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ABSTRACT– This paper describes a scaled-size electro-

thermal model of a Lithium-ion (Li-ion) battery. This model is 

used in order to develop a physical emulation of the scaled 

battery in a Hardware In the Loop (HIL) process. Physical 

emulation allows scaling the actual process but also accelerating 

HIL experiments through an innovative concept: the “compacted 

virtual time”. According to the management strategies 

implemented in the HIL process and to environmental conditions 

(temperature) of the battery, the electrical performance 

(energy/power) of the actual device and its physical emulator will 

be different. The electrical model is coupled with a 1D thermal 

model of a cell. The model parameters are determined from 

experimental data and by using a nonlinear least-squares solver. 

A robustness analysis, with voltage, current and time scaling is 

presented in order to determinate the accuracy of the scale 

model.  

Keywords—Li-ion battery, electro-thermal modeling, similarity, 

scaling, time acceleration. 

1. INTRODUCTION  

The use of a Battery Energy Storage System (BESS) is 
becoming a technical solution in the actual and future electrical 
applications in order to improve the fuel efficiency and 
reductions in CO2 emissions. 

In embedded systems, the BESS are widely integrated. 
Indeed, in electric vehicle applications, for several years, the 
market growth rate increases: the global electrical vehicle stock 
surpassed 2 million units in 2016 and the battery fed electrical 
vehicles still account for the majority of the electric car stock 
[1]. In the More-Electrical Aircraft (MEA) context, the BESS 
can be used in an aircraft hybrid propulsion system to improve 
the overall propulsion system efficiency and to reduce the fuel 
consumption [2]. For the emergency electrical architecture in 
the aircraft, the hybridization of the Ram Air Turbine (RAT) 
with a BESS, associated with an optimized energy 
management strategy (power sharing), would reduce the mass 
of the overall system [3]. 

The BESS presents also other advantages for stationary 
systems and more particularly in large power grids and 
microgrids. Energy storage devices can harvest energy excess 
during periods of low demand and inject the stored energy in 
the grid during power peak periods [4-6]. The BESS can also 
be used to manage intermittent renewable energy devices (wind 
and solar power smoothing) in microgrids and isolated systems 
[7,8]. This storage device can also provide a frequency 
regulation in power grids [9].  

Preparing the actual implementation of the BESS in 
electrical systems as mentioned above, offline simulations then 
HIL process (also known as semi-physical real-time 
simulation) can be applied in order to study, optimize and 
verify the effectiveness of the energy management strategies 
which will be implemented in the real system. In complex 
systems, there are several loads and storage devices and the 
HIL real time simulation presents more advantages than off-
line simulations: it is a low cost technique rather than testing on 
real (scale 1) system, the simulation can perform multiple tests 
for the same test bench. Moreover, it provides methods to 
accomplish non-destructive testing under extreme and fault 
conditions and also has strong experimental reproducibility 
[10]. 

The HIL tests have been extensively used in the automotive 
industry for component development [11,12]. For instance, to 
avoid electric and thermal abuse on the BESS used in the 
electrical vehicle (or in another application), a Battery 
Management System (BMS) has to be associated with the 
storage device. In an advanced BMS, in order to maximize 
battery capacity and to limit the aging effects, there are several 
functions implemented like as active or passive balancing, 
thermal management, charging process and diagnosis analysis 
(State Of Charge – SOC and State Of Health – SOH). To 
develop a sophisticated BMS, manufacturers may require 
extensive testing (software and hardware). To test the 
diagnostic functions of the BMS, some faults (for instance 
over-charge and over-discharge) has to be provoked. In 
comparison with tests conducted on real battery, the HIL tests 
appear more cost and time effective and it is easier to 
reproduce the same electrical and environment (i.e. thermal) 
conditions for BMS tests [13-16]. The HIL simulations are also 
built to test power electronics devices [17] for MEA power 
supply system and to test the automatic flight control system of 
the aircraft [18]. Likewise, for microgrids applications, the HIL 
platforms become essential for testing and validating controls 
and energy management strategies [19]. In [20], some 
alternative HIL setups are proposed for real-time simulation 
and testing of microgrids. For the development and testing 
microgrid control and protection functions, a microgrid model 
(including diesel generators, BESS, PV plant and wind turbine) 
in a HIL environment has been developed [21]. 

