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ABSTRACT

The monitoring of soil contamination deriving from oil and gas industry remains difficult in vegetated areas. Over the last decade, optical remote sensing has proved helpful for this purpose.

By tracking alterations in vegetation biochemistry through its optical properties, multi-and hyperspectral remote sensing allow detecting and quantifying crude oil and petroleum products leaked following accidental leakages or bad cessation practices. Recent advances in this field have led to the development of various methods that can be applied either in the field using portable spectroradiometers or at large scale on airborne and satellite images. Experiments carried out under controlled conditions have largely contributed to identifying the most important factors influencing the detection of oil (plant species, mixture composition, etc.). In a perspective of operational use, an important effort is still required to make optical remote sensing a reliable tool for oil and gas companies. The current methods used on imagery should extend their scope to a wide range of contexts and their application to upcoming satellite-embedded hyperspectral sensors should be considered in future studies. Oil and gas industry currently holds a key role in the global energy mix [START_REF] Marrero | Greenhouse gases emissions, growth and the energy mix in Europe[END_REF][2][3]. Since the beginning of the 20 th century, crude oil supply has continuously increased to satisfy a growing demand, reaching over 35 billion barrels (Gb) produced in 2017 [4][5][START_REF] Zou | Energy revolution: From a fossil energy era to a new energy era[END_REF]. Although a global peak of production -followed by a decline -is expected in the future, its timing remains largely unprecise as it depends on several factors, such as reserve estimates, and on the scenario that will frame the energy mix [START_REF] Bentley | Oil Forecasts, Past and Present[END_REF][START_REF] Jackson | Exploring the undulating plateau: the future of global oil supply[END_REF][START_REF] Sorrell | Global oil depletion: A review of the evidence[END_REF][START_REF] Sorrell | Oil futures: A comparison of global supply forecasts[END_REF]. According to the International Energy Agency, oil production will become 8 million barrels per day greater in 2040 than today under the New Policy Scenario, which considers current government goals and policies. However, the increase of oil production [START_REF] Ite | Petroleum Exploration and Production: Past and Present Environmental Issues in the Nigeria's Niger Delta[END_REF] goes together with a greater exposure of ecosystems to contamination, which remains a global ecological issue.

Once extracted from oil fields, crude oil is then refined to petroleum products [START_REF]Energy Information Administration (EIA), Definitions of Petroleum Products and Other Terms[END_REF][START_REF] Lean | Long memory in US disaggregated petroleum consumption: Evidence from univariate and multivariate LM tests for fractional integration[END_REF][START_REF] Solé | Renewable transitions and the net energy from oil liquids: A scenarios study[END_REF]. At every step of the production process, oil spills and leakages may contaminate the soil and affect ecosystems. They result from facility failures, bad practices and storm events (Figure 1a-g). For example, extraction wells, pipelines, refineries and mud pits are common sources of contaminant leaked in the environment [START_REF] Chang | A study of storage tank accidents[END_REF][START_REF] Credoz | Experimental study of hyperspectral responses of plants grown on mud pit soil[END_REF][START_REF] Gogoi | A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site[END_REF][START_REF] Da Cunha | A review of quantitative risk assessment of onshore pipelines[END_REF][START_REF] Shadizadeh | A drilling reserve mud pit assessment in Iran: Environmental impacts and awareness[END_REF][START_REF] Durango-Cordero | Spatial Analysis of Accidental Oil Spills Using Heterogeneous Data: A Case Study from the North-Eastern Ecuadorian Amazon[END_REF]. This includes crude oil, petroleum products, wastewaters and oil sludge [START_REF] Ahmadun | Review of technologies for oil and gas produced water treatment[END_REF][START_REF] Hu | Recent development in the treatment of oily sludge from petroleum industry: A review[END_REF][START_REF] Van Der Werff | A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage[END_REF]. All these contaminants cause severe ecological disturbances, such as landscape fragmentation and habitat loss or alteration, and affect human health [START_REF] Barraza | Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: An insight into impacts of oil activities[END_REF][START_REF] Bi | Fragmentation effects of oil wells and roads on the Yellow River Delta, North China[END_REF][START_REF] Duke | Oil spill impacts on mangroves: Recommendations for operational planning and action based on a global review[END_REF][START_REF] Finer | Oil and gas projects in the Western Amazon: Threats to wilderness, biodiversity, and indigenous peoples[END_REF].

Therefore, fast-detection is needed for assessing contamination and limiting its impacts. Lots of techniques have been developed for this purpose in response to major offshore oil spills [START_REF] Ivshina | Oil spill problems and sustainable response strategies through new technologies[END_REF].

However, the onshore domain -which stands for 70% of the global oil supply [START_REF] Sorrell | Shaping the global oil peak: A review of the evidence on field sizes, reserve growth, decline rates and depletion rates[END_REF] -did not receive the same attention. Main advances have been achieved in pipeline leak detection, one of the most important source of oil contaminants in the environment [START_REF] Datta | A review on different pipeline fault detection methods[END_REF][START_REF] Kishawy | Review of pipeline integrity management practices[END_REF][START_REF] Shukla | Application of robotics in onshore oil and gas industry-A review Part I[END_REF][START_REF] Shukla | Application of robotics in offshore oil and gas industry-A review Part II[END_REF]. Conversely, only little improvements have been made in assessing soil contamination deriving from extraction and refining activities or bad cessation management. Such operations are often made by field operators and do not guarantee an early detection of released contaminants, especially when it implies low and continuous quantities. They are time-consuming and lead to heavy ecological consequences when the contamination is not detected at early stage. Among promising alternatives, remote sensing could achieve fast detection of oil at large scale, fulfilling the needs of oil and gas companies. Encouraging perspectives of operational applications have emerged in this field, thanks to a growing interest over the last decades. sludge pit [START_REF] Al-Sayegh | Enhanced Oil Recovery Using Biotransformation Technique on Heavy Crude Oil[END_REF], (b-c) vegetation and soil contaminated by crude oil leakage near a refining facility [START_REF] Correa Pabón | Reflectance and imaging spectroscopy applied to detection of petroleum hydrocarbon pollution in bare soils[END_REF], (d) pipeline leakage [START_REF] Gudmestad | Sustainable oil and gas production in the 21st century with emphasis on offshore fields[END_REF], (e) crop contamination resulting from oil well blow out [START_REF] Van Der Lelie | Phytoremediation: European and American trends successes, obstacles and needs[END_REF], (f) oil leakage from damaged storage tank following a storm [START_REF] Necci | Understanding Natech Risk Due to Storms; Analysis, Lessons Learned and Recommendations[END_REF] and (g) contaminated wastewater near a production site [START_REF] Rehman | Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater[END_REF].

Active and passive remote sensing provide information about the composition of surfaces at large scale, by analyzing their radiometric properties in various domains of the electromagnetic spectrum [START_REF] Jin | Polarimetric Scattering and SAR Information Retrieval[END_REF][START_REF] Prasad | Optical Remote Sensing; Advances in Signal Processing and Exploitation Techniques[END_REF]. Applications in onshore oil industry mainly rely on passive optical remote sensing, which exploits the [400:2500] nm reflective domain [START_REF] Kühn | Hydrocarbon index -An algorithm for hyperspectral detection of hydrocarbons[END_REF]. However, the real interest given to remote sensing by oil and gas companies started a few decades ago, with the emergence of passive hyperspectral sensors (Figure 2) [START_REF] Asadzadeh | Spectral remote sensing for onshore seepage characterization: A critical overview[END_REF]. Hyperspectral sensors provide reflectance data over multiple and contiguous wavelengths of the optical reflective domain [START_REF] Prasad | Optical Remote Sensing; Advances in Signal Processing and Exploitation Techniques[END_REF]. They give access to the spectral signature of surfaces (e.g. waterbodies, soils, vegetation), which helps determining their composition (Figure 2). Hyperspectral imaging sensors include drone-/UAV-, airborne-and satellite-embedded sensors [START_REF] Van Der Meer | Multi-and hyperspectral geologic remote sensing: A review[END_REF]. Some of them provide high to very high spatial resolution images (metric to centimetric), making possible to detect small targets. In complement, field portable spectroradiometers are usually used for collecting point reflectance data under controlled conditions or in the field [START_REF] Milton | Progress in field spectroscopy[END_REF]. The use of hyperspectral sensors for detecting apparent oil usually relies on exploiting the optical properties of petroleum hydrocarbons. For example, recent attempts succeeded in detecting contamination around industrial facilities using hyperspectral airborne and satellite imagery, by exploiting the spectral signature of soils [START_REF] Correa Pabón | Reflectance and imaging spectroscopy applied to detection of petroleum hydrocarbon pollution in bare soils[END_REF][START_REF] Slonecker | Visible and infrared remote imaging of hazardous waste: A review[END_REF].

From an operational point of view, hyperspectral imagery could thus provide a rapid diagnosis of oil-contaminated surfaces at large scale, but serious limits still compromise its use in vegetated regions.

Figure 2. Principle of passive hyperspectral imagery (adapted from [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]). This technology provides the reflectance of surfaces over a continuous spectrum in the optical reflective domain (i.e. the spectral signature).

On sites covered by dense vegetation, optical remote sensing remains ineffective for detecting oil seepages and leakages directly, because light penetration is strongly limited by the foliage and the spectral signature of soils is thus not accessible. The only information about soil composition can be provided indirectly by vegetation through its optical properties [START_REF] Arellano | Field spectroscopy and radiative transfer modelling to assess impacts of petroleum pollution on biophysical and biochemical parameters of the Amazon rainforest[END_REF][START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF][START_REF] Lassalle | Toward Quantifying Oil Contamination in Vegetated Areas Using Very High Spatial and Spectral Resolution Imagery[END_REF]. This can be achieved because vegetation reflectance is closely linked to its biophysical and biochemical parameters (e.g. pigments), which are good indicators of environmental -especially stressful -conditions [START_REF] Asner | Biophysical and Biochemical Sources of Variability in Canopy Reflectance[END_REF][START_REF] Jacquemoud | PROSPECT: A model of leaf optical properties spectra[END_REF][START_REF] Slaton | Estimating near-infrared leaf reflectance from leaf structural characteristics[END_REF]. Consequently, unfavorable growing conditions in soils result in modifications of vegetation health and optical properties that can be tracked using hyperspectral remote sensing [START_REF] Van Der Werff | A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage[END_REF][START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF][START_REF] Noomen | Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[END_REF]. Therefore, since crude oil and petroleum products affect vegetation health, they can be detected and quantified indirectly using optical imagery [START_REF] Lassalle | Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance[END_REF][START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF][START_REF] Emengini | Early detection of oil-induced stress in crops using spectral and thermal responses[END_REF]. To achieve this, several conditions must be fulfilled: [START_REF] Marrero | Greenhouse gases emissions, growth and the energy mix in Europe[END_REF] The contamination must affect the biophysical and biochemical parameters of vegetation, (2) alterations in these parameters must modify the spectral signature of vegetation and (3) the specifications of imaging sensors (e.g. the spatial and spectral resolutions) must make it possible to track these alterations. This implies good knowledge about the parameters of vegetation influencing its reflectance, as well as their response to oil contamination. Recent studies carried out under controlled and natural conditions have highlighted the need to develop methods specifically dedicated to this purpose, as well as the current pitfalls and limits to overcome [START_REF] Lassalle | Toward Quantifying Oil Contamination in Vegetated Areas Using Very High Spatial and Spectral Resolution Imagery[END_REF][START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF][START_REF] Noomen | Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[END_REF][START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF]. Hence, an important effort still remains to make hyperspectral remote sensing an operational tool for monitoring oil contamination. Yet, no review has been proposed in that field. Previous review focused either on heavy metals contamination deriving from agriculture and mining [START_REF] Wang | Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges[END_REF][START_REF] Shi | Visible and near-infrared reflectance spectroscopy -An alternative for monitoring soil contamination by heavy metals[END_REF] or on soil contamination in general [START_REF] Gholizadeh | Detecting vegetation stress as a soil contamination proxy: a review of optical proximal and remote sensing techniques[END_REF][START_REF] Gholizadeh | Monitoring of selected soil contaminants using proximal and remote sensing techniques: Background, state-of-the-art and future perspectives[END_REF]. However, recent studies emphasized that crude oil and petroleum products cannot be treated in the same way as other contaminants when assessing sol contamination from vegetation reflectance. Hence, they must be addressed separately.

