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Abstract

End-milling of free-form surfaces on multi-axis CNC machines are complex and expensive operations involved in the
production of many high-value parts, molds and stamping dies. For such operations, the choice of the cutter type
to use is very important given the considerable impact of this choice on the quality of the machined surface and the
duration of the operation. In this paper, a new method for choosing between ball-end cutter and toroidal cutter is
provided. This procedure gives a good hint on the best tool to employ with no need to carry out any machining
simulation.
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1 Introduction

The quality constraint of the surface is commonly ex-
pressed in terms of maximum scallop height, denoted sh,
which corresponds to the residual stock thickness left un-
machined by the tool between two adjacent trajectories.
This value imposes the step-over distance sod that can be
used during the milling of the surface. Roughly speaking,
the step-over distance is the distance between two adja-
cent trajectories. The relation between sh and sod is well
known and fully developed in [1]. The step-over distance
is a key parameter for end-milling of free-form surfaces
because, for a given scallop height, a greater sod leads to
fewer trajectories and thus a reduced machining time.

Numerous authors have addressed these issues [2–6].
Most of them use the concepts of effective radius and
sweep curve to do so. The sweep curve is the curve lying
on the spinning cutter envelope surface, that defines the
final profile of the cutter passage [7, 8]. From a kinemat-
ics point of view, the sweep curve is given by n ·F = 0,
where F is the feed direction and n the normal vector
that can be calculated at each point of the cutter surface
of revolution. Then, for a given cutter, the effective ra-
dius (denoted Reff ) is defined as the radius of curvature
at the cutter contact point of the projection, in a plane
normal to the feed direction, of the sweep curve. The
direct impact of the effective radius on machining time
is thus well established [9]. However, effective radius cal-
culation may indeed vary a lot depending on the cutter
geometry in use.

The remaining of this paper is organized as follows.
Section 2 recalls Reff calculation methods, depending on
the cutter shape. For each cutter type, kinematics con-
siderations are also reminded in order to explain how ma-
chining time can be calculated. Section 3 is dedicated to
the detailed problem presentation, illustrated with exam-
ples. The next two sections deals respectively with the
simple case of an inclined plane, and with an extension
to free-form surfaces. More preceisely, Section 4 aims
to highlight some critical parameters to be the decisive
factors in the choice of a cutter type, while Section 5 fo-
cuses on the best way to interpret these parameters in
the context of free-form surfaces. Section 6 is dedicated
to a practical application to free-form surfaces: a step-by-
step description of the method we propose is presented,
and then illustrated by two test cases carried out in a
practical context. Remark that full understanding of the
above theoretical developments is not required to follow
the application section. Finally, the pros and cons of
our approach are summarized and discussed in Section 7.
Particularly, this method is shown to be useful for the
problematic cases for which the choice of a cutter type is
not obvious.

2 Material methods

2.1 Cutter types and effective radius cal-
culation

End-milling of free-form surfaces can be performed with
various kind of tools. Actually three types are commonly
used (Figure 1):

� the flat-end cutter, which is less used because of the
sharp marks it leaves on the part surface

� the spherical, or ball-end, cutter, which is the most
commonly used in industry, because using it tool-
paths are easy to calculate

� the toroidal cutter, which have been proven to be
capable results better than those of ball-end cutter,
although it is much harder to handle in calculations.

flat-end mill ball-end mill toroidal mill

Figure 1: The three main tool types used in end-milling

An important parameter for choosing cutter geometry
is the effective radius. This notion was initially intro-
duced in [10]. For a practical usage, the effective radius
Reff can be calculated as follows:

� flat-end cutter: its effective radius depends on the
tilt angle φ. As defined in [10]: Reff = R

sinφ , where
R is the tool radius

� ball-end cutter: its effective radius is equal to the
tool radius regardless of the tool orientation: Reff =
R

� toroidal cutter: its effective radius depends on the
tool radius R, the torus radius r, the steepest-slope
s, and the angle between the machining direction and
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the steepest-slope direction α. Equation 1 proposed
by [1] details the expression of Reff :

Reff =
(R− r) cos2 α

sin s
(
1− sin2 α sin2 s

) + r (1)

The spherical tool is widely used in industry because it
does not require calculation of the effective radius, which
makes the generation of machining paths quite simple.
In addition, it leaves smoother marks on the surface than
a flat-end tool, which results in less roughness. How-
ever, the flat-end cutter allows a greater effective radius
than its ball-end tool counterpart. The toroidal cutter,
as shown in [11], inherits the merits of both previously-
mentionned cutters. Actually, it may allow, depending
on the machining direction and surface geometric charac-
teristics, greater effective radius than the spherical tool,
while leaving traces on the surface smoother than those
of a same-radius flat-end cutter.

Nowadays flat-end mills are, so to speak, no longer used
for finishing free-form surfaces because of the pronounced
marks they left on the surface, leading to a high roughness
in the feed direction [12, 13]. Therefore, they are not
taken into consideration in the present study.

Figure 2 shows step-over distances allowed by ball-end
cutter (above) and toroidal cutter (below), when machin-
ing in the steepest-slope direction (blue cutter) or in a
direction perpendicular to this one (green cutter). All
the scallop heights are the same across the whole figure.
A simple plane have been chosen as surface to make the
figure easier to read, but the same results are obtained
for free-form surfaces.

On this figure, one can see that for the ball-end mill,
the effective radius, and thus the step-over distance, is
the same whatever the milling direction chosen. It is also
clear that the use of a toroidal mill in the steepest-slope
direction leads to better results than the use of a ball-end
mill in the same conditions, while the use of a toroidal
cutter in the direction perpendicular to the steepest-slope
direction leads to worse results than those obtained using
a ball-end mill in the same conditions.

It has been proven in [14] that the effective radius of
a toroidal cutter of radii R and r is superior to that ob-
tained by a spherical tool of radius R, when the angle α is
within the range [−35◦, 35◦]. This condition is sufficient
regardless of the values of R, r and s.

Once the effective radius known, the scallop height is
quite easy to calculate. For toroidal cutters, using Equa-
tion (1) allows calculation much faster than numerical
methods previously employed.

2.2 Kinematics concerns

The production cost of a surface is directly linked to
the machining time. Many authors, for example [15–21],
assume that the machining time is proportional to the

Figure 2: Ball-end mill (above) versus toroidal cutter (be-
low) regarding surface slope

length of the toolpath, and thus focus on minimizing the
toolpath length, rather than the machining time. This
approximation is not exact unless the speed of the tool is
constant, which is ideal but pretty much not realistic. In
practice, the cutter must decelerate when arriving to an
acute angle (i.e. a linear path with tangency discontinu-
ity). Likewise, it has to accelerate once this angle passed.
Obviously the cutter cannot pass through a tangency dis-
continuity without lowering its speed to zero. To avoid a
complete zero speed, current numerical controllers (NC)
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allow a curved path within a given tolerance, but this tol-
erance is kept small enough to prevent having a visible
impact on the real path. Thus, the feed speed still has to
decrease approaching sharp angles, and then to increase
back once this angle passed. Further explanation (and
optimization) of this problem can be found in [22].

Therefore, the kinematic capabilities of the CNC ma-
chine should be considered since the tool displacement
characteristics must be kept within these capabilities (see
[23] for a full modelling of 3-axis machines kinematics).

In order to calculate the time needed to go through a
linear path portion between two accurate angles, some
values need to be known:

� the nominal feed rate, denoted V (m/s )

� the maximum acceleration, denoted Amax (m/s2 )

� the maximum gradient of acceleration, also called
jerk, denoted Jmax (m/s3 )

Using these notations, three cases may arise:

1. the nominal feed rate V and the maximum accelera-
tion Amax are achieved

2. the nominal feed rate V is achieved, but not the max-
imum acceleration Amax

3. the nominal feed rate V and the maximum accelera-
tion Amax are not achieved.