The real time emulation is one method to provide the 
realistic environments [19]. The emulation involves mimicking 
the behavior of the subsystems to be represented such as 
sources (PV system, wind turbine), storage (BESS, etc) and 



 

loads (consuming profiles). Hence, to emulate a complete 
power system (microgrid, electrical vehicle) a number of 
emulators, each replacing a physical subsystem, are connected 
together with some physical components. Sometimes, a real 
subsystem, instead of an emulator, is coupled in the HIL 
simulator test bench. For instance, to evaluate the performance 
of the battery in a virtual vehicle for different ambient 
temperatures, a real hardware battery is used in a HIL simulator 
[22]. In this case, the method is called Battery In the Loop 
(BIL) or Battery HIL. This method can be used if the electrical 
characteristics of the battery are adapted to those of the HIL 
test bench. Otherwise, a battery emulator (or virtual battery), 
with scaling factors, has to be developed [23,24]. To exchange 
bidirectional power flow between virtual battery and the real 
electric test bench, the battery emulator is composed of 
bidirectional power supply operating in voltage source. The 
control signal of the voltage source can be created by the 
voltage response of a battery model [14] or the voltage 
measured from a real battery [25]. 

The paper deals with a scalable electro-thermal model of a 
Li-ion battery. This latter can be used for replacing at real time 
a physical battery to simulate its thermal environment and 
especially to accelerate HIL simulations. Indeed, thanks to the 
similitude process and based on the original idea proposed in 
[26,27], a “time acceleration” by considering a “virtual 
compressed time” is possible together with the reduction of 
physical scales (power, voltage, current, etc). The paper is 
organized as follows. In section 2, the electro-thermal battery 
model is presented and the scaling factors (voltage, current, 
time) are applied to the parameters of the model. In section 3, 
the parameterization of the model is detailed, based on 
experimental data from 18650 format 1.6Ah Li-ion cells with 
lithium iron phosphate (LFP) cathode. The experimental test 
bench is also described in this section. In section 4, a 
robustness analysis of the scaling electro-thermal model is 
conducted by using a typical current profile extracted from 
microgrid application. First, without time accelerating, a 
comparison of the measured and simulated battery voltage is 
presented. Then, in addition of both voltage and current scaling 
factors, the time scaling factor is applied to the model in order 
to reduce the total time of experimental test. Finally, section 5 
gives the conclusion. 

2. SCALING ELECTRO-THERMAL MODEL OF LI-ION BATTERY 

The complexity of the battery model can affects the 
simulation time, especially for large and complex electrical 
systems. Hence, there is a tradeoff between accuracy and 
simulation time. Thus, for complex HIL simulation, simple 
models are used.The most common approach for battery 
modeling methods is electrical models bases on Equivalent 
Circuit Model (ECM) [14]. They are preferred to the 
mathematical or physic-chemical models.   

The electro-thermal model presented here is used in order 
to develop a battery emulator in a HIL system especially for 
testing microgrid management strategies. The model has to 
provide various information about the macroscopic quantities 
as SOC, the battery voltage (Vbat) and the surface temperature 
of the battery (TS). Fig. 1 presents the concept of the battery 
emulator connected to the power HIL. 

 

 Fig. 1. Battery emulator : power supply interfaced to a real time simulator. 

2.1. Electrical model 

The electrical model presented in this study is based on an 
extended modified shepherd model [28] in which several 
modifications have been made [29]. This model is commonly 
used in the modeling of multi-physical energy systems 
incorporating a battery and in particular for studies of energy 
management in hybrid systems [30-32]. Indeed, by its 
simplicity and its accuracy, this model is easy to implement in 
a multi-physics and multi-scale system. Nevertheless, this 
model cannot completely describe all phenomena in the battery 
like the dynamic behavior such as the diffusion phenomena, 
which, in an ECM, can be taken into account with several RC 
parallel networks [33] (for instance, Cauer or Foster structures). 
Furthermore, this model is based on specific assumptions noted 
below: 

 the Open Circuit Voltage (OCV) hysteresis phenomenon 
[34] is not taken into account,  

 the OCV is not parameterized as a function of the 
temperature (entropy changes are neglected [35]), 

 the aging phenomena are not taken into account, 

 the internal resistances are supposed constant during the 
charge and discharge cycles and are not varied with the 
amplitude of the current, 

 the capacity of the battery is constant (No Peukert effect), 

 the self-discharge of the battery is neglected. 

