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As the fundamental of predictive energy management strategies (PEMSs) for Hybrid Electric Vehicles (HEV), the route prediction accuracy has significant effects on the performance of the corresponding PEMSs, i.e. fuel economy. This paper presents a comprehensive review on the existing prediction algorithms for future driving conditions (FDCs). In the first part, a novel classification of existing energy management strategies (EMS) for HEVs is proposed. And then, the review on existing of FDCs prediction method is carried out. Finally, these prediction methods are classified and their advantages and disadvantages are compared and summarized. Generally speaking, this paper not only conducts a comprehensive analysis and review on existing prediction algorithms but also summarizes their own characteristics, which will help prospective researchers to choose appropriate approaches to seek further performance gaining of PEMSs.

INTRODUCTION

Environmental catastrophes like global warming, air pollution and energy crisis caused by the large amount of carbon-based fossil fuels usage have raised peoples' attention in recent years. As one of the major sources of greenhouse gases (GHG), the conventional internal combustion engine (ICE) powered vehicles need to be updated or replaced to reduce the emission of exhaust gases [START_REF] Huang | Model predictive control power management strategies for HEVs: A review[END_REF]. To solve this problem, electrical power-providing devices like electrical machines, batteries and super-capacitors are embedded into the traditional ICE-based powertrain system. Vehicles with such hybrid propulsion powertrain system are called Hybrid Electric Vehicles (HEVs) [START_REF] Wang | Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles[END_REF], where the electrical power is regarded as the secondary energy sources. With the help of such assisting energy sources, ICEs can always run in the high efficiency area and the drivability during startup process is enhanced compared with conventional one. Therefore, benefiting from such powertrain configurations, dependence on fossil fuels is decreased and thus less exhausted gases will be emitted, which will turn out to be the best mid-term solutions against the pure electric vehicles due to their limited driving range. However, how to build one effective energy management strategies (EMSs) for HEVs to both provide enough energy according to rapid-changing external power demands and reach the best fuel economy is still a not-well-resolved and heated-discussed issue [START_REF] Zhang | A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics[END_REF].

Benefiting from the predicted distribution of vehicle power demand in the finite horizon, PEMSs can actively make some adjustments and energy allocation planning in advance rather than passive adjustments made by conventional EMSs according to series of predefined rules, engine efficiency maps or instantaneous power demand, which leads to sub-optimal or non-optimal solutions. Therefore, the superiority and potential fuel economy enhancements compared with conventional EMSs made PEMSs the popular topic among researchers in recent years.

In this paper, different from existing classification methods, a novel classification method of for EMSs is proposed based on whether or not the strategies are proposed according to the prediction results of FDCs. The block diagram of this new classification method is shown in Fig. 1.

Fig 1 block diagram of novel classification of EMSs

PEMSs can be further classified into three parts according to the levels of future driving information used during prediction process. It should be noted that strategies from these categories are not mutually exclusive and can be either used alone or in combination. For example, in the framework of Model Predictive Control (MPC) based PEMSs, conventional dynamic programming (DP) can be used as an real-time optimal solver to give the satisfied results on the given horizon [4]- [START_REF] Cao | Research on Model Prediction Energy Management Strategy with Variable Horizon[END_REF].

Full previewed knowledge based PEMSs described the situation that the prediction is made based on the fullypreviewed knowledge for a given horizon and the performance of such PEMS is considered as the upper limit to assess other PEMSs. In the conventional Markov driving cycle prediction model, future state sequences are generated iteratively only based on the knowledge of current states and transition probability matrices (TPM), which are estimated from historical database or standard driving cycles. And corresponding EMSs are called "zero previewed knowledge" based PEMSs, where the prediction is made without any future driving information [START_REF] Banvait | Energy Management Control of Plug-in Hybrid Electric Vehicle using Hybrid Dynamical Systems Set of discrete inputs[END_REF], whose results are considered as the lower limit of other PEMSs. Moreover, the main difference between zero previewed knowledge based PEMSs and conventional EMSs is that the latter is proposed only based on non-predictive knowledge like deterministic rules, human intuitions, expert experience etc. Consequently, it is also called non-predictive EMS (N-PEMS).

