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Abstract. — In this article, we are concerned with various aspects of arcs on surfaces.
In the first part, we deal with topological aspects of arcs and their complements. We use this
understanding, in the second part, to construct an interesting action of the mapping class group
on a subgraph of the arc graph. This subgraph naturally emerges from a new characterisation
of infinite-type surfaces in terms of homeomorphic subsurfaces.
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1. Introduction

Our work stems from the following simple observation: no surface Σ of finite type
admits a subsurface S homeomorphic to Σ, but not homotopic to it(1) . This holds
for a quite general type of subsurface – the boundary of S in Σ can be any union
of (pairwise disjoint and essential) simple arcs and curves on Σ. However, the proof
of this fact relies on the finiteness of genus and number of punctures of a finite-
type surface, so it does not carry over to the infinite-type setting (i.e. where the
fundamental group is not finitely generated). As such, a natural question is: given an
infinite-type surface Σ, does there exist a subsurface homeomorphic to Σ such that
the inclusion map is not homotopic to a homeomorphism? Our first result states
that not only are infinite-type surfaces characterised by having such a subsurface,
but also that we can restrict our attention to a simple class of subsurfaces.
Theorem A. — A surface Σ is of infinite type if and only if there exists a separat-

ing essential proper simple arc α such that one component of Σ \α is homeomorphic
to Σ.

We call a subsurface as in the theorem a one-cut homeomorphic subsurface. The
existence of such subsurfaces provides us with a way to select a special class of
arcs, which we want to think of as “truly essential”. Indeed, for a finite-type surface
with at least one end, the essential arcs are those intersecting every homeomorphic
subsurface (although in this case the inclusion of the subsurface in the full surface is
homotopic to a homeomorphism). Following Theorem A, we extend this viewpoint
to the infinite-type setting; we say that an arc joining distinct ends is omnipresent
if it intersects every one-cut homeomorphic subsurface.
One might hope to be able to characterise omnipresent arcs on any surface, but,

as discussed in Section 5, this seems to be impossible in general. On the other hand,
we are able to give such a characterisation for a subclass of surfaces, which we call
stable. The ends of these surfaces are required to satisfy a stability condition (see
Section 5), which turns out to be the same as the one considered by Mann and Rafi
in their recent work on the coarse geometry of mapping class groups [MR19]. The
set of stable surfaces is a large subset of the set of all surfaces – in particular, it has
the cardinality of the continuum (Remark 5.5).
As the next theorem shows, ends with finite mapping class group orbit play an

important role in the study of stable surfaces; we call such ends finite-orbit ends.
Theorem B. — Let Σ be a stable surface. Then an arc joining two distinct ends

is omnipresent if and only if both its ends are finite-orbit ends.

Recall that the arc graph A(Σ) has vertices corresponding to isotopy classes of all
essential arcs, and edges between vertices with disjoint representatives. In analogy
with the finite-type case, we consider the omnipresent arc graph Ω(Σ), the full
subgraph of A(Σ) spanned by all omnipresent arcs, that is, the “truly essential” arcs.
The reason to look at subgraphs of the arc graph is the following. In the finite-type
case, curve and arc graphs have been extremely useful to understand properties
(1) I.e. such that the inclusion map is not homotopic to a homeomorphism.
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Homeomorphic subsurfaces and the omnipresent arcs 1567

of mapping class groups – think for instance of quasi-isometric rigidity [BKMM12,
Bow18], or cohomological properties [BF02, Har85, Har86]. While we can define
these graphs for infinite-type surfaces as well, one issue for many applications is that
they have finite diameter. As such, there has been interest in constructing other
graphs associated to infinite-type surfaces with a good mapping class group action
to circumvent this problem [AFP17, Bav16, DFV18, FP15] and the definition of the
omnipresent arc graph fits in this framework. We show:

Theorem C. — For any stable surface Σ with at least three finite-orbit ends,
Ω(Σ) is a connected δ-hyperbolic graph on which MCG(Σ) acts with unbounded
orbits. The constant δ can be chosen independently of Σ.

An interesting observation is that, in general, the action of the mapping class group
is not continuous (Proposition 6.3) and the set of omnipresent arcs is uncountable
(Lemma 6.4).
We remark that the omnipresent arc graph is naturally associated to the surface,

in the sense that there are no (surface-dependent) choices to be made. This is in
contrast with the construction in [DFV18], where the graphs depend on the choice
of a collection of closed subsets of the space of ends of the surface. While we can
define the omnipresent arc graph for every surface, it is in the setting of (most)
stable surfaces that we can certify that the graph has the good properties stated in
the theorems, thus giving a partial answer to the following question:

Question ([LPRT19, Problem 2.1]). — What combinatorial objects are “good”
analogues of the curve complex, either uniformly for all infinite-type surfaces or for
some class of infinite-type surfaces? Here “good” means that there exist relationships
between topological properties of the mapping class and dynamical properties of its
action on the combinatorial object.

1.1. Other definitions of graphs

Our strategy to prove Theorem C views omnipresent arc graphs as a special case
of a more general construction, reminiscent of that of [DFV18]. More precisely, given
a surface Σ and a subset P of ends, we define A2(Σ, P ) to be the subgraph of the arc
graph spanned by arcs with two distinct ends in P . We show that for stable surfaces,
the omnipresent arc graph corresponds to A2(Σ,F), where F is the collection of
finite-orbit ends. We then show that a theorem analogous to Theorem C holds for this
graph if P is finite, of cardinality at least three, and mapping class group invariant
(Theorem 6.1).
In [DFV18], the authors introduce a topological invariant associated to a surface,

the finite-invariance index f(Σ), and show that if f(Σ) > 4, then there is a connected
graph on which MCG(Σ) acts (continuously) with unbounded orbits. It is easy to
check that the surfaces in Theorem C satisfy f(Σ) > |P |. As we require |P | to be only
at least three, our result includes surfaces not covered by [DFV18, Theorem 2]. One
such example is the surface with three ends, all nonplanar, for which it was shown
in [DFV18] that there is no graph, whose vertices are homotopy classes of curves,
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1568 F. FANONI, T. GHASWALA & A. MCLEAY

which is connected and on which the mapping class group acts with unbounded
orbits. On the other hand, there are surfaces with f(Σ) > 4 which are not covered
by our theorem, though for these it is not known whether the graph constructed
in [DFV18] is Gromov hyperbolic.
Generalising work of Bavard [Bav16], Aramayona, Fossas and Parlier proved

in [AFP17] a result analogous to Theorem C for the subgraph of the arc graph
given by arcs with both endpoints in a given finite set P of isolated planar ends.
While they don’t need a lower bound on the size of P , it is important in their
construction that the ends in P are planar and isolated. As in our case the ends
are not necessarily planar nor isolated, the behavior of a finite collection of arcs is
not captured by their behavior in a finite-type surface. This in turn implies that the
strategy to show hyperbolicity in [AFP17] and [DFV18] – reducing to the finite-type
setting – won’t carry over to our setup. We need instead to understand how to adapt
the unicorn construction of [HPW15] to pairs of arcs that intersect infinitely many
times (Section 6).

1.2. Plan of the paper

In Section 3 we discuss topological properties of arcs and their complements,
proving Theorem A. In Section 4 we define omnipresent arcs and show that if
an arc joins two finite-orbit ends, then it is an omnipresent arc (one direction of
Theorem B). We then discuss in Section 5 the stability conditions necessary to be
able to characterise omnipresent arcs and prove the other direction of Theorem B.
In Section 6 we define the arc graphs we are interested in, discuss the (dis)continuity
of the mapping class group action and prove Theorem C.
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2. Preliminaries

We recall here some basic definitions, to establish notation, and we introduce
objects and conventions we will use in the sequel.
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2.1. Surfaces and ends

By surface we mean a two-dimensional, connected, orientable manifold. Unless
otherwise stated, surfaces will have no boundary, except in the case of properly
embedded subsurfaces. A surface is of finite type if its fundamental group is finitely
generated and of infinite type otherwise. A simple closed curve on a surface is essential
if it does not bound a disk or a once-punctured disk.
The mapping class group MCG(Σ) of a surface Σ is the group of orientation

preserving homeomorphisms, up to isotopy. It is a topological group with respect
to the topology generated by sets of the form φ · UA, where φ is a mapping class,
A = {γ1, . . . , γn} a finite collection of homotopy classes of essential simple closed
curves and

UA = {ψ ∈ MCG(Σ) |ψ(γi) = γi ∀ i = 1, . . . , n} .
This is the same as the quotient topology induced by the compact-open topology on
the group of (orientation-preserving) homeomorphisms (a fact that can be shown
using the Alexander method).
Given a surface Σ, we define its ends to be equivalence classes of admissible

descending chains. An admissible descending chain is a nested sequence
U1 ⊃ U2 ⊃ · · · ,

where
(1) each Un is either a connected open unbounded(2) set with compact boundary

or the closure of such a set, and
(2) for every compact set K of Σ, Un ∩K = ∅ for any n large enough.

