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ABSTRACT
Knowledge management and sharing involves a variety of spe-
cialized but isolated software tools, tied together by the files
that these tools use and produce. We interviewed 23 scientists
and found that they all had difficulties using the file system
to keep track of, re-find and maintain consistency among re-
lated but distributed information. We introduce FileWeaver ,
a system that automatically detects dependencies among files
without explicit user action, tracks their history, and lets users
interact directly with the graphs representing these dependen-
cies and version history. Changes to a file can trigger recipes,
either automatically or under user control, to keep the file con-
sistent with its dependants. Users can merge variants of a file,
e.g. different output formats, into a polymorphic file, or morph,
and automate the management of these variants. By making
dependencies among files explicit and visible, FileWeaver
facilitates the automation of workflows by scientists and other
users who rely on the file system to manage their data.

Author Keywords
File system; Dependency management; Version management;
Workflows

CCS Concepts
•Human-centered computing → Graphical user inter-
faces; Interaction techniques;

INTRODUCTION
While some users can manage their entire workflow within a
single application or integrated application suite, many knowl-
edge workers, such as scientists, must use several specialized
tools that are not designed to dialog with each other. For
example, Oleksik et al. [24] describes how researchers use a
mix of standard office productivity tools and specialized tools
for experimental protocols and data analysis, while Zhang
et al. [43] list up to 13 different categories of tools used by
data scientists.

© 2020 Association for Computing Machinery.
This is the author-prepared version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The
definitive version is published in:
Proceedings of the 33rd ACM Symposium on User Interface Software and
Technology, UIST ’20, October 20–23, 2020, Virtual Event, USA
ACM ISBN 978-1-4503-7514-6/20/10 ...$15.00.
http://dx.doi.org/10.1145/3379337.3415830

Specialized tools typically load and save information in pro-
prietary and/or binary data formats, such as Matlab1 .mat
files or SPSS2 .sav files. Knowledge workers have to rely on
standardized exchange file formats and file format converters
to communicate information from one application to the other,
leading to a multiplication of files.

Moreover, as exemplified by Guo’s “typical” workflow of a
data scientist [8, Fig. 2.1], knowledge workers’ practices often
consist of several iterations of exploratory, production and
dissemination phases, in which workers create copies of files
to save their work, file revisions, e.g. to revise the logic of
their code, and file variants, e.g. to modify parameter values.
Jensen et al. [12] observed that short- and long-term pauses
can cause users to forget about the organization of their files
when they need to access them.

Neither the file system nor file navigation tools are designed to
track the relationships between files nor the histories of files,
offering little support to knowledge workers for managing
the numerous files and associated workflows that their work
requires. Software designed to capture file provenance [21, 22]
addresses a similar issue by capturing metadata describing the
origin of the files as well as all the actions that are performed
on it and the actors who perform them. However, we do not
know if this fine-grained approach is adapted to the needs of
knowledge workers.

In this paper, we first investigate how and with which tools
knowledge workers manage their information. We interviewed
23 scientists —an extreme example of knowledge workers—
who were not specifically trained in software engineering nor
computer science and identified six types of problems they
face. Based on these findings, we describe FileWeaver , a
system that automatically detects dependencies among files,
tracks their history, and lets users interact directly with the
graphs representing these dependencies and version history.
Changes to a file can trigger recipes, either automatically or
under user control, to keep the file consistent with its depen-
dants. We describe FileWeaver’s features and illustrate how
they address some of the issues identified in the user study.
We conclude with an analysis of FileWeaver using Green’s
cognitive dimensions [7] and directions for future work.

1https://mathworks.com/products/matlab.html
2https://www.ibm.com/analytics/spss-statistics-software
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RELATED WORK
We review previous research in three main areas: the issues
related to information silos, i.e. the fact that digital information
tends to be trapped in proprietary files formats and closed
systems; the practices and workflows used by scientists in
their data analysis tasks; and the studies and tools addressing
the management of file relationships.

Information Silos
Previous work has identified the difficulties that users en-
counter with the rigid hierarchical organization of current file
systems [5, 2, 29] and the information fragmentation created
by information silos [29, 13]. In a study of users’ desktops,
Ravasio et al. [29] reported the interviewees’ frustration with
the fragmentation of information across files and most inter-
viewees expressed the need to have their information linked
together. The Placeless system [5] partially addressed these
issues by letting users create and manage their own docu-
ment properties. Karger [13] proposed three approaches to
address information fragmentation: grouping (including tag-
ging), annotating, and linking; and showed that linking related
information can support users orienteering behavior [41].

Research on scientists’ work practices further highlights these
issues. Oleksik et al. [24] studied the artifact ecology of a
research center and found that scientists used multiple comput-
ing applications to create information artifacts that are locked
into applications, making it difficult to reuse content and get a
unified view of the related research material. Their follow-up
study [23] revealed the need to support three types of links:
inheritance (source document), spatial proximity (spatial lay-
out), and explicit links (resources and notes). Tabard et al. [39]
studied lab notebooks and found that biologists work with a
complex web of interrelated references in both the physical
and digital worlds that they keep in their head, and that they
struggle to map this structure into a single organizational form.

Since these studies were conducted seven to twenty years ago,
we wanted to know if scientists still struggled with managing
their information. We are particularly interested in how current
tools support or hinder knowledge management and sharing
in their daily tasks.

Data Analysis Tasks and Workflows
Data analysis and sharing is an essential part of scientific
discovery [24]. The iterative and exploratory nature of data
analysis [8] tends to produce numerous manually versioned
scripts and output files [9]. Computational notebooks combine
code, visualizations and text, bringing fragmented but related
information into a single document [31]. Scientists are rapidly
adopting this new medium to document and share exploratory
data analyses [35]. Researchers have built tools for computa-
tional notebooks to support various activities such as informal
and rapid version control [15], re-finding of past analysis
choices [16], easy navigation [30] and managing messes [11].