As a result, the performance of PEMSs is highly related to the prediction accuracy [START_REF] Huang | Model predictive control power management strategies for HEVs: A review[END_REF] and the strategies to handle mispredictions [START_REF] Asher | Prediction Error Applied to Hybrid Electric Vehicle Optimal Fuel Economy[END_REF], [START_REF] Chen | An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle[END_REF]. In previous works, various methods are utilized for predicting future driving conditions in different scenarios and relative researches have been carried out to increase the prediction precision. According to these prediction methods, corresponding PEMs have better performances on the fuel economy and battery lifetimes. However, there is no comprehensive review of the existing prediction methods and their characteristics in previous works.

Thus, this paper firstly presents a novel classification method for PEMSs of HEVs and the significance of FDCs prediction are also discussed. Secondly, review of each FDCs prediction method is conducted, following by a brief comparative study of their benefits and drawbacks. The classification of existing FDCs prediction methods is built at last. This papers' main contribution is that it can help prospective researchers to select the proper prediction methods which will increase the overall performance on PEMSs.

REVIEWS ON FDCS PREDICTION METHODS

According to existing literatures, several approaches are utilized to predict future vehicle power demand, velocity, and drivers' power request, including Artificial Intelligence (AI) based methods [START_REF] Banvait | Energy Management Control of Plug-in Hybrid Electric Vehicle using Hybrid Dynamical Systems Set of discrete inputs[END_REF], [START_REF] Zhou | Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach[END_REF]- [START_REF] Zhou | Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles Based on Time Series Prediction[END_REF], Markov based approaches [START_REF] Xie | An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses[END_REF], [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF], [START_REF] Xie | Plug-In Hybrid Electric Bus Energy Management Based on Stochastic Model Predictive Control[END_REF]- [START_REF] Li | The Study on Multi-scale Prediction of Future Driving Cycle Based on Markov Chain[END_REF], Exponentially Varying Model based approaches [START_REF] Borhan | Model predictive control of a power-split Hybrid Electric Vehicle with combined battery and ultracapacitor energy storage[END_REF]- [START_REF] Borhan | predictive energy management of a power-split hybrid electric vehicle[END_REF], telematics technique based approaches [START_REF] Asher | Prediction Error Applied to Hybrid Electric Vehicle Optimal Fuel Economy[END_REF], [START_REF] Zeng | A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control with Road Grade Preview[END_REF]- [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF] and other methods [START_REF] Chen | An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle[END_REF], [START_REF] Zhou | Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach[END_REF], [START_REF] Liu | Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter[END_REF]- [START_REF] Kermani | Predictive energy management for hybrid vehicle[END_REF]. A comprehensive review and comparative analysis of these methods are carried out in the following parts.

Artificial Intelligence (AI) based methods

AI based methods like Artificial Neural Networks (ANNs), Bayesian algorithms, decision tree algorithm and support vector machine (SVM), have strong ability in describing the compound relationships between inputs and outputs by the "training" process. Due to their characteristics, relative works have been done in recent researches for predicting FDCs based on AI-based approaches [START_REF] Banvait | Energy Management Control of Plug-in Hybrid Electric Vehicle using Hybrid Dynamical Systems Set of discrete inputs[END_REF], [START_REF] Zhou | Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach[END_REF]- [START_REF] Zhou | Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles Based on Time Series Prediction[END_REF].