The present review is intended to provide a comprehensive state-of-the-art of advances and challenges in the use of optical remote sensing for monitoring oil contamination in vegetated areas. It is addressed to non-specialists from a wide range of disciplines. This review is organized in accordance to the three points listed above. A first section summarizes the optical properties of vegetation in the reflective domain. Then, an overview of the effects induced by oil contamination on vegetation health is proposed. These two sections introduce key notions for non-specialists. Finally, the following sections go further into details of the topic. They focus on the consequences on these effects on vegetation reflectance and the methods developed to detect them under controlled and field conditions and using airborne and future satellite imagery.

Vegetation optical properties in the reflective domain (400 -2500 nm)

Over the last 30 years, vegetation health assessment sparked an extensive attention by the remote sensing community. Then, the development of airborne-and satellite-embedded optical sensors opened the way to various applications in agriculture and ecology, thanks to a better comprehension of vegetation optical properties. The use of field portable spectroradiometer helped achieving this by providing reflectance data acquired at leaf or canopy scales. In the reflective domain, vegetation optical properties are driven by biophysical and biochemical parameters. They provide a singular shape to the spectral signature of healthy green vegetation, characterized by a peak of reflectance in the visible (VIS, 400 -750 nm), a plateau in the nearinfrared (NIR, 750-1300 nm) and two marked peaks in the short-wave-infrared (SWIR, 1300 -Figure 3. Typical spectral signature of healthy green leaf and most influential parameters in the different spectral regions.

Influence of leaf pigments in the visible region (400 -750 nm)

A large diversity of pigments is present in plants [START_REF] Sims | Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[END_REF][START_REF] Vershinin | Biological functions of carotenoids -diversity and evolution[END_REF][START_REF] Tanabe | Utilizing the Effective Xanthophyll Cycle for Blooming of Ochromonas smithii and O . itoi (Chrysophyceae) on the snow surface[END_REF]. Pigments are essential to the development of vegetation, because of their implications in photochemical reactions. They absorb light at various wavelengths in the ultraviolet (UV) and VIS regions, depending on their chemical properties. Consequently, the spectral signature of vegetation is strongly linked to leaf pigment content between 400 and 750 nm [START_REF] Sims | Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[END_REF][START_REF] Blackburn | Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves[END_REF][START_REF] Feret | PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[END_REF]. This makes possible to track changes in pigments using multi-and hyperspectral sensors.

Chlorophylls a and b are the main pigments present in leaves. They are good indicators of vegetation health [START_REF] Cartelat | Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.)[END_REF][START_REF] Muchecheti | Leaf chlorophyll readings as an indicator of nitrogen status and yield of spinach ( Spinacia oleracea L.) grown in soils amended with Luecaena leucocephala prunings[END_REF][START_REF] Wang | Evaluating different methods for grass nutrient estimation from canopy hyperspectral reflectance[END_REF], making them largely studied in remote sensing [START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF][START_REF] Zarco-Tejada | Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects[END_REF][START_REF] Huang | Meta-analysis of the detection of plant pigment concentrations using hyperspectral remotely sensed data[END_REF]. Chlorophyll concentration usually ranges from 0 to 80 µg.cm -2 in crops [START_REF] Berger | Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study[END_REF], of which only 20% are represented by chlorophyll b in healthy green leaves [START_REF] Junker | Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves[END_REF]. These pigments show two light absorption peaks at 440-450 (blue) and 650-670 nm (red) [START_REF] Curran | Remote Sensing of Foliar Chemistry[END_REF][START_REF] Lichtenthaler | Chlorophylls and Carotenoids : Measurement and Characterization by UV-VIS[END_REF]. Due to their important concentration in leaves, chlorophylls have a strong influence on the spectral signature, so they are likely to hide the effects of other pigments sharing common absorption wavelengths. More precisely, the weak light absorption of chlorophylls around 550 (green) and 700 nm (red-edge) results in high correlation with leaf reflectance in these regions [START_REF] Blackburn | Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves[END_REF][START_REF] Ustin | Retrieval of foliar information about plant pigment systems from high resolution spectroscopy[END_REF]. Hence, remote sensing mostly exploits these wavelengths to quantify leaf chlorophyll content (LCC) [START_REF] Huang | Meta-analysis of the detection of plant pigment concentrations using hyperspectral remotely sensed data[END_REF]. A large diversity of approaches have been developed for tracking changes in LCC, such as simple or normalized reflectance ratios (vegetation indices (VI)) and Radiative Transfer Models (RTM) [START_REF] Jacquemoud | PROSPECT: A model of leaf optical properties spectra[END_REF][START_REF] Sims | Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[END_REF]. These approaches gave particular attention to the inflexion point of reflectance in the red-edge region -named the Red-Edge Position (REP), which is sensitive to little changes in LCC (Figure 3) [START_REF] Zarco-Tejada | Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects[END_REF][START_REF] Cho | A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method[END_REF][START_REF] Filella | The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[END_REF].

Carotenoids are the other photosynthetic pigments found in plants [START_REF] Juvany | Photo-oxidative stress in emerging and senescing leaves: A mirror image[END_REF]. They can be distinguished in two categories: carotenes and xanthophylls, which absorb light mainly in the blue region (400 -500 nm). This common feature with chlorophylls explains their masking in healthy leaves, as their concentration rarely exceeds 25 µg.cm -2 [START_REF] Berger | Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study[END_REF]. They are usually less influential on the spectral signature in the VIS and thus more difficult to quantify by remote sensing. However, the chlorophyll breakdown observed during leaf senescence increases the carotenoid-chlorophyll ratio [START_REF] Junker | Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves[END_REF][START_REF] Archetti | Unravelling the evolution of autumn colours: an interdisciplinary approach[END_REF]. Consequently, leaf reflectance rises between 500 and 750 nm (green -red), so carotenoids become more easily quantifiable (Figure 4). Frequently described as accessory pigments, carotenoids ensure essential photoprotective functions in plants [START_REF] Demmig-Adams | The role of xanthophyll cycle carotenoids in the protection of photosynthesis[END_REF][START_REF] Niyogi | The roles of specific xanthophylls in photoprotection[END_REF]. They prevent leaf tissues from harmful effects of reactive oxygen species and photochemical stress that occur when absorbed light exceeds the photosynthetic capacity of leaves [START_REF] Juvany | Photo-oxidative stress in emerging and senescing leaves: A mirror image[END_REF][START_REF] Archetti | Unravelling the evolution of autumn colours: an interdisciplinary approach[END_REF]. Therefore, the quantification of leaf carotenoid content is of great importance for monitoring vegetation health. Several VI have been designed for this purpose, such as the Photochemical Reflectance Index (PRI) [START_REF] Gamon | a Narrow-Waveband Spectral Index That Tracks Diurnal Changes in Photosynthetic Efficiency[END_REF][START_REF] Garbulsky | The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies. A review and meta-analysis[END_REF]. The PRI exploits reflectance at 531 and 570 nm to track the epoxidation state of the xanthophyll cycle and can be used for assessing variations of photosynthetic activity across seasons [START_REF] Stylinski | Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species[END_REF][START_REF] Porcar-Castell | Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency[END_REF].

Leaves also contain non-photosynthetic pigments that are responsible for color changes in autumn. Several plants turn red during senescence, because of the accumulation of anthocyanins in vacuoles. Anthocyanins are water-soluble flavonoids that absorb light in the ultraviolet (UV, 250 -350 nm) and green (500 -560 nm) regions [START_REF] Giusti | Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy[END_REF][START_REF] Dogwood | Why Leaves Turn Red in Autumn[END_REF]. They ensure a photoprotective function through UV screening, making them relevant indicators of vegetation health [START_REF] Féret | Towards modeling leaf optical properties through a complete lifecycle[END_REF][START_REF] Gitelson | Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves[END_REF].

Other compounds such as tannins are also found in leaves, but their influence on leaf optical properties is restricted to the late senescence -or pre-abscission -period [START_REF] Archetti | Unravelling the evolution of autumn colours: an interdisciplinary approach[END_REF]. They are responsible for the browning of leaves.

2.2. Influence of leaf anatomy in the near-infrared region (750 -1300 nm)

As pigments do in the VIS, leaf anatomy drives reflectance in the NIR region [START_REF] Slaton | Estimating near-infrared leaf reflectance from leaf structural characteristics[END_REF][START_REF] Ourcival | Exploring the relationships between reflectance and anatomical and biochemical properties in Quercus ilex leaves[END_REF]. Leaves of Angiosperms are formed by successive cellular layers structured in parenchyma -also called mesophyll -and protected by a cuticle and an epidermis on abaxial (lower) and adaxial (upper) faces. This anatomy is at the origin of the plateau observed on leaf spectral signature in the NIR (Figure 3), ranging from 30 to 80% reflectance [START_REF] Slaton | Estimating near-infrared leaf reflectance from leaf structural characteristics[END_REF][START_REF] Baldini | Leaf characteristics and optical properties of different woody species[END_REF][START_REF] Foley | Foliar spectral properties following leaf clipping and implications for handling techniques[END_REF]. The upper cuticle and epidermis are the first barriers to the penetration of light. Incident light follows diffuse and specular reflection at leaf surface, but most radiations go through it and are transmitted to lower layers [START_REF] Grant | Diffuse and specular characteristics of leaf reflectance[END_REF][START_REF] Jacquemoud | Utilisation de la haute résolution spectrale pour l'étude des couverts végétaux : développement d'un modèle de réflectance spectrale[END_REF].

The internal anatomy of leaves greatly contribute to their optical properties in the NIR, but differs between mono-and dicotyledonous species [START_REF] Baldini | Leaf characteristics and optical properties of different woody species[END_REF][START_REF] Rossatto | Leaf anatomy is associated with the type of growth form in Neotropical savanna plants[END_REF][START_REF] Boren | Characterizing the Variability of the Structure Parameter in the PROSPECT Leaf Optical Properties Model[END_REF]. In dicotyledonous leaves, cells are typically arranged in two distinct parenchyma. The upper one -known as palisade parenchyma -is made of well-structured elongated cells with high chloroplast concentration.

Intercellular spaces are almost absent from this layer so light scattering remains limited.