However, building these tools within computational notebooks
does not fully solve the problem: studies show that users of
computational notebooks need to access diverse tools [43]
and combine them with other tools and documents [31, 4]. A
survey [43] of data scientists’ collaborative practices reported

13 high-level categories of tools, including code editors, e.g.
Visual Studio Code, computational notebooks, e.g. Jupyter
Notebook, spreadsheets, data analysis tools, e.g. SPSS, docu-
ment editing tools, e.g. LaTeX, and presentation software, e.g.
Microsoft PowerPoint. Rule et al. [31] found that “individual
notebooks rarely tell a story by themselves but are routinely
combined with other notebooks, emails, slides, and ReadMe”.
Furthermore, their interviewees “even transferred outputs of
the analysis to an entirely different medium (e.g. slides, word
processing document) for easier review.”

These studies suggest that scientists use a variety of tools in
their data analysis and sharing process. We are interested in
how they track the inter-connections between different docu-
ments and files in this process and why they choose to create
multiple documents in the first place.

File Relationships
Previous research has explored file relationships to devise new
ways to organize digital content, including using metadata [5],
tagging [25] and activity-based computing [32, 42]. We focus
here on provenance [12] and linking [38], which are particu-
larly relevant to representing relationships among files.

Provenance
Jensen et al. [12] studied the provenance of files on desktops
and showed that it helped reveal the work patterns of knowl-
edge workers. Several tools are based on the idea of sourcing
file relationships for version management [17, 14] and file
retrieval [36, 6, 37]. For example, Connections [36] uses file
relationships to enhance file searches; Leyline [6] integrates
provenance into the query composition and result presentation
of a search system; and TaskTrail [37] tracks file provenance
through user events such as copy-paste and save-as, and repre-
sents it in a graph view to assist users in re-finding documents.

Karlson et al. [14] describe a system that tracks copy rela-
tionships among files, helping users to manage their versions.
They introduce the ‘versionset’, a set of files that represent a
user’s concept of a document and found that file format is an
important element of the user’s conceptual model.

Linkdley et al. [17] developed the ‘file biography’ to encom-
pass the provenance of a file and its propagation. Commercial
user interfaces for version control systems such as Gitkraken3

and SourceTree4 represent file revisions in a time-based tree
visualization5, but these tools are designed primarily for coor-
dinating work among programmers. Prior studies have found
that scientists rarely use version control systems [15, 28] and
that knowledge workers mostly use manual versioning [14,
10] because they find version control systems too complex.

We find two limitations to these systems: They require users
to explicitly specify relationships among files, and the relation-
ships are presented as non-interactive graphs. We are therefore
interested in improving both automation to infer file depen-
dencies and direct interaction to provide more user control.

3https://www.gitkraken.com/b
4https://www.sourcetreeapp.com/
5See a list of GUIs at https://git-scm.com/downloads/guis/.
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Linking
Tabard et al. [38] take a different approach to support web nav-
igation by automatically linking web pages together according
to user actions. Software development tools such as webpack6

generate a dependency graph by analyzing source code, but
do not visualize nor let users control the resulting graph.

Our goal is to design a lightweight tool for knowledge workers
to keep track of file dependencies and manage the various
versions and formats of their files. Our target audience are
users who manage information across files of various types
and process them through tools such as scripts and compilers.

FORMATIVE STUDY: INTERVIEWS WITH SCIENTISTS
We conducted critical object interviews [19] to better under-
stand how scientists, who can be considered “extreme” knowl-
edge workers, manage complex research information.

Participants: We interviewed 23 scientists (7 women, 16
men): six professors, four researchers, four Ph.D. students,
five research engineers, three post-docs, and one research asso-
ciate. The research topics include neuroscience, mathematics,
chemistry, physics, biology and computer science.

Procedure: All interviews were conducted in English by the
second author and lasted 45-60 minutes each. We visited the
participants in their labs and asked them to show us the tools,
e.g. notebooks, that they use to keep track of their research
information. Based on the artifacts they showed us, we asked
them to describe a recent, memorable event, either positive or
negative, related to using that artifact. We then asked about
their work practices based on these events and artifacts.

Data Collection: All interviews were audio recorded and
transcribed. We also took photos and hand-written notes.

Data Analysis: We analyzed the interviews using reflexive
thematic analysis [3]. We generated codes and themes both
inductively (bottom-up) and deductively (top-down), look-
ing for breakdowns, workarounds and user innovations. Two
coders (including the interviewer) conducted the analysis.
They grouped codes into larger categories, discussed any dis-
agreements and rechecked the interview transcripts to reach a
shared understanding. They arrived at the final themes after
two iterations.

RESULTS AND DISCUSSION
We used the concept of information substrate to conduct the
thematic analysis. Beaudouin-Lafon [1] describes substrates
as computational media that hold digital information, possibly
created by other substrates, manage constraints and depen-
dencies, react to changes in both the information and the
substrate, and generate information consumable by other sub-
strates. Maudet et al. [20] analyzed the constraints and rules
that graphical designers manage in their heads and introduced
digital tools that explicitly support these substrates. We follow
a similar approach by identifying the types of substrates cur-
rently used by scientists in order to inform the design of more
appropriate ones. We extend the original concept of substrate
to cover both physical and digital artifacts.
6https://webpack.js.org/

Based on these concepts, the thematic analysis led to six
primary themes related to: using multiple substrates; trans-
ferring information across substrates; keeping information
“just in case”; finding and re-finding; iterating the produce-
communicate cycle; and expressing file relationships.

Taking Advantage of the Characteristics of Substrates
All participants take advantage of the characteristics of differ-
ent types of information substrates to manage their informa-
tion. For example, they use paper as a thinking and reasoning
tool because free-hand drawing enables rich representations,
flexible layout and better memorization. This is consistent
with prior studies on the advantages of paper [33, 26, 18, 34].