It can be summarized that, from previous works, the AIbased prediction methods can be divided into two main parts. The first one is called "recognition based" prediction, whose main steps of prediction procedure are: Firstly, representative parameters are defined and extracted from existing or standard driving cycles and then are used to train a classification model; secondly, same parameters for real driving profile are extracted, compared with standard cycles and then classified into different predefined modes based on the similarity of each representative parameter; thirdly, prediction can thus be made and the corresponding EMSs can Regarding the number of representative parameters used for recognition in previous works, 62 [START_REF] Ericsson | Independent driving pattern factors and their influence on fuel-use and exhaust emission factors[END_REF], 40 [START_REF] Langari | Intelligent energy management agent for a parallel hybrid vehicle-part I: system architecture and design of the driving situation identification process[END_REF], 17 [START_REF] Yi | Intelligent energy management based on driving cycle identification using fuzzy neural network[END_REF] and 14 [START_REF] Murphey | Neural learning of driving environment prediction for vehicle power management[END_REF] parameters are used to characterize a specific driving cycle. This number is decreased to only 3 [START_REF] Chen | Intelligent power management in SHEV based on roadway type and traffic congestion levels[END_REF]or 2 [START_REF] Lin | Driving Pattern Recognition for Control of Hybrid Electric Trucks[END_REF]. The more parameters used, the more precise the prediction/recognition will be, while the computational burden of this process will increase accordingly. Consequently, the focus of recognition based prediction is mainly on the tradeoff between the computation efficiency and the recognition accuracy for real-time use.

In [START_REF] Zhang | An adaptive energy management system for electric vehicles based on driving cycle identification and wavelet transform[END_REF], statistical data extracted from six standard driving cycles is used to train the classification model based on a learning vector quantization (LVQ) NN. In [START_REF] Chen | Multimode Energy Management for Plug-In Hybrid Electric Buses on Driving Cycles Prediction[END_REF], a data-driven hierarchical clustering classifier is used to extract representative parameters from the real driving cycles and then SVM is used to generate the prediction sequence. In [START_REF] Soriano | Drive Cycle Identification and Energy Demand Estimation for Refuse-Collecting Vehicles[END_REF], a feed-forward back-propagation NN (BPNN) based route segment identification method is proposed, whose results have been used to choose proper predefined PEMSs.

The second part is called "experience-based" prediction, which means if the current driving conditions are obviously different from the historical patterns, then the accuracy will be influenced. The prediction process of this approach is shown in Fig 3. For example, in [START_REF] Liu | An On-line Energy Management Strategy based on Trip Condition Prediction for Commuter Plug-in Hybrid Electric Vehicles[END_REF], back-propagation neural network (BPNN) is used to establish the trip condition prediction model to obtain future velocity profile considering both traffic factors and non-traffic factors. In [START_REF] Zhou | Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles Based on Time Series Prediction[END_REF], Non-linear Autoregressive Neural Network (NARNN) cooperated with the moving window technique is presented to give the prediction results of future speed-time series, by updating the training database with newly-measured data automatically. Radial Basis Function NN is utilized to predict the future distribution of torque [START_REF] Xiang | Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control[END_REF], velocity and power demand [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF] aiming at improving the overall performance of EMSs.

Markov based methods

In this part, the future possibility distributions of vehicles' velocity, acceleration and power demand are considered as stochastic processes due to the uncertain factors in external driving environments (weather, traffic congestion level, road slope etc.). As a powerful tool to model stochastic processes, Markov chain is frequently implemented by researchers for predicting FDCs. The overall procedure of using Markov chain to make prediction is shown in fig [START_REF] Banvait | Energy Management Control of Plug-in Hybrid Electric Vehicle using Hybrid Dynamical Systems Set of discrete inputs[END_REF]. Relative attempts have been made by many researchers, for instance, in [START_REF] Xie | Plug-In Hybrid Electric Bus Energy Management Based on Stochastic Model Predictive Control[END_REF], [START_REF] Zhang | Model Predictive Control Based Energy Management Strategy for a Plug-In Hybrid Electric Vehicle[END_REF] and [START_REF] Shi | Research on Markov property analysis of driving cycles and its application[END_REF], Markov chain was used to establish the future distribution of velocity and acceleration (V-A distribution), which is used to generate a driving cycle sequence. In [START_REF] Moura | A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles[END_REF] and [START_REF] Ripaccioli | A stochastic model predictive control approach for series hybrid electric vehicle power management[END_REF], future power demand sequence of vehicle was calculated by Markov chain automatically, where input variables are current power demand [START_REF] Ripaccioli | A stochastic model predictive control approach for series hybrid electric vehicle power management[END_REF] (P-P distribution) or current power demand and velocity [START_REF] Moura | A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles[END_REF] (P-(P,V) distribution). Besides, in [START_REF] Joševski | Tube-based MPC for the energy management of hybrid electric vehicles with non-parametric driving profile prediction[END_REF], a Hidden Markov model was proposed to generate future vehicles velocity and position sequence based on current engine torque and velocity, whereas a distance estimation method was proposed in [START_REF] Ravey | Distance estimation algorithm for plug-in hybrid electric vehicle control strategy[END_REF] based on the knowledge of vehicles position generated by the Markov chain model. Moreover, Markov chain was utilized to model the drivers' behaviors to give the power request from driver at next state [START_REF] Di Cairano | Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management[END_REF].