Conversely, the lower -spongy -parenchyma is characterized by irregularly-shaped and spaced cells with low chloroplast content. The spongy parenchyma has an important function in leaves, as it sends back a fraction of incident light to the palisade parenchyma, thus increasing the photosynthetic activity [START_REF] Ollinger | Sources of variability in canopy reflectance and the convergent properties of plants[END_REF]. In monocotyledonous leaves, parenchyma are undifferentiated. Cells form a unique layer similar to the spongy parenchyma of dicotyledonous leaves, although this one is more compact so intercellular spaces are reduced. Several studies showed that the cuticle and parenchyma thickness, the proportion of intercellular spaces and the arrangement of chloroplasts greatly affect leaf reflectance in the NIR [START_REF] Slaton | Estimating near-infrared leaf reflectance from leaf structural characteristics[END_REF][START_REF] Ourcival | Exploring the relationships between reflectance and anatomical and biochemical properties in Quercus ilex leaves[END_REF][START_REF] Baldini | Leaf characteristics and optical properties of different woody species[END_REF][START_REF] Baránková | Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves[END_REF]. Leaf anatomy substantially varies among species, partly as a result of phylogeny and adaptation to light conditions [START_REF] Hanba | The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand[END_REF][START_REF] Li | Three Key Sub-leaf Modules and the Diversity of Leaf Designs[END_REF][START_REF] Knapp | Variability in leaf optical properties among 26 Species From A Broad Range Of Habitats[END_REF]. Additional factors also influence leaf anatomy and NIR reflectance, such as nutrient and water availability or soil contamination.

While the anatomy of leaves determines their reflectance in the NIR, other biophysical parameters prevail when measuring reflectance at canopy scale. The Leaf Area Index (LAI) and the Leaf Angle Distribution (LAD) are the most influential ones [START_REF] Asner | Biophysical and Biochemical Sources of Variability in Canopy Reflectance[END_REF][START_REF] Ollinger | Sources of variability in canopy reflectance and the convergent properties of plants[END_REF][START_REF] Asner | Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels[END_REF]. Canopy reflectance is positively correlated to LAI in the NIR, because the influence of bare soil is reduced in this region as LAI increases (Figure 5) [START_REF] Houborg | Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data[END_REF]. However, the reflectance reaches a plateau above very high LAI values (>6) [START_REF] Ollinger | Sources of variability in canopy reflectance and the convergent properties of plants[END_REF]. LAD characterizes canopy architecture, i.e. the angular orientation of leaves. de Wit [START_REF] De Wit | Photosynthesis of leaf canopies[END_REF] proposed to classify species in the following six LAD types: Planophile, plagiophile, erectophile, extremophile, spherical and uniform. As leaf orientation is moving away from zero degrees (toward planophile LAD), canopy reflectance decreases in the NIR [START_REF] Asner | Biophysical and Biochemical Sources of Variability in Canopy Reflectance[END_REF].

Figure 5. Influence of the Leaf Area Index (LAI) on canopy reflectance [START_REF] Asner | Biophysical and Biochemical Sources of Variability in Canopy Reflectance[END_REF].

Because of its relationship with vegetation biophysical parameters, reflectance in the NIR can be used to describe leaf anatomy, canopy architecture and ground cover [START_REF] Slaton | Estimating near-infrared leaf reflectance from leaf structural characteristics[END_REF][START_REF] Haboudane | Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[END_REF]. These parameters have in common to be directly or indirectly influenced by vegetation water status [START_REF] Foley | Foliar spectral properties following leaf clipping and implications for handling techniques[END_REF][START_REF] Ge | Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle[END_REF][START_REF] Shao | Water-deficit stress-induced anatomical changes in higher plants[END_REF]. Water availability is a key parameter for understanding vegetation optical properties, as it drives many physiological mechanisms.

2.3. Influence of leaf water and dry matter contents in the near-infrared (750 -1300 nm) and short-wave infrared (1300 -2500 nm) regions Vegetation optical properties are directly influenced by water contained in leaves, which absorbs light around 970, 1200, 1450, 1950 and 2450 nm [START_REF] Clevers | Using spectral information from the NIR water absorption features for the retrieval of canopy water content[END_REF][START_REF] Peñuelas | The reflectance at the 950-970 nm region as an indicator of plant water status[END_REF][START_REF] Sims | Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features[END_REF]. These features are easily observed on the spectral signature of healthy plants and are affected by changes in leaf water content (Figure 6) [START_REF] Foley | Foliar spectral properties following leaf clipping and implications for handling techniques[END_REF]. Hence, they are reliable indicators of vegetation water status [START_REF] Katsoulas | Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review[END_REF]. In addition, water is likely to affect reflectance indirectly in other spectral regions, as it is involved in many physiological mechanisms in plants, such as photosynthesis and leaf turgor. This is particularly marked for plants undergoing water-deficit stress [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Emengini | Detection and discrimination of oil and water deficit-induced stress in maize (Zea mays L.) using spectral and thermal responses[END_REF]. Changes in leaf turgor and tissue destructuring induced by insufficient water uptake greatly affect light scattering and thus leaf reflectance in the whole NIR region [START_REF] Foley | Foliar spectral properties following leaf clipping and implications for handling techniques[END_REF]. These effects are also observed at canopy scale, as plant LAI and LAD are also modified by water-deficit stress [START_REF] Percival | Gas exchange, stem water potential and leaf orientation of Rubus idaeus L. are influenced by drought stress[END_REF]. Several studies demonstrated the effectiveness of the NIR and SWIR reflectance to assess vegetation water status by estimating Leaf Water Content (LWC) or Equivalent Water Thickness (EWT) [START_REF] Clevers | Using spectral information from the NIR water absorption features for the retrieval of canopy water content[END_REF][START_REF] Peñuelas | The reflectance at the 950-970 nm region as an indicator of plant water status[END_REF][START_REF] Katsoulas | Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review[END_REF]. VI and RTM have been widely used for this purpose [START_REF] Baret | Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements[END_REF][START_REF] Ceccato | Detecting vegetation leaf water content using reflectance in the optical domain[END_REF][START_REF] Gao | NDWI-A normalized difference water index for[END_REF][START_REF] Yilmaz | Remote sensing of vegetation water content from equivalent water thickness using satellite imagery[END_REF]. Although water absorption bands previously cited may be appropriate [START_REF] Clevers | Using spectral information from the NIR water absorption features for the retrieval of canopy water content[END_REF][START_REF] Peñuelas | The reflectance at the 950-970 nm region as an indicator of plant water status[END_REF], their utilization remains limited in airborne or satellite imagery, because of important noise due to atmospheric effects of water vapor. This limit can be however overcome by exploiting other water-dependent and atmospherically-resistant wavelengths in the NIR and SWIR regions [START_REF] Yilmaz | Remote sensing of vegetation water content from equivalent water thickness using satellite imagery[END_REF][START_REF] Tian | Spectroscopic determination of wheat water status using 1650-1850 nm spectral absorption features[END_REF][START_REF] Tucker | Remote sensing of leaf water content in the near infrared[END_REF].

As described in this section, vegetation optical properties are strongly linked in the NIR and SWIR regions, because of direct and indirect influence of water. According to Ceccato et al. [START_REF] Ceccato | Detecting vegetation leaf water content using reflectance in the optical domain[END_REF], water stands for approximately 55 to 75% of healthy leaf fresh weight for temperate species. More than two thirds of the remaining part come from hemicelluloses, celluloses, lignins and proteins, which are often grouped in the "dry matter" term [START_REF] Card | Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy[END_REF][START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF]. Celluloses are the most abundant organic compounds on earth and are found in all plants. Hemicelluloses and lignins are mostly represented in woody species [START_REF] Asif | Sustainability of timber, wood and bamboo in construction[END_REF][START_REF] Liu | Lignins: Biosynthesis and biological functions in plants[END_REF]. These biochemical parameters share common light absorption features in the NIR and SWIR regions, at 1200, 1450 -1490, 1540, 1760, 2100 and 2340 nm [START_REF] Wang | Applicability of the PROSPECT model for estimating protein and cellulose+lignin in fresh leaves[END_REF]. Proteins show quite different light absorption features, located at 1510 -1520, 1730, 1980, 2060, 2165 -2180 and 2300 nm. All these parameters remain difficult to estimate from vegetation reflectance, because their influence on reflectance in the NIR and SWIR regions is limited in comparison to water [START_REF] Card | Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy[END_REF][START_REF] Wang | Applicability of the PROSPECT model for estimating protein and cellulose+lignin in fresh leaves[END_REF]. They become however more influential in dry leaves. Few VI have been designed for retrieving celluloses and lignins content in leaves or decomposing litter [START_REF] Nagler | Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes[END_REF][START_REF] Serrano | Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data[END_REF].

As outlined in this section, the biophysical and biochemical parameters driving vegetation optical properties differ according to the spectral region (VIS, NIR and SWIR). Modifications in these parameters are expressed as changes in the reflectance of leaves and canopies. This makes possible to detect oil-induced alterations in vegetation health using multi-and hyperspectral remote sensing. This purpose however requires identifying the most suitable (i.e. oil-sensitive) spectral regions. A good comprehension of the effects induced by crude oil and petroleum products on vegetation is mandatory for achieving it. These effects are described in the following section.

Effects of crude oil and petroleum products on vegetation health

Crude oil and petroleum products leaked from industrial facilities are likely to affect vegetation health and optical properties. Their particular nature and composition are greatly responsible for these effects.

Composition of crude oil and petroleum products

Crude oil refers to oil in its natural and extractible form, i.e. oil stored in geological formation and brought to the surface [START_REF]Energy Information Administration (EIA), Definitions of Petroleum Products and Other Terms[END_REF]. Petroleum products result from the refining of crude oil. They include fuels (diesel, gasoline, kerosene), lubricant, waxes and miscellaneous products used in various domains (e.g. transportation and industry) [START_REF] Chaudhuri | Fundamentals of Petroleum and Petrochemical Engineering[END_REF]. The term oil refers both to crude oil and petroleum products. Wastewaters and oil sludge are produced during the refining process [START_REF] Ahmadun | Review of technologies for oil and gas produced water treatment[END_REF][START_REF] Hu | Recent development in the treatment of oily sludge from petroleum industry: A review[END_REF]. Both crude oil and petroleum products are mixtures of volatile to dense hydrocarbons (called Petroleum hydrocarbons), heavy metals (HM, also termed Trace Metal Elements) and oxygen, sulfur and nitrogen compounds in various proportions [START_REF] Adeniyi | Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum products in Lagos metropolis[END_REF][133][START_REF] Kisic | The effect of drilling fluids and crude oil on some chemical characteristics of soil and crops[END_REF]. Petroleum hydrocarbons include Mono-and Polycyclic Aromatic Hydrocarbons (BTEX and PAH, respectively), and saturated (alkanes or paraffins) and unsaturated (alkenes and alkynes) hydrocarbons [START_REF] Chaudhuri | Fundamentals of Petroleum and Petrochemical Engineering[END_REF]. Total Petroleum Hydrocarbons (TPH) is a generic term that encompasses all these compounds. Depending on the length of their carbon chain, petroleum hydrocarbons are refined to different petroleum products [START_REF] Brewer | Risk-based evaluation of total petroleum hydrocarbons in vapor intrusion studies[END_REF][START_REF] Turle | Development and implementation of the CCME Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in soil: A case study[END_REF]. An illustration is given in Figure 7.

Figure 7. Crude oil and petroleum products according to petroleum carbon ranges (reproduced from [START_REF] Turle | Development and implementation of the CCME Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in soil: A case study[END_REF]).

The composition of crude oil and petroleum products gives them a high toxicity towards vegetation [START_REF] Baker | The effects of oils on plants[END_REF]. When considered separately, each hydrocarbon and HM type is likely to affect vegetation health [START_REF] Nagajyoti | Heavy metals, occurrence and toxicity for plants: A review[END_REF]. Since they are in mixture, it remains difficult to identify which of these compounds are responsible for the observed response. In addition, interactions can occur among hydrocarbons and HM and result in synergistic or antagonist effects on vegetation [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF].