Most participants (20/23) use at least one blackboard or white-
board in their office or in meeting rooms. These boards offer
a large working space for free-hand sketching and writing,
supporting fluid collocated collaboration [27, 40].

Five participants with experimental science training also keep
a physical lab notebook. This notebook follows a chrono-
logical order and makes it easy to switch between structured
and free-form information. Participants create links to keep
related information in context by noting down file names or
sticking print-outs on the relevant pages. Participants also
have at least one personal notebook for “purely temporal in-
formation” (P15). These personal notebooks are less clean
and structured than the “official” lab notebook. Participants
transfer the important information to the lab notebook.

Similar to the analysis of biologists’ work practice [39], these
results suggest that the nature of information being distributed
among different artifacts such as paper, whiteboard and lab
notebook, is driven by their unique characteristics.

Transferring Information Across Substrates
From a first raw idea on paper to a well-written article, partici-
pants continuously structure their ideas over time as a project
unfolds. We found that the process of transferring information
from one substrate to another is a necessary cognitive process
where participants review, rethink and re-evaluate their ideas.

P9 described how he worked with a colleague on an idea by
writing on the blackboard; copying it onto paper in a cleaner
version; going back and forth between blackboard and paper
several times until it was mature enough to write it in LaTeX.
He explained: “When I copy, I am not just copying. I try to
understand it of course... We also fix errors when we transfer”.

Seven participants reported taking whiteboard photos during
meetings to persist information digitally. While taking a photo
is quick, they often forget to do it (P9, 10) and find it cumber-
some to transfer the photos to their laptop (P2), organize them
(P2, 9, 21) and understand the messy content of the white-
board after the fact (P22). As a result they prefer transcribing
information onto a different substrate, such as their notebook.

Keeping Information “Just in case”
A quarter of the scientists (P1, 6, 9, 10, 14, 21) tend to hoard
information (whiteboard photos, figures, versions of paper)
“just in case” even though they rarely revisit it (P9, 10, 14),
partially because they are not able to anticipate what will be
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needed in the future. For example, P21 (computer scientist)
said: “It is really insane that amount of photos we have. We
clearly do not use all of them.”

Hoarding information adds to the challenge of future re-
finding. Participants find it difficult to determine the right
version among their multiple devices: “Anyways, everything
is mixed up (between home and work computers).” (P11).
Participants use time stamps and modification events as pri-
mary cues to determine the right version. While prior research
has focused on supporting document versions [14], we also
found the need to support managing the versions and variants
of graphs, particularly in scientists’ data analyses. For exam-
ple, P6 (bioinformatician) prints several versions of the same
graphs as he iterates analyses and puts the latest version in a
plastic folder to easily identify it.

Finding and Re-finding
All participants develop various strategies to support their
future re-finding tasks.

Summarizing
Participants summarize information to avoid having to go back
to the raw source. The summarized information is usually in
another substrate that serves as a reference when re-finding.
For example, P19 (experimental chemist) summarizes every-
thing about a particular molecule in a physical album when
she completes a series of experiments and has a clear result.

Linking related information
Five experimental scientists link related information together
in their master lab notebook, like in [39]. If they need to
link digital content, they simply note down the file names.
For example, P15 (computational chemist) writes down all
the information related to a plot in his paper lab notebook,
including location of the data, scripts to generate that plot,
location of the Jupyter notebook of that plot and, name and
location of the image file.

However, these manual links with file names break when par-
ticipants change the name or location of the file, as illustrated
by P16 (experimental physicist): “I have done a lot of cleaning
of my files so I don’t know if I can find it.”

Saving data in a single place
Eight data scientists use a project-based organization to save
related information in a single folder, similar to [39]. But
their tendency to hoard information and the messy results
produced by exploratory programming [31] result in folder
clutter. For example, P18 (machine learning researcher) saves
the data, the analysis scripts and the output in a single folder.
As he produces variations and versions of the scripts and
corresponding outputs, files accumulate, hindering re-finding.

Several participants use computational notebooks, e.g. Jupyter
notebooks, to keep track of their analysis process by saving
scripts and their outputs in a single place. However, as Rules
et al. [31], we found that these notebooks are routinely com-
bined with other documents such as slides and ReadMe.

This suggests that the strategy of saving data in a single place
might not be flexible enough for scientists’ knowledge man-
agement. They also need a lightweight way of linking related
but distributed content together.

Preserving importance
The transition from one substrate to another is also a process
where participants assess the importance of information. They
usually preserve important information in a new substrate in a
more structured way and discard information they do not need
anymore. For example, P10 (mathematician) first works on
paper, then selects the ideas he thinks are worth preserving
and transfers them onto his paper notebook.

This process also applies to data analysis. P14 (bioinformati-
cian) performs exploratory data analysis in one Jupyter note-
book, where he produces many graphs and statistics. Once he
is happy with the results, he copy-pastes them into his main
Jupyter notebook, where he collects all the important results.

Iterating the Produce-Communicate-Reproduce Cycle
Communicating results often involves manually cleaning, se-
lecting and inputting content into another type of document
or software tool. Note that the results are often in the form of
plots and graphs. Participants use a range of media for shar-
ing their results including Microsoft PowerPoint (P22, 6, 16)
and Word (P22), Printout (P6, 13), LaTeX (P13), Google doc
(P21), HTML (P15, 2), Markdown (P18) and Jupyter notebook
(P14, 22). This supports the finding that data analysts transfer
outputs of their analyses to an entirely different medium, e.g.
slides or word processing document, for easier review [31].

Participants’ choice of medium is related to the audience they
target. For example, P13 prefers to give his supervisor a paper
printout because she is more likely to read it and get back to
him. P2 (bioinformatician) prefers to share a static HTML
file instead of an interactive Jupyter notebook because “what
we have done in the project is that every group has its own
expertise. If they want to change the parameters, they will ask
you to change it. They won’t do it directly.”