Exponentially decreasing model based methods

Exponentially decreasing model was first created and implemented for PEMS by H. Ali Borhan et al. [START_REF] Borhan | predictive energy management of a power-split hybrid electric vehicle[END_REF]. It was based on the assumption that the future torque demand of drivers will drop exponentially on the prediction horizon. Therefore, this model can be described by equation [START_REF] Huang | Model predictive control power management strategies for HEVs: A review[END_REF]. Combining equation [START_REF] Huang | Model predictive control power management strategies for HEVs: A review[END_REF] with the discrete dynamics model of vehicle (2) [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF] and by numerical integration, the predicted value of vehicle velocity can be given in equation [START_REF] Zhang | A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics[END_REF]. In [START_REF] Zhang | Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system[END_REF], this model was used to predict the future velocity of PHEVs, and the results were utilized to create a MPC based PEMs with a hybrid energy storage system. In [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF], three velocity predictors built by NNs, Markov chain and exponentially decreasing model were embedded into the MPC based PEMSs framework. In [START_REF] Borhan | Model predictive control of a power-split Hybrid Electric Vehicle with combined battery and ultracapacitor energy storage[END_REF], [START_REF] Borhan | MPC-Based Energy Management of a Power-Split Hybrid Electric Vehicle[END_REF], this model was used to provide the prediction of future vehicle velocity and was implemented in the Nonlinear MPC based PEMs framework.
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Telematics technique based methods

From the comparative studies [START_REF] Zhang | Role of Terrain Preview in Energy Management of Hybrid Electric Vehicles[END_REF]-[50], [START_REF] Golchoubian | Real-Time Nonlinear Model Predictive Control of a Battery-Supercapacitor Hybrid Energy Storage System in Electric Vehicles[END_REF], [START_REF] Zhang | Route preview in energy management of plugin hybrid vehicles[END_REF], it can be seen that, benefiting from accurate and abundant previewed knowledge of FDCs, PEMSs showed overall superiority than many N-PEMSs.

However, such superiority can be compromised or even lost if the EMSs were proposed based on the inaccurate prediction [START_REF] Bouwman | Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles[END_REF]. According to previous works [START_REF] Asher | Prediction Error Applied to Hybrid Electric Vehicle Optimal Fuel Economy[END_REF], [START_REF] Zeng | A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control with Road Grade Preview[END_REF]- [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF], inaccurate predictions are mainly caused by uncertain traffic factors (traffic light signal distribution and traffic congestion level etc.) [START_REF] Zeng | A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control with Road Grade Preview[END_REF], [START_REF] Kamal | Model predictive control of vehicles on urban roads for improved fuel economy[END_REF], [START_REF] Guo | Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC[END_REF], [START_REF] Qiu | Global optimal energy management control strategies for connected four-wheel-drive hybrid electric vehicles[END_REF], [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF], [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF] and route-related information (future terrain and speed limits etc.) [START_REF] Chen | Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks[END_REF], [50], [START_REF] Golchoubian | Real-Time Nonlinear Model Predictive Control of a Battery-Supercapacitor Hybrid Energy Storage System in Electric Vehicles[END_REF], [START_REF] Zhang | Route preview in energy management of plugin hybrid vehicles[END_REF].