However, the influence of mixture composition is still misunderstood. Different mixtures such as crude oil, diesel or gasoline, lead to different responses of vegetation [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF][START_REF] Rosso | Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[END_REF]. These responses result from indirect effects caused by modifications of soil physico-chemical and biological properties, and from direct effects through contact with plant and assimilation in tissues [START_REF] Balasubramaniyam | Scanning electron microscopic investigations of root structural modifications arising from growth in crude oil-contaminated sand[END_REF][START_REF] Rusin | Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean[END_REF]. Both occur at root level and lead to anatomical and biochemical changes in leaves, so these direct and indirect effects remain difficult to differentiate [START_REF] Baruah | Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk[END_REF][START_REF] Merkl | Phytoremediation in the tropics -Influence of heavy crude oil on root morphological characteristics of graminoids[END_REF][START_REF] Punwong | Effects of an oil spill on the leaf anatomical characteristics of a beach plant (Terminalia catappa L.)[END_REF]. They are described jointly here.

Effects on soil properties and on plant roots

The phytotoxicity of petroleum hydrocarbons and HM has been subject to numerous studies. However, no review has been proposed -for terrestrial plants -in this field for almost 50 years [START_REF] Baker | The effects of oils on plants[END_REF]. Since then, few studies have focused on the effects of petroleum hydrocarbons and HM in mixture [START_REF] Lassalle | Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance[END_REF][START_REF] Shahid | Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake[END_REF][START_REF] Zhu | Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance[END_REF]. This topic has been addressed recently and provided a better comprehension of how vegetation is affected by oil leakages.

Because of their particular nature and composition, crude oil and petroleum products induce important modifications of soil physico-chemical and biological properties [START_REF] Kisic | The effect of drilling fluids and crude oil on some chemical characteristics of soil and crops[END_REF][START_REF] Khamehchiyan | Effects of crude oil contamination on geotechnical properties of clayey and sandy soils clayey and sandy soils[END_REF][START_REF] Klamerus-Iwan | Influence of Oil Contamination on Physical and Biological Properties of Forest Soil after Chainsaw Use[END_REF].

Consequently, they impose selective growing conditions to plants [START_REF] Noomen | Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[END_REF]. Soil water regime is one of the most impacted properties. Because of hydrocarbons, crude oil and petroleum products are in liquid -highly hydrophobic -form [START_REF] Chaudhuri | Fundamentals of Petroleum and Petrochemical Engineering[END_REF]. When found in soils, they occupy a fraction of porosity that becomes unavailable to water. In addition, by interacting with soil materials (especially clay), oil forms a hydrophobic film at their surface, which forces water drainage toward deeper soil layers. These phenomena contribute to reducing the field capacity of soil and plant water supply [START_REF] H. Ur R. Athar | Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants[END_REF][START_REF] Ogboghodo | An Assessment of the Effects of Crude Oil Pollution on Soil Properties, Germination and Growth of Maize (Zea Mays) using Two Crude Types -Forcados Light and Escravos Light[END_REF][START_REF] Wang | Effects of crude oil contamination on soil physical and chemical properties in momoge wetland of China[END_REF]. It is amplified by HM, which affect soil water potential and water uptake by roots once transferred to the soil solution [START_REF] Barceló | Plant water relations as affected by heavy metal stress: A review[END_REF].

Petroleum hydrocarbons represent a considerable enrichment in organic material, leading to an increase of soil carbon content and carbon / nitrogen ratio (C/N) [START_REF] Kisic | The effect of drilling fluids and crude oil on some chemical characteristics of soil and crops[END_REF][START_REF] Wang | Effects of crude oil contamination on soil physical and chemical properties in momoge wetland of China[END_REF][START_REF] Nie | Plants ' use of different nitrogen forms in response to crude oil contamination[END_REF]. This stimulates the growth of microorganisms capable of degrading hydrocarbons, thus modifying organic matter mineralization cycles and reshaping microorganism communities [START_REF] Hawrot-Paw | Influence of diesel and biodiesel fuelcontaminated soil on microorganisms , growth and development of plants[END_REF][START_REF] Jiao | Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns occurrence patterns[END_REF][START_REF] Liao | Long-term oil contamination causes similar changes in microbial communities of two distinct soils[END_REF]. The biodegradation of hydrocarbons is accompanied by an elevation of soil CO 2 concentration, especially in the presence of vegetation [START_REF] Labud | Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil[END_REF]. Some of the HM found in oil are essential to vegetation growth (e.g. Fe, Zn, Cu), but their occurrence at high concentrations along with other HM (e.g. Cd, Mg, Pb) also affect microorganisms [START_REF] Xie | Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation[END_REF]. They are not degradable and in the case of oil leakages, they concentrate in the first soil layers [START_REF] Fu | Environmental Science Processes & Impacts extraction processes[END_REF]. The nitrogen cycle is particularly impacted by carbon enrichment: the availability of inorganic nitrogen decreases so vegetation nitrogen status is highly altered [START_REF] Nie | Plants ' use of different nitrogen forms in response to crude oil contamination[END_REF]. Likewise, several studies revealed that petroleum hydrocarbons and HM reduce nutrient availability (P, K) and soil Cation Exchange Capacity (CEC) [START_REF] Ogboghodo | An Assessment of the Effects of Crude Oil Pollution on Soil Properties, Germination and Growth of Maize (Zea Mays) using Two Crude Types -Forcados Light and Escravos Light[END_REF][START_REF] Wang | Effects of crude oil contamination on soil physical and chemical properties in momoge wetland of China[END_REF][START_REF] Zuofa | Effects of crude oil applications to soil on the growth and yield of maize, okro and cassava in Nigeria[END_REF]. The latter is indeed closely linked to soil organic matter content, C/N ratio and pH; so many parameters affected by oil [START_REF] Adeniyi | Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum products in Lagos metropolis[END_REF][START_REF] Kisic | The effect of drilling fluids and crude oil on some chemical characteristics of soil and crops[END_REF]. Through modifications of soil physicochemical and biological properties, crude oil and petroleum products thus affect water and nutrient availability for plants [START_REF] Martí | Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants[END_REF]. These effects are called indirect effects. In addition, direct effects occur when oil is in contact with roots [START_REF] Nogueira | Phytotoxicity of petroleum-contaminated soil and bioremediated soil on Allophylus edulis[END_REF]. As they do with soil materials, petroleum hydrocarbons are able to coat plant roots by adsorbing at their surface. As well as HM, their assimilation inhibits root growth and causes a thickening of root epidermis, endodermis and cortex, and a reduction of root hair diameter and density [START_REF] Balasubramaniyam | Scanning electron microscopic investigations of root structural modifications arising from growth in crude oil-contaminated sand[END_REF][START_REF] Barceló | Plant water relations as affected by heavy metal stress: A review[END_REF][START_REF] Balliana | Development of Canavalia ensiformis in soil contaminated with diesel oil[END_REF][START_REF] Dupuy | Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene[END_REF]. These anatomical changes heavily alter water and nutrient uptake capacities of plants. For some species, they are partly compensated by a higher allocation of resources to roots.

As soon as water or nutrient supply is no longer sufficient to ensure essential physiological functions, stressful conditions arise so plant undergoes anatomical and biochemical modifications that affect its reflectance. These effects are amplified by the accumulation of certain hydrocarbons and HMs in leaves [START_REF] Nagajyoti | Heavy metals, occurrence and toxicity for plants: A review[END_REF][START_REF] Rusin | Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean[END_REF][START_REF] Baruah | Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk[END_REF].

Effects on plant biochemical and biophysical parameters

The biophysical and biochemical parameters affected by exposure to crude oil and petroleum products are involved in vegetation optical properties. A review of these effects is proposed in Table 1. The alteration of leaf pigment content is the most frequently described response of plant to crude oil and petroleum products [START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF][START_REF] Baruah | Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk[END_REF][START_REF] Sanches | Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: An approach using the red edge spectral feature[END_REF]. This alteration is induced by that of plant water and nitrogen status described above [START_REF] H. Ur R. Athar | Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants[END_REF]. It can be visually observed through symptoms of leaf discoloration, which vary among species and according to mixture composition [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Emengini | Early detection of oil-induced stress in crops using spectral and thermal responses[END_REF][START_REF] Balliana | Development of Canavalia ensiformis in soil contaminated with diesel oil[END_REF] (Figure 8a-d). The discoloration is caused by a reduction of LCC and indicates a decrease in photosynthetic activity [START_REF] Rosso | Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[END_REF]. This response is very common for water-deficient plants [START_REF] Van Der Lelie | Phytoremediation: European and American trends successes, obstacles and needs[END_REF][START_REF] Shao | Water-deficit stress-induced anatomical changes in higher plants[END_REF]. Although they are naturally present at lower concentrations in leaves, carotenoids and anthocyanins are also affected [START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF]. HM accumulation amplifies this effect [START_REF] Barceló | Plant water relations as affected by heavy metal stress: A review[END_REF][START_REF] Shanker | Chromium toxicity in plants[END_REF].

Alterations of biophysical parameters can be observed at different scales. At leaf scale, they are expressed as a reduction in the number and size of cells and an increase of intercellular spaces in parenchyma [START_REF] Baruah | Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk[END_REF][START_REF] Punwong | Effects of an oil spill on the leaf anatomical characteristics of a beach plant (Terminalia catappa L.)[END_REF]. The accumulation of certain hydrocarbons and HMs -especially Cd and Mg -also causes tissue destructuring [START_REF] Baker | The effects of oils on plants[END_REF][START_REF] Nagajyoti | Heavy metals, occurrence and toxicity for plants: A review[END_REF]. Consequently, important modifications of leaf spectral signature are expected in the NIR region. At canopy scale, water and nutrient deficiency leads to a limited development (i.e. a reduction of leaf and stem length and density), reducing aboveground biomass and LAI. In addition, changes in leaf anatomy and water content affect plant habit and consequently LAD. 

Sources of variability

The severity of the effects described in section 3.3 highly varies according to the context as described in Table 1, because these effects are influenced by many factors. The sensitivity of the species is a determining one [START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF][START_REF] Anoliefo | Effects of spent lubricating oil on the growth of Capsicum annum L. and Lycopersicon esculentum Miller[END_REF][START_REF] Pérez-Hernández | Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination[END_REF]. Since all species do not share similar ecological requirements, their tolerance to stressful conditions differs. Consequently, a decrease in soil water and nutrient availability caused by crude oil and petroleum products will not affect all species in the same way [START_REF] Merkl | Phytoremediation in the tropics-the effect of crude oil on the growth of tropical plants[END_REF]. Moreover, some species are capable of detoxifying hydrocarbons and HMs accumulated in leaves through mechanisms of sequestration, transportation and excretion [START_REF] Shahid | Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake[END_REF][START_REF] Kvesitadze | Biochemical Mechanisms of Detoxification in Higher Plants[END_REF]. This prevents biochemical alterations and tissue destructuring. Few species are even stimulated by the enrichment of soil organic matter provided by crude oil and petroleum products, but this response remains uncommon [START_REF] Li | Chronic Low Level Hydrocarbon Amendments Stimulate Plant Growth and Microbial Activity in Salt-Marsh Microcosms[END_REF][START_REF] Lassalle | Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression[END_REF]. This variability in species' sensitivity has strong implications under natural conditions. For example, only few species are established around natural oil seepages [START_REF] Noomen | Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[END_REF]. Their presence is explained by a high tolerance to chronic crude oil exposure, so these species undergo no or little alterations. Mud pits contaminated by oil production residues (e.g. oil sludge) are similar cases [START_REF] Credoz | Experimental study of hyperspectral responses of plants grown on mud pit soil[END_REF][START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF][START_REF] Lassalle | Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance[END_REF][START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Martí | Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants[END_REF]. Conversely, crude oil and petroleum products leaked from drilling well, storage tank and pipeline leakages consist in a rapid exposure of oil-intolerant species. In those conditions, severe alterations and sometimes plant death are observed [START_REF] Duke | Oil spill impacts on mangroves: Recommendations for operational planning and action based on a global review[END_REF][START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF][START_REF] Sanches | Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: An approach using the red edge spectral feature[END_REF].