Some participants (P6, 22) complain that it is time-consuming
to tediously copy-paste content into slides for easy sharing:
“The problem is that you have to drag and drop into PowerPoint.
So when you have 15 images, it is a bit time consuming.” (P6)

Scientists often face re-finding challenges when they need to
modify content after getting feedback. For example, P18 had
to recreate a graph after discussing with coauthors but could
not find the data for that graph: “I did so many experiments
that I could have accidentally overwritten the file...”

After a modification, the new results need to be communi-
cated again. Scientists need to manually re-execute the update
pipeline by cleaning, selecting and putting content into another
medium. P14 (bioinformatician) said: “There is obviously a
problem of synchronisation. At some point, I generate the new
version of a figure with slightly different parameters. I need to
reload it in Overleaf. It happens often.” Managing different
file formats or variants adds more overhead, as P11 illustrated:
“Including external files in LaTeX can get messy very very



Issue Empirical Evidence

(HF) Hard to re-find related but dis-
tributed information

Related information is often distributed by necessity because scientists take advantage of the
characteristics of different information artifacts (both physical and digital), resulting in difficult
information re-finding.

(LT) Lack of tools to track inter-file
relationships

Among various strategies to support future re-finding, linking is effective but limited because
participants want to create different types of relationships among files and using file naming
conventions is error-prone.

(MS) Manual synchronization To share results, participants manually re-execute the pipelines that create the target documents.

(VM) Difficult version management
Participants’ hoarding behavior and use of multiple devices adds to the challenges of re-finding
and versioning. They have difficulty keeping track of versions of their documents, such as
graphs.

(FV) Lack of support to manage file
variants, e.g. format

Participants produce variants of a file for different purposes. Different variants of the same file
clutter the folder, making it hard to manage.

(SD) Tedious creation of shared docu-
ment

Participants complain that it is time-consuming and tedious to re-create shared document for
review.

Table 1. Six issues observed in the formative study

quickly. What? I want to use jpeg; I am pretty sure this thing
is jpeg. But the browser is suggesting that it is not a jpeg.”

In summary, the produce-communicate-reproduce cycle re-
quires scientists to successfully re-find the original content,
reproduce the results with new settings while keeping the previ-
ous versions and manually synchronizing the updated changes
to another medium to communicate these results again.

Expressing Inter-File Relationships
We identified three types of inter-file relationships that scien-
tists want to express: description, dependency and coexistence.

Description
To help re-find and re-understand in the future, participants
often use text files to add explanations to other files, e.g. ta-
bles, images, pictures and code. Participants use ReadMe
files (P14), tables of contents in notebooks (P15) and code
comments (P6). For example, P21 (computer scientist) writes
plain text files for each image in a folder to help re-find them.

Re-finding code is particularly challenging because it requires
re-understanding the code. P14 (bioinformatician) finds com-
putational notebook useful but still writes additional ReadMe
files for each Jupyter notebook to explain the analysis to his
future self [31]. Other participants complain that out-of-order
execution and unclear cell dependencies hinders the repro-
ducibility of previous results. For example, P15 does not use
a Jupyter notebook as a full-fledged lab notebook because he
can accidentally re-run a code cell that overwrites the figure
he wants to save. He still uses his paper notebook.

Dependency
Participants need to keep track of files that are generated by
other files and manually keep them in sync. This often happens
in produce-communicate-reproduce cycle when scientists need
to manually modify and remix content across applications.

Coexistence
All eight data scientists put the data and analysis scripts (in-
cluding Jupyter notebook) in sub-folders of the same folder
to link the data with the corresponding analyses. P14 (bioin-
formatician) and his student created two separate but linked

Jupyter notebooks because they use two languages (R and
Python), that Jupyter does not support simultaneously.

Participants rely on file names to express inter-file relation-
ships. However, links with file names are easy to break in case
of renaming. File names are also used for other information
such as experiment parameters, manual version suffix and file
format, resulting in long, hard-to-understand file names.

Summary
This study shows that related information is often distributed
by necessity because scientists take advantage of the charac-
teristics of different information substrates. Their hoarding
behavior complicates their versioning practices. They struggle
to keep track, re-find and maintain consistency of this related
but distributed information, particularly when collaborating
asynchronously with students or colleagues.

FILEWEAVER
Based on the findings from the user study, we decided to fo-
cus on the file-related issues listed in Table 1. We designed
FileWeaver , a prototype that augments traditional file manage-
ment tools with automatic tracking and interactive visualiza-
tion of file dependencies and histories. FileWeaver detects file
dependencies and can update the dependents of a file when that
file is changed. It also records file histories and can manage
simultaneous versions and variants of a file.

FileWeaver User Interface
FileWeaver’s interface has three interactive views (Fig. 1):
● A Folder View that displays all files in the current directory,

similar to a typical file browser;
● A Graph View that displays files as nodes and dependencies

as directed edges. For example, a file containing a dataset
loaded by a script is connected to the file holding the script;
● A History View that displays the history of a file as an

interactive tree, where each new version is connected to the
previous one.

In all three views a menu with FileWeaver commands is
accessible by right clicking a target or the background. The
currently implemented commands are listed in Table 2.



Folder View

Graph View

History View

Hidden Cookbookpage

Figure 1. The FileWeaver User Interface. The Folder View (left) is a standard file browsing window. Files with arrows are symbolic links, meaning
that they are managed by FileWeaver. The Graph View (center top) was displayed by selecting main.tex in the Folder View, and shows the dependency
graph for that file. main_vB.tex is a copy of main.tex (green arrow); both files include fig2.png and section.tex, and they each produce a PDF file.
The History View (center bottom) shows the history of versions of main.tex, including the branch that led to main_vB.tex. The Hidden Cookbookpage
(right) holds the actual file and its version repository, together with bookkeeping information.