For a line segment of length 2 l, according to the values
of V , Amax and Jmax, the following characteristic times
are also defined:

� the time to reach the maximum acceleration in
case 1: tA = Amax

Jmax

� the time to reach the nominal feed rate in case 2:
tV =

√
V

Jmax

� the time to travel the half length distance l in case 3:

tl = 3

√
l

Jmax

These characteristic times help to distinguish between the
previously-stated cases. The characterization of each case
and the corresponding machining time t are then as fol-
lows:

� case 1: if tA < tV and tA < tl,

t = 2
l

V
+
Amax
Jmax

+
V

Amax
(2)

� case 2: if tV < tA and tV < tl,

t = 2
l

V
+ 2

√
V

Jmax
(3)

� case 3: if tl < tA and tl < tV ,

t = 4 3

√
l

Jmax
. (4)

In particular, when tV < tA, which will be the most
common case for the kinematic parameters values used
in this paper, the case 1 is dismissed and the case 2 (re-

spectively the case 3) applies if and only if l >
√

V 3

Jmax

(respectively l <
√

V 3

Jmax
).

Hence, the machining time associated with a toolpath
increases when the number of acute angles increases,
eventhough the path length is fixed.

3 Problem statement

As it was previously established, using the toroidal cut-
ter along the steepest-slope direction maximizes the effec-
tive radius over the whole surface, which leads to larger
step-over distances sod between adjacent paths, reduc-
ing thereby the total toolpath length. However, if the
steepest-slope direction is near the perpendicular to the
direction of the surface’s largest dimension, then the gen-
erated toolpath will be composed of shorter paths. In this
case, using a ball-end cutter along the direction of the
surface’s largest dimension, hereafter called principal di-
rection, may provide better results in terms of machining
time, despite a longer toolpath. Indeed, the kinematic
behaviour of the tool, that needs to decelerate nearing
each path angle and then accelerate again once the path
angle passed, is much more penalizing in the first case
than in the second one.

In order to illustrate this issue, let us consider a rect-
angular plane surface of width w = 56 mm and height
h = 28 mm; its slope angle is 60◦ and the steepest-
slope direction is perpendicular to the principal direction
(Figure 3). This plane surface is first machined using a
toroidal cutter of radiiR = 5 mm and r = 2 mm along the
steepest-slope direction (lying in the plane (X,Z)). Then
the same plane is machined using a ball-end cutter of ra-
dius R = 5 mm along the principal direction (axis Y).
The maximum allowed scallop height is sh = 0.01 mm,
which is a standard value in industrial applications.

Results in terms of effective radius, machining time and
toolpath length are reported in Table 1. The toolpath
length is the same, yet it is worth noting that even though
the effective radius is 9.2% greater in the first case (ma-
chining with a toroidal cutter along the steepest-slope di-
rection), the gain obtained by machining along the princi-
pal direction using a ball-end cutter in terms of machining
time is nearly 16%.

To deepen the tests, a form factor µ is defined for the
plane such that µ = w

h , where w is the width of the
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legend: axes X/Y/Z correspond to Red/Green/Blue
vectors

Figure 3: Machining of a rectangular planar surface:
along the steepest-slope direction using a toroidal cut-
ter (above), along the principal direction using a ball-end
cutter (below)

machining
direction

effective
radius

machining
time

path length

steepest-slope 5.46 mm 43.8 s 2460 mm
principal 5 mm 36.8 s 2459 mm

Table 1: Results of plane surface machined using toroidal
cutter along its steepest-slope direction and ball-end cut-
ter along its principal direction

surface and h(≤ w) is the height. According to this, a
characteristic size χ may be defined such that:

χ = w h =
w2

µ
= h2 µ (5)

Various tests are run for different values of the slope
angle s and this form factor µ for a constant characteris-
tic size. As expected, the toroidal cutter tends to present
better machining times when the slope is decreasing to-
wards 0◦ and the form factor approaching 1. Conversely,
the spherical cutter tends to be more efficient when the
slope is increasing towards 90◦ and form factor is high.

In fact, the parameter µ represents the elongation of
the surface, while χ tells about its size and area. As pre-
viously stated, the slope s and the form factor µ are the
most influent parameters on the machining time. Hence,

in order to focus on these parameters, the characteristic
size χ is considered constant in this study.

Based on these observations, a well-founded question
arises: is it possible to define critical values for the param-
eters s and µ that correspond to having equal machining
time for both milling processes? If yes, such critical values
would correspond to the limit case where both cutters are
equally efficient. As a result, for a given practical case,
comparing the surface actual values of these parameters
with these critical values would permit to predict which
tool will be the most efficient. In the following section,
this question is investigated for a plane surface.

4 Study of a plane surface

The efficiency of the torus tool and the spherical tool
are investigated on a rectangular plane surface as the
steepest-slope s and the width by length form factor µ
vary. In order to calculate the machining time, the kine-
matic model of the CNC machine introduced in Section
2.2 is used.

The machining strategy used here is the “zigzag” par-
allel plans, so that a toolpath is composed of a sequence
of linear segments put end to end (i.e., NC code: G01).
In the sequel, the kinematic parameters are fixed to:
Jmax = 40 m/s3, Amax = 6 m/s2, V = 5 m/min, and
cutters are defined by outer radius R = 5 mm, and torus
radius r = 2 mm for the toroidal mill. The scallop height
constraint is equal to sh = 0.01 mm.

4.1 Analytical study

4.1.1 Toroidal cutter along steepest-slope direc-
tion

In this section, the machining time using a toroidal tool
along the steepest-slope direction (upper picture in Fig-
ure 3) is calculated as a function of the cutter geome-
try, the kinematic parameters and the surface parame-
ters. For any point of the surface, the effective radius of
the toroidal tool can be calculated using Equation 1 with
α = 0:

Reff =
R− r
sin s

+ r. (6)

The step-over distance is given by:

sod1 = 2
√

2 shReff − sh2 (7)

and therefore the number of paths n1 is given by:

n1 =
w

sod1
=

√
µχ

sod1
.

The toolpath length is equal to the total length of the
paths plus the step-over distances to move from one path
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to the next one:

L1 = n1 h = n1

√
χ

µ
+ n1 sod1

=

√
µχ

sod1

√
χ

µ
+

√
µχ

sod1
sod1

=
χ√

2 shR−r
sin s + 2 sh r − sh2

+
√
µχ

To calculate the machining time, the actual kinematic
case occurring must be found (see Section 2.2). This de-
pends on the value of χ, since tA et tV are known:

tA =
Amax
Jmax

=
6

40
= 0.15 s

and

tV =

√
V

Jmax
=

√
5

60× 40
= 0.045 s.

Since tV < tA, the case 1 is dismissed, and the case 2

applies if tV < tl. Considering tl = 3

√
l

Jmax
with l = h

2 =

1
2

√
χ
µ , this last condition is equivalent to

V 3

J3
max

<
χ

4µJ2
max

,

whence

h =

√
χ

µ
> 2

√
V 3

Jmax
= 7.6 mm.

In the same way, since tV < tA, the case 3 is equiv-
alent to tl < tV , thus h < 7.6 mm. This value can be
considered too small for machinable surfaces. Therefore,
in the following, only the case 2 will be taken into con-
sideration. Hence, the machining time for a single path
is (see Equation (3)):

tp =
h

V
+ 2

√
V

Jmax
=

√
χ

√
µV

+ 2

√
V

Jmax
.

The machining time necessary to move from one path
to the next needs to be calculated too. It depends on
the step-over distance. The kinematics of the machine
corresponds to the case 3 if sod1 < 7.6 mm, which is
always true since in the worst case (s = 0◦) one had
sod1 = 2(R−r)+2

√
r2 − (r − sh)2 = 6.4 mm. Therefore

the case 3 is assumed for the calculation of the machining
time between two adjacent paths (see Equation (4)):

tip = 4 3

√
sod1

2 Jmax
.

Finally, the total machining time is:

T1 = n1 (tp + tip)

=

√
µχ

sod1

( √
χ

√
µV

+ 2

√
V

Jmax
+ 4 3

√
sod1

2Jmax

)
. (8)

4.1.2 Ball-end cutter along the principal direc-
tion

In this section the surface is machined with a ball-end
cutter along the principal direction (axis Y, green, in Fig-
ure 3), which is orthogonal to the steepest-slope direction
(axis X, red, in Figure 3), and the machining time is cal-
culated. In this case, the effective radius is Reff = R. It
is worth noting that in this case, the toroidal cutter will
present a minimal effective radius of r according to this
direction. Thus in this case, the ball-end cutter is much
more effective than the toroidal cutter.