Petroleum hydrocarbon and HM availability for plants strongly varies according to their chemical properties. For example, low-carbon PAHs and As are easily accumulated in leaves [START_REF] Nagajyoti | Heavy metals, occurrence and toxicity for plants: A review[END_REF]. Therefore, mixture composition influences plant response, so different crude oils or petroleum products (e.g. diesel, gasoline) do not affect leaf biophysical and biochemical parameters of a single species in the same extent [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Baker | The effects of oils on plants[END_REF][START_REF] Rusin | Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean[END_REF]. Apart from mixture composition, these effects are also conditioned by the level and time of exposure to oil [START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF][START_REF] H. Ur R. Athar | Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants[END_REF][START_REF] Pérez-Hernández | Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination[END_REF]. More precisely, the amplitude of pigment and water content alteration in leaves is positively correlated to the overall TPH concentration [START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF]. Above a threshold concentration that depends on species' sensitivity (generally in g.kg -1 ), plant death can be observed after only few days [START_REF] Baruah | Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk[END_REF][START_REF] Anoliefo | Effects of spent lubricating oil on the growth of Capsicum annum L. and Lycopersicon esculentum Miller[END_REF]. In contrast, several weeks of exposure might be required to induce biophysical and biochemical alterations at low concentrations (µg to mg.kg -1 ) [START_REF] Balliana | Development of Canavalia ensiformis in soil contaminated with diesel oil[END_REF][START_REF] Lassalle | Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression[END_REF].

Although the effects of petroleum hydrocarbons and HM mixtures on vegetation are well documented in the literature, they cannot be generalized to all contexts of oil leakages because their severity depends on many factors. Species' sensitivity, mixture composition and concentration and exposure time have been identified as the most influential ones. These factors have critical implications in remote sensing, since they determine the amplitude of reflectance changes in vegetation and thus hydrocarbon detectability using airborne and satellite-embedded sensors. 

Detection of crude oil and petroleum products using vegetation optical properties

The previous introductory sections provided key elements to understand how the biophysical and biochemical parameters of vegetation drives its reflectance, and how these parameters are affected by oil contamination. It is therefore expected that these biophysical and biochemical alterations will modify the reflectance of vegetation, at leaf and plant scales, making possible to detect oil contamination indirectly. This section summarizes the modifications of vegetation reflectance induced by crude oil and petroleum products, and the existing methods developed to track these modifications, under controlled and field conditions.

Vegetation optical properties have been extensively used for tracking alterations in pigment or water content caused by biotic and abiotic factors [START_REF] De Jong | The spectral response of Buxus sempervirens to different types of environmental stress -A laboratory experiment[END_REF][START_REF] Lowe | Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress[END_REF][START_REF] Smith | Plant spectral responses to gas leaks and other stresses[END_REF][START_REF] Stimson | Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma[END_REF][START_REF] Zinnert | Distinguishing natural from anthropogenic stress in plants: Physiology, fluorescence and hyperspectral reflectance[END_REF]. Conversely, their exploitation in oil leakage detection has been initiated more recently [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Emengini | Early detection of oil-induced stress in crops using spectral and thermal responses[END_REF][START_REF] Sanches | Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: An approach using the red edge spectral feature[END_REF]. Major progress has been made in this field by taking advantage of multi-and hyperspectral methods developed for assessing vegetation health in other contexts, such as crop and ecosystem monitoring. Some of these methods -especially VI and RTM -proved efficient for tracking oil-induced alterations in vegetation reflectance under controlled and field conditions, from spectroradiometer-acquired reflectance data [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Emengini | Early detection of oil-induced stress in crops using spectral and thermal responses[END_REF][START_REF] Lassalle | Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression[END_REF][START_REF] Emengini | Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing[END_REF].

Effects of crude oil and petroleum products on vegetation reflectance

As described in section 3, crude oil and petroleum products affect the main biophysical and biochemical parameters driving vegetation optical properties. These effects result in modifications in the spectral signature at leaf and canopy scales, which have been studied under greenhouse or field conditions. They are summarized in Table 2. The VIS has been mostly exploited for tracking the effects of crude oil and petroleum products from the spectral signature of vegetation, because of its strong link with pigments [START_REF] Emengini | Early detection of oil-induced stress in crops using spectral and thermal responses[END_REF][START_REF] Rosso | Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[END_REF][START_REF] Sanches | Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: An approach using the red edge spectral feature[END_REF][START_REF] Emengini | Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing[END_REF]. The alteration of chlorophyll content described in the previous section immediately leads to an increase of reflectance in this region, at leaf and canopy scales (Figure 9) [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF].

This increase is essentially located in the green-red wavelengths (500 -670 nm), where it can reach 20%, and is expressed as a shift of the REP toward shorter wavelengths around 700 nm. In comparison, the blue wavelengths (400 -500 nm) are weakly affected. This response is observed after few days of exposure -even at low concentration -and becomes more pronounced in time, making crude oil and petroleum products more easily detectable. Once again, it is difficult to identify the most contributing hydrocarbons and HMs, since a single of these compounds is able to induce a similar response [START_REF] Zhu | Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance[END_REF][START_REF] Clevers | Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data[END_REF][START_REF] Shi | Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants[END_REF].

Figure 9. Spectral signatures of leaves of Zea mays L. grown for 14 days on engine oilcontaminated (48 -214 g.kg -1 ) or uncontaminated soils (modified from [START_REF] Emengini | Early detection of oil-induced stress in crops using spectral and thermal responses[END_REF]).

Although the increase of green-red reflectance and the shift of the REP are frequent, an absence of reflectance change has been sometimes observed in studies (Table 2) [START_REF] Credoz | Experimental study of hyperspectral responses of plants grown on mud pit soil[END_REF][START_REF] Rosso | Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[END_REF][START_REF] Huang | Hydrocarbon microseepage detection from airborne hyper-spectral images by plant stress spectra based on the PROSPECT model[END_REF]. In addition, some oil-tolerant species exhibit modifications of reflectance in the first stages of exposure to oil, and then recover reflectance values similar than those of healthy plants [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF].

Other species are even stimulated by low TPH concentrations, inducing a decrease in reflectance [START_REF] Lassalle | Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression[END_REF]. This underlines the variability of vegetation response to crude oil and petroleum products discussed in section 3.4. Of the mentioned studies, some clearly linked the level of pigment content alteration to that of reflectance in the VIS [START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF][START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Emengini | Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing[END_REF]. They focused on leaf chlorophyll content, because of its major influence on reflectance in the 500 -670 nm wavelengths [START_REF] Emengini | Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing[END_REF].

Sanches et al. [START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF][START_REF] Sanches | Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: An approach using the red edge spectral feature[END_REF] conducted an experiment on four oil-sensitive species exposed to gasoline and diesel and concluded that carotenoid content had only few contribution to reflectance changes in the VIS. Conversely, these pigments were highly involved in the reponse of oil-tolerant species in other studies [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Lassalle | Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression[END_REF].

As described in section 2.2, reflectance in the NIR is highly dependent on the speciesespecially mono-and dicotyledonous -and on the acquisition scale (leaf, canopy). The same factors, as well as mixture composition, lead to contrasted response of vegetation in this region (Table 2). Whether they result from an increase or a decrease of reflectance, differences between healthy and affected vegetation can exceed 20% in the NIR [START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF]. A decrease in reflectance is more likely to be observed at canopy scale, since plant development -and thus LAI -is strongly limited by hydrocarbons and HMs. However, several exceptions have been noticed in the literature. As pointed out by three studies [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF][START_REF] Rosso | Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[END_REF], a single species can undergo opposite reflectance changes in the NIR, depending on the crude oil or petroleum product to which it is exposed. Likewise, two species exposed to a similar concentration of the same petroleum product can exhibit contrasted responses in this region [START_REF] Emengini | Comparative Analysis of Spectral Responses of Varied Plant Species to Oil Stress[END_REF]. This causes serious detection limits in regions with high species diversity. Similar observations have been made at leaf scale, where reflectance in the NIR mainly depends on anatomy. However, no study demonstrated the relationship between alterations of parenchyma and reflectance changes in this region.

Because of modifications in vegetation water status, the SWIR is largely impacted by exposure to crude oil and petroleum products. As well as in the NIR, the response of vegetation in the SWIR varies among studies (Table 2). In the case where a decrease of reflectance is observed on exposed vegetation, it remains rarely lower than 10% [START_REF] Gürtler | Determination of changes in leaf and canopy spectra of plants grown in soils contaminated with petroleum hydrocarbons[END_REF]. Conversely, an increase of reflectance, which is more consistent with the reduction of leaf water content and canopy LAI, can exceed 20% for the most oil-sensitive species. In both cases, the response appears later than in the VIS and is thus a good indicator of a long-term exposure. As expected, the most affected wavelengths are located in water absorption features [START_REF] Emengini | Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing[END_REF]. Because of low atmospheric transmission, these features are however unusable at canopy -and image -scale, but other ones (e.g. 1600 and 2200 nm) proved to be good alternatives [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF]. Vegetation reflectance in the SWIR also depends on celluloses, hemicelluloses, lignins and proteins, which have already been reported as slightly sensitive to petroleum products in one study [START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF]. Because of the strong influence of LWC in this region, it is unlikely that alterations in these biochemical compounds have major contribution to the modifications of reflectance described here. The studies carried out to characterize the spectral response of vegetation to crude oil and petroleum products gave rise to various methods for detecting and quantifying TPH. These methods are based on exploiting the modifications of reflectance described in section 4.1, under controlled or field conditions. Most of existing methods rely on visual or statistical comparisons of spectral signatures between healthy and oil-exposed vegetation [START_REF] Credoz | Experimental study of hyperspectral responses of plants grown on mud pit soil[END_REF][START_REF] Rosso | Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[END_REF]. These methods are however limited for application beyond the context studied. Other authors exploited reflectance at particular wavelengths by using VI, REP and spectrum transformations, and converged on the critical importance of VIS wavelengths [START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF][START_REF] Emengini | Early detection of oil-induced stress in crops using spectral and thermal responses[END_REF][START_REF] Emengini | Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing[END_REF]. Gürtler et al. [START_REF] Gürtler | Determination of changes in leaf and canopy spectra of plants grown in soils contaminated with petroleum hydrocarbons[END_REF] compared these methods for discriminating among healthy and gasoline-or diesel-exposed vegetation, at leaf and canopy scales, and concluded that their performance depends on the species. In a single experiment, Sanches et al. [START_REF] Sanches | Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy[END_REF] combined first derivative and continuum removal spectra transformation to Principal Component Analysis (PCA) for similar purpose and identified the red-edge region as a good indicator of soil contamination. However, none of the above-mentioned methods aimed to predict whether vegetation is -or has been -exposed to crude oil or petroleum products from its spectral signature. This represents an important issue for detecting contamination under natural conditions without a priori knowledge about their presence.