Folder View
FileWeaver uses the standard Folder view of the host oper-
ating system (Fig. 1 left), with an added sub-menu in the
context menu of each file to invoke FileWeaver commands.
The key command is Add File, which lets users add files to
FileWeaver together with their dependencies. Files managed
by FileWeaver have a little arrow on their icons to provide a
visual cue.

File Dependencies and the Graph View
Each file added to FileWeaver is a node in a graph, and the
dependencies between files are directed edges between the
nodes. This graph is constructed and updated automatically.
Whenever the user selects a file managed by FileWeaver in
the Folder view, she can immediately see the dependency
graph of that file in a separate Graph view. Most FileWeaver
commands are available in both the Folder and Graph views.

Black edges represent regular, up-to-date dependencies. Other
colors represent a different status: a green dashed edge indi-
cates a FileWeaver copy (Fig. 1); a red edge indicates a stale
dependency; a gray edge indicates a manual dependency, e.g.
between a ReadMe file and a script; and a blue edge indicates
the morph group of a file (Fig. 3).

Version Control and the History View
FileWeaver puts each file it manages under version control.
When the user edits the file via the Edit File and Update
command and saves it, FileWeaver asks her to enter a commit
message and records a new version upon closing that file.

The Show History command opens a History view where each
node represents a version, labeled with the first line of the
commit message and the time it was created. Branches corre-
sponds to the use of the FileWeaver Copy command. Using
the context menu, the user can open any version of a file and
compare two versions with color-highlighted differences.

Synchronization between Views
The Folder, Graph, and History views are synchronized and
kept consistent. When the user selects a file in the Folder
view, the Graph view updates to display the relevant graph.
When FileWeaver detects that the dependencies of a file have
changed, the graph is animated. The user can open a new
Folder view at the location of any selected file in the Graph
view, and a History view from either the Folder or Graph view.

This makes navigating the file system flexible: the Folder
view provides traditional navigation of the file hierarchy, the
Graph view displays the dependencies of a file, irrespective of
their location in the hierarchy, and the History view lets users
explore the evolution of a given file over time.

Use Cases
The combination of synchronized views, automatic depen-
dency tracking and updating, and automatic versioning opens
up new possibilities for managing files. We introduce the main
features that we have implemented in FileWeaver through
a scenario inspired by the thematic analysis, starring Jane, a
data scientist. For each segment, we describe the scenario
without FileWeaver and reference (in italics) the issues found
in the thematic analysis. Then we describe the scenario with
FileWeaver , showing how it addresses the issues.

Detecting and Maintaining Dependencies
FileWeaver automatically tracks the dependencies between
files and displays them in the Graph view. When a new file is
added to FileWeaver (either manually by the user or automat-
ically by FileWeaver itself), FileWeaver detects its dependen-
cies and adds them to the graph. When a user edits a file via
the Edit and Update File command, e.g. by double-clicking it
in the Graph view, FileWeaver updates all the dependent files
and displays the result file. For example, if the user updates a
LaTeX source file, FileWeaver opens the resulting PDF file.



Figure 2. Graph view for the scenario (see text)

Scenario without FileWeaver: Jane produces a figure via a
Python script and wants to include it in a LaTeX document.
She moves the figure to the document’s directory (Save in
a single place). She also wants to create slides in Beamer
(Communicate) with that figure, so she also copies the figure to
her Beamer directory (Save in a single place). Every time she
needs to change the figure (Produce-communicate-reproduce),
she has to run her Python script, copy-paste the figure twice
to replace the old ones, and compile the LaTeX and Beamer
files. To send a standalone version of her project, Jane has to
go through various directories to find all the relevant files and
the right versions of the scripts and send them over via email.

Scenario with FileWeaver: Jane adds the script to
FileWeaver . FileWeaver runs the script and two nodes (for
the script and figure) appear in the Graph view. She then adds
the LaTeX file that includes the figure. FileWeaver compiles
it and two new nodes (LaTex file, output PDF file) appear in
the Graph view, with edges from the figure to the LaTeX file,
and from the LaTeX file to the PDF file.

When she edits the script with Edit and Update File,
FileWeaver updates all the dependent files by running the
script and recompiling the LaTeX file, and opens the PDF file,
with the up-to-date figure. When creating the Beamer file, Jane
uses the Graph view to find the figure and opens its enclosing
folder using the Locate File command. She can thus decide
on the best file storage strategy. She then adds the Beamer file
to FileWeaver (Fig. 2), so that any future change to the script
will also recompile the slides.

Jane writes a ReadMe file and manually connects it to the
script. The corresponding edge in the Graph View appears in
gray. To send the project, she selects any file in the Folder
or Graph View and issues the Make Archive command. This
creates a .zip archive of all the files connected to that file.

Managing Variants with Polymorphic Files
FileWeaver introduces a new concept called polymorphic
files—or morphs for short. A morph replaces a collection of
files, such as different formats for the same image (Fig. 3), by
a single file. We have implemented morphs for image files.
To create a morph, the user selects a set of files, e.g. four
pictures pic.pdf, pic.png, pic.jpg, pic.svg and issues
the Morph Files command, which creates a single file for
the morph with a .gifc extension (for generic image format
container). The user can import the morph into any other file,
and FileWeaver will determine which variant is appropriate.

Scenario without FileWeaver: Jane creates a very large plot
and saves it as an SVG file. To facilitate importing and sharing
this figure, she converts the file into PDF and JPG. She now

Figure 3. Polymorphic file in expanded (left) and collapsed (right) form.

has to maintain three files by hand whenever the source of the
plot changes (Dependency).

Scenario with FileWeaver: Jane creates the three image files
as above, and morphs them into a single file. Whenever she
includes the morph in a new file, it uses the default image
format for this file type. To use another format, she edits the
edge attribute with the desired extension, which will from now
on select the matching instance of the morph.

