over six months. 

Results: Early invasion success was mainly explained by recipient community's time advance and 

composition (or their interaction), while density had limited influence. Polycultures (three or nine species) 

showed generally greater invasion resistance, most likely due to high aboveground biomass essentially 

produced by two species. Species composition interacted with time advance in two ways: (1) 

Bothriochloa barbinodis seedling emergence was impacted by composition only in communities having 

five months of advance, suggesting that the contribution of species composition to invasion resistance 

varies according to the age of the community, and (2) Ambrosia artemisiifolia and Cortaderia selloana 

survival was affected by time advance in polycultures only, which produced much more biomass than 

monocultures, implying that a greater head start provides a competitive advantage only if it allows a 

sufficient increase in biomass production. 

Conclusions: Implementing revegetation as soon as site clearance work is over, as well as establishing 

productive native species may help reduce invasion success. How much of an advantage recipient 

community time advance represents depends on biomass production. 

Keywords: assembly, biomass, biotic resistance, coexistence, composition, density, historical contingencies, invasive 

species, multistate models, priority effects, restoration, revegetation 

  



 

1| Introduction 

The alarming rate of biodiversity loss worldwide has been attributed particularly to the constantly 

increasing spread of invasive species (Mollot et al. 2017; Seebens et al. 2017), highlighting the 

importance of designing effective and environment-friendly methods of invasive species control. The 

current expansion of anthropologically disturbed areas promotes plant invasions (Facon et al. 2006; 

Hobbs & Huenneke 1992), with disturbances like vegetation clearance increasing resource availability 

and decreasing competition from resident species (Davis et al. 2000). Active reestablishment of native 

plant cover after a disturbance is increasingly being advocated as a method of reducing invasive plant 

species colonization and spread locally (Byun & Lee 2017; Larson et al. 2013; Middleton et al. 2010). 

The idea is that re-established communities exhibit a certain resistance to invasions (biotic resistance; 

Levine et al. 2004), mainly through resource competition at the neighborhood scale (Goldstein & Suding 

2014; Levine et al. 2004). It has also been suggested that it may be more effective to combat invasive 

species at the seedling stage, since: (1) the seedling stage is considered one of the most vulnerable stages 

in the life cycle of a plant (Kitajima & Fenner 2000); and (2) initial seedling establishment largely 

determines subsequent population success (Albrecht & McCarthy 2009; Kitajima & Fenner 2000). 

Consequently, designing native plant communities capable of quickly acquiring robust invasion resistance 

is a fundamental step in limiting invasive species establishment. Recently, giving a time advance to the 

native species over invasives has been suggested as a way to improve native species persistence and limit 

invasive species colonization through priority effects (Delory, Weidlich, Kunz et al. 2019; Firn et al. 

2010; Grman & Suding 2010; Hess, Mesléard, Buisson 2019; Vaughn & Young 2015; Wolf & Young 

2016). Priority effects, by which early-arriving species affect the establishment, survival, growth or 

reproduction of later colonizers (Helsen et al. 2016), are considered to be mainly induced by resource 

preemption (Fukami 2015), but can also arise from alterations of biotic (e.g. soil microorganisms) and 

abiotic (e.g.  allelochemicals, nutrient dynamics) components of the environment (Corbin & D’Antonio 

2012; Mangla & Callaway 2008). Prior establishment of native species has been shown to strongly 

decrease invasion success. For instance, Grman and Suding (2010) found a ten-fold reduction in invasive 

species biomass when native species were planted five weeks earlier. Delory, Weidlich, Kunz et al. 

(2019) showed that in the exotic species Senecio inaequidens biomass was 96% to 99% lower when 

arriving with a 21-day delay over native species. However, little attention has been paid to the influence 

of elapsed time between seeding and invasion in interaction with community characteristics (Helsen et al. 

2016; Hess, Mesléard, Buisson 2019; Orloff et al. 2013; von Gillhaussen et al. 2014). 

 Timing of species arrival can have substantial effects on community assembly (Ejrnaes et al. 2006; 

Harper 1961; Kardol et al. 2013; Körner et al. 2008; Ross & Harper 1972; Sagar & Harper 1960). Longer 

time intervals between arrival events are expected to result in greater asymmetry in plant size and 

stronger priority effects (Kardol et al. 2013; Wilsey et al. 2015), because early-arriving species have time 

to use available resources more completely. Therefore, extending the time advance of natives over 

invasives should lead to increased invasion resistance. Since plant species vary in size and biomass 

production, the benefit of increasing time advance could however depend on species composition. Also, 

increasing the density of resident individuals in a community (i.e. the number of individuals per surface 

unit) may also increase priority effects and reduce the recruitment of invasive species (Goldberg et al. 

2001; Orloff et al. 2013; Yannelli et al. 2017, 2018), because establishing more individuals is expected to 

enhance resource acquisition, thereby reducing the resources available for invading species (Gerhardt & 

Collinge 2007). However, increasing sowing density may only be efficient in the very early stages 

because biomass production stabilizes over time (i.e.   density-dependent effects; (Burton et al. 2006; 

Carter & Blair 2012; Crawley 2007; Nemec et al. 2013; von Gillhaussen et al. 2014).  



 

Invasive species management strategies could be substantially improved by a better understanding of how 

early invasion resistance is influenced by the time advance given to native species and its interaction with 

species composition and individuals’ density, which are three parameters easy to manipulate. In a 

greenhouse experiment, we investigated how the elapsed time between seeding and invasion (hereafter 

‘time advance’; one or five months) in interaction with species composition (one, three or nine species) 

and density of individuals (700 or 2,778 seeds/m
2
) influenced the early establishment success of three 

invasive species in Europe: Ambrosia artemisiifolia, Bothriochloa barbinodis and Cortaderia selloana. 

Early establishment success was monitored by recording seedling emergence and survival over six 

months. 

2| Methods 

2.1| Species selection 

While many studies assess the response of a single invader (Byun et al. 2013; Byun & Lee 2017; Dukes 

2002; Firn et al. 2010), this does not allow for the detection of varying responses from invasive species 

(Emery 2007). Here, therefore, we monitored early establishment success of three species known to 

invade disturbed areas in Europe (Domenech & Vila 2008; Fried 2010; Ozaslan et al. 2016) and disperse 

by seed (Allred 2003; Bassett & Crompton 1975; Fried 2010; Lambrinos 2002): common ragweed 

(Ambrosia artemisiifolia L.), cane bluestem (Bothriochloa barbinodis (Lag.) Herter) and pampas grass 

(Cortaderia selloana (Schult. & Schult.f.) Asch & Graebn.). 