Two such chains U1 ⊃ U2 ⊃ · · · and V1 ⊃ V2 ⊃ · · · are equivalent if for any n
there exists an N such that UN ⊂ Vn, and for any m there exists an M such that
VM ⊂ Um. We will often say that an admissible descending chain defines the end
[U1 ⊃ U2 ⊃ . . . ].
We denote by Ends(Σ) the set of ends of the surface, endowed with the topology

with basis
{U∗ | int(U) is an open set with compact boundary} ,

where
U∗ := {[V1 ⊃ V2 ⊃ · · · ] | ∃ n : Vn ⊂ U} .

An end [V1 ⊃ V2 ⊃ · · · ] is planar if Vn is planar (has genus zero) for large enough
n. Otherwise, the end is nonplanar. An end is a puncture if it is planar and isolated.
We denote by Endsp(Σ) and Endsg(Σ) the subspaces of Ends(Σ) given by planar
and nonplanar ends respectively.
Adding Ends(Σ) to the surface yields a compactification of Σ, called Freudenthal

compactification. Moreover, the actions of Homeo(Σ) and MCG(Σ) extend to an
action on the space of ends and on the Freudenthal compactification of Σ. We will
regularly abuse notation and simply write φ(e) for the image of an end e by a
mapping class φ via the action just described. We remark that by neighbourhood
(2)A set is unbounded if its closure is not compact.

TOME 4 (2021)
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of an end we will mean a neighbourhood in Ends(Σ) (and not in the Freudenthal
compactification of Σ).
Surfaces are characterised, up to homeomorphism, by their genus and the pair of

topological spaces (Ends(Σ),Endsg(Σ)) (see [Ric63]). Note that Richards’ proof of
the main theorem in [Ric63] also shows that given two surfaces Σ and Σ′ with the
same genus and a homeomorphism

f : (Ends(Σ),Endsg(Σ))→ (Ends(Σ′),Endsg(Σ′))
of pairs of topological spaces, there is a homeomorphism F : Σ→ Σ′ inducing f on the
spaces of ends. In particular, this implies that the mapping class group orbit of an end
of a surface Σ coincides with its orbit under the action of Homeo(Ends(Σ),Endsg(Σ)).
Furthermore, for any surface Σ, Ends(Σ) is (homeomorphic to) a closed subset of

the Cantor set and Endsg(Σ) is closed in Ends(Σ). Conversely, for any pair (E,F )
of topological spaces, where E is a closed subset of the Cantor set and F a closed
subset of E, there is a surface Σ with (Ends(Σ),Endsg(Σ)) ' (E,F ). If F 6= ∅, the
surface is unique (up to homeomorphism) and has infinite genus. Otherwise, there
is one such surface for every finite genus. In particular, the set of homeomorphism
classes of surfaces has the cardinality of the continuum.

2.2. Arcs and subsurfaces

By arc we mean the image of a proper embedding a : I → Σ, where I is either
[0, 1], [0, 1) or (0, 1), such that:

• if x is an endpoint of I, a(x) belongs to a boundary component of Σ,
• the closure of a(I) in the Freudenthal compactification of Σ is not contractible.

We will abuse notation and conflate an arc with its homotopy class (where homotopies
are required to fix the boundary pointwise). Given the (homotopy class of an) arc α,
we define ∂α to be the set of ends and/or boundary components joined by α. Given
an arc α with ∂α ⊂ Ends(Σ), if ∂α is a single end e we say that α is a loop (based
at e), while if |∂α| = 2 we say that α is 2-ended.
Given an arc α and a finite union of simple closed curves β, the geometric inter-

section number of α and β, denoted i(α, β), is the minimum number of intersections
between representatives of the two homotopy classes.
We will be concerned with two types of subsurfaces: properly embedded and non-

properly embedded ones. Both types will often be considered up to homotopy.
The non-properly embedded subsurfaces we will consider are complements of arcs

and curves. Note that in the literature a subsurface obtained by cutting along an
arc or a curve is usually a surface with boundary and hence it is properly embedded.
Here instead, given an arc or a curve, we will simply consider the (open) subsurface(s)
of Σ given by its complementary component(s).
We require properly embedded subsurfaces to have homotopically nontrivial bound-

ary components (but not necessarily essential). Flare surfaces and subsurfaces in
an exhaustion are the main properly embedded subsurfaces that will play a role
in our work. A flare surface is a properly embedded unbounded subsurface of Σ
whose boundary is a single separating simple closed curve. Note that this is a mild
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generalisation of the notion of flare surface used in [FHV19], where the closure of
the complementary component of a flare surface is not allowed to be a finite-type
surface with at most one planar end. With the definition we consider, we have the
following result, which we will use throughout without explicit mention:

Lemma 2.1. — Every proper clopen subset of Ends(Σ) can be realised as X∗ for
some flare surface X.

Proof. — Let U be a proper clopen subset of Ends(Σ). Then there exist two
surfaces Σ1 and Σ2 with the following properties:

• each has one compact boundary component;
• there are homeomorphisms

ϕ1 :
(

Ends(Σ1),Endsg(Σ1)
)
→
(
U,U ∩ Endsg(Σ)

)
and

ϕ2 :
(

Ends(Σ2),Endsg(Σ2)
)
→
(

Ends(Σ) \ U,Endsg(Σ) \ U
)
;

• genus(Σ1) + genus(Σ2) = genus(Σ).
Let Σ′ be the surface obtained by gluing Σ1 and Σ2 along their boundary compo-

nents. Then genus(Σ′) = genus(Σ) and the map

ϕ :
(

Ends(Σ′),Endsg(Σ′)
)
→
(

Ends(Σ),Endsg(Σ)
)

induced by ϕ1 and ϕ2 is a homeomorphism. So, by [Ric63], there is a homeomorphism
f : Σ′ → Σ inducing ϕ and X := f(Σ1) is a flare surface with X∗ = U . �

A finite-type exhaustion X is a collection {Xn | n ∈ N} of properly embedded
finite-type subsurfaces such that Xn ⊂ Xn+1 for every n and ⋃n∈NXn = Σ.

2.3. Cantor–Bendixson rank and subsets of the Cantor set

For the reader’s convenience, we collect here some basic facts about the Cantor–
Bendixson rank and the Cantor set that will be useful throughout the paper. We
refer to [Kec95] for the definition of the Cantor–Bendixson derivative.
Given a topological space X, its Cantor–Bendixson rank is the smallest ordinal α

such that Xα = Xα+1, where Xα is the αth Cantor–Bendixson derivative of X and
X0 is set to be X. In particular, if a set is perfect, it has rank 0.
A class of topological spaces that will be especially interesting for us are (countable)

ordinals of the form
X = ωαn+ 1,

where ω is the smallest countable ordinal, α is any countable ordinal and n is
a nonnegative integer. Here the topology is the order topology. In terms of the
Cantor–Bendixson derivative the pair (α, n) (also called characteristic system of N)
is characterised as follows:

• |X(β)| =∞ for β < α,
• |X(α)| = n,
• |X(β)| = 0 for β > α.

TOME 4 (2021)
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In particular, the Cantor–Bendixson rank of such an X is α + 1.
For a point x ∈ X, we define its (Cantor–Bendixson) rank to be the smallest

ordinal α such that x /∈ Xα, if such α exists, and 0 otherwise. With this definition,
the highest rank elements in ωαn+ 1 have rank α + 1 and points of the Cantor set
have rank 0.
We will implicitly use the following simple topological characterisation of the

Cantor set.
Proposition 2.2 (Brouwer, [Bro10]). — A topological space is a Cantor set if

and only if it is non-empty, perfect, compact, totally disconnected and metrisable.
We will be interested in open and closed subsets of the Cantor set. Perhaps

surprisingly, there are only two types of non-empty open subsets of the Cantor set:
Proposition 2.3 (Gruenhage–Schoenfeld, [SG75]). — A non-empty open subset

of the Cantor set is homeomorphic to either the Cantor set (if it is compact) or to
the Cantor set minus a point (if it is not compact).
On the other hand, there are (uncountably) many types of closed subsets of the

Cantor set. Still, we can describe their structure in a relatively accurate way. Indeed,
a consequence of Brouwer’s result and the Cantor–Bendixson theorem is that a closed
subset of the Cantor set is either countable or of the form

C ∪N,
where C is a closed subset homeomorphic to a Cantor set and N is open and
countable. The sets C and N are disjoint, but the closure of N might intersect C.
Moreover, Mazurkiewicz and Sierpiński [MS20] showed that countable closed sub-

sets of the Cantor set are exactly the sets homeomorphic to ordinals (with the order
topology) of the form ωαn+ 1.

3. Arcs and their complements
In this section we want to understand some topological properties of arcs and of

their complements. We will discuss loops and 2-ended arcs separately.