In spite of these assumptions, the internal resistances will 
be dependent on the temperature. 

The battery model is summarized as follows: 
 
 
 

(1) 
 

  
(2) 

 
(3) 

       
where the variables are the battery current i (A), the filtered 
battery current i*(A), the battery capacity Q (Ah), the battery 
constant voltage E0 (V), the exponential zone amplitude A (V), 
the exponential zone inverse capacity B (Ah-1), the polarization 
constant K (V/Ah), the internal resistance R1 (Ω), the 
polarization resistance R2 (Ω), the current filter time constant 
Tf = R2.C2 (s), the discharge logic variable isdch and the charge 
logic variable isch. The logic variable isdch is equal to 1 in 
discharging mode while in charging mode, it is equal to 0. The 
logic variable isch is equal to 1 in charging mode while in 
discharging mode, it is equal to 0. 

From the equation (1), the OCV relationship can be 
obtained: 
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Likewise, from equation (1), the total battery voltage drop 

is:    
 

(5) 
 
It is possible to translate these equations by an ECM as 

shown in Fig. 2. 

 

Fig. 2. Equivalent circuit for electrical modeling.  

The R2C2 parallel network, in the Fig.2, allows taking into 
account the dynamic behavior on the battery voltage response. 
However, it is not possible to dissociate the activation 
dynamics (charge transfer process) and the diffusion 
phenomena.  

In the equation (2), the SOC reflects the residual capacity 
and it is calculated by using the common Coulomb counting 
method. Hence, the SOC can be expressed as the following 
equation (with a coulombic efficiency equal to 1. Indeed, for 
LFP battery, this value is near to 1 [36]): 

(6) 

where SOCinit is the initial capacity of the battery. For a correct 
use of the battery, the minimum value of the SOC (SOCmin) 
cannot reach zero. In our study, the values of the SOCmin and 
SOCmax (maximum SOC) are limited in order to limit the aging 
effect. Generally, the energy management strategy of the 
microgrid limits the battery depth of discharge (DOD) at 80% 
with a SOCmax close to 90% [37]. 

The OCV curve, obtained by equation (4), is shown in Fig. 
3. For the maximum SOCs, there is an exponential potential 
drop on the OCV.  

 

Fig. 3. OCV discharge characteristic of the battery model. 

In our case study (battery emulator for HIL microgrid 
application), the SOCmax has been fixed at 90%. Therefore, in 
order to limit the parameters of the model, it is possible to 
remove the exponential expression in the equation (4) thus to 
simplify both model and parameter identification. For the rest 
of the study, the OCV relationship is:  

(7) 

The overall parameters of the electrical model are summarized 
in the Table 1.  

Table 1. Parameters of the electrical model. 

Electrical parametres 

OCV relationship voltage drop relationship 

E0, K, Q R1, R2, Tf 

Electrical parameters are determined from experimental 
data by using a nonlinear least-squares solver (Matlab’s 
optimization toolbox). On the one hand, E0, K and Q are 
obtained by the measurement of the OCV characteristic, and on 
the other hand, R1, R2 and Tf are determined from the voltage 
measurement of the battery when this latter is excited with a 
current profile of the Hybrid Pulse Power Characteristic 
(HPPC) test. The HPPC profile was designed in order to 
measure the dynamic power capability over a device’s usable 
charge and voltage range [38,39]. 

2.2. Thermal model 

The goal of the thermal model is to get an estimate of the 
surface temperature of the battery from a simple measurement 
of the surface temperature. The battery used for this study is 
composed of several 18650 format 1.6Ah Li-ion cells. As 
shown in Fig. 4, these cells are assembled in several modules 
(connected in series and parallel) in order to obtain the 
characteristics of the battery (voltage and capacity). The 
surface temperature of the battery is measured by using a 
thermocouple attached on the cell (placed at half height). 
Hence, the thermal model of the battery is based on the thermal 
cylindrical cell. 