VI, REP and spectrum transformations have been used for assessing stress-induced alterations in vegetation health in a wide range of contexts. Filella & Peñuelas [START_REF] Filella | The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[END_REF] used reflectance derived in the red-edge for tracking changes in LCC and LAI of Capsicum annuum and Phaseolus vulgaris resulting from nitrogen deficiencies. Likewise, VI exploiting the NIR and SWIR regions succeeded in tracking water-stress caused by insufficient irrigation or pests [START_REF] Gao | NDWI-A normalized difference water index for[END_REF][START_REF] Apan | Detecting sugarcane 'orange rust' disease using EO-1 Hyperion hyperspectral imagery[END_REF]. When used in classification or simple and multiple regression methods, these reflectance data allow predicting stressed vegetation and quantifying biophysical and biochemical parameters automatically [START_REF] Darvishzadeh | LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements[END_REF][START_REF] Rumpf | Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance[END_REF][193][START_REF] Hermosilla | Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsatderived time-series metrics[END_REF]. Therefore, they are great candidates for detecting crude oil and petroleum products and quantifying TPH indirectly.

Classification relies on the combination of several discrete or continuous variables (e.g.

reflectance data, VI) to predict a categorical response variable (e.g. "healthy" or "stressed") through a mathematical function [START_REF] Schowengerdt | Remote sensing: Models and methods for image processing[END_REF]. Here, we only consider supervised classification. In most cases, these methods are first calibrated on a set of data with known categories, called the training set, and tested on an independent set -the test set -by predicting categories and comparing them to the true ones [START_REF] Story | Remote Sensing Brief Accuracy Assessment: A User's Perspective[END_REF]. Numerous classification methods have been proposed in the literature [START_REF] Belgiu | Random forest in remote sensing: A review of applications and future directions[END_REF][START_REF] Tuia | Multioutput support vector regression for remote sensing biophysical parameter estimation[END_REF][START_REF] Melgani | Classification of hyperspectral remote sensing images with support vector machines[END_REF]. When dealing with hyperspectral data, several constraints yet arise.

Since reflectance is measured over multiple and contiguous wavelengths, it is not rare to have more variables than observations (i.e. reflectance wavelengths > sample size). This phenomenon, known as the Hughes' effect [START_REF] Hughes | On the mean accuracy of statistical pattern recognizers[END_REF], leads to overfitting of the training set, which negatively affects classification accuracy. This effect can be partly avoided by reducing the dimensionality of the variables using, for example, Principal Component Analysis (PCA). Focusing on vegetation studies, Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Random Forest (RF) and Spectral-Angle-Mapper-based classification (SAM) revealed to be particularly efficient for discriminating healthy and stressed categories while avoiding overfitting [START_REF] Rumpf | Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance[END_REF][START_REF] Hermosilla | Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsatderived time-series metrics[END_REF][START_REF] Thenkabail | Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications[END_REF][START_REF] Wei | Hyperspectral characterization of freezing injury and its biochemical impacts in oilseed rape leaves[END_REF]. However, an exhaustive review proposed by Lowe et al. [START_REF] Lowe | Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress[END_REF] stated that no consensus is made in the choice of the method, since their performance highly depends on the purpose of the classification. Few methods allow identifying the most important (i.e. discriminant) variables through weighting or stepwise selection criteria [START_REF] Thenkabail | Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications[END_REF][START_REF] Friedman | Gradient Directed Regularization for Linear Regression and Classification[END_REF]. Stepwise

Forward LDA [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF] has been specifically designed for this purpose, but remains poorly adapted to hyperspectral data because of high multicollinearity. In a spectral region, multicollinearity occurs when reflectance data are linear combination of each other [START_REF] Belsley | Detecting and Assessing Collinearity[END_REF]. For example, correlation coefficients (r) among reflectance data from different red wavelengths can easily exceed 0.8, which indicates high redundancy. Variable selection becomes very difficult in this case. To achieve it, penalized methods have been developed, such as the Elastic net [START_REF] Zou | Regression and variable selection via the elastic net[END_REF], but remain underexploited in vegetation studies.

Regression methods are used to predict a continuous response variable from one (simple regression) or several (multiple regression) continuous input variables [START_REF] Keith | Multiple Regression and Beyond[END_REF]. In practice, these methods follow the same calibration -test procedure than for classification. Simple regression relies on the calibration of univariate models (e.g. polynomial, exponential, etc.). It has been especially used for predicting LCC from single VI in previous studies [START_REF] Sims | Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[END_REF][START_REF] Blackburn | Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves[END_REF][START_REF] Filella | The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[END_REF]. Multiple regression regroups a wide range of methods that do not substantially differ from classification ones, and are constrained by the same overfitting and multicollinearity issues. Regarding vegetation studies, it has been shown that Stepwise LDA, Partial Least Square Regression (PLSR) and Support Vector Regression (SVR) are well-suited for retrieving biophysical and biochemical parameters from hyperspectral data [START_REF] Darvishzadeh | LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements[END_REF]193,[START_REF] Mountrakis | Support vector machines in remote sensing: A review[END_REF]. Once again, there is no best method since the performance varies according to the context. Since both classification and regression methods perform well for detecting and quantifying stress-induced changes in vegetation health, they are promising for monitoring oil contamination from vegetation reflectance. Studies listed in Table 2 showed that the mixture composition and the overall TPH concentration strongly influence the amplitude of reflectance modifications observed in the whole spectral signature. Based on these observations, predictive methods combining VI and either classification and regression approaches have been recently proposed to detect and characterize oil (i.e. to identify the type of crude oil or petroleum product) and to quantify TPH concentration in temperate and tropical regions [START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF][START_REF] Lassalle | Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression[END_REF]. These methods rely on tracking subtle changes in chlorophyll or various carotenoid contents induced by oil contamination by exploiting reflectance at multiple wavelengths in the VIS. They proved suitable for use both under controlled conditions and in the field.

Other methods based on a different approach have been developed for similar purposes. Those based on RTM are of great interest. RTM are physically-based models aiming to simulate vegetation optical properties. They are typically classified in four categories: plate models, Nflux models, stochastic models and ray tracing models [START_REF] Jacquemoud | Utilisation de la haute résolution spectrale pour l'étude des couverts végétaux : développement d'un modèle de réflectance spectrale[END_REF][START_REF] Jacquemoud | Leaf optical properties: A state of the art[END_REF]. Focusing at leaf scale, the plate model PROSPECT is probably the most widespread [START_REF] Jacquemoud | PROSPECT: A model of leaf optical properties spectra[END_REF][START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF]. In its direct mode, PROSPECT allows simulating leaf optical properties (reflectance and transmittance) in the optical reflective domain from its biophysical and biochemical parameters (structure and pigment, water and dry matter contents). Inversion of the model allows retrieving these parameters from reflectance and transmittance measurements performed on leaves [START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF]. PROSPECT has been used in many studies dealing with environmental monitoring purposes [START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF][START_REF] Jiang | Estimation of leaf traits from reflectance measurements: comparison between methods based on vegetation indices and several versions of the PROSPECT model[END_REF]. While LCC and LWC remain the most targeted parameters in vegetation stress assessment [START_REF] Ceccato | Detecting vegetation leaf water content using reflectance in the optical domain[END_REF][START_REF] Barry | Estimation of chlorophyll content in Eucalyptus globulus foliage with the leaf reflectance model PROSPECT[END_REF], recent improvements of the model allow separating chlorophylls, carotenoids and anthocyanins with good precision [START_REF] Feret | PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[END_REF][START_REF] Féret | Towards modeling leaf optical properties through a complete lifecycle[END_REF]. In a recent study, Arellano et al. [START_REF] Arellano | Field spectroscopy and radiative transfer modelling to assess impacts of petroleum pollution on biophysical and biochemical parameters of the Amazon rainforest[END_REF] inverted the model to compare LCC of various tropical plant families among uncontaminated and oil-spill sites, and found significant alterations for some of them. More recently, Lassalle et al. [START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF] inverted PROSPECT to retrieve oil-induced chlorophyll alterations in leaves from reflectance data, making possible to quantify TPH concentrations in soils (Figure 10). These two studies also highlighted the importance of taking the species' sensitivity to oil and the development stage into account, which both determine the detection and quantification accuracy. Hence, the methods developed for monitoring oil contamination from vegetation reflectance are largely inspired from those of other fields (agronomy, ecology). In a perspective of application at large scale -using airborne or satellite imagery, an upscaling of these methods is necessary. This represents a difficult step to cross toward operational applications over industrial facilities.

5. Application in contamination monitoring using airborne and satellite imagery

Synthesis based on previous studies

Few attempts have been made in detecting oil leakages and contaminated mud pits in vegetated areas using optical remote sensing in the past (Table 3). In most cases, studies aimed to assess the impact of crude oil and petroleum products on the environment using multi-(Landsat) or hyperspectral (Hyperion) satellite imagery at 30-m spatial resolution [START_REF] Van Der Werff | A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage[END_REF][START_REF] Adamu | Remote sensing for detection and monitoring of vegetation affected by oil spills[END_REF][START_REF] Ozigis | Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria[END_REF][START_REF] Van Der Meijde | A spectral-geophysical approach for detecting pipeline leakage[END_REF]. More rarely, the goal was to detect natural oil seepages (Figure 11a-b) [START_REF] Noomen | Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[END_REF]. A limited number of authors have used airborne hyperspectral images, and those who did have rarely exploited the entire spectral signature of vegetation. Almost all the mentioned studies used REP or VI to detect changes in vegetation health induced by crude oil or petroleum products. As for experiments carried out under controlled conditions, these methods rely on mean comparison between sites with healthy and oil-exposed vegetation [START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF][START_REF] Adamu | Remote sensing for detection and monitoring of vegetation affected by oil spills[END_REF][START_REF] Onyia | Detecting vegetation response to oil pollution using hyperspectral indices[END_REF]. They proved to be efficient for identifying vegetation stress on seepage or leakage sites, but suffered from serious limits when applied outside the study area (Figure 11a-b). In contrast to experimental studies, REP and VI have already been exploited in classification or anomaly detection methods on multi-and hyperspectral images. However, the performance of these methods has been rarely quantified. Their evaluation mostly relied on visual interpretation of detection mapping with lacking ground validation data, which are often difficult to obtain.

Among notable examples, Ozigis et al. [START_REF] Ozigis | Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria[END_REF] combined 10 VI in random forest on 30-m resolution Landsat-8 images for detecting oil leakages and obtained an overall accuracy of maximum 70% on selected sites. Conversely, Arellano et al. [START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF] applied successive vegetation index thresholds to map oil-induced stress near production facilities using 30-m resolution Hyperion images. These methods were first calibrated on a study area, and then applied to the entire image. In all cases, they led to the apparition of false alarms, especially false positives (i.e.

vegetation stress not induced by petroleum hydrocarbons and HMs) (Figure 11b). This phenomenon is observed under various contexts (e.g. temperate, tropical) and results from multiple factors. First, in most studies, the spatial resolution of the images was not adapted to the size of the target. In addition, as described in section 3.4, certain species are particularly tolerant to crude oil and petroleum products and undergo only little changes in their spectral signature, which make them difficult to discriminate from healthy vegetation. In that situation, high spectral resolution and signal-to-noise ratio are needed to catch these changes in reflectance, so hyperspectral sensors are required. In addition, natural differences in optical properties among species and individuals -as well as in sensitivity to oil -make the detection particularly challenging in areas with high species diversity. For instance, a species exposed to crude oil or petroleum products may exhibit a similar spectral signature than that of another unexposed species [START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF]. This becomes a serious issue at decametric spatial resolution, where species are highly mixed inside pixels. A similar issue arises when exposed species are mixed with bare soil.

Very high spatial resolution (1 -2 m) is thus needed to overcome these limits. images using various vegetation indices (see [START_REF] Noomen | Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[END_REF] for the description of indices). However, false alarms (red pixels outside yellow circles) cannot be avoided. Similar observations have been depicted for accidental oil leakages [START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF][START_REF] Adamu | An investigation into the factors influencing the detectability of oil spills using spectral indices in an oil-polluted environment[END_REF].