3.1. 2-ended arcs

We start by looking at 2-ended arcs. Note that such arcs are nonseparating since
if an arc α joins two ends e 6= f , we can find a simple closed curve γ separating e
from f . Since γ intersects α an odd number of times, α must be nonseparating.
The first fact that we want to prove is that if two distinct ends are joined by an

arc, they have admissible descending chains of flare surfaces which are especially
adapted to the arc. Very informally, we want to say that with respect to a special
collection of flare surfaces, the arc goes “straight out” towards its ends.
Lemma 3.1. — Let α be a proper arc joining two distinct ends e and f . Then

there are admissible descending chains of flare surfaces U1 ⊃ U2 ⊃ . . . defining e
and V1 ⊃ V2 ⊃ . . . defining f such that i(α, ∂Ui) = i(α, ∂Vi) = 1 for every i.
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Proof. — Fix admissible descending chains of flare surfaces {Xn} defining e and
{Yn} defining f . We will modify the sequence {Xn} to obtain flare surfaces as
required; the same argument can be applied to {Yn}.
As α is proper, it intersects ∂Xn finitely many times. Furthermore, there is n1

such that for every n > n1 the curve ∂Xn separates e and f . In particular ∂Xn, for
n > n1, must intersect α an odd number of times.
If i(∂Xn1 , α) = 1, we set U1 := Xn1 . Otherwise, consider the subarc α1 of α

between the first and last intersection of α with ∂Xn1 . Choose a small enough
regular neighbourhood N of α1 ∪ ∂Xn1 , such that N ∩ α is the union of α1 and
exactly two extra segments of α (see Figure 3.1).

Figure 3.1. An allowed neighbourhood on the left-hand side and one that is not
allowed on the right-hand side

The arc N ∩α joins two distinct boundary components of the finite-type surface N
which are separated by ∂Xn1 . One can construct an arc β with the same endpoints
as N ∩α and intersecting ∂Xn1 once. Furthermore, it is not hard to see that there is
a homeomorphism φ of N , fixing its boundary components pointwise, sending α∩N
to β. Then we can define U1 to be the flare surface with boundary φ−1(∂Xn1) and
with U∗1 = (Xn1)∗. By construction, i(α, ∂U1) = 1.
Since N is compact, there is an n2 such that Xn2 ( U1. With the same argument

as before, we can replace Xn2 by a flare surface U2 with the same space of ends as
Xn2 and i(∂U2, α) = 1. Repeating the procedure we obtain the required sequence of
flare surfaces. �

We will now show that the mapping class group orbit of a 2-ended arc is determined
by the mapping class group orbit of the pair of ends. Since such arcs are nonseparating,
one might expect this result to be obvious, but in the next section we will show that
this is not true when considering nonseparating loops.

Lemma 3.2. — The mapping class group orbit of an arc α joining two distinct
ends e and f is the set of arcs joining ends e′ and f ′, where (e′, f ′) ∈ MCG(Σ) · (e, f).

Proof. — Clearly, if β is in the mapping class group orbit of α, its pair of endpoints
is in the mapping class group orbit of (e, f). So suppose that β is an arc with endpoints
(e′, f ′) ∈ MCG(Σ) · (e, f).
Using Lemma 3.1, we can construct a compact exhaustion of Σ by surfaces {An}

(respectively, {Bn}) such that for every n:
• each boundary component of An (respectively, Bn) is a separating curve,
• An separates e from f (respectively, Bn separates e′ from f ′),
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1574 F. FANONI, T. GHASWALA & A. MCLEAY

• α (respectively, β) intersects exactly two boundary components of An (respec-
tively, Bn) in exactly one point each.

We then run the same procedure as in the proof of [Ric63, Theorem 1], with the
extra condition that at each step we send α ∩ An to a subarc of β or β ∩ Bm to a
subarc of α (depending on the step). This is possible because on a compact surface,
two arcs joining distinct boundary components are in the same mapping class group
orbit. The result is a homeomorphism of Σ to itself sending α to β. �

Our next goal is to describe the topology of the complement of an arc joining two
distinct ends.

Lemma 3.3. — Suppose α is an arc joining two distinct ends e and f . Let ∼ be the
equivalence relation on Ends(Σ) generated by e ∼ f and π : Ends(Σ)→ Ends(Σ)/∼
the natural projection. Then(

Ends(Σ \ α),Endsg(Σ \ α)
)
'
(
π
(

Ends(Σ)
)
, π
(

Endsg(Σ)
))

and Σ \ α has the same genus as Σ.

Proof. — We show first that the genus of Σ \ α is the same as the genus of Σ.
Indeed, using Lemma 3.1 and properness of the arc, we can write Σ as

Σ =
⋃
n∈ I

Kn ∪X

for some I ⊂ Z, where
• the Kn are compact subsurfaces with boundary transverse to α and X is a
possibly disconnected subsurface,
• if any two subsurfaces in the union intersect, they do so in a union of boundary
components,
• α ⊂ ⋃n∈ I Kn,
• for every n, α intersects ∂Kn in exactly two points, belonging to different
boundary components.

αK−1

K0

K1

X

Figure 3.2. A decomposition of Σ as in the beginning of the proof of Lemma 3.3,
where X is shaded
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Then X \α = X, so the genus of X \α is the genus of X. Since Kn is of finite-type,
the genus of Kn \ α is the same as the genus of Kn. Hence the genus of Σ \ α is the
same as the genus of Σ.
To prove the statement about the space of ends of Σ \ α, we define a map

φ : Ends(Σ)/∼ → Ends(Σ \ α)
as follows.
If [x] 6= [e], there is an admissible descending chain of flare surfaces {Un} for x

which is disjoint from α (by properness). We set φ([x]) to be the end defined in Σ\α
by the class of {Un}.
To define φ([e]), choose two admissible descending chains of flare surfaces {Un}

and {Vn} for e and f respectively, such that U1 ∩ V1 = ∅. Fix a complete hyperbolic
structure on Σ. Define

Wn := Un ∪ Vn ∪N 1
n
(α),

where N 1
n
(α) is the 1

n
-neighbourhood of α. We claim that {Zn := Wn \ α} is an

admissible descending chain and hence defines an end of Σ \ α, which we will set to
be φ([e]). First of all, it is clear that Zn is the closure of an unbounded open set with
compact boundary. Moreover, since Un, Vn and α are connected, Wn is connected,
and since α joins two different ends, it cannot separate Wn, so Zn is connected.
Finally, let K be a compact subset of Σ \ α. Then K is a compact subset of Σ
disjoint from α. So there is an index n1 > 0 such that the distance of K from α is
at least 1

n1
. Because {Un} and {Vn} are admissible chains, there is an index n2 such

that K is disjoint from Un ∪ Vn for every n > n2. This implies that K is disjoint
from Zn, for every n > max{n1, n2}.
Since Ends(Σ) is Hausdorff, it is not difficult to show that φ is injective. To prove

surjectivity, let s be an end of Σ \ α. Then either s = φ([e]), in which case we are
done, or s 6= φ([e]), so there is a simple closed curve γ of Σ \ α separating s from
φ([e]). Since the Zn define φ([e]), this implies that there is some n such that Z̄n
is disjoint from γ. Let {Ym} be an admissible descending chain of flare surfaces in
Σ \ α defining s; we can also assume that Y1 is disjoint from γ. Then the Ym are
unbounded in Σ as well and define an end x of Σ satisfying φ([x]) = s.
Continuity follows from the definition of the map. This is enough to show that φ

is a homeomorphism, since Ends(Σ)/∼ is compact and Ends(Σ \ α) is Hausdorff.
To conclude, note that φ([x]) is planar if and only if all ends in the equivalence

class of x are planar, which implies that π(Endsg(Σ)) surjects onto the space of
nonplanar ends of Σ \ α. �

3.2. Loops

Loops can be both separating and nonseparating. What may sound surprising is
that nonseparating loops based at ends in the same mapping class group orbit need
not be in the same mapping class group orbit themselves. An example is given by
the two arcs in Figure 3.3. One can show that Σ \ α is a once-punctured Loch Ness
monster, while Σ \ β is Jacob’s ladder.
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α

β

Figure 3.3. Two different mapping class group orbits of nonseparating loops

Figure 3.4. Turning a nonplanar end into a planar one

It is hence impossible to prove a result similar to Lemma 3.3 for generic loops. If
the loop is separating however, we can give a description of the end space of the
components of its complement:

Lemma 3.4. — Suppose α is a separating loop based at an end e. Let S be a
connected component of Σ \ α and set

C := {x ∈ Ends(Σ) | ∃ X flare surface of Σ such that x ∈ X∗ and X ⊂ S} .
Then there is a natural homeomorphism φ : C ∪{e} → Ends(S). Furthermore, given
f in C, φ(f) is planar if and only if f is planar. If e is planar, then φ(e) is planar.