The common ragweed (Ambrosia artemisiifolia L., Asteraceae) is an annual opportunistic weed 

introduced from North America more than a century ago (Heckel 1906). Thanks to its large ecological 

amplitude (Leskovsek et al. 2012; Onen et al. 2017) and high seed production (up to 18,650 seeds in 

France; Fumanal 2007), the common ragweed can successfully invade disturbed areas such as road sides, 

riverbanks, wastelands as well as cultivated fields (Lavoie et al. 2007; Simard & Benoit 2010). 

The cane bluestem (Bothriochloa barbinodis (Lag.) Herter, Poaceae) is a perennial warm-season C4-grass 

growing in upright clumps 60–120 cm tall (De Wet 1968; Koshi et al. 1977) native to the southern USA 

and Central and South America (Vega 2000). Only recently observed in Europe (1970s in southern 

France as Bothriochloa imperatoides (Hack.) Herter; Auriault 1976), it spreads fast along roadsides, 

railways and vineyards in large parts of France (Fried 2014; Verloove & Sánchez Gullón 2012) and could 

become a serious invader (Fried 2010). 

The pampas grass (Cortaderia selloana (Schult. & Schult.f.) Asch. & Graebn., Poaceae) is a perennial 

C4-grass introduced from South America into Europe and widely used as an ornamental landscape plant 

that can be up to 4 m in height and 3.5 m in diameter (Bacchetta et al. 2010; Bossard et al. 2000; 

Domenech & Vila 2008). The small, wind-dispersed seeds (i.e.   106 seeds per mature plant; Domenech 

& Vila 2008; Lambrinos 2002) are able to rapidly germinate under a wide range of ecological conditions 

(Domenech & Vila 2007) and form dense monospecific stands (Bossard et al. 2000; Lambrinos 2002). 

For each invasive species, we collected seeds from at least ten individuals from three mature populations 

in southeastern France (Supplementary material, Table S3.1). Seeds from Ambrosia artemisiifolia were 

initially cold-stratified to break dormancy and optimize germination (Bazzaz 1970). Seeds were placed 

between two cotton layers soaked in distilled water in a hermetically sealed plastic box covered with 

light-tight aluminum and refrigerated at 4°C for six weeks (Bae et al. 2017). Under favorable conditions, 

Cortaderia selloana and Bothriochloa barbinodis are able to rapidly reach high germination rates without 

cold stratification (Abbott & Roundy 2003; Bacchetta et al. 2010; Costas-Lippmann 1979), and their 

seeds were therefore not cold-stratified. 



 

Before starting the experiment, we assessed the germination capacity of the three invasive species by 

placing 120 seeds in Petri dishes on cotton soaked in distilled water. The Petri dishes were placed in a 

growth chamber (Hotcold-GL: 12K lux; P-Selecta, Barcelona, Spain) and incubated at alternating 

temperatures (15/25°C) with a photoperiod of 12 hr/12 hr for one month. The highest temperate occurred 

within the 12-hr light period. Seedling emergence was monitored every three days until no seedling 

emergence was recorded. Seedlings were removed as they germinated. The results of these preliminary 

germination tests were used to adjust the number of seeds from each invader sown in the experiment, so 

as to ensure at least nine viable seeds in each pot (Supplementary material, Table S3.1). 

To compose our recipient native communities, we selected nine perennial plant species widely used to 

revegetate roadsides in France: Achillea millefolium L., Dactylis glomerata L., Lolium perenne L., Lotus 

corniculatus L., Onobrychis viciifolia Scop., Plantago lanceolata L., Poterium sanguisorba L., 

Schedonorus arundinaceus (Schreb.) Dumort., and Trifolium repens L.. Commercially available seeds 

were obtained from ZYGENE (Charols, France). Species nomenclature follows TAXREF v13.0 

(Gargominy et al. 2019). 

2.2| Study site and infrastructure 

This experiment was carried over one year (late September 2017 until late September 2018) at the 

Research Institute of Tour du Valat, France (43°30′N, 4°40′E, 1 m elevation). The climate at the site is 

Mediterranean, characterized by warm to hot, dry summers and mild, wet winters, with high interannual 

variability (Lionello et al. 2006). Air temperature and precipitation data were measured continuously at a 

meteorological station located close to the experimental site (Figure S3.1Erreur ! Source du renvoi 

introuvable.). Plant communities were established in square plastic pots (with a width of 30.5 cm at the 

top and 25 cm at the bottom, 27 cm deep) containing from bottom to top: (1) a 27-cm diameter polyester 

textile filter (® Diatex textile (DIATEX, Saint Genis Laval, France) with 50–70 µm mesh size to prevent 

loss of substrate), (2) a polystyrene bloc (width 20 cm, 10 cm deep) allowing water to flow at the sides, 

(3) a substrate mixture consisting of 30 vol% vermiculite (® Projar; Projar Group, Valencia, Spain) 2.6 

kg/m
3
), and 70 vol% commercial organic and fertile topsoil (® Geolia; Leroy Merlin, Nîmes, France; 

Figure S3.2). All pots were kept in a greenhouse with ® Diatex mesh walls and roof (600–500 µm mesh 

size) to ensure that climate conditions were similar to outside conditions and to prevent seed dispersal 

from the surrounding area. In addition to the ambient precipitation, all pots received equal amounts of 

demineralized water through sprinklers placed equidistantly. The amount of additional water was adjusted 

according to weather conditions so as to ensure conditions favorable to germination and plant 

development. 

2.3| Experimental design 

The experiment was designed to simulate situations where seeds of invasive plant species (Ambrosia 

artemisiifolia, Bothriochloa barbinodis and Cortaderia selloana) reach soil covered with native plant 

species re-established on bare soil after a disturbance or restoration actions involving vegetation clearing. 

In each pot, we established recipient communities showing three different species compositions: one, 

three or nine species (hereafter called respectively ‘1-sp’, ‘3-sp’ and ‘9-sp’ communities; Table 3.1). 