Managing History with Versions
Whenever a user edits a file via the Edit and Update File
command, FileWeaver prompts for a descriptive message and
saves the file as a new version. The user can explore the
file versions in the History view, where each item displays
the subject and date of the message, and compare any two
versions using a GUI diff tool (Fig. 4).

Users who are not familiar with version control systems typ-
ically create their own versioning by making copies of files
and editing them in parallel. FileWeaver provides the Copy
File with Dependencies command, which lets the user work si-
multaneously on two versions of the files. These dependencies
are shown in the Graph View as dashed green edges (Fig. 1).

Scenario without FileWeaver: Jane starts implementing a
new feature. She makes several attempts and saves them under
nondescript names (Keeping information “just in case”). A
few weeks later, she returns to it but cannot figure out which
file she was working on. She may even have overwritten it.

Scenario with FileWeaver: Jane creates a copy of her script
with the Copy File with Dependencies command, so she can
work on it independently from the original script. The copy
shows up in the Graph view, linked to the original file with

Figure 4. History view showing the differences between two versions.



a green edge. As she works on the new feature, FileWeaver
stores the successive versions. When she comes back to it
a few weeks later, she uses the History View to display the
differences between her last edits and remember her progress.
When the feature is ready, she merges the copy into the original.
If she gives up instead and deletes the copy, she can always get
back to it later via the History view of the original file, which
shows the branch corresponding to the copy.

How FileWeaver Works
We now describe how FileWeaver supports the features de-
scribed above.

Graph Attributes
Nodes and edges of the graph have attributes that are stored
in a separate database. Some attributes are maintained au-
tomatically, e.g. edge update time, which tracks when the
dependency between two files was last brought up to date.
FileWeaver compares it to the file’s UNIX mtime attribute
to decide whether to update the dependency. Each node also
stores the version ID of the corresponding file, and each edge
the version ID of the source side of the edge. If two files (A
and B) depend on different versions of a third file (C), the edge
(say, from C to A) representing the dependency that is not up
to date is shown in red. This tells the user that A should be
updated. If instead A and B were produced from C as part
of the produce-communicate-reproduce cycle, it tells the user
that the version of C that was used to produce A is accessible
from the History View, whereas it would normally have been
overwritten by the version that produced B.

Other attributes are under user control. For example, The
user can set node update to false to specify that this node
should not be automatically updated, e.g. because it is too
computationally expensive to run the update. The user can
also change the recipes for a given file (see next).

Recipes: Tracking and Updating Dependencies
FileWeaver uses file-dependent scripts called recipes, stored
as node attributes, to track and maintain dependencies. These
recipes specify how each file is processed (update), displayed
to the user (interact) or its dependencies tracked (trace), allow-
ing a high level of task automation and the ability to always
keep the Graph view up to date

The update recipe processes the file and produces its output
if there is one. For example, the recipe for a LaTeX file can
simply be latexmk $filename. The update recipe is run
whenever a file needs to be updated. When a user triggers
a FileWeaver command on a given file, FileWeaver checks
that the dependent files are up to date, in a topological sorting
order, and launches the update recipe on the target file if an
update is indeed needed.

The trace recipe is optional and should produce the same file
accesses as update, only faster. If unspecified, the update
recipe is used instead. For example, the trace recipe for a La-
TeX file can be simply pdflatex $filename. FileWeaver
traces the file accesses resulting from running the trace recipe
when the file dependency list needs updating, e.g. when a file
is edited or newly added. Trace recipes are motivated by files

with long compilation procedures, such as LaTeX files: while
the update call to latexmk will usually result in at least three
calls to pdflatex, the trace recipe only needs a single one.
Update and trace recipes should include clean-up commands,
if needed, to remove temporary files and avoid cluttering.

The interact recipe opens an editor or viewer for the file. For a
LaTeX file, it calls the user’s preferred LaTeX editor, e.g.
texmaker -n $filename. FileWeaver runs the interact
recipe when the user edits the file through FileWeaver , or
when FileWeaver wishes to display a file to the user, e.g. to
show the result of an update. When the user closes the editor
(which exits the interact recipe), changes are automatically
versioned. Note that the user can always edit a file outside of
FileWeaver ; it will then be recognized as out of date on the
next call to a FileWeaver command.

When a file is added to FileWeaver , the recipes are initialized
according to the file’s type. Each file type has a default set of
recipes stored in a .rcp file. FileWeaver currently features
recipes for 9 popular file types: .tex, .py, .pdf, .png, .jpg,
.jpeg, .csv, .svg, .txt. The default recipes for .tex files
is given in the Appendix. Users can edit .rcp files, share
them, and specify custom recipes for any given file.

We acknowledge that writing recipes may require some com-
puting knowledge. We expect to provide more recipe to cover
more file types, and a simple editor to facilitate creating, edit-
ing and sharing them.

Links and the Cookbook
The FileWeaver back-end runs in the background and strives
to be as transparent as possible to the user. It uses a hidden
folder called the cookbook to store its files.

Each file managed by FileWeaver is attributed a folder, called
a cookbook page, in the cookbook. When FileWeaver starts
tracking a file, that file is moved to a new cookbook page, and
a symbolic (soft) link is created at the original file location,
pointing to the file in its cookbook page. This leaves the user’s
folder virtually unchanged, except for the fact that the user
now sees a symbolic link rather than a standard file. We use
soft links rather than hard links because the latter do not span
filesystems (including partitions). Also, most file browsers
display symbolic links with an arrow on top of the file icon,
giving the user a clue that the file is managed by FileWeaver .

A cookbook page also holds the version control repository for
that particular file (Fig. 1 right). Cookbook pages are named
after the device and i-node number of the file that they store,
making for a cheap and memoryless, hashtable-like one-to-one
mapping between files and cookbook pages7.