The step-over distance is written as:

sod2 = 2
√

2 shR− sh2.

The number of paths, in this case, is:

n2 =
h

sod2
=

√
χ

√
µ× sod2

=

√
χ

2
√
µ
√

2 shR− sh2
.

Here again, the toolpath length is equal to the total
length of the paths plus the step-over distances to move
from one path to the next one:

L2 = n2

(√
χ

µ
+ 2

√
2 shR− sh2

)
.

Identically to the previous section, the kinematics of
the machine is represented by case 2. Thus, the machin-
ing time corresponding to one path is given by:

tp =

√
χµ

V
+ 2

√
V

Jmax
.

And the machining time to go from the end of one path
to the beginning of the next one is

tip = 4 3

√
sod2

2 Jmax
.

Finally, the total machining time is:

T2 = n2 (tp + tip)

=

√
χ

√
µ× sod2

(√
χµ

V
+ 2

√
V

Jmax
+ 4 3

√
sod2

2Jmax

)
.

(9)

4.1.3 Critical values of the form factor
(width/height ratio) parameter and
the slope parameter

In the previous sections (4.1.1 and 4.1.2), the total tool-
path lengths (Li) and the machining times (Ti) are cal-
culated for both toroidal cutter machining along the
steepest-slope direction (L1 and T1), and ball-end cut-
ter machining along the principal direction (L2 and T2).
This section focuses on comparing the machining time T1
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with its counterpart T2. Basically, this comparison is car-
ried out studying the limit case T1 = T2. Remark that
T1 = T2 is equivalent to:

√
µχ

sod1

( √
χ

√
µV

+ 2

√
V

Jmax
+ 4 3

√
sod1

2 Jmax

)

=

√
χ

√
µ sod2

(√
χµ

V
+ 2

√
V

Jmax
+ 4 3

√
sod2

2 Jmax

)

In the above equation, the kinematic parameters Jmax,
Amax and V , as well as the radii R and r, are supposed to
be known; the step-over distance sod2 is calculated from
the cutter radius R and the maximum scallop height sh,
therefore it is also known; and the characteristic size χ is
considered constant (see Section 3). Therefore, the only
influencing parameters are the form factor µ and the slope
s which appears in the expression of the effective radius
Reff used for calculating sod1.

As the form factor µ increases, the obtained number
of paths when using toroidal cutter increases accordingly
while its counterpart using spherical cutter remains the
same, since the “elongation” takes place in the principal
direction, which is orthogonal to the steepest-slope direc-
tion. Thus increasing µ tends to favour machining with
a ball-end cutter in the principal direction.

On the other hand, when the slope tends to 0, the
effective radius of the toroidal cutter tends to infinity
which maximizes the transverse pitch and favour machin-
ing with a toroidal cutter in the direction of the steepest-
slope.

In order to determine which cutter geometry and ma-
chining direction are best, an analysis of these influencing
parameters needs to be carried out. This can be done ei-
ther by expressing the slope s as a function of the form
factor µ, or by expressing the form factor µ as a function
of the slope s. From a practical point of view, it may be
more useful to express the slope s as a function of the form
factor µ. Indeed, for a given geometry the form factor is
already defined, while the slope s may still be modified,
by setting up the part orientation in the machine-tool
workspace. Therefore, the expression of the slope s as a
function of the form factor µ is presented hereafter while
the expression of the form-factor µ as a function of the
slope s is presented in Appendix A.1.

Working on the expression of the slope s as a function
of the form-factor µ, aims to bring up a critical value of
s, hereafter called sc, that differentiate apart the case for
which machining with a toroidal cutter leads to better
results than its counterpart. For a given form factor µ,
the critical slope sc is defined so that the machining times

T1 and T2 are equal. Again, T1 = T2 is equivalent to:

√
µχ

sod1

( √
χ

√
µV

+ 2

√
V

Jmax
+ 4 3

√
sod1

2 Jmax

)
= T2,

or
T2√
µχ

sod1 −
4

3
√

2 Jmax

3
√
sod1

−
√
χ

√
µV
− 2

√
V

Jmax
= 0.

The last equation is a third-degree polynomial in z =
3
√
sod1 of the form:

z3 − p z − q = 0, (10)

where:

p =
4
√
µχ

T2
3
√

2 Jmax
, and (11)

q =

√
µχ

T2

( √
χ

√
µV

+ 2

√
V

Jmax

)
(12)

It is straightforward to see that p and q are positive.
Cardano’s formula gives the general solution for Equa-
tion (10). The discriminant of this equation is:

∆ = 4 p3 − 27 q2

=
µχ

T 2
2

128

√
µχ

Jmax T2
− 27

( √
χ

√
µV

+ 2

√
V

Jmax

)2
 .

Using numerical values of V and Jmax, limiting the
width by height form factor to 9 (which means

√
µ < 3),

and assuming big enough surfaces so that the machining
times order of magnitude is superior to one second (T2 >
1 s), it comes that:

∆ =
µχ

T 2
2

(
3.2

√
µχ

T2
− 27

(
12

√
χ
√
µ

+ 0.1

)2
)

.

Thus,

∆ <
µχ

T 2
2

(
9.6
√
χ− 27 (4

√
χ+ 0.1)

2
)

The function χ 7→ 9.6
√
χ−27

(
4
√
χ+ 0.1

)2
is negative

for
√
χ > 0.01. Consequently, ∆ < 0 for surfaces of area

superior to 100 mm2; this hypothesis is fairly acceptable
for machinable surfaces. Hence, Equation (10) has one
real solution (and two conjugate complex solutions):

z =
3

√√√√−q +
√

−∆
27

2
+

3

√√√√−q −√−∆
27

2
. (13)

Thus, using Equations (6) and (7) , the expression of
the critical slope sc(µ) for a given form factor µ can be
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obtained from

sod2
1 = z6 ⇔ 4

(
2 shReff − sh2

)
= z6

⇔ Reff =
sh

2
− z6

8 sh
=
R− r
sin sc

+ r,

and finally

sc(µ) = arcsin

(
8 sh (R− r)

z6 + 4 sh2 − 8 sh r

)
(14)

where µ appears in the p and q components (Equations
(11) and (12)) of the value z established in Equation (13).

If s < sc then 3
√
sod1 is superior to the solution of

Equation (10) and z3 − pz − q > 0, which means that
T2 > T1. In this case, using a toroidal cutter along the
steepest-slope direction should be preferred. Conversely,
if s > sc, then

√
sod1 is inferior to the solution of equation

(10) and z3 − pz − q < 0, which means that T2 < T1. In
this case, ball-end cutter machining along the principal
direction is more efficient. This result is consistent with
the fact that the effective radius (and step-over distance
sod1) of toroidal cutter decreases as the slope s increases.

4.2 Numerical validation

4.2.1 Preliminary considerations

The analytical expression of critical parameter sc is given
by Equation (14). This section is devoted to validate this
expression using numerical simulations. The machining
simulation process used to compute the toolpath for a
given parametric surface as a sequence of interpolation
points is based on intersection of isoparametric curves
and vertical parallel planes. This process is widely tested
and effective.

First of all, back to the example given in Section 3, the
slope is s = 60◦ while the form factor is µ = 56

28 = 2.
Using Equation (14), the critical slope can be evaluated:
sc(µ) = 33.8◦. Thus sc < s, which is coherent with the
fact that the machining time using ball-end cutter along
the principal direction is shorter. As shown by this ex-
ample, the proposed procedure is able to provide a good
hint for choosing the cutter to use, in order to obtain
the best results. Actually, using the critical parameter
based procedure, it is possible to predict the tool type
leading to shorter machining time without carrying out
any machining simulations.

For better understanding of the influence of each pa-
rameter, the evolution of the machining times with re-
spect to the form factor µ, for fixed values of s, is dis-
played in Figure 4. Since machining with a ball-end mill
does not depend on the slope s, one single curve is plot-
ted for the related machining time (T2). As expected, the
machining time T2 decreases with the form factor µ, while
the machining time T1 increases with the form-factor µ.
Higher the slope s is, higher the time T1 is.