Lolium perenne was selected for the 1-sp treatment because it is usually the dominant species in 

commercial seed mixtures (Arienzo et al. 2004). The 3-sp treatment included Lolium perenne, Plantago 

lanceolata and Trifolium repens. The 9-sp treatment included all the species cited above (Table 3.1). 

Hereafter, ‘monocultures’ refers to 1-sp communities, and ‘polycultures’ refers to 3-sp and 9-sp 

communities. We tested two levels of species density, sowing either 700 or 2,778 recipient community 



 

seeds/m² (63 or 235 seeds/pot, hereafter called respectively ‘LowD’ and ‘HighD’ communities; Table 3.1, 

Figure 3.1). Recipient community seeds were sown either 175 or 29 days (hereafter called respectively 

‘5-month’ and ‘1-month’ communities) before invasive species seeds.  

 

   

    
Density 

(no. seeds/pot) 

Functional 

group 

 

Species 

 LowD  HighD 

  1-sp 3-sp 9-sp  1-sp 3-sp 9-sp 

Grasses 

 Lolium perenne  63 22 9  250 82 30 

 Dactylis glomerata  - - 4  - - 20 

 Schedonorus arundinaceus   - - 6  - - 30 

Leguminous 

forbs 

 Trifolium repens  - 20 6  - 84 30 

 Lotus corniculatus  - - 6  - - 25 

 Onobrychis viciifolia  - - 9  - - 30 

Non-

leguminous 

forbs 

 Plantago lanceolata  
- 21 8 

 
- 84 30 

  Poterium sanguisorba  - - 9  - - 30 

 Achillea millefolium  - - 6  - - 25 

Table 3.1 Species composition and density applied per species of recipient communities differing in 
density (LowD = low density, HighD = high density) and species composition (1-sp = 1 species, 3-sp 
= 3 species, 9-sp = 9 species). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sowing densities were chosen in line with the densities commonly applied in roadside revegetation. 

Native species seeds 

were allocated to 

fixed positions, 

either 3.5 cm (LowD) or 

1.5 cm (HighD) 

apart and chosen so as 

to ensure that all 

invasive species 

individuals were 

surrounded by the same 

native species 

neighbors (Figures 3.2, 

3.3). 

Figure 3.1 Recipient communities at the time of invasive species 
introduction (left: 1-month and right: 5-month communities). 



 

Before the invasive species were introduced, any ungerminated native species seeds were replaced, to 

ensure the intended density of seedlings. On March 22, 2018, seeds from one invasive species were sown 

in each pot at nine fixed positions 8 cm apart. In order to reduce the bias related to the intrinsic 

germination capacity of the harvested invasive species seeds, we adjusted the number of seeds introduced 

at each position from two to five (Supplementary material, Table S3.1) based on the preliminary 

germination tests described above (Supplementary material, Table S3.1). If several seedlings emerged 

from the same position, only the seedling at the most advanced development stage was kept. Seedling 

emergence rate was therefore considered to be 100% when at least one individual emerged at each 

position. 

For each invasive species, there were four replicates of each recipient community type (i.e.   each 

combination of recipient species time advance × composition × density) and four control pots with bare 

soil, totaling 156 pots. Pot distribution followed a randomized design and was randomized six times 

during the experiment to take account of microclimate effects. 

  

A B C 

Figure 3.2 Pot spatial arrangement of (A) Low density recipient communities (63 seeds/pot), (B) 
High density recipient communities (235 seeds/pot) and (C) invasive species seeds. 

Figure 3.3 Seed sowing was realized using cardboard with holes (each hole corresponding to a 
seed) as to ensure a fixed spatial arrangement of the recipient communities. 



 

2.4| Data collection 

The aim of this experiment was to understand the ways by which characteristics of the recipient 

communities (i.e. time advance, species composition and density) influenced early invasion success. 

Hence, in addition to monitoring early establishment success of the invasive species, we collected data on 

the recipient communities’ characteristics susceptible to mediate early invasion resistance i.e. biomass 

production, vegetation cover, and soil nutrient content. We did not seek to evaluate the impact of invasive 

species on recipient communities. 

Early establishment success of invasive species was assessed by monitoring seedling emergence and 

survival of each invasive plant individual each week for the first six weeks and then every two weeks 

until the end of the experiment. Seedlings were considered to have emerged when any part was visible. 

We considered the invasion resistance of the recipient community to have increased when there was a 

reduction in probability of invasive species establishment (seedling emergence or survival). The 

aboveground biomass of each native species of the recipient community was measured either: (1) once all 

invasive individuals had died within a pot, even before the end of the experiment; or (2) at the end of the 

experiment, even if individual invasives remained alive. For each pot, aboveground biomass was 

collected 1 cm above ground level, sorted by species and dried at 80°C for 48 hr until weighed. Total 

below-ground biomass (native and invasive species roots) was measured at the end of the experiment for 

six randomly selected pots per recipient community type. For this purpose, one eighth of the pot soil 

volume was randomly withdrawn. Roots were isolated, washed and sieved with a 250-µm mesh, dried for 

48 hr at 80°C and weighed. We then estimated dry root weight per pot by multiplying the dried sample 

weight by 8. 

To estimate vegetation cover at the time of invasive species seed introduction, digital images of the pots 

were acquired for computed image analysis via a Nikon D80 (Nikon Corporation, Tokyo, Japan) digital 

camera with a 10.2 megapixel CDD sensor. The camera was mounted on a 1.4-m high fixed camera stand 

with the lens facing exactly perpendicular to the ground, where the pots were placed successively. 

Soil resource availability influences competition intensity (Craine & Dybzinski 2013), as well as the 

importance of priority effects (Kardol et al. 2013). We therefore analyzed organic carbon, nitrogen, 

nitrates, ammonium and available phosphorus on soil samples collected from each pot at the time of 

invasive species seed introduction. For this purpose, 72 soil cores of 10 mm diameter × 100 mm deep 

were collected for each recipient community type (six per pot), pooled and air-dried for 48 hr at 40°C and 

sieved (<2 mm) to remove roots and rocks. Samples were analyzed for: (1) organic carbon by 

sulfochromic oxidation (NF ISO 14234, 1998); (2) total nitrogen by the modified Kjeldhal method (NF 

ISO 11261, 1995); (3) nitrate NO3
-
 and ammonium NH4

+ 
(NF ISO 14256-2, 2007); and (4) available 

phosphorus P2O5 by the Dyer method (NF X31-160, 1999). All soil parameters were determined 

according to the standard French method AFNOR (Afnor 1994) or standard international method ISO. 