Tracking File History Through Version Control
Whenever a file is edited via the Edit and Update File com-
mand, FileWeaver prompts the user for a message and auto-
matically commits the file to the version control repository

7Some text editors use temporary files that are renamed into the
original file after saving, therefore changing the i-node number of
the file. FileWeaver creates an additional, hidden hard link to the
file when it is added to the cookbook page to prevent the i-node from
changing. This hard link can also serve as a backup access to the file.



located in the file’s cookbook page. While FileWeaver could
automatically detect file changes and perform actions, we
avoided this behavior to give users a better sense of control.
The FileWeaver Copy command creates a new cookbook page
for the copy but shares the same repository as the original file
so that the user can merge the two files with the Merge Files
command. All edges to parent nodes and attributes are copied
from the original file, preserving custom settings.

Polymorphic files
When the user select files and invokes the Morph Files com-
mand, FileWeaver adds these files to its cookbook as usual,
and assigns them to a morph group. Instead of creating a soft
link for each file, it creates a single soft link for the morph with
a .gifc extension (generic image format container). When
a file calls a .gifc extension, FileWeaver goes through the
graph and looks if there is an edge between that file and a
member of the morph group. If so it redirects the soft link
with the .gifc extension to that morph group member; other-
wise it goes through the default image formats associated with
that file, e.g. pdf/png/jpg for a LaTeX file, and creates an edge
with the corresponding morph group member. Whenever a file
is used by FileWeaver , e.g. as part of an update, FileWeaver
checks if that file uses a morph. If so, it makes sure that the
soft link is pointing to the right member of the morph group.
Since some systems, e.g. LaTeX, use the file extension of in-
cluded files, FileWeaver creates a second, temporary soft link
with the right extension, and runs a stream editor to search and
replace the morph file name with the right extension. When
the update is complete, the original file content is restored and
the second soft link is removed.

Implementation
FileWeaver runs on Linux Ubuntu 18.04 LTS. The back-end
is written in just under 5000 lines of Python with calls to stan-
dard UNIX tools such as bash and sed8. File dependencies
are detected by running Tracefile9 on the trace recipe to
track file accesses. The graph database is managed via the
graph-tool library10. The back-end currently runs only on
Linux due to the use of Tracefile and strace, but we are
considering alternatives for Mac OS.

The Folder view is the GNOME Nautilus file manager11 (Fig. 1
left). We use nautilus-python12 to write extensions to
Nautilus for running the backend and adding the menu of
FileWeaver commands to the standard Nautilus file menu.

Both the Graph and History views (Fig. 1 center) are imple-
mented with NWJS13, a platform to create web-based desktop
applications. The Graph View sends commands to the back-
end through a simple pipe, and receives updates to the graph

8https://www.gnu.org/software/
9https://github.com/ole-tange/tangetools/blob/master/
tracefile/tracefile.pod, which is a wrapper around Linux’s
standard strace (https://linux.die.net/man/1/strace).

10https://graph-tool.skewed.de/
11https://github.com/GNOME/nautilus
12https://github.com/GNOME/nautilus-python
13https://nwjs.io/

through a shared file. It uses dot14 for the layout of the graph.
The version control system is Git15. Although not designed to
deal with binary files such as figures, it can handle a moderate
amount of them without problem. We plan to explore exten-
sions to Git that deal with large or numerous binaries16. The
History View directly calls Git commands for the different ver-
sion management commands. It uses git2dot17 to create the
version tree and diff2html18 to display version diffs. The
FileWeaver Copy command uses the git-worktree feature
to check out several branches at a time.

DISCUSSION AND EVALUATION
Table 2 lists the most important features implemented in
FileWeaver and the issues identified in the formative study
that they address (see Table 1). We complement this analy-
sis with a more general qualitative evaluation of FileWeaver
based on Green et al.’s cognitive dimensions [7]. We leave a
formal, longitudinal user study to future work.

Visibility and Hidden Dependencies
Visibility is the ability to view components easily, while hid-
den dependencies reflects whether important links between
entities are visible or not. FileWeaver achieves high visibility
and low hidden dependencies by making dependencies among
files explicit and visible in the Graph view. Dependencies are
represented by edges that can be manipulated, e.g. change the
update rule. Automatically running recipes also reveal depen-
dencies as files are edited, unlike tools such as, e.g. Makefiles,
that require manual editing to describe the dependencies.

In typical folder-based views, all non-hidden files are visible,
which may clutter the folder. FileWeaver’s polymorphic files
let users view the multiple variants of a file as a single entity,
making their relationship more explicit and reducing clutter.

Viscosity
Viscosity refers to resistance to change. FileWeaver has low
viscosity because it automatically propagate the user’s changes
to a file to its dependents, achieving consistency between files
without explicit user action.

FileWeaver also automatically stores successive versions of a
file so that users can examine and revert to previous versions
using the History view. It supports exploration of alternatives
by making it easy to create parallel copies and merge them.

FileWeaver prompts the user for a message when a file is
edited via Edit and Update File, which has high viscosity.
Although encouraging users to document their changes can
help them re-find the right version in the future, this requires
extra effort. We plan on simplifying this process, e.g. by
suggesting auto-generated commit messages.