Figure 4: Evolution of machining times with respect to
the form factor µ for different values of slope s

4.2.2 Analysis of the analytical approximation of
the machining time

To perform a more in-depth analysis of the reliability of
the hint given by the critical parameter procedure, the
error in machining-time analytical calculations (T1 and
T2) should be analysed first. To do so, several simula-
tions have been carried out, for various pairs of s and
µ values, constituting a grid such that s ∈ [0◦, 90◦] and
µ ∈ [1, 10]. For each pair of values, both analytical (T1

and T2) and numerical (T ∗
1 and T ∗

2 , computed by machin-
ing simulation) machining times of an inclined plane are
evaluated.

The relative error:

εi =
|T ∗
i − Ti|

max (T ∗
i , Ti)

for i = 1, 2 (15)

is plotted in Figure 5. The mean relative error for machin-
ing time T1 is ε1 = 0.36%, while for T2 it is ε2 = 4.75%.
As expected, the error ε2 does not depend on the slope
s, since machining a flat surface with a spherical tool is
not affected by the surface tilt angle. This error is mainly
due to the approximation of the number of paths by the
width (or height, according to machining direction) di-
vided by the step-over distance, which is not an integer
number. Moreover, the numerical machining simulation
process uses small margins from the initial and final bor-
ders to define first and last paths. As a result, the ana-
lytic machining time overestimates its numeric counter-
part by nearly the time corresponding to one path. This
would also explain the fact that the error ε2 is higher than
ε1 since the length of a single path is larger in the sec-
ond case. Finally the analytical calculation of machining
times T1 and T2 is considered precise enough to give a
good estimation of the real machining time for both tools
and directions.
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Figure 5: Machining-time relative errors: Time T1

along the steepest-slope direction using a toroidal cut-
ter (above), time T2 along the principal direction using a
ball-end cutter (below)

4.2.3 Critical parameter analysis

Based on the previous considerations, the critical param-
eter sc can be numerically analysed. Besides, in the same
way that the reciprocal critical parameter µc was defined
in Appendix A.1, the reciprocal analysis concerning this
parameter is presented in Appendix A.2.

In order to carry out an analysis of the parameter sc, a
sample of values of the form factor µ is considered and the
critical value sc is calculated for each µ in this sample. For
each couple (µ, sc(µ)), the machining simulations are then
carried out to provide the machining times T ∗

1 and T ∗
2 .

Considering this methodology, T ∗
1 and T ∗

2 should then
be equal for each couple (µ, sc(µ)). Figure 6 shows the
evolution of sc(µ) and the relative error of the difference
between the times T ∗

1 (µ) and T ∗
2 (µ).

The error is around 5%, which confirms the validity
of the critical-parameter expressions. It is worth noting
that the error is higher for larger form factors. Indeed,

Figure 6: Evolution of the critical slope sc(µ) and the
machining-time relative error εc(µ) with respect to the
form factor µ

in this case the paths along the principal direction are
longer, and the approximation on the paths number has
a greater impact.

To sum up, the machining times analytically calculated
and the critical parameters were numerically checked.
Hence, the proposed approach allows one to select, for
a given plane surface, the most efficient tool geometry
and machining direction without calculating machining
times, but only using the slope and form factor, which is
straightforward for rectangular, flat surfaces. To do so,
given a plane, its slope s and its form factor µ, the slope
s can be compared to the critical slope sc(µ). Then, the
toroidal cutter should be privileged if s < sc(µ). Other-
wise, the ball-end cutter should be selected.

5 Extension to free-form surfaces

The objective of this section is to extend the proposed
approach on flat, rectangular surfaces to general free-form
surfaces. First, the theoretical framework is presented,
aiming to give a definition of the critical parameters. On
the base of these critical parameters, an efficient selection
of cutter type and machining direction can be performed.
Then, the formulated approach is benchmarked with two
free-form surface test cases, in order to investigate its
validity.

5.1 Preliminary considerations

The first question that arises when generalizing to free-
form surfaces is how to define the machining directions.
To do so, a (u, v) mesh defined by isoparametric curves
is considered in order to obtain a tessellation of the sur-
face. This way, a bunch of elementary surface quads is
obtained. Then, for each quad, a sample point is de-
fined as the center of the quad. The machining direc-
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tions are defined using these sample points denoted Si,
for i ∈ {0, . . . , n}.

In the case of a plane, the steepest-slope direction is the
same whatever the point of the surface taken in considera-
tion. For a free-form surface, the steepest-slope direction
may vary for any point taken into consideration. As a
first approach, the steepest-slope direction of a free-form
surface is estimated by the average of the steepest-slope
directions calculated at each sample point.

For a rectangular, flat surface, the principal direction,
along which the surface is the most extended, was par-
allel to its largest border. It could be seen also, for any
surface, as the direction of the line that minimizes the
sum of squared distances from the points of the surface
to their orthogonal projection on that line. According to
the tessellation of the surface previously defined, this sum
can be calculated discretely, relying on the sample points
Si.

According to these considerations, the principal direc-
tion corresponds to the line that minimizes the sum of
the squared distances d2

i from the sample points Si to
their orthogonal projection on that line. This principle
is illustrated on Figure 7 for a few sample points. Thus,
finding the principal direction is equivalent to the well-
known Principal Component Analysis (PCA) method [24]
that provides the “best fit” for a data cloud.

Figure 7: Evaluation of the principal direction for a free-
form surface: Principle

5.2 Using the covariance matrix to define
the principal direction

Principal Component Analysis is a multivariate statisti-
cal procedure for data analysis. It is mainly used for di-
mension reduction: It aims to condense the information
contained in a large number of original variables into a
smaller set of new orthogonal variables by means of linear
combinations, with a minimum of information loss. PCA
is also used for interpretation of large data sets, it can
reveals relationships between correlated variables. Math-
ematically, PCA depends upon the eigen decomposition

of positive semi-definite matrices, and upon the Singular
Value Decomposition (SVD) of rectangular matrices.

In our context, for a given surface S, the variables are
the coordinates of surface points in the three-di-mensional
Euclidean space: (Sx, Sy, Sz). PCA is performed over the
sample points Si through eigen decomposition of its co-
variance matrix, which gives three orthogonal eigenvec-
tors SI, SII and SIII corresponding to the eigenvalues
λI ≥ λII ≥ λIII . Note that SI is the vector that fits the
best the sample points Si. Indeed, it minimizes the sum
of the squared distances from the sample points to the
orthogonal projection on itself. Thus, SI is considered
the principal direction of the free-form surface S. The
covariance matrix C of the sample points Si is

C =

 Var(Sx) Cov(SxSy) Cov(SxSz)
Cov(SxSy) Var(Sy) Cov(SySz)
Cov(SxSz) Cov(SySz) Var(Sz)

 , (16)

where Var(Sx) = E(S2
x)− E(Sx)2

Var(Sy) = E(S2
y)− E(Sy)2

Var(Sz) = E(S2
z )− E(Sz)

2

and Cov(SxSy) = E(SxSy)− E(Sx) E(Sy)
Cov(SxSz) = E(SxSz)− E(Sx) E(Sz)
Cov(SySz) = E(SxSz)− E(Sx) E(Sz).

In these expressions, E(X) is the average of quantity
X over the n sample points previously defined. Eigen-
vectors are orthogonal because the covariance matrix is
symmetric. Since the cutter must remain tangent to sur-
face during machining, and surfaces are geometric vari-
eties of dimension 2, the eigenvector SII represents the
less-extended surface direction, which explain that best
results will be obtained when the steepest-slope direction
is near the perpendicular to the principal direction SI

(More considerations on this point are discussed in Sec-
tion 7.1). The eigenvector SIII is not considered since
λIII is equal to zero for flat surfaces. In general, the
smaller λIII is, the flater the surface is.