We omit the proof, since it uses the same arguments as that of Lemma 3.3.
Note that if e is nonplanar, its image might be planar: an example is given in

Figure 3.4, where one of the complementary components of the arc has finite genus
(and hence cannot have a nonplanar end).

3.3. One-cut (homeomorphic) subsurfaces

We call a complementary component of a separating loop a one-cut subsurface.
The goal of this section is to prove Theorem A, i.e. to show that any infinite-type
subsurface admits a one-cut homeomorphic subsurface – a one-cut subsurface which
is homeomorphic to the full surface.
Suppose α is an arc joining ends e, f ∈ Ends(Σ) and V is a flare surface such that

f ∈ V ∗ and |∂V ∩ α| = 1 as in Lemma 3.1. Let A = ∂V ∪ (α ∩ Σ \ V ), and let N
be a regular neighbourhood of A. Then ∂N is the disjoint union of a closed curve c
isotopic to ∂V , and a loop L based at e. Define the lasso around V along α to be
the loop L. Intuitively, the lasso around V along α is the loop formed by starting
at e, travelling along α until reaching V , traversing the simple closed curve ∂V , and
travelling back along α.

Lemma 3.5. — If either:
(1) Σ has an isolated nonplanar end, or
(2) Σ has a puncture with infinite orbit, or
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(3) the space of ends of Σ contains a clopen subset homeomorphic to a Cantor
set, whose points are either all nonplanar ends or all planar ends,

then Σ admits a one-cut homeomorphic subsurface.

Proof. — In case 1, there is a separating simple closed curve on Σ cutting off
a Loch Ness monster with one boundary component. We can choose an arc as in
Figure 3.5, left-hand side.

Case 1 Case 2

p1 p2 e

Case 3
α

e2
V

Figure 3.5. Loops cutting off a one-cut homeomorphic subsurface

In case 2, we can find a sequence {pn} of punctures in the given infinite orbit which
converges to some end e. We then choose an arc as in Figure 3.5, in the centre.
In case 3, write the Cantor set C as disjoint union of two Cantor sets C1 and C2.

We can find a simple closed curve cutting off a flare surface V with space of ends C1.
Pick ends ei ∈ Ci and an arc α from e1 to e2 with i(α, ∂V ) = 1. The arc we need is
the lasso around V along α (see Figure 3.5, right-hand side). �
Using this, we show the general result.
Proof of Theorem A. — If Σ is of finite-type, both its genus and its number of

planar ends are finite. A one-cut subsurface will have either strictly smaller genus, or
strictly fewer punctures (or both), and thus cannot be homeomorphic to Σ. Suppose
then that Σ is of infinite-type. We will show that we can reduce to one of the three
cases of Lemma 3.5.
If Ends(Σ) contains infinitely many isolated points, then either there is a puncture

of infinite orbit, and we are in case 2, or there is an isolated nonplanar end, and we
are in case 1.
Suppose then that Ends(Σ) does not contain infinitely many isolated points. Then

Ends(Σ) = C t F , where C is a Cantor set and F is a finite set, possibly empty.
Then:

(a) if Endsp(Σ) ∩ C is empty, C is a clopen subset of nonplanar ends and we are
in case 3.

(b) if Endsp(Σ)∩C is not empty, by [SG75] it is either homeomorphic to a Cantor
set or to a Cantor set minus a point. In both cases, we can find a clopen
subset C ′ ⊂ C given by planar ends and homeomorphic to the Cantor set
and we are again in case 3. �

3.4. Homeomorphic subsurfaces from nonseparating arcs

We now briefly discuss nonseparating arcs, and cases where their complements
can or cannot be homeomorphic subsurfaces. It is due to this more unpredictable
behaviour that we restrict our focus to the separating arcs of Theorem A. We omit
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the proofs of the following examples, we just mention that the claims can be proved
with the same techniques as in Section 4.
We note first that homeomorphic subsurfaces can indeed occur as the complements

of nonseparating arcs. For example, the complement of any 2-ended arc in the sphere
minus a Cantor set is a homeomorphic subsurface. Next, consider the Loch Ness
monster (Figure 3.3) and label the sole end e. Now remove infinitely many points
accumulating to f 6= e. Any nonseparating loop based at an end distinct from e, f
has a homeomorphic subsurface as its complement.
In contrast to the case of separating arcs, we can also find surfaces that have no

nonseparating arcs whose complement is a homeomorphic subsurface. Consider a
surface with at least two, but finitely many, ends, where all ends are nonplanar.
We leave it as an exercise for the reader to see that while both 2-ended arcs and
nonseparating loops exist on the surface, the complement of any such arc is not a
homeomorphic subsurface.

4. Omnipresent arcs

In the previous section we have seen that all infinite-type surfaces admit one-cut
homeomorphic subsurfaces. This gives us a way to select a subclass of arcs, those
which do not avoid any such subsurface. In a sense, we want to think of these arcs
as “truly essential” ones.

Definition 4.1. — Let α be a proper arc joining two distinct ends. We say α is
omnipresent if it intersects all one-cut homeomorphic subsurfaces S (i.e. there are
no disjoint representatives of the arc and the subsurface).

Example 4.2. — Let Σ be the sphere minus a Cantor set, and let α be a proper
arc with ends e and f . Let V ⊂ Σ be a flare surface such that f ∈ V ∗, e /∈ V ∗ and
i(∂V, α) = 1 (such a surface exists by Lemma 3.1). Let L be the lasso around V along
α, which is a separating loop based at e. Let S be the component of Σ \L such that
S∩α = ∅. Then since V ∗ is a clopen subset of the Cantor set, Ends(Σ)\V ∗ ' Ends(Σ)
so by Lemma 3.4, S is a one-cut homeomorphic subsurface of Σ. We may conclude
no 2-ended arcs in Σ are omnipresent.

Example 4.3. — Suppose Σ has finitely many ends. Let α be a proper arc with
distinct ends, and suppose S is a one-cut subsurface such that α ⊂ Σ \ S. Since Σ
has finitely many ends and by Lemma 3.4 we know that |Ends(S)| < |Ends(Σ)|, S
cannot be homeomorphic to Σ. Therefore every 2-ended arc is omnipresent. As we
will see, this also follows from Proposition 4.6 below.

The two examples above are extreme cases; in general omnipresent arcs form a
proper subset of the set of 2-ended arcs. In this section we give a sufficient condition
for a 2-ended arc to be an omnipresent arc (Proposition 4.6). For this, we need a
preliminary lemma.

Lemma 4.4. — Let e, f ∈ Ends(Σ) be distinct ends. Then e and f are in the same
mapping class group orbit if and only if there exists disjoint clopen neighbourhoods
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e ∈ U, f ∈ V and a homeomorphism φ : (U,U ∩ Endsg(Σ)) → (V, V ∩ Endsg(Σ))
such that φ(e) = f .

Proof. — Suppose U 3 e and V 3 f are disjoint clopen neighbourhoods and
φ : (U,U ∩Endsg(Σ))→ (V, V ∩Endsg(Σ)) is a homeomorphism such that φ(e) = f .
Then U ∪ V is a clopen set. Define η : U ∪ V → U ∪ V by

η(x) =

φ(x) if x ∈ U
φ−1(x) if x ∈ V.

Then η is a homeomorphism of the clopen set U ∪ V , so we can extend it by the
identity to a homeomorphism Φ : (Ends(Σ),Endsg(Σ)) → (Ends(Σ),Endsg(Σ)).
Note that Φ(e) = f .
Conversely, suppose Φ(e) = f for some homeomorphism Φ ∈ Homeo(Ends(Σ),

Endsg(Σ)). Let W 3 e be a clopen neighbourhood such that f /∈ W . Let V =
Φ(W )\W , which is a clopen neighbourhood of f . Let U = Φ−1(V ). Note that U ⊂ W
so U ∩ V = ∅. Furthermore, Φ|U : (U,U ∩ F ) → (V, V ∩ F ) is a homeomorphism
such that Φ|U(e) = f . �

We are now in a position to prove one direction of Theorem B.

Definition 4.5. — An end e ∈ Ends(Σ) is a finite-orbit end if it has finite
mapping class group orbit.

Proposition 4.6. — Let α be a proper arc in Σ with distinct endpoints e and
f . If e and f are both finite-orbit ends, then α is an omnipresent arc.

Proof. — Suppose α is not omnipresent, and that e and f are both finite-orbit
ends. Let S ⊂ Σ be a one-cut homeomorphic subsurface such that α∩ S = ∅ and let
ϕ : Σ→ S be a homeomorphism. Recall from Lemma 3.4 the subspace C ⊂ Ends(Σ)
given by

C := {x ∈ Ends(Σ)| ∃ X a flare surface of Σ such that x ∈ X∗ and X ⊂ S} .