Analyses were conducted by an accredited soil analysis laboratory following standard protocols (Teyssier 

2020). 

2.5| Data analyses 

Modelling invasive species seedling emergence and survival 

We used a multistate capture–recapture modeling framework (Lebreton & Cefe 2002) to estimate the 

seedling emergence and daily plant survival probabilities of introduced invasive individuals. In this study, 

multistate capture–recapture modeling was preferable to simple logistic regressions, as it allowed the 

different transition probabilities (seedling emergence, plant survival) to be integrated within a common 



 

framework. Capture (introduction of invasive species seeds) and recapture (subsequent visits) events were 

defined according to the experimental monitoring protocol. Monitoring intervals were specified in days to 

take into account unequal time intervals. We considered each individual as being in one of three states: 

seed (S), plant (P) and dead (D). Seed state means that no part of the emerged seedling was visible. Plant 

state means that any part of the seedling was visible and alive. Plants were considered dead when no 

green tissue remained. We examined the additive effects of time advance (time), species composition 

(comp) and density (den) and their interactions on the probability of seedling emergence (transition from 

seed to plant) and daily plant survival (transition from plant to dead state) of the three invasive species 

(Supplementary material S3.I). Our controlled conditions eliminated the possibility of individuals being 

missed during monitoring, so detection probability should be 100%. Therefore, our models can be 

considered as ‘known-fate’ models, with no goodness-of-fit tests required (Cooch & White 2019). 

Model selection and parameter estimation were performed for each invasive species using the program E-

SURGE (which stands for multiEvent SURvival Generalized Estimation; Choquet et al. 2009). E-SURGE 

is a program for fitting multistate/multi-event models to capture–recapture (CR) data. Multistate models 

are survival models that can integrate state-dependent survival and transition probabilities among states. 

A state may be described as a categorical individual covariate that can change over time (e.g.  seed and 

plant states).  

Transitions may have a different meaning depending on the state definition (in our case probability of 

seedling emergence and survival). Our initial model was built to cover all the effects we intended to test: 

                               

and modeled the probabilities of seedling emergence (ψ) and survival (φ). It incorporated the effects of 

time advance, species composition and density of the recipient community. 

We followed a step-down approach proposed by Lebreton et al. (2009) for model selection, focusing first 

on seedling emergence probabilities and then on survival probabilities. The model selection was based on 

the Akaike information criterion corrected for overdispersion and small sample size (QAICc). We 

examined the effect of density, species composition and time advance by comparing QAICc scores, 

removing one effect at a time. We estimated a 95% confidence interval (CI) for each parameter. Survival 

probabilities were daily estimates. A generic model description and the steps in the model selection 

procedure are provided in Supplementary material S3.I and S3.II. 

Total aboveground and belowground biomass of recipient communities 

We analyzed differences in final total aboveground and below- ground biomass depending on recipient 

community type using Kruskal–Wallis rank sum tests. When the type of community had a significant 

impact on biomass, a post-hoc Dunn's test was performed (‘dunn.test’ package; Dinno 2015). Analyses 

were performed via the R ver. 3.4.3 statistical platform (R Core Team, R Foundation for Statistical 

Computing, Vienna, Austria). P-values lower than 0.05 were considered as statistically significant. 

Recipient vegetation cover 

We applied the image analysis method described by Stewart et al. (2007) to estimate percentage of 

vegetation cover in the pots, using consecutively Adobe 'Photoshop' software ver. 2015.0.1 (Adobe 

Systems, San Jose, CA, USA) and GIMP ver. 2.10.8 (GNU Image Manipulation Program, Groton, MA, 

USA) image processing software. Photoshop was used to select color and create the two masks separating 

vegetation (colored black) from ground (colored white). GIMP was then used to count the number of 



 

black and white pixels. The percentage of vegetation cover was obtained by dividing the number of black 

(vegetation) pixels by the total number of pixels in the image. We analyzed differences in vegetation 

cover depending on recipient community type using Kruskal–Wallis rank sum tests. When the type of 

community had a significant impact on vegetation cover, a post-hoc Dunn's test was performed 

(‘dunn.test’ package; Dinno 2015). Analyses were performed via the R ver. 3.4.3 statistical platform. P-

values lower than 0.05 were considered as statistically significant.  

Soil analyses 

We analyzed differences both in total organic matter, carbon and nitrogen content, and in nitrate, 

ammonium and phosphorus content: (1) between soil containing 5-month and 1-month communities; and 

(2) between soil containing LowD and HighD communities, using a Wilcoxon–Mann–Whitney test. We 

also analyzed differences between soil with 1-sp, 3-sp and 9-sp communities, using a Kruskal–Wallis 

rank sum test. Analyses were performed via the R ver. 3.4.3 statistical platform. P-values lower than 0.05 

were considered as statistically significant. 

3| Results 

3.1| Invasive species seedling emergence 

The probability of seedling emergence (hereafter ‘seedling emergence’) was best explained by: (1) time 

advance for A. artemisiifolia and C. selloana; and (2) the interaction between species composition and 

time advance for B. barbinodis (Supplementary material S3.II). Ambrosia artemisiifolia and C. selloana 

showed lower seedling emergence in 5-month communities than in 1-month communities (Figure 

3.4A,C). While A. artemisiifolia seedling emergence was higher in the control than in communities 

(Figure 3.4A), C. selloana seedling emergence tended to be similar or lower in the control than in 

communities (Figure 3.4C). Seedling emergence of B. barbinodis was similar in control, 1-month 

communities and 5-month monocultures, and was lower in 5-month polycultures (Figure 3.4B). 

 

Figure 3.4 Probability of seedling emergence (model estimates; percentage ±95% CI) of the invasive 
species: (A) Ambrosia artemisiifolia (ntot = 432); (B) Bothriochloa barbinodis (ntot = 432); and (C) 
Cortaderia selloana (ntot = 432), depending on recipient community on recipient community type: time 
advance over invasive species (one month or five months), species composition (1-sp = one species, 3-
sp = three species, 9-sp = nine species), and density (LowD = low density, HighD = high density). 
Control refers to bare soil. 