5.3 Using eigenvalues to define an ap-
proximate form factor of a free-from
surface

It is worth noting that the eigenvectors SI and SII span
the plane that fits best the surface S (this should be un-
derstood in terms of minimizing the sum of squared dis-
tances from sample points Si to their orthogonal projec-
tion on this plane). The eigenvalues λI and λII represent
the variance of the projected points on SI and SII, re-
spectively. It is straightforward, that the projection of a
continuous surface on a vector is a continuous segment
whose length is proportional to the standard deviation of
the projected points. As a result, the width/height ratio
of a free-form surface can be approximated by the square
root of the eigenvalues fraction and the characteristic size
by the square root of the eigenvalues product.
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Consequently, an approximated form factor µ̃ of a free-
from surface can be defined as:

µ̃ =

√
λI
λII

. (17)

In the same way, an approximated characteristic size χ̃
of a free-from surface may be defined:

χ̃ = 12
√
λI λII . (18)

The word “approximated” must be understood in the
sense that these definitions depend on the mesh size.
However, it has been empirically observed that the mesh
size does not significantly change these values as long as it
is chosen sufficiently large. Moreover, it has been proven
(see Appendix B) that when continuously and uniformly
sampling the flat, rectangular surfaces µ̃ (respectively χ̃)
coincides with µ = w

h (respectively with χ = wh).

5.4 Approximated slope of a free-form
surface

Contrary to flat surfaces, the steepest-slope of free-form
surfaces is not constant. As proposed in Section 5.1, a
first approximation could be the mean of sample points
slopes over the entire surface. In this case, the approxi-
mating slope is given by:

s̃ = E(si), (19)

where si is the slope of the sampling point Si.

Another approximation, relying on PCA, consists in
using the slope of the plane spanned by the eigenvectors
SI and SII, since it is the plane that best fits the surface:

s̃ =
π

2
− arccos

(
SI × SII

‖SI × SII‖
·Z

)
(20)

which gives the expression of the approximated slope as a
function of eigenvectors. Both approximations are exact
for flat surfaces.

In other words, the steepest-slope of a free-form surface
S may be approximated either by the mean of steepest-
slopes over the surface, or by the steepest-slope of the
plane spanned by SI and SII. The influence of this choice
is discussed in Section 7.3, but from a purely computa-
tional point of view the second method avoids the calcu-
lation of the slope at each sample point (and therefore
the calculation of the normal vector ni at each sample
point Si).

In the same way, the steepest-slope direction may be
calculated either as the mean of all the steepest-slope
directions calculated at each sample point Si or as the
projection of SI × SII on the horizontal plane (X,Y).

6 Practical application to free-
form surfaces

6.1 Step-by-step description of the
method to choose the best cutter
type

This section is devoted to the practical application of the
method we propose based on previously demonstrated re-
sults. Remark that no machining simulation is needed to
perform this method. In order to set up such a method
few data are needed. Obviously, the machine character-
istics Amax and Jmax, and the milling operation data V ,
R, r and sh are required. Furthermore, a set of sample
points from the surface to be machined is also needed.
These points can be extracted for a CAD representation
of the surface, measured on a prototype part, or obtained
by any other method.

1. Define a set of sample points Si, over the entire sur-
face S. Only the (Sx, Sy, Sz) coordinates of these
points are needed for the calculations that follows.

2. Calculate the covariance matrix C using equation
(16)

3. Perform eigen decomposition of C to find λI , λII ,
SI, SII

4. Calculate the steepest-slope s̃ using Equation (20)
and the steepest-slope direction

5. Calculate the form factor µ̃ and the characteristic
size χ̃ using Equations (17) and (18)

6. Calculate the critical parameter sc(µ̃) using Equa-
tion (14)

7. Compare s̃ with the critical parameter: if sc(µ̃) < s̃,
then choose the ball-end cutter along the principal
direction. Otherwise, select the toroidal cutter along
the steepest-slope direction.

Remark that most stages of this procedure are direct
applications of analytical formulas. This means that
these stages are really quick to perform. The main piece
of computation is the eigen decomposition of the covari-
ance matrix C. Several sofware packages are very efficient
to perform this task, especially on small (3×3) matrices.

6.2 Test cases

In order to test the aforementioned approach, a bench-
mark with two test-case free-form surfaces is designed.
Both surfaces are chosen so that the principal direction is
nearly orthogonal with the approximation of the steepest-
slope direction, and discretised using a regular isopara-
metric 80 × 80 mesh. The machining times, correspond-
ing to toroidal cutter along steepest-slope direction, and
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ball-end cutter along principal direction, are compared
and used to confirm the result predicted by the critical
parameters µc(s̃) and sc(µ̃).

6.2.1 Test case 1

The first test case is a Bézier surface of 3 × 3 control
points given in Table 2.

point (0,0) point (0,1) point (0,2)
0.0
−15.32
−12.85

0.0
−6.42
7.66

0.0
15.32
12.85

point (1,0) point (1,1) point (1,2)
40.0
−18.53
−9.02

40.0
−9.64
11.49

40.0
12.10
16.68

point (2,0) point (2,1) point (2,2)
80.0
−28.17

2.46

80.0
−22.49
26.81

80.0
2.46
28.17

Table 2: Test surface 1: cartesian coordinates of control
points

This surface have been used in [9, 25] and it is illus-
trated in Figure 8 where the axis X, Y and Z respectively,
is represented by the red, green and blue vector, respec-
tively.

Figure 8: Test surface 1 with its principal (purple) and
steepest-slope (black) directions

On this figure, the black vector indicates the steepest-
slope direction while the purple arrow shows the princi-
pal direction. The approximated slope s̃, calculated us-
ing Equation (20), is equal to 0.739 rad = 42.34◦. The
steepest-slope direction (speepest slope vector projected
onto the (X,Y) plane) forms an angle with axis X equal
to 1.169 rad = 66.97◦. The PCA performed on the surface
enables the calculation of the eigenvalues: λI = 572.62

machining time toolpath length
toroidal tool

along steepest-
slope direction

91.3 s 5606 mm

ball-end tool
along principal

direction
79.7 s 5687 mm

Table 3: Machining times and toolpath lengths for test
surface 1

and λII = 133.31, which yield the form factor: µ̃ = 2.07,
and the principal direction, defining an angle of −0.17 rad
= −9.74◦ with the axis X. Results of machining along
both directions are summarized in Table 3. The numer-
ical simulation of machining takes nearly 3 s. Figure 9
displays the machining toolpaths in both cases.

Figure 9: Machining of test case surface 1: along the
steepest-slope direction using a toroidal cutter (above),
along the principal direction using a ball-end cutter (be-
low)

From the obtained results, one remarks the importance
of taking account the kinematics of the CNC machine. In
fact, eventhough the toolpath length is slightely shorter
for the toroidal tool, the ball-end tool features a shorter
machining time.

Testing the proposed procedure on this surface is con-
ducted as follows: The characteristic size χ̃ of the plane
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spanned by eigenvectors is deduced from the eigenvalues:

χ̃ = 12
√
λI λII = 3315.47 mm2

Knowing that µ̃ = 2.07, the critical slope can be calcu-
lated using Equation (14): sc (µ̃) = 38.9◦. Since sc < s̃,
our approach predicts that the ball-end tool will present a
shorter machining time, which agrees with the numerical
results. Consequently, the prediction is correct on this
first test case.

6.2.2 Test case 2

The second test case is a Bézier surface of 4 × 4 con-
trol points given in Table 4. This surface was previ-

point (0,0) point (0,1) point (0,2) point (0,3)
7.92
0.0

37.26

6.33
20.4
29.81

6.33
40.8
29.81

7.92
61.2
37.26

point (1,0) point (1,1) point (1,2) point (1,3)
23.72
0.0

26.11

22.14
20.4
18.66

22.14
40.8
18.66

23.72
61.2
26.11

point (2,0) point (2,1) point (2,2) point (2,3)
42.70
0.0

29.87

41.12
20.4
22.42

41.12
40.8
22.42

42.70
61.2
29.87

point (3,0) point (3,1) point (3,2) point (3,3)
56.02
0.0

19.25

54.44
20.4
11.79

54.44
40.8
11.79

56.02
61.2
19.25

Table 4: Test surface 2: cartesian coordinates of control
points

ously used in [26] for free-form surface machining tests.
It is illustrated in Figure 10, with the same color code
as for the previous test case for axes X, Y and Z.
Again, the steepest-slope and the principal directions are
nearly orthogonal. The approximated slope s̃ is equal
to 0.299 rad = 17.13◦, and the steepest-slope direction is
aligned with axis X. The eigenvalues are λI = 312.07 and
λII = 219.02, which are used to calculate the form factor:
µ̃ = 1.19, and the principal direction, defining an angle
of 1.57 rad = 90.0◦ with the axis X. The results of ma-
chining along both directions are summarized in Table
5. The numerical simulation of machining takes nearly
3 s. Figure 11 displays the machining toolpaths in both
cases. Here the toolpath length is slightely shorter for the
toroidal tool, and this cutter is also the one presenting the
shorter machining time.