Benefiting from the development of telematics techniques (GPS and navigation system etc.), predictions can be made accurately with preview trip knowledge. In [50], a PEM framework is built by incorporating uncertain future route predictions, destinations and charging location for HEVs and the optimal solution is calculated by stochastic DP (SDP); A real-time intelligent EMS was built by a double-NNs structure dealing with situations with or without the previewed knowledge of trip length and driving duration [START_REF] Bin | Multi-information integrated trip specific optimal power management for plug-in hybrid electric vehicles[END_REF], [START_REF] Chen | Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks[END_REF]; C .Zhang. et al. have shown the performance enhancement of integrating the preview of road grade [START_REF] Zhang | Real-time optimal control of plug-in hybrid vehicles with trip preview[END_REF], [START_REF] Zhang | Role of Terrain Preview in Energy Management of Hybrid Electric Vehicles[END_REF] and future velocity [START_REF] Zhang | Real-time optimal control of plug-in hybrid vehicles with trip preview[END_REF] into ECMS and DP based PEMSs over EMSs without preview; An optimal velocity profile is scheduled according to the preview knowledge of traffic signal phases to decrease the fuel consumption in [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF]; Similar optimal velocity planning approach appeared in [START_REF] Qiu | Global optimal energy management control strategies for connected four-wheel-drive hybrid electric vehicles[END_REF], where a global hierarchical EMS based on the target velocities was established for a team of connected vehicles; Markov chain based road grade [START_REF] Zeng | A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control with Road Grade Preview[END_REF] and speed prediction model were built for establishing PEMSs with route based information; In [START_REF] Ma | Integrated power management and aftertreatment system control for hybrid electric vehicles with road grade preview[END_REF], authors presented an EMSs for HEVs with preview of road grade; Double-layer EMSs were established in [START_REF] Guo | Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC[END_REF], [START_REF] Kelouwani | Twolayer energy-management architecture for a fuel cell HEV using road trip information[END_REF] using the future driving information like traffic lights positions, speed limits and traffic congestion level; Md. Abdus S.K. et al. in [START_REF] Kamal | Model predictive control of vehicles on urban roads for improved fuel economy[END_REF] presented a PEMSs for urban vehicles by predicting the movements of preceding vehicles based on the previewed knowledge of varying traffic signals; Authors used trip-preview based information to construct the driving cycle and identify the route features from historical and real-time data for further PEMs frameworks [START_REF] Zhao | Energy Control of Plug-In Hybrid Electric Vehicles[END_REF].

Other methods

Apart from the above-mentioned prediction methods, other prediction methods [START_REF] Chen | An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle[END_REF], [START_REF] Zhou | Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach[END_REF], [START_REF] Liu | Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter[END_REF]- [START_REF] Kermani | Predictive energy management for hybrid vehicle[END_REF], [START_REF] Buerger | Fast dual loop nonlinear receding horizon control for energy management in hybrid electric vehicles[END_REF]- [START_REF] Larsson | Commuter Route Optimized Energy Management of Hybrid Electric Vehicles[END_REF] were also proposed by researchers. For example, a fast dual-loop Nonlinear PEMSs for HEVs was proposed [START_REF] Buerger | Fast dual loop nonlinear receding horizon control for energy management in hybrid electric vehicles[END_REF], where the inner loop aimed at tracking the reference trajectories based on the knowledge of predicted driving cycle; An autoregressive integrated moving average (ARIMA) based method was bulit to predict the future road grade with high precision [START_REF] He | Road Grade Prediction for Predictive Energy Management in Hybrid Electric Vehicles[END_REF]; Prediction of route situation was generated by a cabin model and then be utilized to provide future power demands [START_REF] Eckstein | A Novel Approach Using Model Predictive Control to Enhance the Range of Electric Vehicles[END_REF]. In [START_REF] Bender | An adaptive driver model for driving cycle prediction in the intelligent truck[END_REF], a gain scheduled driver model with a longitudinal vehicle model was used for predicting the future driving profile. In [START_REF] Larsson | Commuter Route Optimized Energy Management of Hybrid Electric Vehicles[END_REF], authors illustrated an approaches to recognize commuter routes from previous driving data using hierarchical agglomerative clustering technique. In [START_REF] Kermani | Predictive energy management for hybrid vehicle[END_REF], a prediction method was created aiming at the frequency distribution of vehicles future position. Moreover, several driving pattern recognition and classification approaches were bulit based on analytical LVQ-NN [START_REF] Brady | Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas[END_REF], similarity degree [START_REF] Wei | HEV power management control strategy for urban driving[END_REF], fuzzy logic [START_REF] Zhang | Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming[END_REF], [START_REF] Chen | An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle[END_REF], Probabilistic Support Vector Machine (PSVM) [START_REF] Zhou | Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach[END_REF] and Kalman filter [START_REF] Liu | Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter[END_REF] for establishing PEMSs to decrease the fuel consumption.