A B C 



 
   

3.2| Invasive species survival 

The daily probability of survival (hereafter ‘survival’) was best explained by: (1) the interaction between 

density, species composition and time advance for A. artemisiifolia; (2) species composition for B. 

barbinodis; and (3) the interaction between species composition and time advance for C. selloana 

(Supplementary material S3.II). Survival was not (A. artemisiifolia and C. selloana; Figure 3.5A,C) or 

only slightly (B. barbinodis; Figure 3.5B) lower in monocultures than in control. All species survival was 

lower in polycultures than in control and monocultures (Figure 3.5). Survival of A. artemisiifolia and C. 

selloana was lower in 5-month polycultures than in 1-month polycultures and control (Figure 3.5A,C). A. 

artemisiifolia also showed lower survival in HighD than in LowD 1-month polycultures.  

 

 

Figure 3.5 Daily probability of survival (model estimates; percentage ±95% CI) of the invasive species: 
(A) Ambrosia artemisiifolia (ntot = 389); (B) Bothriochloa barbinodis (ntot = 336) and (C) Cortaderia 
selloana (ntot = 368) depending on recipient community type: time advance over invasive species (one 
month or five months), species composition (1-sp = one species, 3-sp = three species, 9-sp = nine 
species), and density (LowD = low density, HighD = high density). Control refers to bare soil. 

3.3| Total aboveground and belowground biomass of recipient communities 

Recipient community type significantly impacted the final total above-ground biomass of the recipient 

community (Kruskal–Wallis ꭓ2
=7.6, df=11, p<0.001). Final total aboveground biomass was significantly 

lower in monocultures than in polycultures (post-hoc Dunn's test, p<0.01; Figure 3.6), regardless of time 

advance and density. We found no significant difference between 3-sp and 9-sp communities (post-hoc 

Dunn's test, p>0.05; Figure 3.6). Trifolium repens largely dominated 3-sp communities, representing on 

average 76.4±8.2% of the total biomass, while L. perenne and P. lanceolata only represented 9.1±5.3 and 

2.8±1.1% (Figure 3.6). Lotus corniculatus dominated 9-sp communities, representing on average 

61.3±10.5% of the total biomass, followed by T. repens (16.7±6.6%) and D. glomerata (5.9±2.0%; 

Figure 3.6). The cumulative aboveground biomass of other species represented less than 5% of total 

aboveground biomass. No clear pattern was detected for final total belowground biomass (Supplementary 

material, Figure S3.3).  
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Figure 3.6 Final aboveground biomass of the community (mean±SE, n=12) 
classed by species, depending on recipient community type: time advance over 
invasive species (1 month or five months), species composition (1-sp = one 
species, 3-sp = three species, 9-sp = nine species), and density (LowD = low 
density, HighD = high density). Values below 0.1g are not represented, therefore 
Achillea millefolium, Onobrychis viciifolia, and Poterium sanguisorba are not 
shown. Letters (a,b) distinguish total biomass means that are significantly 
different according to a post-hoc Dunn's test (α=0.05). 

  



 

3.4| Recipient vegetation cover 

Recipient community type significantly impacted vegetation cover percentage at the time of invasive 

species introduction (Kruskal-Wallis ꭓ²=127.07, df=11, p<0.001). We found no statistical difference 

between 5-month communities, whatever the density or species composition (post-hoc Dunn’s test, 

p>0.05; Supplementary material, Figure S3.4). 5-month communities had significantly higher vegetation 

cover than 1-month communities (81.7±5.9% and 3.9±2.6 respectively, post-hoc Dunn’s test, p<0.05; 

Supplementary material, Figure S3.4). In 1-month communities, increasing density significantly 

increased vegetation cover for each species composition (post-hoc Dunn’s test, p<0.05). Species 

composition did not impacted vegetation cover in 1-month communities so that no statistical difference 

was found between 1-month LowD communities (p>0.05), nor between 1-month HighD communities 

(p>0.05; Supplementary material, Figure S3.4).  

3.5| Soil analyses 

Control soil was fertile (total nitrogen =3.54 g/kg, nitrate NO3
-
 =0.092 g/kg, ammonium NH4

+
 =0.0446 

g/kg, available phosphorus P2O5 =0.273 g/kg) and had a high total organic matter content (5.1%; 

Supplementary material, Table S3.2). Total nitrogen, NO3
-
, NH4

+
 and P2O5 contents were higher in 

control soil than in soil supporting recipient communities (Supplementary material, Table S3.2). We 

found no statistical difference in any measured soil parameter between soil supporting (1) LowD and 

HighD communities, nor (2) 1-sp, 3-sp and 9-sp communities (p>0.05; Supplementary material, Table 

S3.2). Soil supporting 5-month communities showed no difference in similar contents of total organic 

matter, carbon and nitrogen contents (p>0.05), and lower NO3
-
 (p=0.005), NH4

+
 (p=0.005) and P2O5 

(p=0.002) contents than soil supporting 1-month communities (Supplementary material, Table S3.2). 

4| Discussion 

Overall in this experiment, establishing a recipient community negatively impacted invasive species early 

establishment success (Figures 3.3, 3.4; Supplementary material, Figures S3.5, S3.6), supporting 

revegetation as a relevant tool to limit invasions (Byun & Lee 2017; Larson et al. 2013; Middleton et al. 

2010). Responses varied depending on the characteristics of the recipient communities and on the 

invasive species. 

4.1| Time advance mainly determined invasive species seedling emergence 

On its own, the time advance given to the recipient community mainly explained variations in seedling 

emergence of A. artemisiifolia and C. selloana, which tended to decrease with increasing time advance 

(Figure 3.4A,C). Germination is regulated by environmental components, mainly temperature, light, 

water (Koller & Kozlowski 1972), and soil nitrate concentration (Pons 1989). Seeds can detect the 

presence of neighboring plants early on, in particular by perceiving (1) spectral changes in the light 

environment resulting from the presence of a canopy (Batlla et al. 2000), or (2) low nitrate availability 

resulting from nitrate preemption by plants (Pons 1989). Thus, the decrease in seedling emergence 

observed with increasing recipient community time advance (Figure 3.4A,C) may be related to both 

phenomena, since (1) vegetation percentage cover was much higher in 5-month than in 1-month 

communities (Supplementary material, Figure S3.4), and (2) significantly lower soil nitrate content was 

found for 5-month than for 1-month communities at the time invasive species were introduced 

(Supplementary material, Table S3.2). 