Testing the proposed procedure on this surface is con-
ducted as follows: The characteristic size of the plane
spanned by eigenvectors is equal to χ̃ = 3137 mm2; note
that this value is close to the area of the surface.

Figure 10: Test surface 2 with its principal (purple) and
steepest-slope (black) directions

machining time toolpath length
toroidal tool

along steepest-
slope direction

71.8 s 4725 mm

ball-end tool
along principal

direction
76.8 s 5184 mm

Table 5: Machining times and toolpath lengths for test
surface 2

Knowing that µ̃ = 1.19, the critical slope can be calcu-
lated using Equation (14) and is equal to sc (µ̃) = 62.6◦.
Since s̃ < sc, our approach predicts that the toroidal cut-
ter will present a shorter machining time, which agrees
with the numerical results. Consequently, the prediction
is also correct on this second test case.

To investigate further the reliability of the proposed
method, some tests are carried out to determinate nu-
merically the critical slope s∗c . To do this, both machin-
ing times T ∗

1 and T ∗
2 are estimated by numerical sim-

ulation for various values of the surface slope s̃. Con-
ducting these experiments reveals equal machining times
for s∗c = 54, 7◦. Compared to the value sc = 62.6◦ pro-
vided by the proposed method, the prediction presents
an error of around 10%. This value should be considered
cautiously, because it is heavily dependent on the surface
geometry itself.

7 Discussion

The validity and limitations of the proposed approach are
discussed in this section.
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Figure 11: Machining of test case surface 2: along the
steepest-slope direction using a toroidal cutter (above),
along the principal direction using a ball-end cutter (be-
low)

7.1 On the efficiency of the proposed
method

The proposed procedure is fully efficient when machining
directions (i.e., the steepest-slope direction and the sur-
face most extended direction, called principal direction)
are close to the perpendicular, otherwise the calculation
of critical parameters looses its accuracy. This can be il-
lustrated by the experiments conducted on the first test
case surface (Section 6.2.1) in order to determine numer-
ically the critical slope s∗c , as it has been done for the
second test case (Section 6.2.2). Performing these tests
requires rotating the surface to define various values of
the slope s̃, but rotating the surface leads to significant
change of the steepest-slope direction, which is no longer
orthogonal to the principal direction. Therefore, the pre-
diction is correct in the range of slopes s̃ such that both
directions are nearly orthogonal, but it becomes quickly
erroneous when both directions are too far from perpen-
dicularity. Thus, the closer the machining directions are
to the perpendicular, the more accurate is the calculation
of the critical parameters. This may appear like quite a
limiting factor, but actually the closer the steepest-slope

and the principal directions are, the more the toroidal
tool should be privileged, since it leads to larger step-over
distances without increasing the number of paths. There-
fore, the proposed procedure is really useful and accurate
for really problematic surfaces, and less interesting for
surfaces for which machining directions and best cutter
are obvious.

7.2 Limitations of scope

The proposed approach is analytically proved for flat rect-
angular surfaces. To do so a few hypotheses were made:

� First, the χ
µ ratio is considered great enough to en-

sure that path machining time is calculated such that
nominal feed rate is achieved before the maximum
acceleration. For the kinematic parameters values
used in this paper, the lower bound is χ

µ > 7.6 mm.
This condition excludes very small surfaces, which is
acceptable in practice.

� Secondly, it is supposed that step-over distances (be-
tween two adjacent paths) are not sufficiently long to
achieve nominal feed rate. This is verified for both
cutters as soon as the machining strip width is in-
ferior to 7.6 mm. This condition depends on the
kinematic parameter values but also on the cutter
dimensions, and needs to be verified when these val-
ues change. In practice, the size of cutters used for
finishing are small enough to consider this condition
verified.

� The last hypothesis concerns the calculation of the
critical slope sc. It was supposed that χ > 100 mm2

in order to ensure that Equation (10) has only one
real solution. In general, the cases where the surface
area is smaller than 100 mm2 are very rare.

Furthermore, the proposed approach relies strongly on
the kinematic parameters of the NC machine-tool: Jmax,
Amax and the nominal feed rate V . Therefore, the hy-
potheses concerning the machining time calculation in
Section 2.2 need to be checked for different values of kine-
matic parameters, but the procedure remains the same.

7.3 On the extension to free-form sur-
faces

The proposed approach is then extended to free-form sur-
faces. Actually, the approach is more accurate for sur-
faces with slowly-varying normal vectors, and thereby
slowly-varying steepest-slope directions. On the other
side, the approach is less accurate when the steepest-
slope direction varies much, especially when the parallel-
planes strategy is used. Indeed, the parallel-planes strat-
egy implies that the step-over distance is determined by
the worst interpolation point, contrary to the iso-scallop
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strategy, and the range of calculated step-over distances
is larger when the surface normals vary much.

For free-form surfaces, there are two ways, as men-
tioned before (Section 5.4), to calculate the approximated
slope s̃ that might give different values. Again, the differ-
ence here is larger when the normal vector varies much.
However, through all tests completed while working on
this issue, choosing one method over the other never lead
to a difference significant enough to make an erroneous
prediction.

Remark that if the user is compelled to only use the
ball-end cutter, the principal direction is a machining di-
rection of choice, since it reduces the number of paths,
compared to other directions at a constant step-over dis-
tance. Besides, identifying the principal direction may be
interesting in 5-axis and 3+2-axis machining with toroidal
cutter. Indeed, the two rotary angles can be set up so
that the steepest-slope and principal directions coincides,
which will improve both the step-over distances and the
number of paths, reducing considerably the machining
time.

Another point that is worth to be noted is that the
scallop height tolerance sh does not seem to have a note-
worthy influence on the critical parameters. Indeed, the
same evolution curve of critical parameter sc(µ) (see Fig-
ure 6) is found for sh = 0.1 mm.

The impact of the mesh size is also investigated because
both machining directions defined previously (steepest-
slope and principal) are calculated from the sampled
points Si on the mesh, and thus depend on the mesh size.
Numerous tests for different meshing sizes (from 20× 20
to 200 × 200) had been run, and it was found that the
change on machining times is not significant, especially
for mesh sizes greater than 60 × 60. The parameters s̃
and µ̃ depend also on the mesh size, and similar observa-
tions were found. Hence, the mesh size can be chosen big
enough to ensures that results are not sensitive to it.

7.4 Influence of auxiliary parameters

All along this study, the characteristic size χ is consid-
ered constant. Indeed, this parameter, representing the
area of the surface, has much less influence than the other
parameter, µ, representing the elongation of the surface.
Nevertheless, its effect is examined here, despite its weak
role. Machining along the principal direction using a ball-
end cutter is more efficient compared to its counterpart
(torus-end mill along greatest slope direction), when the
paths generated in the first case are such that the feed
rate is achieved on a significantly larger proportion of
the paths, compared to the second case. Thus, for a
given feed rate V , the more the surface area is large,
the bigger is the proportion of paths for which the feed
rate is achieved for both machining cases, promoting the
toroidal cutter along the steepest-slope direction. As a
result, the critical parameter sc is expected to increase as

χ increases. This statement is proven in Appendix D.

Similarly, the feed rate V was considered fixed. Yet,
it can be shown that a high feed rate promotes machin-
ing along the principal direction, while a low feed rate
favours the slope direction. More precisely, the feed rate
is achieved on larger portions of toolpath as its value is
smaller, and the interest of the principal direction is lost
in that case. Conversely, a high feed rate would penalize
toolpaths with more direction changes, thus promoting
machining along the principal direction. This statement
is confirmed by numerical simulations showing that the
critical parameters µc and sc are decreasing functions of
V .

The proposed method performs PCA over the surface-
point coordinates in order to find the principal direction
and estimate parameters µ̃ and χ̃ using eigenvalues λI ,
λII and their eigenvectors. Although the third eigenvec-
tor λIII is not used in our method, it can give a global
idea about the flatness of a given surface and thus the ap-
plicability of the proposed method to this surface. Quan-
titative criteria are not available at this stage, but some
local parameters, such as the Gaussian curvature, should
be taken into account to built them up.