Ozigis et al. [START_REF] Ozigis | Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria[END_REF] pointed out several sources of confusion that contribute to increasing false positives. The presence of crude oil and petroleum products is not the only factor affecting vegetation health and optical properties under natural conditions. Some biotic or abiotic factors are likely to induce similar effects, thus introducing confusion. As described in section 3.2, crude oil and petroleum products reduce water availability for plants and can induce a water-deficit stress. Under natural conditions, this effect can be easily confused with that of a "natural" waterdeficit (i.e. resulting from insufficient precipitation and/or highly drained soils). Although it seems possible to discriminate these stressors for highly oil-sensitive species under controlled conditions [START_REF] Emengini | Early detection of oil-induced stress in crops using spectral and thermal responses[END_REF][START_REF] Emengini | Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing[END_REF], it is more difficult for oil-tolerant species and using airborne or satellite hyperspectral images. Stress confusion has been identified as one of the most important cause of misclassification in previous studies. It is therefore necessary to account for these sources of confusion in each context, when applying detection methods over an entire region. Once again, very high spatial and spectral resolutions are needed to achieve efficient discrimination of oil and other stressors. Although no current satellite-embedded sensor offers such resolutions simultaneously at the moment, airborne imagery represents a good alternative [START_REF] Salem | Hyperspectral image assessment of oil-contaminated wetland[END_REF].

As concluded from the above-mentioned studies, it is not the best option to develop methods for detecting and quantifying oil using only airborne or satellite images, especially without solid knowledge about the context (species' sensitivity, hydrocarbon and HM mixture, other potential stressors). Experiments carried out under controlled conditions are a necessary first step, since they help determining the response of vegetation specifically induced by crude oil and petroleum products. These experiments must be representative of realistic field conditions (i.e. species, TPH concentrations) and serve as basis for developing classification or regression methods that are suitable for use on images. The upscaling of methods is the most important difficulty in this approach, so it is crucial to address it progressively; for example, from leaf to canopy scales and finally on images. The validation of the methods in the field is an intermediate -and criticalstep prior to imagery application. Then, the methods should be progressively applied to imagery; first, on selected sites with known species' sensitivities, and thereafter at large scale. This multiscale approach proved efficient in recent studies. For example, Lassalle et al. [START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF][START_REF] Lassalle | Toward Quantifying Oil Contamination in Vegetated Areas Using Very High Spatial and Spectral Resolution Imagery[END_REF][START_REF] Lassalle | Detection and discrimination of various oilcontaminated soils using vegetation reflectance[END_REF] developed methods for detecting and quantifying TPH based on bramble reflectance under controlled and field conditions and succeeded in applying them on airborne hyperspectral images over contaminated mud pits (accuracy > 90%).

The studies listed in Table 3 demonstrated the feasibility of assessing oil contamination using optical remote sensing. However, the methods described in these studies were validated locally, in a specific context. As a perspective, they are intended to be applied operationally in a broader range of situations encountered in oil contamination monitoring (pipeline leakage, mud pits, storage tanks failure, etc.), in various regions (temperate, tropical, etc.). This implies extending the scope of these methods and overcoming their current limits regarding operating and future satellite-embedded sensors.

Perspectives toward operational applications in oil and gas industry

In an operational context, remote sensing should provide accurate mapping of oil over large industrial facility sites colonized by vegetation. At this stages, the methods developed for this purpose remain rarely effective -or often unassessed -outside a given study site [START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF][START_REF] Noomen | Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[END_REF][START_REF] Ozigis | Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria[END_REF],

which limits their operational use. Most of them are adapted to a given species or vegetation type (mangroves, shrubs, etc.) with known location, so these methods can be applied for identifying new contaminated sites, provided they are colonized by the same species or vegetation type. This remains very restrictive, because oil can be mapped only locally and to pre-selected vegetated sites. Therefore, in an operational perspective, it is essential to extend the scope of the methods to other contexts (in terms of species and contamination type and level). Likewise, they should be applicable to entire images, in order to assess oil contamination at large scale. To achieve this, it is not conceivable to use airborne hyperspectral imagery -especially for daily monitoring, because it implies an important economic cost. Conversely, satellite imagery is already used operationally by oil and gas companies for mineralogical mapping and marine oil spill tracking [START_REF] Tangestani | Mineralogy and geochemistry of alteration induced by hydrocarbon seepage in an evaporite formation; a case study from the Zagros Fold Belt, SW Iran[END_REF][START_REF] Leifer | State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill[END_REF]. Satellite-embedded sensors can provide images over industrial facilities on a dailyor weekly -basis, allowing continuous monitoring of oil contamination. To date, the best spatial resolution provided by operating and planned hyperspectral satellite-embedded sensors is 8 m, with less than 300 spectral bands in the reflective domain (Table 4). In contrast, the best methods developed for assessing oil contamination were developed using high to very high spatial and spectral resolutions [START_REF] Van Der Werff | A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage[END_REF][START_REF] Lassalle | Toward Quantifying Oil Contamination in Vegetated Areas Using Very High Spatial and Spectral Resolution Imagery[END_REF][START_REF] Salem | Hyperspectral image assessment of oil-contaminated wetland[END_REF]. Using satellite imagery, their performance would be impacted by the degradation of resolutions. Therefore, two conditions are required for applying these methods in an operational way, namely: extending their scope to a wide range of contexts and adapting them to future satellite-embedded hyperspectral sensors (Table 4). At this stage, the application of the methods at large scale is limited by the necessity to know the location of the species -or vegetation type -on images. In an operational frame, an automatic mapping of this species would be helpful. Without this preliminary step, the methods would lead to false-detection alarms and inaccurate quantification of TPH if applied to other species and vegetation types, which differ in optical properties and sensitivity to oil [START_REF] Lassalle | Toward Quantifying Oil Contamination in Vegetated Areas Using Very High Spatial and Spectral Resolution Imagery[END_REF][START_REF] Noomen | Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[END_REF][START_REF] Arellano | Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the Amazon rainforest of Ecuador[END_REF].

The mapping could be achieved quite easily for homogenous and dense covers, but would become harder in regions with high species richness. It is particularly true when using satellite imagery, as "pure" pixels of dense vegetation (i.e. including a single species or vegetation type and no bare soil) become even rarer with increasing spatial resolution. Spectral unmixing might help overcoming this issue [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. Unmixing aims at identifying the different species or vegetation types inside pixels using, for example, spectral libraries. Lots of unmixing methods have been proposed in previous studies [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF][START_REF] Zhong | An adaptive differential evolution endmember extraction algorithm for hyperspectral remote sensing imagery[END_REF][START_REF] Stagakis | Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery[END_REF][START_REF] Dehaan | Discrimination of blackberry (Rubus fruticosus sp. agg.) using hyperspectral imagery in Kosciuszko National Park,NSW, Australia[END_REF]. Focusing on vegetation studies, unmixing methods have been developed for two main purposes: mapping a single target species or vegetation type and discriminating among various ones. Thus, unmixing could be used for mapping the species or vegetation types of interest before applying the methods of oil detection and quantification.

Toward operational monitoring, future studies should focus on applying unmixing methods prior to detecting and quantifying TPH at satellite spatial resolution. However, it might be interesting not to limit to the species or vegetation types on which the methods were developed. Various species might serve for detecting and quantifying oil, which would extend the scope of the methods and fulfill operational needs.

Once the target species or vegetation types have been mapped, it is important to note that the accuracy of the detection and quantification of oil will depend on the level of contamination. For example, the exact range of effectiveness of the methods proposed for quantifying TPH remains unknown [START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF][START_REF] Lassalle | Toward Quantifying Oil Contamination in Vegetated Areas Using Very High Spatial and Spectral Resolution Imagery[END_REF][START_REF] Zhu | Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China[END_REF]. This information is essential for operational applications, because oil contamination can extend to a wide range of concentrations. Further studies should focus on determining the exact limits of detection and quantification of existing methods, especially since they may vary among species. Depending on their sensitivity to oil, all species do not allow detecting and quantifying contamination in the same range. Species with different sensitivities could be complementary for quantifying TPH over a wide range of concentrations [START_REF] Lassalle | Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties[END_REF][START_REF] Zhu | Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China[END_REF][START_REF] Arellano | Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the Amazon rainforest of Ecuador[END_REF].

High spatial resolution is also needed, as TPH concentrations may vary locally. 8-or 30-m pixels may include different species exposed to different levels of contamination, making oil very difficult to detect and quantify accurately. Hence, an important effort remains to identify the species suitable for monitoring oil contamination and to define their respective range of effectiveness at the spatial resolution of satellite-embedded sensors.

At this stage, the scope of the methods developed for detecting and quantifying TPH is restricted to assessing huge oil leakages (e.g. major oil spills and large, contaminated mud pits).

Toward operational applications, it should extend to other scenarios. Chronic crude oil or petroleum product leaks deriving from pipeline or storage tank failures are priority, because they represent one of the main sources of contaminant release from oil industry [START_REF] Chang | A study of storage tank accidents[END_REF][START_REF] Da Cunha | A review of quantitative risk assessment of onshore pipelines[END_REF]. From the perspective of satellite imagery application, one possible limit to applying the methods may arise at the spatial resolution of satellite images for small contaminated areas. More precisely, pipeline and storage tank leaks can spread on a few square meters [START_REF] Correa Pabón | Reflectance and imaging spectroscopy applied to detection of petroleum hydrocarbon pollution in bare soils[END_REF][START_REF] Asadzadeh | Spectral remote sensing for onshore seepage characterization: A critical overview[END_REF], making their detection challenging at satellite spatial resolution, because pixels would not only include oil-exposed vegetation. Therefore, the required spatial resolution depends on the contamination event to detect (mud pit, pipeline leak, etc.).

Conclusion

This review aimed at summarizing the advances and challenges in using optical remote sensing for assessing oil contamination in vegetated areas. Although the optical properties of vegetation have been well documented, their use in oil and gas industry is still recent. By exploiting modifications in these properties caused by pigment and water alteration in leaves, previous studies have shown that it is possible to detect and quantify TPH in soils under controlled and field conditions. However, at this stage, several limits discussed in this review prevent from applying the same methods in an operational way at large scale, using hyperspectral imagery.

Hence, the work summarized in this review should continue in further research, in order to extend the scope of the methods and to assess their operational maturity. More precisely, future studies should first focus on identifying more relevant plant species and, for each of them, the types of oil (i.e. crude oil and petroleum products) and the range of concentrations that can be detected or quantified. This would be helpful for remote sensing operators of oil and gas companies, as the methods could be used for a wide range of purposes in oil exploration and contamination monitoring. Prior to operational applications, the methods should be evaluated at the spatial and spectral resolutions of future satellite-embedded hyperspectral sensors, along with species unmixing.

On the long term, oil and gas companies may spark growing interest in UAV-embedded hyperspectral sensors. Although they are still under development, they represent a promising complement or alternative to satellite imagery. UAV-embedded sensors allow multitemporal, localized, monitoring, while providing very high spatial (up to cm scale) and spectral resolutions [START_REF] Colomina | Unmanned aerial systems for photogrammetry and remote sensing: A review[END_REF][START_REF] Lu | Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland[END_REF], therefore overcoming some of the above-mentioned limits. In addition, active remote sensing could be used to improve oil detection and quantification, by providing complementary information about vegetation. For example, radar and LiDAR imagery are useful for estimating canopy height and biomass [START_REF] Wulder | Lidar sampling for large-area forest characterization: A review[END_REF], which are affected by oil. Radar remote sensing is lightindependent and atmospherically-resistant, which is a considerable advantage in wet tropical regions [START_REF] Ozigis | Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods[END_REF][START_REF] Kim | Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean[END_REF]. By combining various technologies (active and passive) and sensor platforms (satellite, drone), remote sensing will undoubtedly become an indispensable support to oil contamination monitoring in vegetated areas in the coming decades.
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Table 1 .