 Responses differed between invasive species. While seedling emergence of A. artemisiifolia tended to be 

the lowest in both 5-month and 1-month recipient communities, C. selloana showed the highest seedling 



 

emergence in 1-month communities (Figure 3.4A,C). This suggests that the communities established for 

1 month facilitated C. selloana seedling emergence through the creation of better conditions than bare 

soil, probably by retaining humidity and generating adequate shade conditions (Domenech 2005; 

Holmgren et al. 1997). 

The interaction between time advance and species composition of the recipient community best explained 

variations in seedling emergence of B. barbinodis (Figure 3.4B). Species composition impacted seedling 

emergence in 5-month communities, where seedling emergence was lower in polycultures; however, it 

had no impact in 1-month communities. It seems unlikely that the effect of species composition in 5-

month polycultures is driven by variations in vegetation cover or soil parameters, which were similar to 

monocultures at the time of invasive species introduction (Supplementary material, Figure S3.4, Table 

S3.2). We therefore hypothesize that a higher overlap between resident species foliage occurred in 5-

month polycultures (likely more productive than monocultures; Figure 3.6), generating variations in the 

light environment that impacted B. barbinodis germination (Benech-Arnold et al. 2000). Also, we suggest 

that the absence of impact of species composition in 1-month communities may be due to the similarities 

in cover, nutrient contents, and biomass production between the different communities at this very early 

growth stage. These results imply that the species composition contribution to invasion resistance may 

vary depending on the stage of community growth, and on the invasive species. 

4.2| Time advance interacted with species composition to determine invasive 
species survival, density had a limited impact 

Invasive species survival was strongly affected by the species composition of the recipient community. 

Species composition alone determined B. barbinodis survival, but also strongly influenced, in interaction 

with other community characteristics, A. artemisiifolia and C. selloana survival. An identical response 

pattern was observed for the three invasive species: 3-sp and 9-sp communities reduced the invasives’ 

survival to the same extent: the survival rate was lower than in monocultures, where it remained 

comparable to bare soil (Figure 3.5). This pattern appeared strongly correlated to total aboveground 

biomass production of the recipient communities: biomass production was 3 to 4 times lower in 

monocultures than in polycultures. Another factor, however, is that 3-sp and 9-sp communities were 

dominated by two different species (T. repens and L. corniculatus respectively; Figure 3.6). Therefore, 

we found that the total biomass produced explained the enhanced invasion resistance in polycultures 

rather than the number of species (i.e. high species richness is often associated with increased resistance 

to invasion at small scales; (Byun et al. 2013; Dukes 2002; Fargione & Tilman 2005; Kennedy et al. 

2002; Levine & D’Antonio 1999), or the identity of the dominant species.  

The prevalent role of biomass was also highlighted by A. artemisiifolia and C. selloana survival patterns. 

A. artemisiifolia and C. selloana survival was influenced by the interaction between time advance and 

species composition (Figure 3.5A,C). In polycultures, survival was lower in 5-month than 1-month 

communities, supporting the assumption that a greater time advance increases competitive abilities 

compared to later-arriving invasive species (Wilsey et al. 2015) and enhances invasion resistance (Orloff 

et al. 2013; von Gillhaussen et al. 2014; Young et al. 2016). However, time advance did not impact as 

much monocultures’ invasion resistance, most likely due to too low biomass production (Figure 3.6). 

These results suggest that it is not the time advance per se, but rather the amount of biomass produced 

(and thus the amount of limiting resource preempted) that determines the size of the competitive 

advantage given to the previously-established species, and in this case, invasion resistance. Overall, these 

findings (i.e. biomass prevailing over species composition or time advance) are consistent with previous 



 

studies showing that stand biomass is a major determinant of invasibility (Lulow 2006; Mason et al. 

2017; Rinella et al. 2007).  

In most cases, density did not impact early establishment success of the invasive species (Figures 3.4, 

3.5). Density only appeared to strongly impact A. artemisiifolia survival in 1-month communities, where 

higher density tended to decrease the survival rate in polycultures (Figure 3.5A). The higher number of 

individuals may have led, in very early stages of community growth, to greater resource preemption, 

thereby hindering A. artemisiifolia survival. The absence of impact from density (1) in 5-month 

communities may have been caused by biomass stabilization over time (Figure 3.6; von Gillhaussen et al. 

2014), and (2) in 1-month monocultures may be due to insufficient aboveground biomass production 

(Figure 3.6). It is possible that biomass stabilized over time, with both LowD and HighD communities 

reaching the biomass threshold value (i.e. the carrying capacity) of the habitat. In this case, a further 

increase in biomass can only be achieved if mortality causes reductions in density and frees up space for 

survivors (i.e. self-thinning; Crawley 2007; Stoll et al. 2002). Since only one invasive species was 

impacted by community density, our results provide little support for the hypothesis that increasing 

density lowers early establishment success of invasive species at the early stage of community growth. 

However, this should be tested in field conditions, were carrying capacity may be less restrictive.  

It appears from our results that extending the time advance of native species on invasive species seed 

arrival can reinforce priority effects, therefore reducing invasion success on soil cleared of vegetation. 

How much of an advantage this time advance represents will, however, depend on biomass production. 

The positive effect could be maximized by clearing soil of invasive species propagules and vegetative 

parts before rapidly sowing native plant communities, and by carefully controlling invaders during the 

first few weeks. Eliminating rhizomes fragments may be particularly critical since rhizome emergence is 

less sensitive to the presence of neighbors than seedling emergence (Kettenring et al. 2015), and rhizomes 

are likely to have greater overall establishment success than seeds because they are better provisioned 

(Silvertown 2008; Winkler & Fischer 2002). 

The benefits from giving a time advance to certain species can remain visible for years (Young et al. 