FURTHER DISCUSSION

In this section, based on the comprehensive review of FDCs prediction methods, the classification of these methods is proposed at first and the block diagram of this classification is shown in Fig 5 . And then main benefits and drawbacks of these methods are compared and summarized in table 1 according to the corresponding analysis in former sections. As can be seen in table 1, different types of prediction methods have a different characteristic, which means they are suitable for various application scenarios. For practical applications, prospective designer should carefully asses the possible driving scenarios before selecting prediction methods. It is likely that in the real complicated driving environments, more than one prediction algorithms should be used together to provide with the satisfied results.

The content in this section will help designers to have a clear view of FDCs prediction methods and select proper methods according to their characteristics leading to the better performance in corresponding PEMSs. 

Experience based

Recognition based [START_REF] Banvait | Energy Management Control of Plug-in Hybrid Electric Vehicle using Hybrid Dynamical Systems Set of discrete inputs[END_REF], [START_REF] Lin | Driving Pattern Recognition for Control of Hybrid Electric Trucks[END_REF]- [START_REF] Soriano | Drive Cycle Identification and Energy Demand Estimation for Refuse-Collecting Vehicles[END_REF] [11], [START_REF] Liu | An On-line Energy Management Strategy based on Trip Condition Prediction for Commuter Plug-in Hybrid Electric Vehicles[END_REF]- [START_REF] Zhou | Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles Based on Time Series Prediction[END_REF] V-A distribution P-P or P-(P,V) distribution Other distribution [START_REF] Xie | Plug-In Hybrid Electric Bus Energy Management Based on Stochastic Model Predictive Control[END_REF], [START_REF] Zhang | Model Predictive Control Based Energy Management Strategy for a Plug-In Hybrid Electric Vehicle[END_REF], [START_REF] Shi | Research on Markov property analysis of driving cycles and its application[END_REF] [33], [START_REF] Ripaccioli | A stochastic model predictive control approach for series hybrid electric vehicle power management[END_REF] [5], [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF], [START_REF] Huang | Driving cycle prediction model based on bus route features[END_REF]- [START_REF] Joševski | Tube-based MPC for the energy management of hybrid electric vehicles with non-parametric driving profile prediction[END_REF], [START_REF] Zou | A real-time Markov chain driver model for tracked vehicles and its validation: Its adaptability via stochastic dynamic programming[END_REF], [START_REF] Li | The Study on Multi-scale Prediction of Future Driving Cycle Based on Markov Chain[END_REF].

[37]- [START_REF] Borhan | predictive energy management of a power-split hybrid electric vehicle[END_REF] Uncertain traffic factors based Road-related information based [START_REF] Chen | Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks[END_REF], [50], [START_REF] Golchoubian | Real-Time Nonlinear Model Predictive Control of a Battery-Supercapacitor Hybrid Energy Storage System in Electric Vehicles[END_REF], [START_REF] Zhang | Route preview in energy management of plugin hybrid vehicles[END_REF] [42], [START_REF] Kamal | Model predictive control of vehicles on urban roads for improved fuel economy[END_REF], [START_REF] Guo | Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC[END_REF], [START_REF] Qiu | Global optimal energy management control strategies for connected four-wheel-drive hybrid electric vehicles[END_REF], [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF], [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF] [9], [START_REF] Zhou | Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach[END_REF], [START_REF] Liu | Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter[END_REF]- [START_REF] Kermani | Predictive energy management for hybrid vehicle[END_REF], [START_REF] Buerger | Fast dual loop nonlinear receding horizon control for energy management in hybrid electric vehicles[END_REF]- [START_REF] Larsson | Commuter Route Optimized Energy Management of Hybrid Electric Vehicles[END_REF] LVQ-NN PSVM Analytical approaches FLC ... 