 1 Effects induced by crude oil and petroleum products on vegetation biophysical and biochemical parameters. (⇑ and ⇓ denotes increase and decrease in the measured parameter, respectively; * indicates dose-dependent effects; n.a.: not available or not measured.)

	Species	Crude oil Petroleum product	TPH	Total time of exposure	Anatomy / Development	Pigments / Photosynthesis	Water status	Ref.
	Ailanthus altissima Mill.	Oil sludge	10-40%	240 days	⇓ Shoot length and biomass*	⇓ Photosynthesis*	⇓ Stomatal conductance* ⇓ Leaf transpiration*	[173]
	Allophylus edulis	Crude oil	13.65 g.kg -1 30-60 days	⇑ Shoot length and biomass unchanged	n.a.	n.a.	[162]
	Amorpha fruticosa	Crude oil	5-20 g.kg -1	6 months	⇓ Shoot biomass*	⇓ Leaf chlorophyll content*	⇓ Leaf water content ⇓ Stomatal conductance and transpiration	[174]
							rate*	
	Canavalia ensiformis	Diesel	22,219 mg.kg -1 30 days	⇓ Palisade and spongy parenchyma thickness ⇓ Stem and leaf length and biomass	Leaf discoloration and necrosis ⇓ Leaf carotenoid content ⇓ Leaf chlorophyll content	n.a.	[163]
	Capsicum annum	Lubricating oil	1-5%	84 days	⇓ Shoot length* ⇓ Leaf area*	n.a.	n.a.	[167]
	Cedrela odorata	Crude oil	18-47.10 g.kg -1 245 days	⇓ Shoot length and biomass	n.a.	n.a.	[168]
	Corchorus olitorius	Engine oil	0.2-3%	6 weeks	⇓ Shoot length* ⇓ Leaf area*	⇓ Leaf chlorophyll content*	⇓ Leaf water content*	[175]
					⇑ Cuticle thickness*			
	Cyperus brevifolius	Crude oil	10-50 g.kg -1	6 months	⇓ parenchymatous cell length and diameter* ⇓ intercellular spaces length and diameter*	Light to very dark leaves ⇓ Leaf chlorophyll content*	n.a.	[142]
					⇓ Shoot biomass*			
	Deschampsia caespitosa	Petroleum cokes	n.a	3 months	⇓ Shoot length	⇓ Leaf chlorophyll content ⇓ Leaf carotenoid content	⇓ Transpiration rate and stomatal conductance	[176]
							⇑ Stomatal conductance until day 80*	
	Fraxinus rotundifolia Mill.	Oil sludge	10-40%	240 days	⇓ Shoot length and biomass*	⇓ Photosynthesis*	⇓ Stomatal conductance after day 80*	[173]
							⇓ Leaf transpiration*	
		Crude oil	1.3-3.1 g.kg -1 >6 months	⇓ Shoot biomass*	n.a.	n.a.	
	Glycine hyspida	Crude oil (spill)	1.1-3.8 g.kg -1 >6 months	⇓ Shoot biomass*	n.a.	n.a.	[134]
		Drilling fluids	1.6-76.1 g.kg -1 >6 months	⇓ Shoot biomass*	n.a.	n.a.	
	Haematoxylum campechianum	Crude oil	18-47.10 g.kg -1 245 days	⇓ Shoot length and biomass	n.a.	n.a.	[168]
		Crude oil	1.3-3.1 g.kg -1 >6 months	⇓ Shoot biomass	n.a.	n.a.	
	Hordeum vulgare	Crude oil (spill)	1.1-3.8 g.kg -1 >6 months	Shoot biomass unchanged	n.a.	n.a.	[134]
		Drilling fluids	1.6-76.1 g.kg -1 >6 months	⇓ Shoot biomass*	n.a.	n.a.	
	Lycopersicon esculentum	Lubricating oil	1-5%	84 days	⇓ Shoot length* ⇓ Leaf area*	n.a.	n.a.	[167]

Table 2 .

 2 Effects induced by crude oil and petroleum products on vegetation reflectance in the different spectral regions, at leaf and canopy scales. This review includes studies carried out under experimental or field conditions and implying point reflectance measurements using a spectroradiometer. (VIS: Visible, NIR: Near Infra-Red, SWIR: Short-Wave InfraRed, ⇑ and ⇓ denotes reflectance increase and decrease, respectively; FC: Field capacity; * indicates dose-dependent effects; n.a.: not available; n.s.: nonsignificant effect.)

						Reflectance -Leaf scale				
	Species	Conditions	Crude oil petroleum product	TPH	Total time of exposure				Reflectance -Plant / Canopy scale	Ref.
						VIS	NIR	SWIR	VIS	NIR	SWIR	
	Brachiaria brizantha	Field Field	Diesel Gasoline	12.7 L.m -3 12.7 L.m -3	30 days 30 days	⇑* ⇑*	⇑* ⇓*	⇑* ⇑*	⇑* ⇑*	⇑* ⇓*	⇑* ⇑*	[58]
	Buddleja davidii Franch.	Field	Mud pit	16-77 g.kg -1	n.a. a	n.s.	n.s.	n.s.	n.a.	n.a.	n.a.	[49]
	Cenchrus alopecuroides (L.)	Experimental	Mud pit	14 g.kg -1	60 days				⇑	⇓	⇑	[56]
	Cenchrus alopecuroides (L.)	Experimental	Mud pit	1-19 g.kg -1	42 days	⇑*	⇑*	⇑*	⇑*	⇑*	⇑*	[172]
	Cornus sanguinea L.	Field	Mud pit	16-77 g.kg -1	n.a. a	⇑*	⇑*	⇑*	n.a.	n.a.	n.a.	[49]
	Forsythia suspensa	Experimental	Engine oil	20-60 % soil FC	28 days	⇑*	⇑	n.a.				[187]
	Neonotonia wightii	Field Field	Diesel Gasoline	6.25 L.m -3 6.25 L.m -3	184 days 184 days	⇑* ⇑*	⇓* ⇓*	⇓* ⇓*	⇑* ⇑*	⇓* ⇓*	⇓* ⇓*	[188]
	Panicum virgatum L.	Experimental	Mud pit	14 g.kg -1	60 days	n.a.	n.a.	n.a.	⇑	⇓	⇑	[56]
	Pennisetum alopecuroides	Experimental	Engine oil	20-60 % soil FC	28 days	⇑*	⇓*	n.a.	n.a.	n.a.	n.a.	[187]
	Phragmistes australis	Field	Oil well leak	9.45-652 mg.kg -1	n.a. a	n.a.	n.a.	n.a.	⇑*	⇓*	n.a.	[189]
	Populus x canadensis Moench.	Field	Mud pit	16-77 g.kg -1	n.a. a	⇑*	⇑*	⇑*	n.a.	n.a.	n.a.	[49]
	Quercus pubescens Wild.	Field	Mud pit	16-77 g.kg -1	n.a. a	⇑*	⇑*	⇑*	n.a.	n.a.	n.a.	[49]
	Rubus fruticosus L.	Experimental	Mud pit	4-40 g.kg -1	100 days	⇑	⇑	⇑	⇑	⇑	⇑	[16]
	Rubus fruticosus L.	Experimental	Mud pit	36 g.kg -1	60 days	⇑	⇑	⇑	⇑	⇑	⇑	[56]
	Rubus fruticosus L.	Experimental Experimental	Mud pit Crude oil	6-25 g.kg -1 25 g.kg -1	32 days 32 days	⇑ or n.s.* ⇑	⇑ or ⇓* ⇑	⇑ or ⇓* ⇑	⇑ or n.s.* ⇓	⇓* ⇓	⇑ or ⇓* ⇑	[57]
	Rubus fruticosus L.	Field	Mud pit	16-77 g.kg -1	n.a. a	⇑*	⇑*	⇑*	n.a.	n.a.	n.a.	[49]
	Salicorna virginica	Experimental	Alba' crude oil	7.7-9.1 %	32 days	n.s.	⇑	n.a.	n.a.	n.a.	n.a.	[139]
	a Naturally-established vegetation										

Table 3 .

 3 Studies aiming to detect and quantify crude oil and petroleum products using multiand hyperspectral airborne and satellite images. (Refl.: Reflectance; VI: Vegetation Indices; CR:

	Continuum Removal; RF: Random Forest; REP: Red-Edge Position; comp.: Comparison; RTM:
			Radiative Transfer Model.)		
	Vegetation type	Target	Sensor name	Sensor type (spatial resolution)	Bands (spectral domain)	Method	Ref.
			Multispectral				
	Mangrove	Crude oil leakage	Landsat-8	Satellite (30 m)	9 (435 -2294 nm)	VI + Mean comp.	[212]
	Crops, grassland & trees	Crude oil leakage	Landsat-8	Satellite (30 m)	9 (435 -2294 nm)	VI + RF classification	[213]
	Mangrove	Crude oil leakage	Landsat-5 & -7	Satellite (30 m)	6 (450 -2350 nm)	VI + Simple regression	[216]
	Mangrove	Crude oil leakage	Landsat-5 & -7	Satellite (30 m)	6 (450 -2350 nm)	VI + Mean comp.	[216]
			Hyperspectral				
	Wetland	Crude oil leakage	AISA	Airborne (1.5 m)	286 (400 -2400 nm) Reflectance + Classification [217]
	Crops	Benzene pipeline leak	HyMap	Airborne (4 m)	128 (436 -2485 nm)	REP & VI + Spatial filter	[23]
	Temperate shrubs	Mud pit	HySpex	Airborne (1 m)	409 (400 -2500)	VI + Classification RTM + Regression	[50]
	Mediterranean grassland Crude oil microseepage	Probe-1	Airborne (8 m)	128 (436 -2480 nm)	REP & VI + Spatial filter	[55]
	Tropical forest	Crude oil leakage	Hyperion	Satellite (30 m)	242 (400 -2500 nm)	VI + Threshold	[54]
	Plain & rainforest	Crude oil leakage	Hyperion	Satellite (30 m)	242 (400 -2500 nm)	CR + Mean comp.	[215]
	Plain & rainforest	Crude oil leakage	Hyperion	Satellite (30 m)	242 (400 -2500 nm)	Refl. & VI + Mean comp. [215]

Table 4 .

 4 Specifications of operational and future satellite-embedded hyperspectral sensors. The name and specifications of future sensors may be modified until their operating (n.a.: not available).

	Sensor name	Spectral domain (nm)	Bands	Spatial resolution (m)	Launch date
	CHRIS	415 -1050	19-63	18-36	operational
	EnMAP	420 -2450	244	30	2020
	HISUI	400 -2500	185	30	2020
	HJ-1A	450 -950	115	100	operational
	Hyperion	357 -2576	220	30	operational
	HypXim	400 -2500	210	8	2020-2022
	HySI	400 -950	64	550	operational
	HyspIRI VSWIR	380 -2500	212	30	n.a.
	PRISMA	400 -2505	249	30	operational
	SHALOM	400 -2500	275	10	2020
	TianGong-1	400 -2500	128	10-20	operational

nm) (Figure3). Leaf pigment and water contents and anatomy are the main parameters involved.
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