8 Conclusion and perspectives

A new method of selection between the ball-end mill and
the toroidal cutter is presented in this article. The most
important advantage of this method is that it provides
a reliable information, without performing a machining
simulation. The method is first tested for flat surfaces,
then extended to free-form surfaces using the analysis of
main components. It is based on the identification of two
characteristic machining directions: the steepest-slope di-
rection and the principal direction, the first favoring the
toroidal tool while the second favors the spherical tool.
The approach has given the best results when these two
directions are antagonistic (i.e., perpendicular), but when
they are not, the choice of the type of mill is generally
obvious. The proposed method also works best when the
normal vector at the surface varies slowly, but can still
provide a good clue for more complicated free-form sur-
faces.

This work is only a first approach to the cutter type se-
lection problem using principal component analysis. Fur-
ther works may include more accurate theoretical eval-
uation of the number of paths included into a toolpath,
and better free-form surface parameter approximations.
These future tracks of research may also be related to ma-
chining strategy, and include a full analysis of the nominal
feed speed influence on the critical parameters. The third
eigenvalue (equal to zero for flat surfaces) can be used to
get an idea of the flatness of freeform surfaces, and there-
fore of the precision of the approach. This also could be
the subject of new investigations.

15



References

[1] Redonnet JM, Djebali S, Segonds S, Senatore J, Ru-
bio W (2013) Study of the effective cutter radius for
end milling of free-form surfaces using a torus milling
cutter. Computer-Aided Design 45(6):951–962

[2] Blackmore D, Leu M (1992) Analysis of swept vol-
ume via lie groups and differential equations. The In-
ternational Journal of Robotics Research 11(6):516–
537

[3] Chiou CJ, Lee YS (2002) A machining potential
field approach to tool path generation for multi-axis
sculptured surface machining. Computer-Aided De-
sign 34(5):357–371

[4] Kumazawa GH, Feng HY, Barakchi Fard MJ (2015)
Preferred feed direction field: A new tool path gen-
eration method for efficient sculptured surface ma-
chining. Computer-Aided Design 67-68:1–12

[5] Liu X, Li Y, Ma S, Lee Ch (2015) A tool path gen-
eration method for freeform surface machining by
introducing the tensor property of machining strip
width. Computer-Aided Design 66:1–13

[6] Mann S, Bedi S (2002) Generalization of the imprint
method to general surfaces of revolution for NC ma-
chining. Computer-Aided Design 34(5):373–378

[7] Roth D, Bedi S, Ismail F, Mann S (2001) Surface
swept by a toroidal cutter during 5-axis machining.
Computer-Aided Design 33(1):57–63

[8] Sheltami K, Bedi S, Ismail F (1998) Swept volumes
of toroidal cutters using generating curves. Interna-
tional Journal of Machine Tools and Manufacture
38(7):855–870

[9] Vu DD, Monies F, Segonds S, Rubio W (2020) Au-
tomatic minimal partitioning method guaranteeing
machining efficiency of free-form surfaces using a
toroidal tool. The International Journal of Advanced
Manufacturing Technology 107:4239–4254

[10] Vickers GW, Quan KW (1989) Ball-Mills Versus
End-Mills for Curved Surface Machining. Journal of
Engineering for Industry 111(1):22–26

[11] Bedi DS, Ismail F, Mahjoob MJ, Chen Y (1997)
Toroidal versus ball nose and flat bottom end mills.
The International Journal of Advanced Manufactur-
ing Technology 13(5):326–332

[12] Cho H, Jun Y, Yang M (1993) Five-axis CNC
milling for effective machining of sculptured sur-
faces. International Journal of Production Research
31(11):2559–2573

[13] Kim B, Chu C (1994) Effect of cutter mark on sur-
face roughness and scallop height in sculptured sur-
face machining. Computer-Aided Design 26(3):179–
188

[14] Djebali S, Perles A, Lemouzy S, Segonds S, Rubio W,
Redonnet JM (2015) Milling plan optimization with
an emergent problem solving approach. Computers
& Industrial Engineering 87:506–517

[15] Djebali S, Segonds S, Redonnet JM, Rubio W (2015)
Using the global optimisation methods to minimise
the machining path length of the free-form surfaces
in three-axis milling. International Journal of Pro-
duction Research 53(17):5296–5309

[16] Griffiths JG (1994) Toolpath based on Hilbert’s
curve. Computer-Aided Design 26(11):839–844

[17] Lazoglu I, Manav C, Murtezaoglu Y (2009) Tool
path optimization for free form surface machining.
CIRP Annals 58(1):101–104

[18] Makhanov S (2007) Optimization and correction of
the tool path of the five-axis milling machine: Part 1.
Spatial optimization. Mathematics and Computers
in Simulation 75(5):210–230

[19] Park SC (2003) Tool-path generation for Z-
constant contour machining. Computer-Aided De-
sign 35(1):27–36

[20] Park SC, Choi BK (2000) Tool-path planning for
direction-parallel area milling. Computer-Aided De-
sign 32(1):17–25

[21] Roman A, Bedi S, Ismail F (2006) Three-half and
half-axis patch-by-patch NC machining of sculptured
surfaces. The International Journal of Advanced
Manufacturing Technology 29(5):524–531

[22] Pessoles X, Redonnet JM, Segonds S, Mousseigne
M (2012) Modelling and optimising the passage of
tangency discontinuities in NC linear paths. Inter-
national Journal of Advanced Manufacturing Tech-
nology 58(5-8):631–642

[23] Pessoles X, Landon Y, Rubio W (2010) Kinematic
modelling of a 3-axis NC machine tool in linear
and circular interpolation. The International Jour-
nal of Advanced Manufacturing Technology 47(5-8,
SI):639–655

[24] Abdi H, Williams LJ (2010) Principal component
analysis. Wiley Interdisciplinary Reviews: Compu-
tational Statistics 2(4):433–459

[25] Vu DD, Monies F, Rubio W (2018) A new optimiza-
tion tool path planning for 3-axis end milling of free-
form surfaces based on efficient machining intervals.
AIP Conference Proceedings 1960(1):070011

16



[26] Choi YK (2007) Tool path generation and tolerance
analysis for free-form surfaces. International Journal
of Machine Tools and Manufacture 47(3–4):689–696

Appendices

A Study of the critical parameter
µc = f(s)

The expression of the critical parameter sc = f(µ) has been
developed in Section 4.1.3. The reciprocal function µc = f(s)
is far less interesting from a practical point of view, however
some use cases may be thought up, especially at the concep-
tion stage of the part.

A.1 Analytical expression of µc

For a given slope s, the critical form factor µc is defined such
as the machining times T1 and T2 asociated to both cutters
and directions are equal:

T1 = T2

⇔
√
µχ

sod1

( √
χ

√
µV

+ 2

√
V

Jmax
+ 4 3

√
sod1

2 Jmax

)

=

√
χ

√
µ sod2

(√
χµ

V
+ 2

√
V

Jmax
+ 4 3

√
sod2

2 Jmax

)

⇔
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χµ

V
+ 2
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V

Jmax
+ 4 3

√
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= µ
sod2
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(
2

√
V

Jmax
+ 4 3

√
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2Jmax

)
+ µ

sod2
sod1

√
χ

√
µV

Thus, T1 = T2 is equivalent to

sod2
sod1

(
2

√
V

Jmax
+ 4 3

√
sod1

2 Jmax

)
µ

+

√
χ

V

(
sod2
sod1

− 1

)
√
µ− 2

√
V

Jmax
− 4 3

√
sod2

2Jmax
= 0

The last equation is a second degree polynomial in
√
µ writ-

ten:
aµ+ b

√
µ+ c = 0, (21)

with:

a =
sod2
sod1

(
2

√
V

Jmax
+ 4 3

√
sod1

2 Jmax

)

b = −
√
χ

V

(
1− sod2

sod1

)

c = −

(
2

√
V

Jmax
+ 4 3

√
sod2

2 Jmax

)
It is trivial to verify that a is positive and c is negative.