CONCLUSIONS

This paper presents a comprehensive study on existing algorithms for predicting future driving conditions. Through detailed analysis and comparisons of these algorithms in this paper, it is clear that each of them has own pros and cons, which makes them suitable for different application scenarios. For real time applications, it is significant to make tradeoffs between prediction accuracy and computation burden, which requires utilizing the combination of different types of prediction methods together to make prediction in both short and long terms for adapting to various changeable external environments. Moreover, reducing uncertainty of future driving conditions by integrating preview knowledge is also necessary. However, prediction with high accuracy cannot be guaranteed all the time, so reliable backup strategies deserve to be explored to reduce the dependency of PEMSs on prediction results. Further precision enhancements highly rely on the advanced traffic modelling technique and overall intelligence of transportation, which will be another research interest. Future works will concentrate on how to develop an online prediction based EMSs for fuel cell hybrid electric vehicle and how to make the reasonable tradeoff between the prediction accuracy and computation burden by combining various prediction methods. 

  be established and implemented based on the prediction/classification results. The precision of this approach depends on the driving cycles used to train the prediction/classification model and its block diagram of prediction process is shown in fig 2.
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 3 Fig 3 block diagram of experience based prediction In Fig 3, historical database is used to train the prediction models, which describe the multi-variable, non-linear and constrained relationships/functions between the measured inputs and predicted outputs.
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 4 Fig 4 block diagram of Markov chain based predictionAs can be seen from fig4, the typical prediction process of using Markov chain is:1) Conducting experiments in real world and collecting the experimental data (velocity, acceleration, deceleration, stop position etc.); 2) Building original database by both real-world experimental data and standard driving cycles; 3) Defining and coding each state from database and estimating the probability of each transition by Monte Carlo simulations; 4) Establish Transition Probability Matrixes (TPM) by combining every transition probability and predicting future states iteratively. Detailed information of standard Markov chain prediction procedure can be found in[START_REF] Liu | Study on the design method of time-variant driving cycles for EV based on Markov Process[END_REF].

  value of torque requests from driver at the beginning of the prediction horizon, T is sampling period, T d is the decay-determined parameter, P denotes the prediction horizon, caused by gravity when driving on non-horizontal roads,   kT F t is the traction force and w r denotes the wheel radius.
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Table 1

 1 Main benefits and drawbacks of FDCs prediction methods

	Method	Main Benefits	Main Drawbacks
	Markov	1. Less dependency of preview driving knowledge; 2. Suitable for modeling stochastic process.	1.Lower prediction accuracy when there is obvious discrepency between real and historical driving conditions;
	based	3. Reasonable accuracy on similar driving conditions.	2.Diffculties in integrating with real-time traffic information.
	AI	1. Powerful in finding the non-linear multiple-	1. The trainning process is time-consuming;
	based	variables relationship;	2. Complexity and the "overfitting" problem;
		2. Potential of integrating preview driving knowledge;	3. Difficulties in on-line application.
		3. Strong capacity in "learning" from database.	
		1. More accurate real-time driving data available;	1. No common method for integrating telematics data into the EMS;
	Telematics	2. Reduce the uncertainty of future conditions;	2. Large computation burden;
	based	3. Potential of applying EMSs on whole traffic flows.	3. Early stage of Intelligent transportation system and traffic flow modeling techniques;
		1. Easy and robust to implement;	
	Exponentially	2. No future information required and Computational-	
	decreasing	friendly;	
		3. Good benchmark.	

1. Do not have good adaptation to various external environment; 2. Decaying parameters need to be tuned by DP process; 3. Not suitable for practical application.