2016), so this strategy may also pay off in the long term. In our short-term experiment, the contribution of 

only a few species to invasion resistance in polycultures implies that establishing a few productive species 

may be an efficient strategy to repel invasive species colonization at the early stages of community 

growth. On the other hand, long-term studies suggest that implementing diverse communities may ensure 

ecosystems against declines in productivity (Lawton & Brown 1994; Yachi & Loreau 1999) and reduce 

biomass and resource-use fluctuations over time (Cottingham et al. 2001; Hooper et al. 2005), potentially 

leading to greater resistance in the long term (Dunstan & Johnson 2007). Further research will be needed 

to determine whether combinations of different seeding strategies (i.e. early sowing of a few productive 

species, followed by late sowing of species mixtures) can help to reinforce invasion resistance in both 

short and longer terms. 
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Supplementary material 

 

Table S3.1 Results of preliminary invasive species germination tests realized before the experiment 
and used to define the number of introduced seeds for the three harvested populations (GPS 
coordinates indicated) of each of the three tested invasive species. Based on the results of preliminary 
germination rates (‘Germination rate’), we determined the theoretical number of seeds required to 
achieve one emerged individual (‘Theoretical No. of seeds’). The final number of seeds introduced 
(‘Applied No. of seeds’) was then calculated by rounding the theoretical number of introduced seeds up 
to the next whole number (i.e. in order to theoretically achieve at least one emerged individual). This 
adjustment aimed at reducing the bias linked with the intrinsic germination capacity of the harvested 
invasive species seeds in the experiment. 

 

 

Figure S3.1 Temperature (daily mean in °C) and rainfall (daily sum in mm) recorded during the 
experiment (Meteo France station number 133004003, Tour du Valat domain, France). 

 

Species 
Population location  

(GPS coordinates) 

Germination 

rate (%) 

Theoretical 

No. of seeds 

Applied No. 

of seeds 

A. artemisiifolia 

Pop. 1 : 44°0'44.3" N, 4°52'13.8" E 67.5 1.48 2 

Pop. 2 : 43°54'27.2" N, 4°52'13.8" E 23.9 4.18 5 

Pop. 3 : 43°51'57.1" N, 4°35'46.8" E 67.5 1.48 2 

B. barbinodis 

Pop. 1 : 43°33'23.1" N, 4°19'16.1" E 89.7 1.11 2 

Pop. 2 : 43°40'7.9" N, 3°58'31.9" E 25.8 3.88 4 

Pop. 3 : 43°39'39.9" N, 4°38'28.6" E 69.4 1.44 2 

C. selloana 

Pop. 1 : 43°41'47.1" N, 4°38'41.1" E 38.6 2.59 3 

Pop. 2 : 43°23'22.9" N, 4°34'28.1" E 46.0 2.17 3 

Pop. 3 : 43°23'50.3" N, 5°7'54.6" E 64.2 1.56 2 



 

Figure S3.2 Experimental design: pot filling. 

 

  



 

Supplementary material S3.I Description of Capture-Marking-Recapture modeling 

 

Matrices 

The model considered thtrr states, the seed state (S), the plant state (P), and the dead state (D) to estimate 

two transition probabilities: seedling emergence (ψ) and daily survival (φ): 

 

 

 

 

 

Initi

al State: At the initial state, all individuals are in the seed state 

   

     

With ‘*’ indicating the complementarity parameter (only one ‘*’ by row) and ‘ ‘ indicating parameters 

constrained to zero 

 

Transition 1: Estimation of seedling emergence (ψ) 

    

 
 
 
 
   
   
   

  

Transition 2: Estimation of daily survival (φ) 

    

 
 
 
 
   
   
   

  

 

Recapture: Detection probability 

Detection probability (p) was equal to 1 so the non-observed rate (NO) was equal to 0. 

     

 
 
 
 
   
   
   

  

Seed Plant Dead plant 
Ψ 1-Φ 

Φ 

1-Ψ 

Individual life history in the context of the study protocol 



 

Supplementary material S3.II Model selection for invasive species seedling emergence and survival 

 

Ambrosia artemisiifolia 

 

Model selection for seedling emergence probabilities with survival probabilities [φtime×comp×den] for 
A. artemisiifolia. Models are ranked by decreasing value of QAICc, with the best model in bold. Number 
of estimable parameters (NP) and model deviance are also given. 

Model Seedling emergence NP Deviance QAICc 

7 ψtime 16 2765.85 2797.94 

3 ψden×time 18 2764.46 2800.58 

4 ψcomp×time 20 2761.51 2801.66 

1 ψden×comp×time 26 2751.82 2804.06 

5 ψden 16 2794.73 2826.62 

6 ψcomp 19 2790.90 2829.03 

2 ψden×comp 20 2789.63 2829.77 

8 ψ. 14 2807.59 2835.66 

 

 

Model selection for daily plant survival probabilities with best model for emergence probabilities [ψtime] 
for A. artemisiifolia. Models are ranked by decreasing value of QAICc, with the best model in bold. 
Number of estimable parameters (NP) and model deviance are also given. 

Model Survival NP Deviance QAICc 

7 φden×comp×time 16 2765.85 2797.94 

11 φcomp×time 10 2781.09 2801.12 

9 φden×comp 10 2802.37 2822.41 

13 φcomp 7 2812.60 2826.62 

10 φden×comp 8 3018.89 3034.91 

14 φtime 6 3028.34 3040.36 

12 φden 6 3038.61 3050.62 

15 φ. 4 3086.95 3094.97 

 



 

Bothriochloa barbinodis 

 

Model selection for seedling emergence probabilities with survival probabilities [φtime×comp×den] for 
B. barbinodis. Models are ranked by decreasing value of QAICc, with the best model in bold. Number of 
estimable parameters (NP) and model deviance are also given. 

Model Seedling emergence NP Deviance QAICc 

4 Ψcomp×time 20 3052.50 3092.64 

1 ψden×comp×time 26 3043.41 3095.64 

7 ψtime 16 3106.91 3138.10 

3 ψden×time 18 3105.29 3141.40 

6 ψcomp 17 3141.23 3175.33 

2 ψden×comp 20 3137.28 3177.42 

5 ψden 16 3166.56 3198.65 

8 ψ. 14 3172.94 3201.01 

 

 

Model selection for daily plant survival probabilities with best model for emergence probabilities 
[ψtime×comp] for B. barbinodis. Models are ranked by decreasing value of QAICc, with the best model 
in bold. Number of estimable parameters (NP) and model deviance are also given. 