 

Fig.4. Module of  8 Li-ion LFP cells developped by TYVA  ENERGY. 

By constructing this thermal model, a series of assumptions 
were made: 

 the temperature inside the cylindrical cell is uniform [40],  

 there is no cell-to-cell temperature variance in each battery 
modules, 

 the predominant head mode transport in the cell is the 
conduction (the convection and radiation modes are 
neglected), 

 the heat source in the cell is governed by the irreversible 
heat source (the reversible entropic heat source which 
depends on the entropy change in the electrode is 
neglected),  

 each module have the same inlet air temperature, 

 parameters of the thermal model are independent of the 
temperature. 

The thermal model of the cell [41] (as shown in Fig.5) is 

composed by a heat source p (W), a specific heat capacity Cp 
(J/K), an internal heat transfer resistance Rthc (K/W) and an 
external heat transfer resistance Rthv (K/W).   
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Fig. 5. Simpified thermal model of  the cylindrical cell. 

The heat source and Rthv can be expressed as: 

(8) 

 

(9) 
 

where hv (W/m²/K) is the thermal convection coefficient and 
Surf (m²) is the cell surface area (surfaces of negative and 
positive terminal of the cell are neglected). 

The surface temperature can be calculated by: 

(10) 
 

where Tamb (K) is the ambient temperature of the cell (being 
also the ambient temperature of the battery). 

The overall parameters of the thermal model are Cp, Rthc and 
hv. The parameters are obtained from experimental surface 
temperature measurement and by using a nonlinear least-
squares solver. 

2.3. Scaling of the electro-thermal model 

In order to develop the physical emulator of a scaled battery 
and to reduce the testing time in the HIL test bench, a previous 
study [26] was conducted. The scaling model is based on a 
dimensional analysis (well established method in fluid and 
thermal systems) and on the Vaschy-Buckingham’s Pi theorem. 
The readers are invited to consult specific literature for more 
details [42]. Also, the same scaling methodology based on a 
dimensional analysis has been used to scale a wind energy 
conversion system [27]. 

To obtain a new set of parameters for the electro-thermal 
model, several scaling factors are introduced: 

 voltage scaling factor (kv): vscaled/voriginal, 

 current scaling factor (ki) : iscaled/ioriginal, 

 time scaling factor (kt) : tscaled/toriginal. 

About the thermal model, the format of the cell is always the 
same regardless of the size of the battery pack. Hence, these 
scaling factors do not affect Cp, Rthc and Rthv (the thermal 
convection coefficient is supposed to be the same for the 
overall cell). Only the time constant of the thermal model will 
be scaled by kt (as for the current filter time constant Tf). 

By applying the dimensional analysis [26] and the scaling 
factors at the electro-thermal model, the new parameters of the 
scaling electro-thermal model are presented in the Table 2.   

Table 2. Parameters of the scaling electro-thermal model. 

Original electro-

thermal model 

Scaled electro-thermal 

model  

E0 [Kv]E0 

K [Kv/KiKt]K 

Q [KiKt]Q 

R1 [Kv/Ki]R1 

R2 [Kv/Ki]R2 

R2C2 [kt]R2C2 

(Rthc + Rthv)Cp [kt](Rthc + Rthv)Cp 

The method to obtain the parameters of the original model 
is explained in the next section.  

3. PARAMETER EXTRACTION 

The nonlinear least-squares solver of the Matlab’s 
optimization toolbox is used in order to identify parameters of 
the electro-thermal model. In this study several objective 
functions to be minimized are proposed: 

(11) 
 

(12) 
 

(13) 
 

Parameters in table 1 are obtained with the minimization of 
equations (11) and (12) whereas the minimization of equation 
(13) allows determining Cp, Rthc and hv.  