Note that both ends e and f are not in C, since then α ∩ S 6= ∅. By Lemma 3.4
identify Ends(S) with the subspace C ∪ {b} ⊂ Ends(Σ) where b is the base of the
separating loop defining S.
To ease notation, let O = MCG(Σ) ·e∪MCG(Σ) ·f , which is a finite set since e and

f are finite-orbit ends. Since |Ends(S) \ C| = 1, we must have |ϕ(O) ∩ C| > |O| − 1.
Since e, f /∈ C, |O ∩ C| 6 |O| − 2. Therefore there exists an end x ∈ O such that
ϕ(x) ∈ C and ϕ(x) /∈ O. Let V ⊂ S be a flare surface such that ϕ(x) ∈ V ∗, and
note that V ∗ is a clopen subset of both Ends(S) and Ends(Σ).
Let W ⊂ V ∗ be a clopen neighbourhood of ϕ(x) such that x /∈ W and let Z =

ϕ−1(W ) \W . Note that ϕ(Z) ⊂ V ∗ ⊂ C and ϕ(Z) ∩ Z = ∅. For all z ∈ ϕ(Z), z is
planar in Ends(S) if and only if z is planar in Ends(Σ) by Lemma 3.4. Therefore ϕ|Z
induces a homeomorphism of pairs (Z,Z ∩ Endsg(Σ)) ∼= (ϕ(Z), ϕ(Z) ∩ Endsg(Σ))
sending x to ϕ(x). We are now forced to conclude x and ϕ(x) are in the same
MCG(Σ)-orbit by Lemma 4.4, a contradiction. �
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5. Stability conditions

After playing with a few examples of infinite-type surfaces, one may be tempted to
guess that the converse to Proposition 4.6 is also true. As the next example shows,
this turns out to be wishful thinking.

Example 5.1. — Consider the sphere with a Cantor set removed, pictured as the
tubular neighbourhood of an infinite rooted binary tree without leaves. Remove
pairwise disjoint disks, one corresponding to each vertex different from the root,
not accumulating anywhere inside the surface. Glue in the place of each disk corre-
sponding to a vertex at distance n from the root the surface Xn with one boundary
component and end space given by(

Ends(Xn),Endsg(Xn)
)
' (ωn + 1, {ωn}) .

Less formally, the 2n copies of Xn each have a single nonplanar end, of rank n+ 1,
accumulated by planar ends. Let Σ be the surface obtained this way, see Figure 5.1.

Figure 5.1. A sketch of the surface Σ constructed in Example 5.1. The pink,
green, blue, and red subsurfaces correspond to copies of X0, X1, X2, and X3
respectively.

It is not hard to see that the finite-orbit ends of Σ are the nonplanar ends of finite
non-zero rank (i.e. the nonplanar ends of the surfaces Xn). On the other hand, one
can show that any arc α joining two ends e, f of rank zero is an omnipresent arc.
Indeed, for any loop β such that Σ\β = S1∪S2, where S1 contains α, either e or f is
completely contained in S1 – say it’s e. Since there is a sequence of finite-orbit ends
converging to e, there are infinitely many finite-orbit ends which are not completely
contained in S2. It is then easy to argue (using Lemmas 3.4 and 4.4) that S2 cannot
be homeomorphic to Σ.
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5.1. Stable ends and a preorder

The example above shows that to prove a converse to Proposition 4.6 we need to
restrict to a good class of surfaces. Otherwise, we can encounter problems given by
ends with wild behaviour, similar to the situation in Mann and Rafi’s work [MR19].
There the authors introduce the following definition:

Definition 5.2. — Let e be an end of a surface. A clopen neighbourhood U of e
is stable if for every clopen neighbourhood V ⊂ U there is a clopen neighbourhood
U ′ ⊂ V such that (U,U ∩ Endsg(Σ)) ' (U ′, U ′ ∩ Endsg(Σ)). We say that an end is
stable if it admits a stable neighbourhood, and unstable otherwise.

As shown in [MR19, Lemma 4.17], an end is stable if and only if there exists a clopen
neighbourhood U of e such that for any clopen set V ⊂ Ends(Σ) with e ∈ V ⊂ U ,
(V, V ∩Endsg(Σ)) ' (U,U ∩Endsg(Σ)). We will use this fact without mention in the
rest of the paper. We also record for later use the following consequence of [MR19,
Lemmas 4.16 and 4.17].

Lemma 5.3. — Let Σ be an infinite-type surface, and suppose e ∈ Ends(Σ) is a
stable end. Let f ∈ MCG(Σ) · e. Then f is a stable end and if V 3 e and W 3 f are
stable neighbourhoods, then (V, V ∩ Endsg(Σ)) ' (W,W ∩ Endsg(Σ)). In particular,
two stable neighbourhoods of the same end are homeomorphic.

Using the stability condition of an end, we define a class of “well-behaved” surfaces:

Definition 5.4. — A surface is stable if all of its ends are stable.

Remark 5.5. — Even if we restrict to stable surfaces, we are still considering a
large class: there are uncountably many such surfaces up to homeomorphism (so
the set has cardinality of the continuum, just like the set of homeomorphism classes
of surfaces). Indeed, it is for instance not hard to see that if a surface has either
only planar or only nonplanar ends and the space of ends is countable, then it is
stable, and it is an instructive exercise for the reader to prove this fact. As there are
uncountably many countable ordinals and ωα + 1 is homeomorphic to ωβ + 1 if and
only if α = β, we deduce from this the statement about the cardinality of the set of
stable surfaces.

The surface constructed in Example 5.1 is not stable: all the rank-zero ends are
unstable. This is because they are all limits of sequences of finite-orbit ends, which
gives an obvious obstruction to stability:

Lemma 5.6. — Let e ∈ Ends(Σ) be a limit point of the set of finite-orbit ends.
Then e is not stable.

Proof. — Suppose e is a stable end with stable neighbourhood V . Towards a
contradiction, let f be a finite-orbit end such that f ∈ V and e /∈ MCG(Σ) · f . Let
U be a clopen set such that e ∈ U ⊂ V and U ∩MCG(Σ) · f = ∅. Since V is stable,
there is a homeomorphism φ : (V, V ∩ Endsg(Σ))→ (U,U ∩ Endsg(Σ)). Let W ⊂ V
be a clopen neighbourhood of f such that W ∩ U = ∅. Then φ(W ) ∩W = ∅, so by
Lemma 4.4, φ(f) ∈ MCG(Σ) · f , a contradiction. �
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Remark 5.7. — The same proof of Lemma 5.6 shows that an end e is unstable
also if it is a limit point of the set of “local finite-orbit ends with respect to e” – ends
f such that there exists a clopen neighbourhood of e containing only finitely many
ends in the mapping class group orbit of f . It would be interesting to know if this is
the only obstruction to stability.
Surfaces can then be more or less wild depending on which ends are allowed to be

unstable. To distinguish different types of ends, we will use the preorder 4 introduced
in [MR19]. We recall the definition here.
Definition 5.8. — Let e, f be ends of a surface. We say that e4 f if for every

clopen neighbourhood Uf of f there is a clopen neighbourhood Ue of e and a clopen
subset U ′f ⊂ Uf such that (Ue, Ue ∩ Endsg(Σ)) ' (U ′f , U ′f ∩ Endsg(Σ)).
Remark 5.9. — It is not hard to show that e4 f if and only if f is in the closure

of the mapping class group orbit of e. Therefore, in general 4 is not a partial order,
since if e and f are distinct ends belonging to the same mapping class group orbit,
e4 f and f 4 e. It is unclear if this is the only obstruction to 4 being a partial order,
that is, if it induces a partial order on the set of mapping class group orbits of ends.
We define ∼ to be the equivalence relation on Ends(Σ) given by e ∼ f if e4 f and

f 4 e. Then 4 induces a partial order, which we also denote by 4, on the quotient
Ends(Σ)/ ∼.
Definition 5.10. — We say that an end is maximal (respectively, an immediate

predecessor of a maximal end) if its class in Ends(Σ)/ ∼ is maximal (respectively,
immediate predecessor of a maximal element) with respect to 4.
Remark 5.11. — Using the characterisation of the preorder in Remark 5.9, we

deduce that finite-orbit ends are maximal, since their orbits are already closed in
Ends(Σ).
Using these notions, Mann and Rafi introduced in [MR19] the class of tame surfaces:

a surface is tame if every end which is either maximal or an immediate predecessor
of a maximal end is stable.
Clearly, stable surfaces are tame, but the converse doesn’t hold, as the following

example shows.
Example 5.12. — Consider X = R2 \ ⋃∞n=1Dn, where Dn is the disk centered at

(n, 0) of radius 1
3 . Glue in the place of Dn a copy of X along one of its boundary

components to get a surface Y . Finally, glue to each boundary component of Y a
copy of the surface S constructed in Example 5.1 with a disk removed, to get a
surface Σ. Maximal and immediate predecessors of maximal ends of Σ are those
corresponding to the ends of Y , which are stable. Thus Σ is tame. But, again since
stability is a local property and S has unstable ends, Σ is not stable.