Moreover, since 0 < s < π/2, then 0 < sin s < 1 and

R− r
sin s

+ r > R thus sod1 > sod2.

As a result b < 0. The discriminant of Equation (21) is
∆ = b2−4ac > b2 and is positive. Equation (21) has therefore
two solutions, one of which is negative. Indeed:

−b−
√

∆

2a
=
−b−

√
b2 − 4ac

2a

is negative, since 4 a c < 0 and 2 a > 0.
Therefore, the expression of critical form factor µc(s) de-

pends on s via sod1 and is given by the other solution of
Equation (21). For a given value of slope s:

µc =


√
χ

V

(
1− sod2

sod1

)
+

√
χ
V 2

(
1− sod2

sod1

)2
+ 16 sod2

sod1

(√
V

Jmax
+ 2 3

√
sod1

2Jmax

)(√
V

Jmax
+ 2 3

√
sod2

2 Jmax

)
4 sod2
sod1

(√
V

Jmax
+ 2 3

√
sod1

2 Jmax

)


2

(22)

If µ > µc then aµ+b
√
µ+c > 0, which means that T1 > T2,

and therefore machining along the principal direction using a
ball-end cutter is more efficient. Conversely, if µ < µc then
aµ+b

√
µ+c < 0 and T1 < T2. Machining along the steepest-

slope direction using a toroidal cutter should then be privi-
leged.

A.2 Numerical analysis of the critical pa-
rameter µc

The critical form factor µc can be numerically analysed like
its reciprocal sc in Section 4.2.3. Using the same methodology
presented in the previously-mentionned section, the following

results are obtained. Figure 12 shows the evolution of µc(s)
and the relative error of the difference between numerically
calculated T ∗1 (s) and T ∗2 (s).

Like in the reciprocal case, the error is around 5%, which
confirms again the validity of the critical parameter expres-
sions. Remark that the error is higher for small slopes, for the
same reasons as the ones exposed in Section 4.2.3.

Therefore, the proposed procedure can also be carried out
using the critical form factor parameter instead of the critical
slope parameter. To do so, given a plane and its slope s, its
form factor µ is compared to the critical form factor µ(s). If
µ < µc(s), then the toroidal cutter along the steepest-slope
direction is selected. Otherwise, the ball-end cutter along the
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Figure 12: Evolution of critical form factor µc(s) and ma-
chining times relative error εc(s) with respect to slope s

principal direction is advised.
Remark that for both test cases presented in Sections 6.2.1

and 6.2.2, the same prediction is provided, whether a critical
form factor based or a critical slope based procedure is used.

B Proof that form-factor approx-
imation by eigenvalues is exact
for a plane

Let S be a rectangular surface of width w and height h ≤ w.
The coordinate system is defined so that its origin is the center
of the rectangular area, axis X is along width direction, and
axis Y is along height direction. Then, the coordinates of a
parametric point (u, v) can be written as:

S(u, v) =

w (u− 1
2
)

h (v − 1
2
)

0


The surface’s area in the parametric space is equal to:

|S| =
∫ u=1

u=0

∫ v=1

v=0

dudv = 1.

The average coordinate Sx is then calculated:

E(Sx) =
1

|S|

∫ u=1

u=0

∫ v=1

v=0

w

(
u− 1

2

)
dudv = 0.

Identically, E(Sy) = E(Sz) = 0. The variances are also calcu-
lated:

Var(Sx) = E(S2
x)− E(Sx)2 =

∫ 1

0

∫ 1
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2
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dudv
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2
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]1
0
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12
.

In the same way:

Var(Sy) =
h2

12
and Var(Sz) = 0

As for the covariances, they are equal to zero, since
Cov(SxSz) = Cov(SySz) = 0 and:

Cov(SxSy) = E(SxSy)− E(Sx) E(Sy)

=

∫ 1
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∫ 1
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2
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dudv
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2
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0

h

(
u− 1

2

)
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The covariance matrix is then:

C =

w2

12
0 0

0 h2

12
0

0 0 0


Because the matrix C is diagonal, its eignevalues are:

λI =
w2

12
and λII =

h2

12

C Proof that the critical functions
are decreasing

The following development aims at proving that s 7→ µc(s, χ)
and µ 7→ sc(µ, χ) are decreasing functions, for any value of
parameter χ. For the sake of simplicity, some short-hand no-
tations are introduced: sod1, respectively sod2, is denoted d1,
respectively d2 and Jmax is denoted J . First, the derivative
of step-over distance d1 with respect to the slope angle s is
calculated:

∂d1
∂s

= −2
(R− r) sh cos s

sin2(s)
√

2 sh
(
R−r
sin s

+ r
)
− sh2

≤ 0

Then, Equation (22) can be rewritten as:
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The last equation is differentiated with respect to d1 to obtain:
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The second term of the right-hand side (the big fraction) is
positive. Therefore, one easily obtain:
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Let wc, respectively hc, be the critical width, respectively the
height at critical form-factor µc(s, χ). Thus:√

χ

µc
=

√
wc hc

hc
wc

= hc

Besides:
4d2√
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As a result
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2
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3
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1
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The value of d1 depends on the slope s and is minimal when
d1 = d2, in the worst case (in the sense of the previous inequal-
ity). Thus, with the numerical values used for parameters R,
r, J , V and sh, hc ≥ 5.3 mm is a condition sufficient to en-
sure that the derivative of

√
µc with respect to d1 is positive.

Varying tool and machining parameters in ranges of realistic
values lead to an inferior bound on hc varying between 3 mm
and 10 mm. However, such values are very small for the di-
mensions of surfaces to be machined in practice, therefore:

∂µc
∂s

=
∂µc
∂
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∂d1

∂d1
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= 2
√
µc

∂
√
µc

∂d1

∂d1
∂s
≤ 0.

In conclusion, s 7→ µc(s, χ) is a decreasing function. The func-
tion µ 7→ sc(µ, χ) is also decreasing since it is the reciprocal
function of s 7→ µc(s, χ).

D Proof that the critical slope in-
creases with χ

The considerations presented in Section 7.4 state that the crit-
ical parameter sc(µ) increases with χ value. This statement
is proven here, first by proving that µc(s) increases with χ,
and then by using the fact that µc(s) and sc(µ) are reciprocal
functions.

To prove that µc(s) increases with χ, the derivative of µc
with respect to χ (denoted ∂µc

∂χ
) has to be calculated first,

all other parameters being fixed. Equation (23), gives the
expression of the derivative ∂µc

∂χ
calculated from its analytical

expression (Equation (22)):
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2
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where β1 = 2
sod2
sod1

(√
V

Jmax
+ 2 3

√
sod1

2 Jmax

)
≥ 0

β2 =

(
1− sod2

sod1

)
V

≥ 0

β3 = 2

(√
V

Jmax
+ 2 3

√
sod2
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It is clear from this expression that the derivative is positive.
Thus µc increases with χ.

Let s ∈ [0, π/2] and µ ≥ 1. From the definition of the
critical parameters, it is straigthforward that for any value of
parameter χ constant: µc(s) is the value that the form factor
should take if the slope is equal to s, so that machining times
in both cases are equal. Consequently, if the value of µ is
equal to µc(s), then the corresponding critical slope would be
equal to s. In other words, µc and sc are reciprocal functions:

∀ s ∈
[
0,
π

2

]
sc(µc(s)) = s and ∀µ ≥ 1 µc(sc(µ)) = µ.

The first statement can be re-written including the depen-
dency on χ:

∀ s ∈
[
0,
π

2

]
, ∀χ ≥ 0, sc(µc(s, χ), χ) = s.

Deriving the previous equation with respect to χ for constant
s, using the total derivative formula leads to:

∂sc
∂χ

(µc(s, χ), χ) = −∂µc
∂χ

(s, χ)
∂sc
∂µ

(µc(s, χ), χ)

It was just shown that ∂µc
∂χ

is positive. In addition, it has be
proven that sc is a decreasing function of µ (see Appendix
C). Thus, ∂sc

∂µ
is negative. Since µc is a bijection, for each

µ ≥ 1 there exists (a unique) s ∈ [0, π/2] such as µ = µc(s, χ).
Therefore, the term ∂sc

∂χ
(µ, χ) is positive for each value of µ,

and sc is an increasing function of χ.
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