3.1. Experimental setup for parameter extraction 

The experimental setup is shown in Fig. 6, which includes a 
remote controllable bidirectional source of voltage/current 
(configured by a Power Source PSI 9200-210 and a Controlled 
Load ELR 9250-210) to adjust charge and discharge profiles, a 
computer (with DSPACE supervisor) to control the 
bidirectional source and to secure the experimental test bench, 
a multi-channel recorder (SEFRAM – DAS 240) for data 
storage, a thermal chamber (CLIMATS) for environment 
(thermal) control and finally several LFP batteries under study 
(Table 3). 

 

Fig. 6. Exprimental test bench for parameter extraction. 

Table 3. Characteristics of LFP Batteries  and cells. 

LFP Battery LFP Cell 

 
 

25.6V – 13Ah 3.2V – 1.6Ah 

The used batteries are not equipped neither with a battery 
management system nor a balancing circuit. Hence, for safety 
consideration in all tests, both cell voltages and surface 
temperatures are measured. The upper and lower cut-off 
voltages are 3.65V and 2.5V to fulfill the safe operating area.   

3.2. OCV parameter extraction 

To extract the relationship between the OCV and the SOC 
in order to obtain parameters E0, K and Q, a pulsed current 
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profile has been used (Fig. 7). Each pulse current allows 
reducing the SOC by 10% with a constant rate (C/5). A rest 
time (toff) of one hour has been fixed for obtaining an OCV in 
equilibrium [43].  

First of all, the LFP cell was fully charged (SOC=1) with a 
constant current constant voltage profile (CCCV) with a 
constant current charge at 0.2C until the voltage reaches 3.65V; 
then, a constant voltage of 3.65V charge until the current is 
below 0.02C. Then, the battery was discharged with constant 
current (0.2C) until reaching the desired initial SOC at 0.9. 
During this test, the temperature in the thermal chamber was 
regulated at 20°C.  

 

 

 

 

 

Fig.7. Pulse current profile for OCV measurement. 

The test result is reported in Fig.8 with the OCV hysteresis 
(the blue curve represents the OCV measured in charging mode 
while the orange curve represents the OCV measured in 
discharging mode). To simplify the model, the OCV hysteresis 
is not taken into account despite its importance for the SOC 
estimation accuracy [44]. Then, the OCV characteristic used to 
extract parameters is based on an average between the two 
measured OCV curves (reported in dashed line in Fig.8). 

 

Fig.8. OCV curves for LFP cell (dashed line : OCVexperimental, solid line : 

OCVmodel). 

The results of the optimization problem with the objective 
function of equation (11) are presented in table 4. For 
qualifying the accuracy of the OCV model a weighted Root 
Mean Square Error (RMSE) is calculated (Eq. 14). A 
comparison of OCV curves, between measurements (dashed 
line) and model (solid line) with parameters in table 4, is 
represented by solid line in Fig. 8. 

Table 4. Results of OCV parameter extraction.  

E0 K Q RMSE 

3.323V 0.01V/Ah 1.5Ah 0.35% 

 

(14) 
 

 

3.3. Voltage drop parameter extraction  

This second parameter identification method is based on the 
HPPC profile which is widely used for parameter identification 
[45]. The test procedure is conducted on the LFP battery 
(25.6V – 13Ah) at 10% of SOC intervals (by constant current 
1C discharge segments) starting from 90% to 10% SOC, each 
interval being followed by 30min rest time before applying the 
next sequence. A sequence (Fig. 9) is composed with 
symmetrical charge and discharge pulses which magnitudes are 
inside the range from 0.1C to 2C. 

 

Fig.9. Pulse current profile sequence. 

For each HPPC profile, the battery was placed in the 
climatic chamber where the room temperature was regulated. 
In order to study the influence of the temperature on the 
parameters (R1, R2, Tf), the parameters have been identified for 
several ambient temperatures (0°C, 10°C, 20°C, 30°C).  

The battery is composed with 8 LFP modules in series each 
module being equipped with 8 LFP cells in parallel (module 
characteristics: 3.2V – 13Ah). To solve the optimization 
problem (minimization of the equation 12) in order to obtain 
overvoltage parameters, an experimental measurement is 
necessary. This measure is based on the voltage across one 
module (Vmodule) of the battery. OCV parameters determined in 
section 3.2 have been implemented in the electrical model with 
a current scaling factor equal to 8 (1.6Ah  13Ah). A 
comparison of Vmodule curves, between measurement and model, 
for the ambient temperature at 0°C is represented in Fig.10.  