5.2. Omnipresent arcs on stable surfaces

The main goal of this section is to show that the converse of Proposition 4.6 holds
for the class of stable surfaces (Theorem B). We begin with the following property
of surfaces whose maximal ends are stable.
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Figure 5.2. The surfaces X (left-hand side
and Y (right-hand side) defined in Example 5.12

Proposition 5.13. — Let Σ be a surface whose maximal ends are stable. Then
Σ has finitely many finite-orbit ends.

Proof. — Suppose Σ has infinitely many finite-orbit ends. Then there is an end
e which is a limit point of the set of finite-orbit ends and hence is unstable, by
Lemma 5.6. By the assumption on Σ, e cannot be maximal, but by [MR19, Propo-
sition 4.7], there is a maximal f such that f < e (and f 6∼ e). So (by Remark 5.9)
there is a sequence of elements in the mapping class group orbit of e converging to
f . But as all elements in the sequence are limit points of the set of finite-orbit ends,
so is f . Thus f is unstable, a contradiction. �

The surface constructed in Example 5.1 has infinitely many finite-orbit ends (all
the nonplanar ends of finite rank), and indeed some of its maximal ends are unstable.
Moreover, the condition in Proposition 5.13 is strictly weaker than being tame, as
the next example shows.

Example 5.14. — Let S be the surface constructed in Example 5.1 with a disk
removed. Consider the one-ended surface F with countably infinitely many boundary
components converging to the end (a flute surface). Glue a copy of S to each boundary
component of F to get a surface Σ. There is a unique maximal end of Σ (which
informally corresponds to the unique end of F ) and it is stable. Its immediate
predecessors are those corresponding to the maximal ends in each copy of S, and
among these, the rank-zero ones are unstable. So Σ is not tame.

The next result is the key lemma to prove Theorem B.

Lemma 5.15. — Let e ∈ Ends(Σ) be a stable end with infinite mapping class
group orbit. Then there exists a stable clopen neighbourhood V 3 e such that for
all clopen neighbourhoods U ⊂ V of e,(

Ends(Σ) \ U,Endsg(Σ) \ U
)
'
(

Ends(Σ),Endsg(Σ)
)
.

Proof. — Let Y = MCG(Σ) · e. Fix an accumulation point f 6= e of Y , which
exists since Y is infinite and Ends(Σ) is compact. Let {W1,W2, . . .} be a sequence of
clopen sets defining f , that is, Wi ⊃ Wi+1 for all i > 1, and ⋂iWi = {f}. Let e0 = e,
and let V0 3 e be a stable neighbourhood of e such that f /∈ V0. Now inductively
define ei ∈ Y and Vi ⊂ Wi such that Vi is a stable neighbourhood of ei, disjoint from
(⋃i−1

j=0 Vj) and f /∈ Vi, as follows. Fix i > 1 and let Zi = Wi \ (⋃i−1
j=0 Vj). Zi is a clopen

neighbourhood of f , so Y ∩ Zi 6= ∅. Choose ei ∈ Zi ∩ Y distinct from f , and let Vi
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be a clopen neighbourhood of ei such that Vi ⊂ Zi and f /∈ Vi. By intersecting with
a stable neighbourhood of ei, we may choose Vi to be a stable neighbourhood of ei.
Let V := V0 and U ⊂ V be a clopen neighbourhood of e, so U is a stable

neighbourhood of e. By construction, each Vi is a stable neighbourhood of ei, U ∩
Vi = ∅ for all i > 1, and Vi ∩ Vj = ∅ for all i 6= j. By Lemma 5.3, there exist
homeomorphisms φ0 : (U,U ∩ Endsg(Σ)) → (V1, V1 ∩ Endsg(Σ)) and φi : (Vi, Vi ∩
Endsg(Σ)) → (Vi+1, Vi+1 ∩ Endsg(Σ)) for all i > 1. Define a map Φ : Ends(Σ) →
Ends(Σ) \ U by

Φ(x) =


φ0(x) if x ∈ U,
φi(x) if x ∈ Vi for some i > 1,
x otherwise.

The map Φ is a bijection, and it restricts to a bijection Φ|Endsg(Σ) : Endsg(Σ) →
Endsg(Σ) \U . Since Ends(Σ) is compact and Ends(Σ) \U is Hausdorff, it suffices to
show Φ is continuous. We will show sequential continuity since Ends(Σ) is metrisable.
Let A = {a1, a2, . . .} be a sequence with infinitely many distinct points in Ends(Σ)

converging to a ∈ Ends(Σ). We split the argument into 3 cases.
Case 1. — If |A ∩ (U ∪ ⋃∞i=i Vi)| is finite, then a /∈ U ∪ ⋃∞i=i Vi. Therefore all but

finitely many of the aj are such that Φ(aj) = aj, so

Φ
(

lim
j→∞

aj

)
= Φ(a) = a = lim

j→∞
Φ(aj).

Case 2. — If |A ∩ Vi| =∞ for some i > 1, then a ∈ Vi (as a is a limit of points
in Vi). Thus all but finitely many aj belong to Vi and

Φ
(

lim
j→∞

aj

)
= φi

(
lim
j→∞

aj

)
= lim

j→∞
φi(aj) = lim

j→∞
Φ(aj).

If |A ∩ U | =∞, the argument is analogous.
Case 3. — Finally, suppose |A ∩ U | is finite, |A ∩ Vi| is finite for all i > 1 and
|A ∩ (U ∪ ⋃∞i=i Vi)| is infinite. Since all but finitely many of the Vi are contained in
any particular Wk, it follows that for each Wk, there is some aj ∈ A∩Wk. Therefore
limj→∞ aj = f . By the definition of Φ, we have that |Φ(A) ∩ Vi| is finite for all i > 0,
and |Φ(A) ∩ (U ∪ ⋃∞i=1 Vi)| is infinite. Therefore by the same argument that showed
limi→∞ ai = f we have limi→∞Φ(ai) = f . Observing that Φ(f) = f completes the
proof of Lemma 5.15. �

We now have all the ingredients to prove Theorem B, the characterisation of
omnipresent arcs for stable surfaces. We will actually prove it for a slightly larger
class of surfaces.

Theorem 5.16. — Let Σ be a surface such that all ends with infinite orbit are
stable. Then a 2-ended arc is omnipresent if and only if it joins finite-orbit ends.

Proof. — By Proposition 4.6, if e and f are both finite-orbit ends then α is
omnipresent. For the converse, suppose e has infinite mapping class group orbit. By
assumption, e is stable. Let V ⊂ Ends(Σ) be a neighbourhood of e with the property
that for all clopen sets U such that e ∈ U ⊂ V , (Ends(Σ) \ U,Endsg(Σ) \ U) '
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(Ends(Σ),Endsg(Σ)), which exists by Lemma 5.15. Let W be a flare surface with
the following properties:

(1) e ∈ W ∗ ⊂ V
(2) i(∂W,α) = 1, and
(3) if the genus of Σ is finite, then the genus of W is 0.

The existence of such a flare surface is guaranteed by Lemma 3.1. Let γ be the lasso
around W along α, and let S be the component of Σ \ γ such that S ∩W = ∅. By
construction S ∩ α = ∅, so it suffices to show S is homeomorphic to Σ.
Let Π = Σ \W . By the construction of S, we have that S is homeomorphic to

Π \ α. Since ∂W is a simple closed curve, the space of ends of Π is obtained by
replacing the clopen set W ∗ with a puncture p. More formally,(

Ends(Π),Endsg(Π)
) ∼= (

Ends(Σ) \W ∗ ∪ {p},Endsg(Σ) \W ∗
)
.

Now α ∩ Π is a proper arc with endpoints f and p. Since p is a puncture,(
Ends(Π \ α),Endsg(Π \ α)

)
'
(

Ends(Σ) \W ∗,Endsg(Σ) \W ∗
)

by Lemma 3.3. Therefore (Ends(S),Endsg(S)) ∼= (Ends(Σ) \W ∗,Endsg(Σ) \W ∗) ∼=
(Ends(Σ),Endsg(Σ)) since W ∗ ⊂ V .
If the genus of Σ is finite, then the genus of W is zero and the genus of Π is equal

to the genus of Σ. Therefore by Lemma 3.3, the genus of S is equal to the genus of
Π, completing the proof. �

We end this section with an example showing that, as claimed, the hypothesis in
Theorem 5.16 is weaker than stability.

Example 5.17. — Consider R2 \ ⋃∞n=1Dn, where Dn is the disk centered at (n, 0)
of radius 1

3 . Glue in the place of Dn a copy of the surface Xn defined in Example 5.1.
Then the only unstable end is the unique end of infinite rank (corresponding to the
point at infinity of the plane), so all infinite-orbit ends are stable, though the surface
itself is not stable. In this example, it is easily checked that finite-orbit ends are
precisely the nonplanar ends, so an arc is omnipresent if and only if it joins two
nonplanar ends.