Error-proneness
FileWeaver reduces errors by automating the processes of
dependency update and versioning. The former reduces the

14https://www.graphviz.org
15https://git-scm.com/
16such as git-lfs, git bup, git-annex
17https://github.com/jlinoff/git2dot
18https://diff2html.xyz
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Command Name FileWeaver Action What users see Issue
Addressed

Add File as Link Start managing the file and add all dependent
files

New nodes and edges appear in the Graph view.
The files become links in the Folder view MS, HF, LT

Copy File with Dependencies Copy a file with FileWeaver with all its user-
defined FileWeaver attributes

A node is added to the Graph view, pointing from
the original node by a green arrow. LT, VM

Make Standalone Archive
(Runnable and Flat Mode)

Export all dependencies as a .zip archive
with/without parent directories

FileWeaver creates the .zip archive in the cur-
rent Folder view location SD, LT

Tag File / Group Change the tag (label) attribute of a file (or group
of files) Labels in the Graph view set to the tag. HF

Edit File and Update
Run the file’s interaction script; commit changes
upon completion. Update dependents in topolog-
ical order; run interaction script on last file

An editor pops up; on closing it, a text window
prompts for a commit message. The Graph view
is updated and the new output file is displayed

MS, VM

Locate File Change the Folder view to the directory contain-
ing the file The file is highlighted in the new Folder view HF

Connect File Add an edge between two nodes in the Graph
view

The edge appears in light grey, different from
other edges in the Graph view. LT

Disconnect File Remove a permanent edge between two nodes in
the Graph view The edge disappears from the Graph view LT

Show File History Populate the History view with the Git history
tree

Each node in the history represents a commit.
FileWeaver copies appear as branches. Each
node displays commit date and subject

VM

Morph Files see § Polymorphic Files Morphed files are linked together with blue ar-
rows in the Graph view FV

Compare File Versions Call Git difftool A GUI diff tool appears in the History view to
compare files VM

Table 2. How different features of FileWeaver address issues observed in the formative study

risk of running the wrong command to update files, and the
latter makes it possible to get back to a former version in case
of an error. In future work we plan to use version control also
for the graph itself, which would make it possible to easily
recover deleted files and dependencies.

Secondary Notation
Secondary notation refers to the ability to carry additional
information. FileWeaver lets users tag files to rename the node
labels while keeping the underlying files with their original
name. Users can also edit the recipe and interact scripts of
individual files to tailor them to their needs. In future work we
will make it easier to define file types and edit default recipes,
as they are not currently readily accessible to novice users.

Role Expressiveness
Role expressiveness refers to how obvious the role of each
component is. Each view in FileWeaver has a specific role:
Folder view for regular file management, Graph view for man-
aging dependencies, and History view for versioning. Role
expressiveness could be further improved by decoupling com-
ponents and giving users more flexible ways to combine them.

Premature Commitment
Premature commitment refers to constraints on the order to
complete tasks. FileWeaver limits premature commitment by
letting users add files to the system whenever they want. File
names, contents and locations can also be modified at any time.
Asking for a commit message when saving a file is a form of
premature commitment, and should be made more flexible.

CONCLUSION AND FUTURE WORK
Knowledge management and sharing involves various spe-
cialized but isolated software tools, tied together by the files
that these tools use and produce. We interviewed 23 scien-
tists and showed that the information they manage is often

distributed, because they take advantage of the characteristics
of different information artifacts and rely on specialized tools.
Although scientists develop strategies to cope with re-finding
information, they still struggle to manage versions, maintain
consistency and keep track of related distributed information.

We introduced FileWeaver , a prototype file management sys-
tem where the traditional folder view is augmented by an
interactive Graph View that displays dependencies among files
and a History View that lets users interact with the different
versions of a file, supporting navigation and re-finding tasks.
FileWeaver also features polymorphic files, which groups the
different variants of a file into a single, generic format. To-
gether, these features create a new information substrate that
explicitly represents the web of file dependencies and relation-
ships that users typically have to manage in their heads.

FileWeaver helps automate the workflows of knowledge work-
ers who use files to manage information and tools such as
scripts and compilers to process them. It weaves files into
a graph of dependencies, providing users with an interactive
visualization of these dependencies. It weaves the history of
each file into a version tree, providing users with an interactive
temporal view of the file. Finally it weaves existing tools that
are part of the user’s workflow together to increase automation.

We plan to evaluate FileWeaver in a realistic setting to gather
feedback and improve the interface. We also need to assess its
scalability on larger sets of files. Future improvements include
making recipes editable by novice users, including through au-
tomatic capture of commands; simplifying the commit process,
e.g. by suggesting commit messages; and detecting dependen-
cies in files such as zip archives and Word documents. Finally,
FileWeaver has great potential for collaboration, since the file
contents and its relationships are under version control and
can therefore be pushed to a remote server for sharing.
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APPENDIX
A .rcp file stores the three scripts used by FileWeaver by
delimiting them with single-line markers: =DEFAULT-UPDATE,
=DEFAULT-TRACE, =DEFAULT-INTERACT. It also stores the
preferred image formats between the =DEFAULT-FORMAT-IMG
marker, in case a morph is used. The name of the file is that
of the file suffix it is associated with, e.g. tex.rcp for LaTeX
files. The .rcp file for LaTeX files is as follows:

=DEFAULT-UPDATE
#!/bin/bash
if cat $1 | grep -q \begin{document};
then

path=$(dirname "$1")
cd $path
latexmk -pdf -interaction=nonstopmode \

-bibtex-cond -silent -deps-out=.deps.txt $1
if head -1 $1 | grep -q {beamer};
then

latexmk -c $1
rm *.nav
rm *.snm

else
latexmk -c $1

fi
exit 1

else
exit 1

fi
!=DEFAULT-UPDATE
=DEFAULT-TRACE
#!/bin/bash
if cat $1 | grep -q \begin{document};
then

path=$(dirname "$1")
cd $path
pdflatex -output-format pdf -interaction \

nonstopmode $1
if head -1 $1 | grep -q {beamer};
then

latexmk -c $1
rm *.nav
rm *.snm

else
latexmk -c $1

fi
exit 1

else
exit 1

fi
!=DEFAULT-TRACE
=DEFAULT-INTERACT
texmaker -n $1
!=DEFAULT-INTERACT
=DEFAULT-FORMAT-IMG
pdf/eps/png
!=DEFAULT-FORMAT-IMG
=END
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