 

Fig.10. Comparison of measured (green line) and simulated (blue line) of 

module voltage at 0°C. 

The parameter values, for different ambient temperatures, 
and the weighted RMSE (based on equation 14) are reported in 
Table 5. The RMSE values show that the simulated results are 
well fitted with the experimental results. 

Table 5. Results of voltage drop parameter extration. 

Ambient temperature R1 R2 Tf RMSE 

0°C 13.4mΩ 4.8mΩ 46s 0.84% 

10°C 10.5mΩ 2.9mΩ 47s 0.89% 

20°C 9.1mΩ 1.3mΩ 51s 0.82% 

30°C 7.3mΩ 0.63mΩ 36s 0.66% 

 During the HPPC tests, the average surface temperature 
(TS) of the cell is close to the ambient temperature. Hence, from 
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the internal resistances values, noted in Table 5, the influence 
of the temperature on the internal resistances can be given by 
the following equations:  

(15) 
 

(16) 

where R is the gas constant (8.314J/mol). The temperature 
dependence of resistance R1 can be given by an Arrhenius law 
while, for the resistance R2, the temperature dependence is 
given by an exponential curve fitting.The fitting parameters 
(K11, K12, K21, K22) of equations (15) and (16) are determined 
with a nonlinear least-squares solver and presented in Table 6.  

Table 6. Parameters of internal resistances. 

K11 K12 K21 K22 

0.26mΩ 8600J/mol 4033Ω 0.05K-1 

In the electrical model, Tf is considered as constant and is 
calculated from the average of the 4 values in table 5 (i.e. 45s). 

3.4. Thermal parameter extraction 

The parameters (Cp, Rthc and hv) are obtained with the same 
method as the previous parameter extraction. Data 
measurements used in the optimization problem presented in 
(13) are the surface temperature measurements (on a cell in a 
LFP module). The surface temperature has been measured 
during the HPPC test detailed in the section 3.3. The simulated 
surface temperature is based on the equation (10). Thermal 
parameters are shown in Table 7 for different ambient 
temperature.   

Table 7. Parameters of thermal model. 

Ambient temperature Cp Rthc hv 

0°C 27J/K 22.6K/W 4.7W/m²/K 

10°C 26J/K 23.3K/W 5W/m²/K 

20°C 27J/K 21.3K/W 4.8W/m²/K 

30°C 28J/K 23.5K/W 4W/m²/K 

Parameters used in thermal model 27J/K 22.6K/W 4.6W/m²/K 

Parameter values used in the model is based on the average 
of the four values in Table 7. In [46], for 18650 format LFP 
cell, the specific heat capacity value is around 36J/K and the 
thermal convection coefficient (for natural convection) is 
around 4W/m²/K. The ratio Rthc/Rthv can be calculated with 
parameters in the last row of Table 8. The value of Rthc/Rthv is 
equal to 0.33. This value is close to that calculated in [41] for 
cylindrical LFP cell. 

4. ROBUSNESS ANALYSIS AND TIME SCALING 

4.1. Robustness analysis of the electo-thermal model 

In order to assess the robustness of the identification 
process, a validation profile was used to ensure that the electro-
thermal battery model works well in realistic settings. The 
current profile based on microgrid application with a specific 
energy management strategy [47] is shown in Fig.11. The 
battery current magnitude is adapted for the physical battery 
configuration. The battery used for this analysis has the 
following characteristics: 25.6V – 13Ah. A comparison 
between the voltage battery measurement and voltage response 
of the battery model is made in this section. This comparison is 
also conducted for the surface temperature. 

 

Fig.11. Current battery profil for robustness analyis. 

Initially, the battery SOC is set to 80% and the battery was 
placed in the thermal chamber with a regulated temperature. 
The analysis was conducted with different ambient 
temperatures from 10°C to 30°C.  

Parameters R1, R2 and Tf were obtained from a LFP 
module (3.2V – 13Ah) while parameters E0, K and Q were 
obtained from LFP cell (3.2V – 1.6Ah). Hence, to obtain 
parameters of scaled electro-thermal battery model (25.6V – 
13Ah), voltage and current scaling factors have to be applied as 
mentioned in Table 8. Neither voltage nor current scaling 
factors are applied on the thermal model because the surface 
temperature of the battery is the same as the surface 
temperature of the cell.  