6. Graphs of arcs with infinite intersection

Recall from the introduction that we are interested in two subgraphs of the arc
graph A(Σ); the graph whose vertices are homotopy classes of arcs, and edges
correspond to having disjoint representatives. The first is the omnipresent arc graph
Ω(Σ), i.e. the subgraph spanned by omnipresent arcs. The second is the two-ended
arc graph with endpoints in P , denoted A2(Σ, P ), where P is a finite set of ends.
This is the full subgraph of A(Σ) spanned by vertices corresponding to all isotopy
classes of arcs connecting two distinct ends in P . We stress that we allow arcs joining
planar and/or nonplanar ends, while so far in the literature only arcs joining planar
ends have been considered. In particular, this allows for two arcs to have infinite
intersection.
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Note that Theorem 5.16 tells us that, in the case of stable surfaces, the omnipresent
arc graph is the two-ended arc graph A2(Σ,F), where F is the set of finite-orbit
ends. We also note that F is finite (by Proposition 5.13) and mapping class group
invariant. We therefore restrict our focus to A2(Σ, P ) and we show:

Theorem 6.1. — Let Σ be a surface, P a finite collection of ends of cardinality
at least three. Then:

(1) A2(Σ, P ) is connected,
(2) A2(Σ, P ) is δ-hyperbolic, and the constant δ can be chosen independently of

Σ and P ,
(3) A2(Σ, P ) has infinite diameter,
(4) if P is mapping class group invariant, MCG(Σ) acts with unbounded orbits on
A2(Σ, P ). The action is continuous if and only if all ends in P are punctures.

The theorem is proved over Proposition 6.3, Corollary 6.9, Lemma 6.11, and
Lemma 6.13.

Remark 6.2. — Note that requiring Σ to be stable is equivalent to requiring Σ to
satisfy the hypotheses of Theorem 5.16 and Proposition 5.13, i.e. asking that infinite-
orbit and maximal ends are stable. This is because, as observed in Remark 5.11,
finite-orbit ends are maximal.

Throughout this section, given a finite collection of ends P and a properly embed-
ded subsurface X, we say that a boundary curve of X corresponds to p ∈ P if it is
separating and cuts off a flare surface Y with Ends(Y ) ∩ P = {p}. We say that X
has boundary separating P if its boundary components are separating curves and
there is a subset ∂PX = {γp | p ∈ P} of |P | boundary components of X such that
γp corresponds to p for every p.

6.1. (Dis)continuity of the action

The first result we prove is that in general the action of the mapping class group
on A2(Σ, P ) (where P is mapping class group invariant) is not continuous.

Proposition 6.3. — Let Σ be a surface and P a mapping class group invariant
collection of ends of size at least three. Then the action of MCG(Σ) on A2(Σ, P ) is
continuous if and only if all ends in P are punctures.

Proof. — Denote by F the action MCG(Σ)×A2(Σ, P )→ A2(Σ, P ).
Suppose first that there is an end e ∈ P which is not a puncture. Let α ∈ A2(Σ, P )

with e ∈ ∂α and consider F−1(α). To show that the action is not continuous, it is
enough to show that this is not an open set, i.e. that there is a point in F−1(α)
which doesn’t have any open neighbourhood contained in F−1(α). The point we
will consider is (id, α). If F−1(α) contains an open neighbourhood of (id, α), then
there is a finite set A of homotopy classes of essential simple closed curves such that
UA × {α} ⊂ F−1(α). We will show that no such set is contained in the preimage
of α.
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Let A be any finite set of homotopy classes of essential simple closed curves. By
the assumption on e, α is not contained in the subsurface filled by A. So there is
an essential simple closed curve b disjoint from all curves in A and intersecting α
nontrivially. Then the Dehn twist Tb around b is in UA but (Tb, α) /∈ F−1(α).
Conversely, suppose all ends in P are punctures and let α ∈ A2(Σ, P ). Then there

is a finite collection of curves A such that α is contained in the finite-type subsurface
spanned by A. Let (φ, β) ∈ F−1(α). Then φ ·Uφ−1(A)×{β} is an open neighborhood
of (φ, β) contained in F−1(α). �
We note that the cardinality of the set of vertices of our graph is also determined

by whether P contains only punctures or not:
Lemma 6.4. — The set of vertices of A2(Σ, P ) is countable if all ends of P are

punctures. Otherwise it has the cardinality of the continuum.
Proof. — Fix an exhaustion by properly embedded finite-type subsurfaces X1 ⊃

X2 ⊃ . . . with essential boundary components.
If all ends of P are punctures, any arc is contained in some Xn. Since every

finite-type surface contains countably many arcs, the result follows.
If instead there is e ∈ P which is not a puncture, let α be an arc in A2(Σ, P ) with

e as an endpoint. The assumption on e implies that there is a sequence of pairwise
disjoint distinct simple closed curves γn, each intersecting α. Then for any sequence
of integers kn,

(∏
n∈Z T

kn
γn

)
(α) is an arc in A2(Σ, P ) and two distinct sequences

give different arcs (where Tγ is the Dehn twist about a curve γ). So A2(Σ, P ) is
uncountable. To show that its cardinality is not larger than the cardinality of the
continuum, note the following: given any arc, its homotopy class is determined by
the intersections with the Xn of a representative in minimal position with the Xn.
In each Xn, the set of homotopy classes of multiarcs, where the homotopies fix the
boundary pointwise, has the cardinality of the continuum. �

6.2. Unicorns

In this section we will adapt the unicorn construction from [HPW15] to the setting
which allows for sets of arcs to have infinite intersection.
Let α, β be two 2-ended arcs which are not disjoint. To construct unicorns, we will

always assume that we have chosen representatives of the arcs in minimal position.
A unicorn in α and β is an arc of the form a ∪ b, where a is the closure of a

connected component of α \ p, b is a connected component of β \ p and p is an
intersection point of α and β. We call the point p the corner of the unicorn.
Note that for a ∪ b to be an arc, a and b can intersect only at p. In general, given

two subarcs of α and β with a common endpoint in Σ, there can be other intersection
points, in which case the subarcs do not define a unicorn.
Denote by U2(α, β) the collection of 2-ended unicorns in α and β (i.e. the unicorns

that are 2-ended arcs), together with α and β themselves. If α and β are disjoint,
simply set U2(α, β) = {α, β}. We will make use of the following crucial fact; which is
the core of [HPW15, Remark 3.2], specialised to the case of 2-ended arcs. We include
a proof for completeness.
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α

β

γ δ

Figure 6.1. The graph spanned by U2(α, β) is disconnected, while that spanned
by U2(γ, δ) is connected

Lemma 6.5. — Let x = a ∪ b ∈ U2(α, β). Then
• if β \ b intersects a, there exists y = a′ ∪ b′ ∈ U2(α, β) which is adjacent to
x, such that a′ ( a and b′ ) b. In particular, the corner of y belongs to the
interior of a.
• if β \ b and a are disjoint, then x is disjoint from β.

Proof. — It is clear that if β \ b and a are disjoint, then so are x and β. So let us
assume that β \ b and a are not disjoint. Let p be the corner of x and q the first
intersection with a that occurs following β \ b from p. Then we can set a′ to be the
subarc of a from the endpoint at infinity to q and b′ to be the union of b with the
segment of β \ b between p and q. By construction, this defines a unicorn y with the
required properties. �

We are interested in the following consequence:

Corollary 6.6. — If x = a∪ b ∈ U2(α, β) and |(β \ b)∩ a| <∞, then there is a
path in U2(α, β) between x and β.

In particular this implies that if α and β have finite intersection, then U2(α, β)
yields a connected subgraph. However, our arcs can intersect infinitely many times,
in which case U2(α, β) might not give a connected subgraph (see Figure 6.1).
On the other hand, U2(α, β) is never reduced to only α and β, provided that α

and β intersect.

Lemma 6.7. — Let α, β be non-disjoint 2-ended arcs. Then U2(α, β) contains an
arc x 6= α, β.