Model Survival NP Deviance QAICc 

9 φden×comp 14 3064.23 3092.30 

4 φden×comp×time 20 3052.50 3092.64 

13 φcomp 11 3070.70 3092.75 

11 φcomp×time 14 3065.32 3093.39 

14 φtime 10 3282.99 3303.02 

10 φden×time 12 3281.66 3305.71 

12 φden 10 3287.51 3307.54 

15 φ. 14 3337.65 3353.68 

 

  



 

Cortaderia selloana 

 

Model selection for seedling emergence probabilities with survival probabilities [φtime×comp×den] for 
C. selloana. Models are ranked by decreasing value of QAICc, with the best model in bold. Number of 
estimable parameters (NP) and model deviance are also given. 

Model Seedling emergence NP Deviance QAICc 

7 ψtime 16 3504.46 3536.56 

3 ψden×time 18 3503.29 3539.42 

4 ψcomp×time 20 3499.37 3539.52 

8 ψ. 14 3516.59 3544.67 

6 ψcomp 17 3512.23 3546.34 

5 ψden 16 3514.37 3546.47 

1 ψden×comp×time 26 3495.14 3547.40 

2 ψden×comp 20 3510.29 3550.45 

 

 

Model selection for daily plant survival probabilities with best model for emergence probabilities [ψtime] 
for C. selloana. Models are ranked by decreasing value of QAICc, with the best model in bold. Number of 
estimable parameters (NP) and model deviance are also given. 

Model Survival NP Deviance QAICc 

11 φcomp×time 10 3510.30 3530.34 

7 φden×comp×time 16 3504.46 3536.56 

13 φcomp 7 3539.91 3553.93 

9 φden×comp 10 3534.68 3554.72 

14 φtime 6 3652.54 3664.55 

10 φden×time 8 3650.52 3666.55 

12 φden 6 3668.1691 3680.19 

15 φ. 4 3680.52 3688.52 

 

  



 

Figure S3.3 Final total belowground biomass (mean±SE, n=6) depending on 
recipient community type: time advance over invasive species (1- or 5-month), 
species composition (1-sp = 1 species, 3-sp = 3 species, 9-sp = 9 species) and 
density (LowD = low density or HighD = high density). Community type 
significantly impacted final total belowground biomass (Kruskal-Wallis 
ꭓ²=20.61, df=11, p=0.038). Increasing density significantly increased 
belowground biomass only for the 5-month monocultures (post-hoc Dunn’s test, 
p=0.035). Increasing time advance significantly (1) increased belowground 
biomass for the 3-sp HighD and 9-sp LowD communities (post-hoc Dunn’s test, 
p=0.031 and p=0.042, respectively) and (2) decreased belowground biomass 
for the LowD monocultures (post-hoc Dunn’s test, p=0.048). Finally, species 
composition significantly impacted belowground biomass as following: (1) in 
LowD 5-month communities, monocultures showed significantly lower 
belowground biomass than polycultures (post-hoc Dunn’s test, p=0.048 and 
p=0.001 for 3-sp and 9-sp, respectively), and (2) in HighD 1-month 
communities, 3-sp communities showed significantly lower belowground 
biomass than 9-sp communities (p=0.036). Letters (a,b,c,d,e) distinguish values 
that are significantly different according to a post-hoc Dunn’s test (α=0.05). 

 

  



 

Figure S3.4 Vegetation cover of the recipient communities at the time of 
invasive species introduction (%mean±SE, n=12) depending on recipient 
community type: time advance over invasive species (1- or 5-month), species 
composition (1-sp = 1 species, 3-sp = 3 species, 9-sp = 9 species), and density 
(LowD = low density or HighD = high density). Letters (a,b,c,d,e) distinguish 
vegetation cover percentage means that are significantly different according to 
a post-hoc Dunn’s test (α=0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Table S3.2 Results of soil analyses. Soil parameters depending on community type: time advance over 
invasive species (1- or 5-month), species composition (1-sp = 1 species, 3-sp = 3 species, 9-sp = 9 
species) and density (LowD = low density or HighD = high density). Here, time advance corresponds to 
the age of the recipient community at the time of soil analyses. 

 

 

  

   
Total organic 

matter (%) 
C (g/kg) N (g/kg) 

NO3
- 

(g/kg) 

NH4
+ 

(g/kg) 

P2O5 

(g/kg) 

Control (bare soil) 5.1 29.5 3.54 0.092 0.0446 0.273 

1-month 

1-sp 
LowD 5.1 29.6 2.39 0.042 0.0044 0.209 

HighD 5.0 29.1 2.72 0.032 0.0037 0.219 

3-sp 
LowD 5.1 29.5 2.54 0.031 0.0042 0.211 

HighD 5.1 29.6 2.56 0.048 0.0049 0.222 

9-sp 
LowD 5.0 28.9 2.39 0.028 0.0036 0.207 

HighD 5.0 28.7 2.33 0.063 0.0039 0.214 

5-month 

1-sp 
LowD 5.0 29.0 2.64 0.010 0.0013 0.141 

HighD 5.2 29.9 2.49 0.005 0.0007 0.165 

3-sp 
LowD 5.2 29.6 2.35 0.008 0.0011 0.176 

HighD 5.2 30.0 2.41 0.014 0.0013 0.161 

9-sp 
LowD 5.2 30.0 2.47 0.010 0.0014 0.159 

HighD 5.1 29.6 2.56 0.010 0.0012 0.150 



 

Figure S3.5 Final seedling emergence rate (mean±SE, n=4) relative to the control (0) of the invasive 
species (A) A. artemisiifolia, (B) B. barbinodis and (C) C. selloana, depending on recipient community 
type: time advance over invasive species (1- or 5-month), species composition (1-sp = 1 species, 3-sp = 
3 species, 9-sp = 9 species), and density (LowD = low density or HighD = high density). Values below or 
above zero refer respectively to decreased or increased final seedling emergence rate compared to the 
control. SE of the control (bare soil) is represented by a grey area. 

 

Figure S3.6 Final survival rate (mean±SE, n=4) relative to the control (0) of the invasive species (A) A. 
artemisiifolia, (B) B. barbinodis and (C) C. selloana, depending on recipient community type: time 
advance over invasive species (1- or 5-month), species composition (1-sp = 1 species, 3-sp = 3 species, 
9-sp = 9 species) and density (LowD = low density or HighD = high density). Values below or above 
zero refer respectively to decreased or increased final germination rate compared to the control. Red 
bars indicate no survivors. SE of the control (bare soil) is represented by a grey area. 
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