Table 8. Parameters of scaled electro-thermal battery model. 

OCV 
Kv =8; Ki=8 

Thermal 
Voltage drop 
Kv=8; Ki=1 

[Kv]E0 Cp [Kv/Ki]R1 

[Kv/KiKt]K Rthc [Kv/Ki]R2 

[KiKt]Q hv [kt]R2C2 

A comparison between the simulation and the 
measurements at 10°C is shown in Fig. 12: there is only a small 
difference between the measured and simulated values for both 
battery voltage and surface temperature of the cell. 

 

 

Fig.12. (a) voltage battery, (b) surface temperature of a cell during the cycle 
profile (green line : experimental measurements, blue line : responses of the 

scaled battery model). 

During the test, the SOC variation of the battery is depicted 
in Fig. 13. 
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Fig.13. SOC varaitaion for the validation profile. 

The performance of the scaled model was tested for several 
ambient temperatures (10°, 20°C and 30°C). The Table 9 
presents the weighted RMSE of the battery voltage and the 
surface temperature (based on equation 14). The weighted 
RMSE of the surface temperature was calculated by the ratio 
between the RMSE value and the ambient temperature. These 
results validate the performance of the scaling electro-thermal 
model for large SOC variations and different ambient 
temperatures. 

Table 9. RMSE of the scaled electro-thermal model. 

Ambient temperature RMSE (Vbat) RMSE (Ts) 

10°C 0.9% 3.2% 

20°C 0.6% 1.75% 

30°C 0.5% 3.3% 
 

The scaled model presented in this section can be 
implemented in a real time simulator in order to develop a 
physical emulator for HIL testing (Fig.1). Nevertheless, in 
order to accelerate the physical emulation of the battery and 
therefore to reduce the development cost and testing efforts, the 
time scaling is an original concept for reduce the testing time.  

To accelerate the testing time with a real battery, the 
magnitude of the current profile has to be increased. However, 
the internal voltage drop in the battery generated by the 
magnitude of the current will cause a capacity reduction and a 
possible thermal abuse in the battery. So, if a physical emulator 
is based on a real battery [25], the time scaling is not possible. 
So, the time scaling can only be done with a scalable battery 
model. 

4.2. Time accelerated with the scaled electro-thermal model 

The total time of the current profile, presented in Fig. 11, is 
2 hours. For instance, in order to reduce the test time by 60 (i.e, 
2 hours at real time equal to 2 minutes in “compacted virtual 
time”), a time axis compression (by 60) is applied on the 
current profile. 

 

 
 

 

Fig.14. (a) voltage battery, (b) surface temperature of a cell (green line : 
experimental measurements presented in Fig.12; blue line : responses of 

scaled battery model). 

The results of the scaled electro-thermal battery model (at 
10°C) with kt=1/60 (and with the same voltage and current 
scaling factors as in the robustness analysis) are shown in 
Fig.14. The simulated response of the scaled battery model is 
very close to the experimental measurements for which the 
total time is 2h. Hence, with the scaled electro-thermal model 
presented in this paper, it is possible to reduce testing times for 
HIL simulation. However, for the development of the physical 
emulator and for the HIL experiments, some limits can appear 
on kt values. Indeed, the bandwidth of the power supply or the 
bandwidth of the control loops of power electronic converters 
can limit the performance of the accelerated tests.       

5. CONCLUSION 

A scaled electro-thermal model of a cylindrical 
LFP/graphite Li-ion battery was presented. This model is used 
in order to develop a physical emulator in power HIL and to 
predict the thermal performance of the LFP cell under dynamic 
current profile and for different ambient temperatures. Hence, 
the surface temperature information can be implemented in the 
energy management systems of the microgrid. Good agreement 
was obtained, despite of simplifying assumptions, between 
simulated and experimental results. Moreover, the accuracy of 
the scaled model has been tested for several ambient 
temperature and for a time scaling allowing to shorten testing 
times. 
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