Proof. — Let p be any intersection point of α and β and let a ⊂ α and b ⊂ β with
endpoint p such that the other two endpoints of a, b are distinct ends eα, eβ. If a ∪ b
is an arc we are done. If it is not, then a and b intersect outside of p and since they
have different endpoints at infinity they intersect finitely many times. So we can
set q to be the first intersection that occurs when travelling from eα to p following
a. Define a′ to be the subarc of a with endpoints eα and q and b′ the subarc of β
(containing b) with endpoints eβ and q. By construction a′ ∩ b′ = {q} and hence
a′ ∪ b′ is a unicorn in U2(α, β). �
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Using this, we can show that even when U2(α, β) does not give a connected sub-
graph, its 1-neighbourhood (the set of all vertices at distance at most one from some
x ∈ U2(α, β), denoted N1(U2(α, β))) does.
Lemma 6.8. — Suppose |P | > 3. For any α, β ∈ A2(Σ, P ), the full subgraph

spanned by N1(U2(α, β)) is connected.
Proof. — If α and β are disjoint, the result is clear. So we can assume that α and

β intersect and hence, by Lemma 6.7, U2(α, β) ) {α, β}. It suffices then to show
that given any unicorn x1 = a1 ∪ b1 6= α, β we can find a path from x1 to β that is
contained in N1(U2(α, β)). Since the definition of 2-ended unicorn is symmetric with
respect to α and β, this will show that there is a path to α as well.
Let p1 be the corner of x1 and b0 be the other half of β, that is, β = b0 ∪ b1. If
|a1 ∩ b0| <∞, Corollary 6.6 allows us to conclude. If |a1 ∩ b0| =∞, by Lemma 6.5
we obtain an infinite sequence of unicorns xk = ak ∪ bk with corners pk such that
ak ( ak−1 and xk is disjoint from xk−1 for every k > 2. Moreover, since |a1∩ b0| =∞,
we have for any k that ∂xk = ∂β = {e, e′}, where e is the endpoint at infinity of a1
and as the arcs are proper, a1 ∩ b0 is discrete and hence pk → e. Let S be a compact
subsurface with boundary corresponding to P and such that |∂S ∩ β| = 2. As the
corners pk of the unicorns converge to e, there is an index k such that pk ∈ Σ \ S. If
X is the flare surface in the complement of S containing e, (Σ\X)∩xk = (Σ\X)∩β.
Furthermore S ∩ β = S ∩ xk is a single arc and thus there exists another arc c in S
disjoint from β, connecting boundary components corresponding to e and f , where
f ∈ P \ {e, e′}. We can then extend c to an arc γ ∈ A2(Σ, P ) with γ ∩ S = c and
disjoint from both β and xk. In particular γ ∈ N1(U2(α, β)) and x1, . . . , xk, γ, β is
a path as required. �
A direct consequence of the lemma is the connectivity of the graph we are interested

in:
Corollary 6.9. — If |P | > 3 then A2(Σ, P ) is connected.

6.3. Uniform hyperbolicity

The goal of this section is to prove uniform hyperbolicity of A2(Σ, P ), by applying
the “guessing geodesics lemma” ([Bow14, Proposition 3.1], [MS13, Theorem 3.15]).
Lemma 6.10 (Guessing geodesics lemma). — Let X be a graph. Suppose that

for every pair of vertices x and y there is an associated connected subgraph A(x, y)
containing x and y. If there is M > 0 such that:

(1) if x and y have distance at most one, then A(x, y) has diameter at most M ,
and

(2) for every x, y, z, A(x, y) is contained in the M -neighbourhood of A(x, z) ∪
A(y, z),

then X is δ-hyperbolic, where δ depends only on M .
We will show that the lemma applies to our situation, with

A(α, β) = N1(U2(α, β)).
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Lemma 6.11. — Assume |P | > 3. Then the A(α, β) defined above yield connected
subgraphs such that:

(1) if α and β have distance at most one, then A(x, y) has diameter at most 3,
and

(2) for every α, β, γ, A(α, β) is contained in the 3-neighbourhood of A(α, γ) ∪
A(β, γ).

In particular, there is a uniform constant δ (independent of Σ or P ) such that if
|P | > 3 then A2(Σ, P ) is δ-hyperbolic.
Proof. — Connectivity of the subgraphs is established in Corollary 6.9. If α and

β are disjoint, A(α, β) = N1(α) ∪N1(β) and hence has diameter at most three. The
proof of the fact that the subgraphs form thin triangles is essentially the same as
the proof of [DFV18, Lemma 5.7], but we include it for the sake of completeness.
Fix now α, β and γ and let x ∈ A(α, β). What we need to show is that there is

y ∈ A(α, γ)∪A(β, γ) with d(x, y) 6 3. By definition, x is at distance at most 1 from
a unicorn x1 = a ∪ b ∈ U2(α, β) with corner p1. If γ ∩ x1 = ∅, we can set y = γ, so
assume that x1 and γ are not disjoint.

Case 1: ∂γ 6= ∂x1. Let then e be an end of γ and not of x1. Follow γ from e to
the first intersection p2 with x1, which belongs to either a or b – without loss
of generality, assume p2 ∈ a. Set a′ to be the subarc of a with same endpoint
at infinity and ending at p2 and let c be the subarc of γ from e to p2. By
construction y = a′ ∪ c is a unicorn in U2(α, γ) ⊂ A(α, γ) disjoint from x1.

Case 2: ∂γ = ∂x1. Let then δ ∈ A2(Σ, P ) disjoint from γ and with ∂δ 6= ∂γ.
Let eδ ∈ ∂δ \∂γ. So ∂δ 6= ∂x1 and as in Case 1 we find x2 ∈ U2(α, δ)∪U2(β, δ)
disjoint from x1 and such that eδ ∈ ∂x2. Without loss of generality, assume
x2 ∈ U2(α, δ). Note that ∂x2 6= ∂γ, because eδ ∈ ∂x2 \ ∂γ. We can thus apply
Case 1 again to find y ∈ U2(α, γ) ∪ U2(δ, γ) ⊂ A(α, γ) which is disjoint from
x2, which implies that d(x, y) 6 3. �

6.4. Infinite diameter

When P is mapping class group invariant, MCG(Σ) acts on A2(Σ, P ). To show
MCG(Σ) acts with unbounded orbits, we will find embedded infinite-diameter sub-
graphs on which certain mapping classes act with unbounded orbits. For this, we
slightly extend the definition of our graph to the case of surfaces with boundary: if
Q is a collection of boundary components of a surface X, we denote by A2(X,Q)
the subgraph of the arc graph of X spanned by arcs joining two distinct boundary
components of Q.
Lemma 6.12. — Suppose |P | > 3 and let X be a finite-type properly embed-

ded subsurface of Σ with boundary separating P . Then there is a quasi-isometric
embedding of A2(X, ∂PX) into A2(Σ, P ).
Proof. — Denote by γp ∈ ∂PX the boundary component of X corresponding to

p ∈ P . For each p ∈ P , fix an arc δp ⊂ Σ \X joining γp to p and intersecting γp in
exactly one point. We define the map E : A2(X, ∂PX)→ A2(Σ, P ) as follows: given
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an arc α ∈ A2(X, ∂PX), let ∂α = {γp1 , γp2}. For i = 1, 2, choose a component αpi

of γpi
\ (α ∪ δpi

) joining γpi
to δpi

and glue αpi
and δpi

to α. We obtain an arc E(α)
joining p1 to p2.

α

αp

p

Figure 6.2. Extending an arc in A2(X, ∂PX) to an arc in A2(Σ, P )

We claim that E is a quasi-isometric embedding. Denote by dX the distance
A2(X, ∂PX). Since the set of all possible extensions of an arc has diameter two and
disjoint arcs of A2(X, ∂PX) always admit disjoint extensions, if α, β ∈ A2(X, ∂PX)
are disjoint, then d(E(α), E(β)) 6 3 in A2(Σ, P ). Hence for any α, β ∈ A2(X, ∂PX)
we have

d(E(α), E(β)) 6 3dX(α, β).
For the other inequality, let E(α) = γ0, γ1, . . . , γk = E(β) be a path in A2(Σ, P ).

Since X has boundary separating P , for every i the intersection γi ∩X contains an
arc γ′i joining two distinct boundary components in ∂PX. So α = γ′0, γ

′
1, . . . , γ

′
k = β

induces a path in A2(X, ∂PX). This holds for every path in A2(Σ, P ), so

dX(α, β) 6 d(E(α), E(β)),

completing the proof of Lemma 6.12. �

Lemma 6.13. — If |P | > 3 and Σ is not the thrice-punctured sphere, then
A2(Σ, P ) has infinite diameter. If P is MCG(Σ)-invariant, then MCG(Σ) acts on
A2(Σ, P ) with unbounded orbits.

Proof. — Choose a subsurface X with boundary separating P : if |P | > 4, we can
choose X to be a |P |-holed sphere. If |P | = 3, Σ has positive genus or Ends(Σ) > 4.
In the first case, we can choose X to be a 3-holed torus and in the second case a
4-holed sphere.
Pick an arc α0 ∈ A2(X, ∂PX); by applying a pseudo-Anosov of X fixing the bound-

ary components of X pointwise we obtain a sequence of arcs αk ∈ A2(X, ∂PX) whose
distance from α0 goes to infinity in A(X), thus in A2(X, ∂PX). As a consequence, the
diameter of A2(X, ∂PX) is infinite and there are mapping classes of X acting with
unbounded orbits. By Lemma 6.12, A2(X, ∂PX) is quasi-isometrically embedded in
A2(Σ, P ), so the diameter of A2(Σ, P ) is infinite as well.
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If P is invariant under the action of the mapping class group, MCG(Σ) acts on
A2(Σ, P ) and the compactly supported elements described above have unbounded
orbits. �
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